xfs: call xfs_buf_delwri_queue directly
[pandora-kernel.git] / fs / xfs / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 #include "xfs_sb.h"
38 #include "xfs_inum.h"
39 #include "xfs_log.h"
40 #include "xfs_ag.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43
44 static kmem_zone_t *xfs_buf_zone;
45 STATIC int xfsbufd(void *);
46
47 static struct workqueue_struct *xfslogd_workqueue;
48 struct workqueue_struct *xfsdatad_workqueue;
49 struct workqueue_struct *xfsconvertd_workqueue;
50
51 #ifdef XFS_BUF_LOCK_TRACKING
52 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
53 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
54 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
55 #else
56 # define XB_SET_OWNER(bp)       do { } while (0)
57 # define XB_CLEAR_OWNER(bp)     do { } while (0)
58 # define XB_GET_OWNER(bp)       do { } while (0)
59 #endif
60
61 #define xb_to_gfp(flags) \
62         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
63           ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
64
65 #define xb_to_km(flags) \
66          (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
67
68 #define xfs_buf_allocate(flags) \
69         kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
70 #define xfs_buf_deallocate(bp) \
71         kmem_zone_free(xfs_buf_zone, (bp));
72
73 static inline int
74 xfs_buf_is_vmapped(
75         struct xfs_buf  *bp)
76 {
77         /*
78          * Return true if the buffer is vmapped.
79          *
80          * The XBF_MAPPED flag is set if the buffer should be mapped, but the
81          * code is clever enough to know it doesn't have to map a single page,
82          * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
83          */
84         return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
85 }
86
87 static inline int
88 xfs_buf_vmap_len(
89         struct xfs_buf  *bp)
90 {
91         return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
92 }
93
94 /*
95  * xfs_buf_lru_add - add a buffer to the LRU.
96  *
97  * The LRU takes a new reference to the buffer so that it will only be freed
98  * once the shrinker takes the buffer off the LRU.
99  */
100 STATIC void
101 xfs_buf_lru_add(
102         struct xfs_buf  *bp)
103 {
104         struct xfs_buftarg *btp = bp->b_target;
105
106         spin_lock(&btp->bt_lru_lock);
107         if (list_empty(&bp->b_lru)) {
108                 atomic_inc(&bp->b_hold);
109                 list_add_tail(&bp->b_lru, &btp->bt_lru);
110                 btp->bt_lru_nr++;
111         }
112         spin_unlock(&btp->bt_lru_lock);
113 }
114
115 /*
116  * xfs_buf_lru_del - remove a buffer from the LRU
117  *
118  * The unlocked check is safe here because it only occurs when there are not
119  * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
120  * to optimise the shrinker removing the buffer from the LRU and calling
121  * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
122  * bt_lru_lock.
123  */
124 STATIC void
125 xfs_buf_lru_del(
126         struct xfs_buf  *bp)
127 {
128         struct xfs_buftarg *btp = bp->b_target;
129
130         if (list_empty(&bp->b_lru))
131                 return;
132
133         spin_lock(&btp->bt_lru_lock);
134         if (!list_empty(&bp->b_lru)) {
135                 list_del_init(&bp->b_lru);
136                 btp->bt_lru_nr--;
137         }
138         spin_unlock(&btp->bt_lru_lock);
139 }
140
141 /*
142  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
143  * b_lru_ref count so that the buffer is freed immediately when the buffer
144  * reference count falls to zero. If the buffer is already on the LRU, we need
145  * to remove the reference that LRU holds on the buffer.
146  *
147  * This prevents build-up of stale buffers on the LRU.
148  */
149 void
150 xfs_buf_stale(
151         struct xfs_buf  *bp)
152 {
153         bp->b_flags |= XBF_STALE;
154         atomic_set(&(bp)->b_lru_ref, 0);
155         if (!list_empty(&bp->b_lru)) {
156                 struct xfs_buftarg *btp = bp->b_target;
157
158                 spin_lock(&btp->bt_lru_lock);
159                 if (!list_empty(&bp->b_lru)) {
160                         list_del_init(&bp->b_lru);
161                         btp->bt_lru_nr--;
162                         atomic_dec(&bp->b_hold);
163                 }
164                 spin_unlock(&btp->bt_lru_lock);
165         }
166         ASSERT(atomic_read(&bp->b_hold) >= 1);
167 }
168
169 STATIC void
170 _xfs_buf_initialize(
171         xfs_buf_t               *bp,
172         xfs_buftarg_t           *target,
173         xfs_off_t               range_base,
174         size_t                  range_length,
175         xfs_buf_flags_t         flags)
176 {
177         /*
178          * We don't want certain flags to appear in b_flags.
179          */
180         flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
181
182         memset(bp, 0, sizeof(xfs_buf_t));
183         atomic_set(&bp->b_hold, 1);
184         atomic_set(&bp->b_lru_ref, 1);
185         init_completion(&bp->b_iowait);
186         INIT_LIST_HEAD(&bp->b_lru);
187         INIT_LIST_HEAD(&bp->b_list);
188         RB_CLEAR_NODE(&bp->b_rbnode);
189         sema_init(&bp->b_sema, 0); /* held, no waiters */
190         XB_SET_OWNER(bp);
191         bp->b_target = target;
192         bp->b_file_offset = range_base;
193         /*
194          * Set buffer_length and count_desired to the same value initially.
195          * I/O routines should use count_desired, which will be the same in
196          * most cases but may be reset (e.g. XFS recovery).
197          */
198         bp->b_buffer_length = bp->b_count_desired = range_length;
199         bp->b_flags = flags;
200         bp->b_bn = XFS_BUF_DADDR_NULL;
201         atomic_set(&bp->b_pin_count, 0);
202         init_waitqueue_head(&bp->b_waiters);
203
204         XFS_STATS_INC(xb_create);
205
206         trace_xfs_buf_init(bp, _RET_IP_);
207 }
208
209 /*
210  *      Allocate a page array capable of holding a specified number
211  *      of pages, and point the page buf at it.
212  */
213 STATIC int
214 _xfs_buf_get_pages(
215         xfs_buf_t               *bp,
216         int                     page_count,
217         xfs_buf_flags_t         flags)
218 {
219         /* Make sure that we have a page list */
220         if (bp->b_pages == NULL) {
221                 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
222                 bp->b_page_count = page_count;
223                 if (page_count <= XB_PAGES) {
224                         bp->b_pages = bp->b_page_array;
225                 } else {
226                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
227                                         page_count, xb_to_km(flags));
228                         if (bp->b_pages == NULL)
229                                 return -ENOMEM;
230                 }
231                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
232         }
233         return 0;
234 }
235
236 /*
237  *      Frees b_pages if it was allocated.
238  */
239 STATIC void
240 _xfs_buf_free_pages(
241         xfs_buf_t       *bp)
242 {
243         if (bp->b_pages != bp->b_page_array) {
244                 kmem_free(bp->b_pages);
245                 bp->b_pages = NULL;
246         }
247 }
248
249 /*
250  *      Releases the specified buffer.
251  *
252  *      The modification state of any associated pages is left unchanged.
253  *      The buffer most not be on any hash - use xfs_buf_rele instead for
254  *      hashed and refcounted buffers
255  */
256 void
257 xfs_buf_free(
258         xfs_buf_t               *bp)
259 {
260         trace_xfs_buf_free(bp, _RET_IP_);
261
262         ASSERT(list_empty(&bp->b_lru));
263
264         if (bp->b_flags & _XBF_PAGES) {
265                 uint            i;
266
267                 if (xfs_buf_is_vmapped(bp))
268                         vm_unmap_ram(bp->b_addr - bp->b_offset,
269                                         bp->b_page_count);
270
271                 for (i = 0; i < bp->b_page_count; i++) {
272                         struct page     *page = bp->b_pages[i];
273
274                         __free_page(page);
275                 }
276         } else if (bp->b_flags & _XBF_KMEM)
277                 kmem_free(bp->b_addr);
278         _xfs_buf_free_pages(bp);
279         xfs_buf_deallocate(bp);
280 }
281
282 /*
283  * Allocates all the pages for buffer in question and builds it's page list.
284  */
285 STATIC int
286 xfs_buf_allocate_memory(
287         xfs_buf_t               *bp,
288         uint                    flags)
289 {
290         size_t                  size = bp->b_count_desired;
291         size_t                  nbytes, offset;
292         gfp_t                   gfp_mask = xb_to_gfp(flags);
293         unsigned short          page_count, i;
294         xfs_off_t               end;
295         int                     error;
296
297         /*
298          * for buffers that are contained within a single page, just allocate
299          * the memory from the heap - there's no need for the complexity of
300          * page arrays to keep allocation down to order 0.
301          */
302         if (bp->b_buffer_length < PAGE_SIZE) {
303                 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
304                 if (!bp->b_addr) {
305                         /* low memory - use alloc_page loop instead */
306                         goto use_alloc_page;
307                 }
308
309                 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
310                                                                 PAGE_MASK) !=
311                     ((unsigned long)bp->b_addr & PAGE_MASK)) {
312                         /* b_addr spans two pages - use alloc_page instead */
313                         kmem_free(bp->b_addr);
314                         bp->b_addr = NULL;
315                         goto use_alloc_page;
316                 }
317                 bp->b_offset = offset_in_page(bp->b_addr);
318                 bp->b_pages = bp->b_page_array;
319                 bp->b_pages[0] = virt_to_page(bp->b_addr);
320                 bp->b_page_count = 1;
321                 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
322                 return 0;
323         }
324
325 use_alloc_page:
326         end = bp->b_file_offset + bp->b_buffer_length;
327         page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
328         error = _xfs_buf_get_pages(bp, page_count, flags);
329         if (unlikely(error))
330                 return error;
331
332         offset = bp->b_offset;
333         bp->b_flags |= _XBF_PAGES;
334
335         for (i = 0; i < bp->b_page_count; i++) {
336                 struct page     *page;
337                 uint            retries = 0;
338 retry:
339                 page = alloc_page(gfp_mask);
340                 if (unlikely(page == NULL)) {
341                         if (flags & XBF_READ_AHEAD) {
342                                 bp->b_page_count = i;
343                                 error = ENOMEM;
344                                 goto out_free_pages;
345                         }
346
347                         /*
348                          * This could deadlock.
349                          *
350                          * But until all the XFS lowlevel code is revamped to
351                          * handle buffer allocation failures we can't do much.
352                          */
353                         if (!(++retries % 100))
354                                 xfs_err(NULL,
355                 "possible memory allocation deadlock in %s (mode:0x%x)",
356                                         __func__, gfp_mask);
357
358                         XFS_STATS_INC(xb_page_retries);
359                         congestion_wait(BLK_RW_ASYNC, HZ/50);
360                         goto retry;
361                 }
362
363                 XFS_STATS_INC(xb_page_found);
364
365                 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
366                 size -= nbytes;
367                 bp->b_pages[i] = page;
368                 offset = 0;
369         }
370         return 0;
371
372 out_free_pages:
373         for (i = 0; i < bp->b_page_count; i++)
374                 __free_page(bp->b_pages[i]);
375         return error;
376 }
377
378 /*
379  *      Map buffer into kernel address-space if necessary.
380  */
381 STATIC int
382 _xfs_buf_map_pages(
383         xfs_buf_t               *bp,
384         uint                    flags)
385 {
386         ASSERT(bp->b_flags & _XBF_PAGES);
387         if (bp->b_page_count == 1) {
388                 /* A single page buffer is always mappable */
389                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
390                 bp->b_flags |= XBF_MAPPED;
391         } else if (flags & XBF_MAPPED) {
392                 int retried = 0;
393
394                 do {
395                         bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
396                                                 -1, PAGE_KERNEL);
397                         if (bp->b_addr)
398                                 break;
399                         vm_unmap_aliases();
400                 } while (retried++ <= 1);
401
402                 if (!bp->b_addr)
403                         return -ENOMEM;
404                 bp->b_addr += bp->b_offset;
405                 bp->b_flags |= XBF_MAPPED;
406         }
407
408         return 0;
409 }
410
411 /*
412  *      Finding and Reading Buffers
413  */
414
415 /*
416  *      Look up, and creates if absent, a lockable buffer for
417  *      a given range of an inode.  The buffer is returned
418  *      locked.  If other overlapping buffers exist, they are
419  *      released before the new buffer is created and locked,
420  *      which may imply that this call will block until those buffers
421  *      are unlocked.  No I/O is implied by this call.
422  */
423 xfs_buf_t *
424 _xfs_buf_find(
425         xfs_buftarg_t           *btp,   /* block device target          */
426         xfs_off_t               ioff,   /* starting offset of range     */
427         size_t                  isize,  /* length of range              */
428         xfs_buf_flags_t         flags,
429         xfs_buf_t               *new_bp)
430 {
431         xfs_off_t               range_base;
432         size_t                  range_length;
433         struct xfs_perag        *pag;
434         struct rb_node          **rbp;
435         struct rb_node          *parent;
436         xfs_buf_t               *bp;
437
438         range_base = (ioff << BBSHIFT);
439         range_length = (isize << BBSHIFT);
440
441         /* Check for IOs smaller than the sector size / not sector aligned */
442         ASSERT(!(range_length < (1 << btp->bt_sshift)));
443         ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
444
445         /* get tree root */
446         pag = xfs_perag_get(btp->bt_mount,
447                                 xfs_daddr_to_agno(btp->bt_mount, ioff));
448
449         /* walk tree */
450         spin_lock(&pag->pag_buf_lock);
451         rbp = &pag->pag_buf_tree.rb_node;
452         parent = NULL;
453         bp = NULL;
454         while (*rbp) {
455                 parent = *rbp;
456                 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
457
458                 if (range_base < bp->b_file_offset)
459                         rbp = &(*rbp)->rb_left;
460                 else if (range_base > bp->b_file_offset)
461                         rbp = &(*rbp)->rb_right;
462                 else {
463                         /*
464                          * found a block offset match. If the range doesn't
465                          * match, the only way this is allowed is if the buffer
466                          * in the cache is stale and the transaction that made
467                          * it stale has not yet committed. i.e. we are
468                          * reallocating a busy extent. Skip this buffer and
469                          * continue searching to the right for an exact match.
470                          */
471                         if (bp->b_buffer_length != range_length) {
472                                 ASSERT(bp->b_flags & XBF_STALE);
473                                 rbp = &(*rbp)->rb_right;
474                                 continue;
475                         }
476                         atomic_inc(&bp->b_hold);
477                         goto found;
478                 }
479         }
480
481         /* No match found */
482         if (new_bp) {
483                 _xfs_buf_initialize(new_bp, btp, range_base,
484                                 range_length, flags);
485                 rb_link_node(&new_bp->b_rbnode, parent, rbp);
486                 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
487                 /* the buffer keeps the perag reference until it is freed */
488                 new_bp->b_pag = pag;
489                 spin_unlock(&pag->pag_buf_lock);
490         } else {
491                 XFS_STATS_INC(xb_miss_locked);
492                 spin_unlock(&pag->pag_buf_lock);
493                 xfs_perag_put(pag);
494         }
495         return new_bp;
496
497 found:
498         spin_unlock(&pag->pag_buf_lock);
499         xfs_perag_put(pag);
500
501         if (!xfs_buf_trylock(bp)) {
502                 if (flags & XBF_TRYLOCK) {
503                         xfs_buf_rele(bp);
504                         XFS_STATS_INC(xb_busy_locked);
505                         return NULL;
506                 }
507                 xfs_buf_lock(bp);
508                 XFS_STATS_INC(xb_get_locked_waited);
509         }
510
511         /*
512          * if the buffer is stale, clear all the external state associated with
513          * it. We need to keep flags such as how we allocated the buffer memory
514          * intact here.
515          */
516         if (bp->b_flags & XBF_STALE) {
517                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
518                 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
519         }
520
521         trace_xfs_buf_find(bp, flags, _RET_IP_);
522         XFS_STATS_INC(xb_get_locked);
523         return bp;
524 }
525
526 /*
527  *      Assembles a buffer covering the specified range.
528  *      Storage in memory for all portions of the buffer will be allocated,
529  *      although backing storage may not be.
530  */
531 xfs_buf_t *
532 xfs_buf_get(
533         xfs_buftarg_t           *target,/* target for buffer            */
534         xfs_off_t               ioff,   /* starting offset of range     */
535         size_t                  isize,  /* length of range              */
536         xfs_buf_flags_t         flags)
537 {
538         xfs_buf_t               *bp, *new_bp;
539         int                     error = 0;
540
541         new_bp = xfs_buf_allocate(flags);
542         if (unlikely(!new_bp))
543                 return NULL;
544
545         bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
546         if (bp == new_bp) {
547                 error = xfs_buf_allocate_memory(bp, flags);
548                 if (error)
549                         goto no_buffer;
550         } else {
551                 xfs_buf_deallocate(new_bp);
552                 if (unlikely(bp == NULL))
553                         return NULL;
554         }
555
556         if (!(bp->b_flags & XBF_MAPPED)) {
557                 error = _xfs_buf_map_pages(bp, flags);
558                 if (unlikely(error)) {
559                         xfs_warn(target->bt_mount,
560                                 "%s: failed to map pages\n", __func__);
561                         goto no_buffer;
562                 }
563         }
564
565         XFS_STATS_INC(xb_get);
566
567         /*
568          * Always fill in the block number now, the mapped cases can do
569          * their own overlay of this later.
570          */
571         bp->b_bn = ioff;
572         bp->b_count_desired = bp->b_buffer_length;
573
574         trace_xfs_buf_get(bp, flags, _RET_IP_);
575         return bp;
576
577  no_buffer:
578         if (flags & (XBF_LOCK | XBF_TRYLOCK))
579                 xfs_buf_unlock(bp);
580         xfs_buf_rele(bp);
581         return NULL;
582 }
583
584 STATIC int
585 _xfs_buf_read(
586         xfs_buf_t               *bp,
587         xfs_buf_flags_t         flags)
588 {
589         int                     status;
590
591         ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
592         ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
593
594         bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | XBF_READ_AHEAD);
595         bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
596
597         status = xfs_buf_iorequest(bp);
598         if (status || bp->b_error || (flags & XBF_ASYNC))
599                 return status;
600         return xfs_buf_iowait(bp);
601 }
602
603 xfs_buf_t *
604 xfs_buf_read(
605         xfs_buftarg_t           *target,
606         xfs_off_t               ioff,
607         size_t                  isize,
608         xfs_buf_flags_t         flags)
609 {
610         xfs_buf_t               *bp;
611
612         flags |= XBF_READ;
613
614         bp = xfs_buf_get(target, ioff, isize, flags);
615         if (bp) {
616                 trace_xfs_buf_read(bp, flags, _RET_IP_);
617
618                 if (!XFS_BUF_ISDONE(bp)) {
619                         XFS_STATS_INC(xb_get_read);
620                         _xfs_buf_read(bp, flags);
621                 } else if (flags & XBF_ASYNC) {
622                         /*
623                          * Read ahead call which is already satisfied,
624                          * drop the buffer
625                          */
626                         goto no_buffer;
627                 } else {
628                         /* We do not want read in the flags */
629                         bp->b_flags &= ~XBF_READ;
630                 }
631         }
632
633         return bp;
634
635  no_buffer:
636         if (flags & (XBF_LOCK | XBF_TRYLOCK))
637                 xfs_buf_unlock(bp);
638         xfs_buf_rele(bp);
639         return NULL;
640 }
641
642 /*
643  *      If we are not low on memory then do the readahead in a deadlock
644  *      safe manner.
645  */
646 void
647 xfs_buf_readahead(
648         xfs_buftarg_t           *target,
649         xfs_off_t               ioff,
650         size_t                  isize)
651 {
652         if (bdi_read_congested(target->bt_bdi))
653                 return;
654
655         xfs_buf_read(target, ioff, isize,
656                      XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
657 }
658
659 /*
660  * Read an uncached buffer from disk. Allocates and returns a locked
661  * buffer containing the disk contents or nothing.
662  */
663 struct xfs_buf *
664 xfs_buf_read_uncached(
665         struct xfs_mount        *mp,
666         struct xfs_buftarg      *target,
667         xfs_daddr_t             daddr,
668         size_t                  length,
669         int                     flags)
670 {
671         xfs_buf_t               *bp;
672         int                     error;
673
674         bp = xfs_buf_get_uncached(target, length, flags);
675         if (!bp)
676                 return NULL;
677
678         /* set up the buffer for a read IO */
679         XFS_BUF_SET_ADDR(bp, daddr);
680         XFS_BUF_READ(bp);
681
682         xfsbdstrat(mp, bp);
683         error = xfs_buf_iowait(bp);
684         if (error || bp->b_error) {
685                 xfs_buf_relse(bp);
686                 return NULL;
687         }
688         return bp;
689 }
690
691 xfs_buf_t *
692 xfs_buf_get_empty(
693         size_t                  len,
694         xfs_buftarg_t           *target)
695 {
696         xfs_buf_t               *bp;
697
698         bp = xfs_buf_allocate(0);
699         if (bp)
700                 _xfs_buf_initialize(bp, target, 0, len, 0);
701         return bp;
702 }
703
704 /*
705  * Return a buffer allocated as an empty buffer and associated to external
706  * memory via xfs_buf_associate_memory() back to it's empty state.
707  */
708 void
709 xfs_buf_set_empty(
710         struct xfs_buf          *bp,
711         size_t                  len)
712 {
713         if (bp->b_pages)
714                 _xfs_buf_free_pages(bp);
715
716         bp->b_pages = NULL;
717         bp->b_page_count = 0;
718         bp->b_addr = NULL;
719         bp->b_file_offset = 0;
720         bp->b_buffer_length = bp->b_count_desired = len;
721         bp->b_bn = XFS_BUF_DADDR_NULL;
722         bp->b_flags &= ~XBF_MAPPED;
723 }
724
725 static inline struct page *
726 mem_to_page(
727         void                    *addr)
728 {
729         if ((!is_vmalloc_addr(addr))) {
730                 return virt_to_page(addr);
731         } else {
732                 return vmalloc_to_page(addr);
733         }
734 }
735
736 int
737 xfs_buf_associate_memory(
738         xfs_buf_t               *bp,
739         void                    *mem,
740         size_t                  len)
741 {
742         int                     rval;
743         int                     i = 0;
744         unsigned long           pageaddr;
745         unsigned long           offset;
746         size_t                  buflen;
747         int                     page_count;
748
749         pageaddr = (unsigned long)mem & PAGE_MASK;
750         offset = (unsigned long)mem - pageaddr;
751         buflen = PAGE_ALIGN(len + offset);
752         page_count = buflen >> PAGE_SHIFT;
753
754         /* Free any previous set of page pointers */
755         if (bp->b_pages)
756                 _xfs_buf_free_pages(bp);
757
758         bp->b_pages = NULL;
759         bp->b_addr = mem;
760
761         rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
762         if (rval)
763                 return rval;
764
765         bp->b_offset = offset;
766
767         for (i = 0; i < bp->b_page_count; i++) {
768                 bp->b_pages[i] = mem_to_page((void *)pageaddr);
769                 pageaddr += PAGE_SIZE;
770         }
771
772         bp->b_count_desired = len;
773         bp->b_buffer_length = buflen;
774         bp->b_flags |= XBF_MAPPED;
775
776         return 0;
777 }
778
779 xfs_buf_t *
780 xfs_buf_get_uncached(
781         struct xfs_buftarg      *target,
782         size_t                  len,
783         int                     flags)
784 {
785         unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
786         int                     error, i;
787         xfs_buf_t               *bp;
788
789         bp = xfs_buf_allocate(0);
790         if (unlikely(bp == NULL))
791                 goto fail;
792         _xfs_buf_initialize(bp, target, 0, len, 0);
793
794         error = _xfs_buf_get_pages(bp, page_count, 0);
795         if (error)
796                 goto fail_free_buf;
797
798         for (i = 0; i < page_count; i++) {
799                 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
800                 if (!bp->b_pages[i])
801                         goto fail_free_mem;
802         }
803         bp->b_flags |= _XBF_PAGES;
804
805         error = _xfs_buf_map_pages(bp, XBF_MAPPED);
806         if (unlikely(error)) {
807                 xfs_warn(target->bt_mount,
808                         "%s: failed to map pages\n", __func__);
809                 goto fail_free_mem;
810         }
811
812         trace_xfs_buf_get_uncached(bp, _RET_IP_);
813         return bp;
814
815  fail_free_mem:
816         while (--i >= 0)
817                 __free_page(bp->b_pages[i]);
818         _xfs_buf_free_pages(bp);
819  fail_free_buf:
820         xfs_buf_deallocate(bp);
821  fail:
822         return NULL;
823 }
824
825 /*
826  *      Increment reference count on buffer, to hold the buffer concurrently
827  *      with another thread which may release (free) the buffer asynchronously.
828  *      Must hold the buffer already to call this function.
829  */
830 void
831 xfs_buf_hold(
832         xfs_buf_t               *bp)
833 {
834         trace_xfs_buf_hold(bp, _RET_IP_);
835         atomic_inc(&bp->b_hold);
836 }
837
838 /*
839  *      Releases a hold on the specified buffer.  If the
840  *      the hold count is 1, calls xfs_buf_free.
841  */
842 void
843 xfs_buf_rele(
844         xfs_buf_t               *bp)
845 {
846         struct xfs_perag        *pag = bp->b_pag;
847
848         trace_xfs_buf_rele(bp, _RET_IP_);
849
850         if (!pag) {
851                 ASSERT(list_empty(&bp->b_lru));
852                 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
853                 if (atomic_dec_and_test(&bp->b_hold))
854                         xfs_buf_free(bp);
855                 return;
856         }
857
858         ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
859
860         ASSERT(atomic_read(&bp->b_hold) > 0);
861         if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
862                 if (!(bp->b_flags & XBF_STALE) &&
863                            atomic_read(&bp->b_lru_ref)) {
864                         xfs_buf_lru_add(bp);
865                         spin_unlock(&pag->pag_buf_lock);
866                 } else {
867                         xfs_buf_lru_del(bp);
868                         ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
869                         rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
870                         spin_unlock(&pag->pag_buf_lock);
871                         xfs_perag_put(pag);
872                         xfs_buf_free(bp);
873                 }
874         }
875 }
876
877
878 /*
879  *      Lock a buffer object, if it is not already locked.
880  *
881  *      If we come across a stale, pinned, locked buffer, we know that we are
882  *      being asked to lock a buffer that has been reallocated. Because it is
883  *      pinned, we know that the log has not been pushed to disk and hence it
884  *      will still be locked.  Rather than continuing to have trylock attempts
885  *      fail until someone else pushes the log, push it ourselves before
886  *      returning.  This means that the xfsaild will not get stuck trying
887  *      to push on stale inode buffers.
888  */
889 int
890 xfs_buf_trylock(
891         struct xfs_buf          *bp)
892 {
893         int                     locked;
894
895         locked = down_trylock(&bp->b_sema) == 0;
896         if (locked)
897                 XB_SET_OWNER(bp);
898         else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
899                 xfs_log_force(bp->b_target->bt_mount, 0);
900
901         trace_xfs_buf_trylock(bp, _RET_IP_);
902         return locked;
903 }
904
905 /*
906  *      Lock a buffer object.
907  *
908  *      If we come across a stale, pinned, locked buffer, we know that we
909  *      are being asked to lock a buffer that has been reallocated. Because
910  *      it is pinned, we know that the log has not been pushed to disk and
911  *      hence it will still be locked. Rather than sleeping until someone
912  *      else pushes the log, push it ourselves before trying to get the lock.
913  */
914 void
915 xfs_buf_lock(
916         struct xfs_buf          *bp)
917 {
918         trace_xfs_buf_lock(bp, _RET_IP_);
919
920         if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
921                 xfs_log_force(bp->b_target->bt_mount, 0);
922         down(&bp->b_sema);
923         XB_SET_OWNER(bp);
924
925         trace_xfs_buf_lock_done(bp, _RET_IP_);
926 }
927
928 /*
929  *      Releases the lock on the buffer object.
930  *      If the buffer is marked delwri but is not queued, do so before we
931  *      unlock the buffer as we need to set flags correctly.  We also need to
932  *      take a reference for the delwri queue because the unlocker is going to
933  *      drop their's and they don't know we just queued it.
934  */
935 void
936 xfs_buf_unlock(
937         struct xfs_buf          *bp)
938 {
939         XB_CLEAR_OWNER(bp);
940         up(&bp->b_sema);
941
942         trace_xfs_buf_unlock(bp, _RET_IP_);
943 }
944
945 STATIC void
946 xfs_buf_wait_unpin(
947         xfs_buf_t               *bp)
948 {
949         DECLARE_WAITQUEUE       (wait, current);
950
951         if (atomic_read(&bp->b_pin_count) == 0)
952                 return;
953
954         add_wait_queue(&bp->b_waiters, &wait);
955         for (;;) {
956                 set_current_state(TASK_UNINTERRUPTIBLE);
957                 if (atomic_read(&bp->b_pin_count) == 0)
958                         break;
959                 io_schedule();
960         }
961         remove_wait_queue(&bp->b_waiters, &wait);
962         set_current_state(TASK_RUNNING);
963 }
964
965 /*
966  *      Buffer Utility Routines
967  */
968
969 STATIC void
970 xfs_buf_iodone_work(
971         struct work_struct      *work)
972 {
973         xfs_buf_t               *bp =
974                 container_of(work, xfs_buf_t, b_iodone_work);
975
976         if (bp->b_iodone)
977                 (*(bp->b_iodone))(bp);
978         else if (bp->b_flags & XBF_ASYNC)
979                 xfs_buf_relse(bp);
980 }
981
982 void
983 xfs_buf_ioend(
984         xfs_buf_t               *bp,
985         int                     schedule)
986 {
987         trace_xfs_buf_iodone(bp, _RET_IP_);
988
989         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
990         if (bp->b_error == 0)
991                 bp->b_flags |= XBF_DONE;
992
993         if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
994                 if (schedule) {
995                         INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
996                         queue_work(xfslogd_workqueue, &bp->b_iodone_work);
997                 } else {
998                         xfs_buf_iodone_work(&bp->b_iodone_work);
999                 }
1000         } else {
1001                 complete(&bp->b_iowait);
1002         }
1003 }
1004
1005 void
1006 xfs_buf_ioerror(
1007         xfs_buf_t               *bp,
1008         int                     error)
1009 {
1010         ASSERT(error >= 0 && error <= 0xffff);
1011         bp->b_error = (unsigned short)error;
1012         trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1013 }
1014
1015 int
1016 xfs_bwrite(
1017         struct xfs_mount        *mp,
1018         struct xfs_buf          *bp)
1019 {
1020         int                     error;
1021
1022         bp->b_flags |= XBF_WRITE;
1023         bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1024
1025         xfs_buf_delwri_dequeue(bp);
1026         xfs_bdstrat_cb(bp);
1027
1028         error = xfs_buf_iowait(bp);
1029         if (error)
1030                 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1031         xfs_buf_relse(bp);
1032         return error;
1033 }
1034
1035 /*
1036  * Called when we want to stop a buffer from getting written or read.
1037  * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1038  * so that the proper iodone callbacks get called.
1039  */
1040 STATIC int
1041 xfs_bioerror(
1042         xfs_buf_t *bp)
1043 {
1044 #ifdef XFSERRORDEBUG
1045         ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1046 #endif
1047
1048         /*
1049          * No need to wait until the buffer is unpinned, we aren't flushing it.
1050          */
1051         xfs_buf_ioerror(bp, EIO);
1052
1053         /*
1054          * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1055          */
1056         XFS_BUF_UNREAD(bp);
1057         xfs_buf_delwri_dequeue(bp);
1058         XFS_BUF_UNDONE(bp);
1059         XFS_BUF_STALE(bp);
1060
1061         xfs_buf_ioend(bp, 0);
1062
1063         return EIO;
1064 }
1065
1066 /*
1067  * Same as xfs_bioerror, except that we are releasing the buffer
1068  * here ourselves, and avoiding the xfs_buf_ioend call.
1069  * This is meant for userdata errors; metadata bufs come with
1070  * iodone functions attached, so that we can track down errors.
1071  */
1072 STATIC int
1073 xfs_bioerror_relse(
1074         struct xfs_buf  *bp)
1075 {
1076         int64_t         fl = bp->b_flags;
1077         /*
1078          * No need to wait until the buffer is unpinned.
1079          * We aren't flushing it.
1080          *
1081          * chunkhold expects B_DONE to be set, whether
1082          * we actually finish the I/O or not. We don't want to
1083          * change that interface.
1084          */
1085         XFS_BUF_UNREAD(bp);
1086         xfs_buf_delwri_dequeue(bp);
1087         XFS_BUF_DONE(bp);
1088         XFS_BUF_STALE(bp);
1089         bp->b_iodone = NULL;
1090         if (!(fl & XBF_ASYNC)) {
1091                 /*
1092                  * Mark b_error and B_ERROR _both_.
1093                  * Lot's of chunkcache code assumes that.
1094                  * There's no reason to mark error for
1095                  * ASYNC buffers.
1096                  */
1097                 xfs_buf_ioerror(bp, EIO);
1098                 XFS_BUF_FINISH_IOWAIT(bp);
1099         } else {
1100                 xfs_buf_relse(bp);
1101         }
1102
1103         return EIO;
1104 }
1105
1106
1107 /*
1108  * All xfs metadata buffers except log state machine buffers
1109  * get this attached as their b_bdstrat callback function.
1110  * This is so that we can catch a buffer
1111  * after prematurely unpinning it to forcibly shutdown the filesystem.
1112  */
1113 int
1114 xfs_bdstrat_cb(
1115         struct xfs_buf  *bp)
1116 {
1117         if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1118                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1119                 /*
1120                  * Metadata write that didn't get logged but
1121                  * written delayed anyway. These aren't associated
1122                  * with a transaction, and can be ignored.
1123                  */
1124                 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1125                         return xfs_bioerror_relse(bp);
1126                 else
1127                         return xfs_bioerror(bp);
1128         }
1129
1130         xfs_buf_iorequest(bp);
1131         return 0;
1132 }
1133
1134 /*
1135  * Wrapper around bdstrat so that we can stop data from going to disk in case
1136  * we are shutting down the filesystem.  Typically user data goes thru this
1137  * path; one of the exceptions is the superblock.
1138  */
1139 void
1140 xfsbdstrat(
1141         struct xfs_mount        *mp,
1142         struct xfs_buf          *bp)
1143 {
1144         if (XFS_FORCED_SHUTDOWN(mp)) {
1145                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1146                 xfs_bioerror_relse(bp);
1147                 return;
1148         }
1149
1150         xfs_buf_iorequest(bp);
1151 }
1152
1153 STATIC void
1154 _xfs_buf_ioend(
1155         xfs_buf_t               *bp,
1156         int                     schedule)
1157 {
1158         if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1159                 xfs_buf_ioend(bp, schedule);
1160 }
1161
1162 STATIC void
1163 xfs_buf_bio_end_io(
1164         struct bio              *bio,
1165         int                     error)
1166 {
1167         xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1168
1169         xfs_buf_ioerror(bp, -error);
1170
1171         if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1172                 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1173
1174         _xfs_buf_ioend(bp, 1);
1175         bio_put(bio);
1176 }
1177
1178 STATIC void
1179 _xfs_buf_ioapply(
1180         xfs_buf_t               *bp)
1181 {
1182         int                     rw, map_i, total_nr_pages, nr_pages;
1183         struct bio              *bio;
1184         int                     offset = bp->b_offset;
1185         int                     size = bp->b_count_desired;
1186         sector_t                sector = bp->b_bn;
1187
1188         total_nr_pages = bp->b_page_count;
1189         map_i = 0;
1190
1191         if (bp->b_flags & XBF_WRITE) {
1192                 if (bp->b_flags & XBF_SYNCIO)
1193                         rw = WRITE_SYNC;
1194                 else
1195                         rw = WRITE;
1196                 if (bp->b_flags & XBF_FUA)
1197                         rw |= REQ_FUA;
1198                 if (bp->b_flags & XBF_FLUSH)
1199                         rw |= REQ_FLUSH;
1200         } else if (bp->b_flags & XBF_READ_AHEAD) {
1201                 rw = READA;
1202         } else {
1203                 rw = READ;
1204         }
1205
1206         /* we only use the buffer cache for meta-data */
1207         rw |= REQ_META;
1208
1209 next_chunk:
1210         atomic_inc(&bp->b_io_remaining);
1211         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1212         if (nr_pages > total_nr_pages)
1213                 nr_pages = total_nr_pages;
1214
1215         bio = bio_alloc(GFP_NOIO, nr_pages);
1216         bio->bi_bdev = bp->b_target->bt_bdev;
1217         bio->bi_sector = sector;
1218         bio->bi_end_io = xfs_buf_bio_end_io;
1219         bio->bi_private = bp;
1220
1221
1222         for (; size && nr_pages; nr_pages--, map_i++) {
1223                 int     rbytes, nbytes = PAGE_SIZE - offset;
1224
1225                 if (nbytes > size)
1226                         nbytes = size;
1227
1228                 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1229                 if (rbytes < nbytes)
1230                         break;
1231
1232                 offset = 0;
1233                 sector += nbytes >> BBSHIFT;
1234                 size -= nbytes;
1235                 total_nr_pages--;
1236         }
1237
1238         if (likely(bio->bi_size)) {
1239                 if (xfs_buf_is_vmapped(bp)) {
1240                         flush_kernel_vmap_range(bp->b_addr,
1241                                                 xfs_buf_vmap_len(bp));
1242                 }
1243                 submit_bio(rw, bio);
1244                 if (size)
1245                         goto next_chunk;
1246         } else {
1247                 xfs_buf_ioerror(bp, EIO);
1248                 bio_put(bio);
1249         }
1250 }
1251
1252 int
1253 xfs_buf_iorequest(
1254         xfs_buf_t               *bp)
1255 {
1256         trace_xfs_buf_iorequest(bp, _RET_IP_);
1257
1258         ASSERT(!(bp->b_flags & XBF_DELWRI));
1259
1260         if (bp->b_flags & XBF_WRITE)
1261                 xfs_buf_wait_unpin(bp);
1262         xfs_buf_hold(bp);
1263
1264         /* Set the count to 1 initially, this will stop an I/O
1265          * completion callout which happens before we have started
1266          * all the I/O from calling xfs_buf_ioend too early.
1267          */
1268         atomic_set(&bp->b_io_remaining, 1);
1269         _xfs_buf_ioapply(bp);
1270         _xfs_buf_ioend(bp, 0);
1271
1272         xfs_buf_rele(bp);
1273         return 0;
1274 }
1275
1276 /*
1277  *      Waits for I/O to complete on the buffer supplied.
1278  *      It returns immediately if no I/O is pending.
1279  *      It returns the I/O error code, if any, or 0 if there was no error.
1280  */
1281 int
1282 xfs_buf_iowait(
1283         xfs_buf_t               *bp)
1284 {
1285         trace_xfs_buf_iowait(bp, _RET_IP_);
1286
1287         wait_for_completion(&bp->b_iowait);
1288
1289         trace_xfs_buf_iowait_done(bp, _RET_IP_);
1290         return bp->b_error;
1291 }
1292
1293 xfs_caddr_t
1294 xfs_buf_offset(
1295         xfs_buf_t               *bp,
1296         size_t                  offset)
1297 {
1298         struct page             *page;
1299
1300         if (bp->b_flags & XBF_MAPPED)
1301                 return bp->b_addr + offset;
1302
1303         offset += bp->b_offset;
1304         page = bp->b_pages[offset >> PAGE_SHIFT];
1305         return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1306 }
1307
1308 /*
1309  *      Move data into or out of a buffer.
1310  */
1311 void
1312 xfs_buf_iomove(
1313         xfs_buf_t               *bp,    /* buffer to process            */
1314         size_t                  boff,   /* starting buffer offset       */
1315         size_t                  bsize,  /* length to copy               */
1316         void                    *data,  /* data address                 */
1317         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1318 {
1319         size_t                  bend, cpoff, csize;
1320         struct page             *page;
1321
1322         bend = boff + bsize;
1323         while (boff < bend) {
1324                 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1325                 cpoff = xfs_buf_poff(boff + bp->b_offset);
1326                 csize = min_t(size_t,
1327                               PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1328
1329                 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1330
1331                 switch (mode) {
1332                 case XBRW_ZERO:
1333                         memset(page_address(page) + cpoff, 0, csize);
1334                         break;
1335                 case XBRW_READ:
1336                         memcpy(data, page_address(page) + cpoff, csize);
1337                         break;
1338                 case XBRW_WRITE:
1339                         memcpy(page_address(page) + cpoff, data, csize);
1340                 }
1341
1342                 boff += csize;
1343                 data += csize;
1344         }
1345 }
1346
1347 /*
1348  *      Handling of buffer targets (buftargs).
1349  */
1350
1351 /*
1352  * Wait for any bufs with callbacks that have been submitted but have not yet
1353  * returned. These buffers will have an elevated hold count, so wait on those
1354  * while freeing all the buffers only held by the LRU.
1355  */
1356 void
1357 xfs_wait_buftarg(
1358         struct xfs_buftarg      *btp)
1359 {
1360         struct xfs_buf          *bp;
1361
1362 restart:
1363         spin_lock(&btp->bt_lru_lock);
1364         while (!list_empty(&btp->bt_lru)) {
1365                 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1366                 if (atomic_read(&bp->b_hold) > 1) {
1367                         spin_unlock(&btp->bt_lru_lock);
1368                         delay(100);
1369                         goto restart;
1370                 }
1371                 /*
1372                  * clear the LRU reference count so the bufer doesn't get
1373                  * ignored in xfs_buf_rele().
1374                  */
1375                 atomic_set(&bp->b_lru_ref, 0);
1376                 spin_unlock(&btp->bt_lru_lock);
1377                 xfs_buf_rele(bp);
1378                 spin_lock(&btp->bt_lru_lock);
1379         }
1380         spin_unlock(&btp->bt_lru_lock);
1381 }
1382
1383 int
1384 xfs_buftarg_shrink(
1385         struct shrinker         *shrink,
1386         struct shrink_control   *sc)
1387 {
1388         struct xfs_buftarg      *btp = container_of(shrink,
1389                                         struct xfs_buftarg, bt_shrinker);
1390         struct xfs_buf          *bp;
1391         int nr_to_scan = sc->nr_to_scan;
1392         LIST_HEAD(dispose);
1393
1394         if (!nr_to_scan)
1395                 return btp->bt_lru_nr;
1396
1397         spin_lock(&btp->bt_lru_lock);
1398         while (!list_empty(&btp->bt_lru)) {
1399                 if (nr_to_scan-- <= 0)
1400                         break;
1401
1402                 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1403
1404                 /*
1405                  * Decrement the b_lru_ref count unless the value is already
1406                  * zero. If the value is already zero, we need to reclaim the
1407                  * buffer, otherwise it gets another trip through the LRU.
1408                  */
1409                 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1410                         list_move_tail(&bp->b_lru, &btp->bt_lru);
1411                         continue;
1412                 }
1413
1414                 /*
1415                  * remove the buffer from the LRU now to avoid needing another
1416                  * lock round trip inside xfs_buf_rele().
1417                  */
1418                 list_move(&bp->b_lru, &dispose);
1419                 btp->bt_lru_nr--;
1420         }
1421         spin_unlock(&btp->bt_lru_lock);
1422
1423         while (!list_empty(&dispose)) {
1424                 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1425                 list_del_init(&bp->b_lru);
1426                 xfs_buf_rele(bp);
1427         }
1428
1429         return btp->bt_lru_nr;
1430 }
1431
1432 void
1433 xfs_free_buftarg(
1434         struct xfs_mount        *mp,
1435         struct xfs_buftarg      *btp)
1436 {
1437         unregister_shrinker(&btp->bt_shrinker);
1438
1439         xfs_flush_buftarg(btp, 1);
1440         if (mp->m_flags & XFS_MOUNT_BARRIER)
1441                 xfs_blkdev_issue_flush(btp);
1442
1443         kthread_stop(btp->bt_task);
1444         kmem_free(btp);
1445 }
1446
1447 STATIC int
1448 xfs_setsize_buftarg_flags(
1449         xfs_buftarg_t           *btp,
1450         unsigned int            blocksize,
1451         unsigned int            sectorsize,
1452         int                     verbose)
1453 {
1454         btp->bt_bsize = blocksize;
1455         btp->bt_sshift = ffs(sectorsize) - 1;
1456         btp->bt_smask = sectorsize - 1;
1457
1458         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1459                 xfs_warn(btp->bt_mount,
1460                         "Cannot set_blocksize to %u on device %s\n",
1461                         sectorsize, xfs_buf_target_name(btp));
1462                 return EINVAL;
1463         }
1464
1465         return 0;
1466 }
1467
1468 /*
1469  *      When allocating the initial buffer target we have not yet
1470  *      read in the superblock, so don't know what sized sectors
1471  *      are being used is at this early stage.  Play safe.
1472  */
1473 STATIC int
1474 xfs_setsize_buftarg_early(
1475         xfs_buftarg_t           *btp,
1476         struct block_device     *bdev)
1477 {
1478         return xfs_setsize_buftarg_flags(btp,
1479                         PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1480 }
1481
1482 int
1483 xfs_setsize_buftarg(
1484         xfs_buftarg_t           *btp,
1485         unsigned int            blocksize,
1486         unsigned int            sectorsize)
1487 {
1488         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1489 }
1490
1491 STATIC int
1492 xfs_alloc_delwrite_queue(
1493         xfs_buftarg_t           *btp,
1494         const char              *fsname)
1495 {
1496         INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1497         spin_lock_init(&btp->bt_delwrite_lock);
1498         btp->bt_flags = 0;
1499         btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1500         if (IS_ERR(btp->bt_task))
1501                 return PTR_ERR(btp->bt_task);
1502         return 0;
1503 }
1504
1505 xfs_buftarg_t *
1506 xfs_alloc_buftarg(
1507         struct xfs_mount        *mp,
1508         struct block_device     *bdev,
1509         int                     external,
1510         const char              *fsname)
1511 {
1512         xfs_buftarg_t           *btp;
1513
1514         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1515
1516         btp->bt_mount = mp;
1517         btp->bt_dev =  bdev->bd_dev;
1518         btp->bt_bdev = bdev;
1519         btp->bt_bdi = blk_get_backing_dev_info(bdev);
1520         if (!btp->bt_bdi)
1521                 goto error;
1522
1523         INIT_LIST_HEAD(&btp->bt_lru);
1524         spin_lock_init(&btp->bt_lru_lock);
1525         if (xfs_setsize_buftarg_early(btp, bdev))
1526                 goto error;
1527         if (xfs_alloc_delwrite_queue(btp, fsname))
1528                 goto error;
1529         btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1530         btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1531         register_shrinker(&btp->bt_shrinker);
1532         return btp;
1533
1534 error:
1535         kmem_free(btp);
1536         return NULL;
1537 }
1538
1539
1540 /*
1541  *      Delayed write buffer handling
1542  */
1543 void
1544 xfs_buf_delwri_queue(
1545         xfs_buf_t               *bp)
1546 {
1547         struct list_head        *dwq = &bp->b_target->bt_delwrite_queue;
1548         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1549
1550         trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1551
1552         ASSERT(!(bp->b_flags & XBF_READ));
1553
1554         spin_lock(dwlk);
1555         if (!list_empty(&bp->b_list)) {
1556                 /* if already in the queue, move it to the tail */
1557                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1558                 list_move_tail(&bp->b_list, dwq);
1559         } else {
1560                 /* start xfsbufd as it is about to have something to do */
1561                 if (list_empty(dwq))
1562                         wake_up_process(bp->b_target->bt_task);
1563
1564                 atomic_inc(&bp->b_hold);
1565                 bp->b_flags |= XBF_DELWRI | _XBF_DELWRI_Q | XBF_ASYNC;
1566                 list_add_tail(&bp->b_list, dwq);
1567         }
1568         bp->b_queuetime = jiffies;
1569         spin_unlock(dwlk);
1570 }
1571
1572 void
1573 xfs_buf_delwri_dequeue(
1574         xfs_buf_t               *bp)
1575 {
1576         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1577         int                     dequeued = 0;
1578
1579         spin_lock(dwlk);
1580         if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1581                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1582                 list_del_init(&bp->b_list);
1583                 dequeued = 1;
1584         }
1585         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1586         spin_unlock(dwlk);
1587
1588         if (dequeued)
1589                 xfs_buf_rele(bp);
1590
1591         trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1592 }
1593
1594 /*
1595  * If a delwri buffer needs to be pushed before it has aged out, then promote
1596  * it to the head of the delwri queue so that it will be flushed on the next
1597  * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1598  * than the age currently needed to flush the buffer. Hence the next time the
1599  * xfsbufd sees it is guaranteed to be considered old enough to flush.
1600  */
1601 void
1602 xfs_buf_delwri_promote(
1603         struct xfs_buf  *bp)
1604 {
1605         struct xfs_buftarg *btp = bp->b_target;
1606         long            age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1607
1608         ASSERT(bp->b_flags & XBF_DELWRI);
1609         ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1610
1611         /*
1612          * Check the buffer age before locking the delayed write queue as we
1613          * don't need to promote buffers that are already past the flush age.
1614          */
1615         if (bp->b_queuetime < jiffies - age)
1616                 return;
1617         bp->b_queuetime = jiffies - age;
1618         spin_lock(&btp->bt_delwrite_lock);
1619         list_move(&bp->b_list, &btp->bt_delwrite_queue);
1620         spin_unlock(&btp->bt_delwrite_lock);
1621 }
1622
1623 STATIC void
1624 xfs_buf_runall_queues(
1625         struct workqueue_struct *queue)
1626 {
1627         flush_workqueue(queue);
1628 }
1629
1630 /*
1631  * Move as many buffers as specified to the supplied list
1632  * idicating if we skipped any buffers to prevent deadlocks.
1633  */
1634 STATIC int
1635 xfs_buf_delwri_split(
1636         xfs_buftarg_t   *target,
1637         struct list_head *list,
1638         unsigned long   age)
1639 {
1640         xfs_buf_t       *bp, *n;
1641         struct list_head *dwq = &target->bt_delwrite_queue;
1642         spinlock_t      *dwlk = &target->bt_delwrite_lock;
1643         int             skipped = 0;
1644         int             force;
1645
1646         force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1647         INIT_LIST_HEAD(list);
1648         spin_lock(dwlk);
1649         list_for_each_entry_safe(bp, n, dwq, b_list) {
1650                 ASSERT(bp->b_flags & XBF_DELWRI);
1651
1652                 if (!xfs_buf_ispinned(bp) && xfs_buf_trylock(bp)) {
1653                         if (!force &&
1654                             time_before(jiffies, bp->b_queuetime + age)) {
1655                                 xfs_buf_unlock(bp);
1656                                 break;
1657                         }
1658
1659                         bp->b_flags &= ~(XBF_DELWRI | _XBF_DELWRI_Q);
1660                         bp->b_flags |= XBF_WRITE;
1661                         list_move_tail(&bp->b_list, list);
1662                         trace_xfs_buf_delwri_split(bp, _RET_IP_);
1663                 } else
1664                         skipped++;
1665         }
1666         spin_unlock(dwlk);
1667
1668         return skipped;
1669
1670 }
1671
1672 /*
1673  * Compare function is more complex than it needs to be because
1674  * the return value is only 32 bits and we are doing comparisons
1675  * on 64 bit values
1676  */
1677 static int
1678 xfs_buf_cmp(
1679         void            *priv,
1680         struct list_head *a,
1681         struct list_head *b)
1682 {
1683         struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1684         struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1685         xfs_daddr_t             diff;
1686
1687         diff = ap->b_bn - bp->b_bn;
1688         if (diff < 0)
1689                 return -1;
1690         if (diff > 0)
1691                 return 1;
1692         return 0;
1693 }
1694
1695 STATIC int
1696 xfsbufd(
1697         void            *data)
1698 {
1699         xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1700
1701         current->flags |= PF_MEMALLOC;
1702
1703         set_freezable();
1704
1705         do {
1706                 long    age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1707                 long    tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1708                 struct list_head tmp;
1709                 struct blk_plug plug;
1710
1711                 if (unlikely(freezing(current))) {
1712                         set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1713                         refrigerator();
1714                 } else {
1715                         clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1716                 }
1717
1718                 /* sleep for a long time if there is nothing to do. */
1719                 if (list_empty(&target->bt_delwrite_queue))
1720                         tout = MAX_SCHEDULE_TIMEOUT;
1721                 schedule_timeout_interruptible(tout);
1722
1723                 xfs_buf_delwri_split(target, &tmp, age);
1724                 list_sort(NULL, &tmp, xfs_buf_cmp);
1725
1726                 blk_start_plug(&plug);
1727                 while (!list_empty(&tmp)) {
1728                         struct xfs_buf *bp;
1729                         bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1730                         list_del_init(&bp->b_list);
1731                         xfs_bdstrat_cb(bp);
1732                 }
1733                 blk_finish_plug(&plug);
1734         } while (!kthread_should_stop());
1735
1736         return 0;
1737 }
1738
1739 /*
1740  *      Go through all incore buffers, and release buffers if they belong to
1741  *      the given device. This is used in filesystem error handling to
1742  *      preserve the consistency of its metadata.
1743  */
1744 int
1745 xfs_flush_buftarg(
1746         xfs_buftarg_t   *target,
1747         int             wait)
1748 {
1749         xfs_buf_t       *bp;
1750         int             pincount = 0;
1751         LIST_HEAD(tmp_list);
1752         LIST_HEAD(wait_list);
1753         struct blk_plug plug;
1754
1755         xfs_buf_runall_queues(xfsconvertd_workqueue);
1756         xfs_buf_runall_queues(xfsdatad_workqueue);
1757         xfs_buf_runall_queues(xfslogd_workqueue);
1758
1759         set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1760         pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1761
1762         /*
1763          * Dropped the delayed write list lock, now walk the temporary list.
1764          * All I/O is issued async and then if we need to wait for completion
1765          * we do that after issuing all the IO.
1766          */
1767         list_sort(NULL, &tmp_list, xfs_buf_cmp);
1768
1769         blk_start_plug(&plug);
1770         while (!list_empty(&tmp_list)) {
1771                 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1772                 ASSERT(target == bp->b_target);
1773                 list_del_init(&bp->b_list);
1774                 if (wait) {
1775                         bp->b_flags &= ~XBF_ASYNC;
1776                         list_add(&bp->b_list, &wait_list);
1777                 }
1778                 xfs_bdstrat_cb(bp);
1779         }
1780         blk_finish_plug(&plug);
1781
1782         if (wait) {
1783                 /* Wait for IO to complete. */
1784                 while (!list_empty(&wait_list)) {
1785                         bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1786
1787                         list_del_init(&bp->b_list);
1788                         xfs_buf_iowait(bp);
1789                         xfs_buf_relse(bp);
1790                 }
1791         }
1792
1793         return pincount;
1794 }
1795
1796 int __init
1797 xfs_buf_init(void)
1798 {
1799         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1800                                                 KM_ZONE_HWALIGN, NULL);
1801         if (!xfs_buf_zone)
1802                 goto out;
1803
1804         xfslogd_workqueue = alloc_workqueue("xfslogd",
1805                                         WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1806         if (!xfslogd_workqueue)
1807                 goto out_free_buf_zone;
1808
1809         xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
1810         if (!xfsdatad_workqueue)
1811                 goto out_destroy_xfslogd_workqueue;
1812
1813         xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
1814                                                 WQ_MEM_RECLAIM, 1);
1815         if (!xfsconvertd_workqueue)
1816                 goto out_destroy_xfsdatad_workqueue;
1817
1818         return 0;
1819
1820  out_destroy_xfsdatad_workqueue:
1821         destroy_workqueue(xfsdatad_workqueue);
1822  out_destroy_xfslogd_workqueue:
1823         destroy_workqueue(xfslogd_workqueue);
1824  out_free_buf_zone:
1825         kmem_zone_destroy(xfs_buf_zone);
1826  out:
1827         return -ENOMEM;
1828 }
1829
1830 void
1831 xfs_buf_terminate(void)
1832 {
1833         destroy_workqueue(xfsconvertd_workqueue);
1834         destroy_workqueue(xfsdatad_workqueue);
1835         destroy_workqueue(xfslogd_workqueue);
1836         kmem_zone_destroy(xfs_buf_zone);
1837 }
1838
1839 #ifdef CONFIG_KDB_MODULES
1840 struct list_head *
1841 xfs_get_buftarg_list(void)
1842 {
1843         return &xfs_buftarg_list;
1844 }
1845 #endif