[XFS] kill struct bhv_vfs
[pandora-kernel.git] / fs / xfs / linux-2.6 / xfs_super.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_clnt.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_dir2.h"
27 #include "xfs_alloc.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_quota.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_btree.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_bmap.h"
41 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
43 #include "xfs_itable.h"
44 #include "xfs_rw.h"
45 #include "xfs_acl.h"
46 #include "xfs_attr.h"
47 #include "xfs_buf_item.h"
48 #include "xfs_utils.h"
49 #include "xfs_vnodeops.h"
50 #include "xfs_vfsops.h"
51 #include "xfs_version.h"
52
53 #include <linux/namei.h>
54 #include <linux/init.h>
55 #include <linux/mount.h>
56 #include <linux/mempool.h>
57 #include <linux/writeback.h>
58 #include <linux/kthread.h>
59 #include <linux/freezer.h>
60
61 static struct quotactl_ops xfs_quotactl_operations;
62 static struct super_operations xfs_super_operations;
63 static kmem_zone_t *xfs_vnode_zone;
64 static kmem_zone_t *xfs_ioend_zone;
65 mempool_t *xfs_ioend_pool;
66
67 STATIC struct xfs_mount_args *
68 xfs_args_allocate(
69         struct super_block      *sb,
70         int                     silent)
71 {
72         struct xfs_mount_args   *args;
73
74         args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
75         args->logbufs = args->logbufsize = -1;
76         strncpy(args->fsname, sb->s_id, MAXNAMELEN);
77
78         /* Copy the already-parsed mount(2) flags we're interested in */
79         if (sb->s_flags & MS_DIRSYNC)
80                 args->flags |= XFSMNT_DIRSYNC;
81         if (sb->s_flags & MS_SYNCHRONOUS)
82                 args->flags |= XFSMNT_WSYNC;
83         if (silent)
84                 args->flags |= XFSMNT_QUIET;
85         args->flags |= XFSMNT_32BITINODES;
86
87         return args;
88 }
89
90 __uint64_t
91 xfs_max_file_offset(
92         unsigned int            blockshift)
93 {
94         unsigned int            pagefactor = 1;
95         unsigned int            bitshift = BITS_PER_LONG - 1;
96
97         /* Figure out maximum filesize, on Linux this can depend on
98          * the filesystem blocksize (on 32 bit platforms).
99          * __block_prepare_write does this in an [unsigned] long...
100          *      page->index << (PAGE_CACHE_SHIFT - bbits)
101          * So, for page sized blocks (4K on 32 bit platforms),
102          * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
103          *      (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
104          * but for smaller blocksizes it is less (bbits = log2 bsize).
105          * Note1: get_block_t takes a long (implicit cast from above)
106          * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
107          * can optionally convert the [unsigned] long from above into
108          * an [unsigned] long long.
109          */
110
111 #if BITS_PER_LONG == 32
112 # if defined(CONFIG_LBD)
113         ASSERT(sizeof(sector_t) == 8);
114         pagefactor = PAGE_CACHE_SIZE;
115         bitshift = BITS_PER_LONG;
116 # else
117         pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
118 # endif
119 #endif
120
121         return (((__uint64_t)pagefactor) << bitshift) - 1;
122 }
123
124 STATIC_INLINE void
125 xfs_set_inodeops(
126         struct inode            *inode)
127 {
128         switch (inode->i_mode & S_IFMT) {
129         case S_IFREG:
130                 inode->i_op = &xfs_inode_operations;
131                 inode->i_fop = &xfs_file_operations;
132                 inode->i_mapping->a_ops = &xfs_address_space_operations;
133                 break;
134         case S_IFDIR:
135                 inode->i_op = &xfs_dir_inode_operations;
136                 inode->i_fop = &xfs_dir_file_operations;
137                 break;
138         case S_IFLNK:
139                 inode->i_op = &xfs_symlink_inode_operations;
140                 if (inode->i_blocks)
141                         inode->i_mapping->a_ops = &xfs_address_space_operations;
142                 break;
143         default:
144                 inode->i_op = &xfs_inode_operations;
145                 init_special_inode(inode, inode->i_mode, inode->i_rdev);
146                 break;
147         }
148 }
149
150 STATIC_INLINE void
151 xfs_revalidate_inode(
152         xfs_mount_t             *mp,
153         bhv_vnode_t             *vp,
154         xfs_inode_t             *ip)
155 {
156         struct inode            *inode = vn_to_inode(vp);
157
158         inode->i_mode   = ip->i_d.di_mode;
159         inode->i_nlink  = ip->i_d.di_nlink;
160         inode->i_uid    = ip->i_d.di_uid;
161         inode->i_gid    = ip->i_d.di_gid;
162
163         switch (inode->i_mode & S_IFMT) {
164         case S_IFBLK:
165         case S_IFCHR:
166                 inode->i_rdev =
167                         MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
168                               sysv_minor(ip->i_df.if_u2.if_rdev));
169                 break;
170         default:
171                 inode->i_rdev = 0;
172                 break;
173         }
174
175         inode->i_generation = ip->i_d.di_gen;
176         i_size_write(inode, ip->i_d.di_size);
177         inode->i_blocks =
178                 XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
179         inode->i_atime.tv_sec   = ip->i_d.di_atime.t_sec;
180         inode->i_atime.tv_nsec  = ip->i_d.di_atime.t_nsec;
181         inode->i_mtime.tv_sec   = ip->i_d.di_mtime.t_sec;
182         inode->i_mtime.tv_nsec  = ip->i_d.di_mtime.t_nsec;
183         inode->i_ctime.tv_sec   = ip->i_d.di_ctime.t_sec;
184         inode->i_ctime.tv_nsec  = ip->i_d.di_ctime.t_nsec;
185         if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
186                 inode->i_flags |= S_IMMUTABLE;
187         else
188                 inode->i_flags &= ~S_IMMUTABLE;
189         if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
190                 inode->i_flags |= S_APPEND;
191         else
192                 inode->i_flags &= ~S_APPEND;
193         if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
194                 inode->i_flags |= S_SYNC;
195         else
196                 inode->i_flags &= ~S_SYNC;
197         if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
198                 inode->i_flags |= S_NOATIME;
199         else
200                 inode->i_flags &= ~S_NOATIME;
201         xfs_iflags_clear(ip, XFS_IMODIFIED);
202 }
203
204 void
205 xfs_initialize_vnode(
206         struct xfs_mount        *mp,
207         bhv_vnode_t             *vp,
208         struct xfs_inode        *ip)
209 {
210         struct inode            *inode = vn_to_inode(vp);
211
212         if (!ip->i_vnode) {
213                 ip->i_vnode = vp;
214                 inode->i_private = ip;
215         }
216
217         /*
218          * We need to set the ops vectors, and unlock the inode, but if
219          * we have been called during the new inode create process, it is
220          * too early to fill in the Linux inode.  We will get called a
221          * second time once the inode is properly set up, and then we can
222          * finish our work.
223          */
224         if (ip->i_d.di_mode != 0 && (inode->i_state & I_NEW)) {
225                 xfs_revalidate_inode(mp, vp, ip);
226                 xfs_set_inodeops(inode);
227
228                 xfs_iflags_clear(ip, XFS_INEW);
229                 barrier();
230
231                 unlock_new_inode(inode);
232         }
233 }
234
235 int
236 xfs_blkdev_get(
237         xfs_mount_t             *mp,
238         const char              *name,
239         struct block_device     **bdevp)
240 {
241         int                     error = 0;
242
243         *bdevp = open_bdev_excl(name, 0, mp);
244         if (IS_ERR(*bdevp)) {
245                 error = PTR_ERR(*bdevp);
246                 printk("XFS: Invalid device [%s], error=%d\n", name, error);
247         }
248
249         return -error;
250 }
251
252 void
253 xfs_blkdev_put(
254         struct block_device     *bdev)
255 {
256         if (bdev)
257                 close_bdev_excl(bdev);
258 }
259
260 /*
261  * Try to write out the superblock using barriers.
262  */
263 STATIC int
264 xfs_barrier_test(
265         xfs_mount_t     *mp)
266 {
267         xfs_buf_t       *sbp = xfs_getsb(mp, 0);
268         int             error;
269
270         XFS_BUF_UNDONE(sbp);
271         XFS_BUF_UNREAD(sbp);
272         XFS_BUF_UNDELAYWRITE(sbp);
273         XFS_BUF_WRITE(sbp);
274         XFS_BUF_UNASYNC(sbp);
275         XFS_BUF_ORDERED(sbp);
276
277         xfsbdstrat(mp, sbp);
278         error = xfs_iowait(sbp);
279
280         /*
281          * Clear all the flags we set and possible error state in the
282          * buffer.  We only did the write to try out whether barriers
283          * worked and shouldn't leave any traces in the superblock
284          * buffer.
285          */
286         XFS_BUF_DONE(sbp);
287         XFS_BUF_ERROR(sbp, 0);
288         XFS_BUF_UNORDERED(sbp);
289
290         xfs_buf_relse(sbp);
291         return error;
292 }
293
294 void
295 xfs_mountfs_check_barriers(xfs_mount_t *mp)
296 {
297         int error;
298
299         if (mp->m_logdev_targp != mp->m_ddev_targp) {
300                 xfs_fs_cmn_err(CE_NOTE, mp,
301                   "Disabling barriers, not supported with external log device");
302                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
303                 return;
304         }
305
306         if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
307                 xfs_fs_cmn_err(CE_NOTE, mp,
308                   "Disabling barriers, underlying device is readonly");
309                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
310                 return;
311         }
312
313         error = xfs_barrier_test(mp);
314         if (error) {
315                 xfs_fs_cmn_err(CE_NOTE, mp,
316                   "Disabling barriers, trial barrier write failed");
317                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
318                 return;
319         }
320 }
321
322 void
323 xfs_blkdev_issue_flush(
324         xfs_buftarg_t           *buftarg)
325 {
326         blkdev_issue_flush(buftarg->bt_bdev, NULL);
327 }
328
329 STATIC struct inode *
330 xfs_fs_alloc_inode(
331         struct super_block      *sb)
332 {
333         bhv_vnode_t             *vp;
334
335         vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
336         if (unlikely(!vp))
337                 return NULL;
338         return vn_to_inode(vp);
339 }
340
341 STATIC void
342 xfs_fs_destroy_inode(
343         struct inode            *inode)
344 {
345         kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
346 }
347
348 STATIC void
349 xfs_fs_inode_init_once(
350         void                    *vnode,
351         kmem_zone_t             *zonep,
352         unsigned long           flags)
353 {
354         inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
355 }
356
357 STATIC int
358 xfs_init_zones(void)
359 {
360         xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
361                                         KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
362                                         KM_ZONE_SPREAD,
363                                         xfs_fs_inode_init_once);
364         if (!xfs_vnode_zone)
365                 goto out;
366
367         xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
368         if (!xfs_ioend_zone)
369                 goto out_destroy_vnode_zone;
370
371         xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
372                                                   xfs_ioend_zone);
373         if (!xfs_ioend_pool)
374                 goto out_free_ioend_zone;
375         return 0;
376
377  out_free_ioend_zone:
378         kmem_zone_destroy(xfs_ioend_zone);
379  out_destroy_vnode_zone:
380         kmem_zone_destroy(xfs_vnode_zone);
381  out:
382         return -ENOMEM;
383 }
384
385 STATIC void
386 xfs_destroy_zones(void)
387 {
388         mempool_destroy(xfs_ioend_pool);
389         kmem_zone_destroy(xfs_vnode_zone);
390         kmem_zone_destroy(xfs_ioend_zone);
391 }
392
393 /*
394  * Attempt to flush the inode, this will actually fail
395  * if the inode is pinned, but we dirty the inode again
396  * at the point when it is unpinned after a log write,
397  * since this is when the inode itself becomes flushable.
398  */
399 STATIC int
400 xfs_fs_write_inode(
401         struct inode            *inode,
402         int                     sync)
403 {
404         int                     error = 0, flags = FLUSH_INODE;
405
406         vn_trace_entry(XFS_I(inode), __FUNCTION__,
407                         (inst_t *)__return_address);
408         if (sync) {
409                 filemap_fdatawait(inode->i_mapping);
410                 flags |= FLUSH_SYNC;
411         }
412         error = xfs_inode_flush(XFS_I(inode), flags);
413         if (error == EAGAIN) {
414                 if (sync)
415                         error = xfs_inode_flush(XFS_I(inode),
416                                                        flags | FLUSH_LOG);
417                 else
418                         error = 0;
419         }
420
421         return -error;
422 }
423
424 STATIC void
425 xfs_fs_clear_inode(
426         struct inode            *inode)
427 {
428         xfs_inode_t             *ip = XFS_I(inode);
429
430         /*
431          * ip can be null when xfs_iget_core calls xfs_idestroy if we
432          * find an inode with di_mode == 0 but without IGET_CREATE set.
433          */
434         if (ip) {
435                 vn_trace_entry(ip, __FUNCTION__, (inst_t *)__return_address);
436
437                 XFS_STATS_INC(vn_rele);
438                 XFS_STATS_INC(vn_remove);
439                 XFS_STATS_INC(vn_reclaim);
440                 XFS_STATS_DEC(vn_active);
441
442                 xfs_inactive(ip);
443                 xfs_iflags_clear(ip, XFS_IMODIFIED);
444                 if (xfs_reclaim(ip))
445                         panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, inode);
446         }
447
448         ASSERT(XFS_I(inode) == NULL);
449 }
450
451 /*
452  * Enqueue a work item to be picked up by the vfs xfssyncd thread.
453  * Doing this has two advantages:
454  * - It saves on stack space, which is tight in certain situations
455  * - It can be used (with care) as a mechanism to avoid deadlocks.
456  * Flushing while allocating in a full filesystem requires both.
457  */
458 STATIC void
459 xfs_syncd_queue_work(
460         struct xfs_mount *mp,
461         void            *data,
462         void            (*syncer)(struct xfs_mount *, void *))
463 {
464         struct bhv_vfs_sync_work *work;
465
466         work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
467         INIT_LIST_HEAD(&work->w_list);
468         work->w_syncer = syncer;
469         work->w_data = data;
470         work->w_mount = mp;
471         spin_lock(&mp->m_sync_lock);
472         list_add_tail(&work->w_list, &mp->m_sync_list);
473         spin_unlock(&mp->m_sync_lock);
474         wake_up_process(mp->m_sync_task);
475 }
476
477 /*
478  * Flush delayed allocate data, attempting to free up reserved space
479  * from existing allocations.  At this point a new allocation attempt
480  * has failed with ENOSPC and we are in the process of scratching our
481  * heads, looking about for more room...
482  */
483 STATIC void
484 xfs_flush_inode_work(
485         struct xfs_mount *mp,
486         void            *arg)
487 {
488         struct inode    *inode = arg;
489         filemap_flush(inode->i_mapping);
490         iput(inode);
491 }
492
493 void
494 xfs_flush_inode(
495         xfs_inode_t     *ip)
496 {
497         struct inode    *inode = ip->i_vnode;
498
499         igrab(inode);
500         xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inode_work);
501         delay(msecs_to_jiffies(500));
502 }
503
504 /*
505  * This is the "bigger hammer" version of xfs_flush_inode_work...
506  * (IOW, "If at first you don't succeed, use a Bigger Hammer").
507  */
508 STATIC void
509 xfs_flush_device_work(
510         struct xfs_mount *mp,
511         void            *arg)
512 {
513         struct inode    *inode = arg;
514         sync_blockdev(mp->m_super->s_bdev);
515         iput(inode);
516 }
517
518 void
519 xfs_flush_device(
520         xfs_inode_t     *ip)
521 {
522         struct inode    *inode = vn_to_inode(XFS_ITOV(ip));
523
524         igrab(inode);
525         xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_device_work);
526         delay(msecs_to_jiffies(500));
527         xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
528 }
529
530 STATIC void
531 xfs_sync_worker(
532         struct xfs_mount *mp,
533         void            *unused)
534 {
535         int             error;
536
537         if (!(mp->m_flags & XFS_MOUNT_RDONLY))
538                 error = xfs_sync(mp, SYNC_FSDATA | SYNC_BDFLUSH | SYNC_ATTR |
539                                      SYNC_REFCACHE | SYNC_SUPER);
540         mp->m_sync_seq++;
541         wake_up(&mp->m_wait_single_sync_task);
542 }
543
544 STATIC int
545 xfssyncd(
546         void                    *arg)
547 {
548         struct xfs_mount        *mp = arg;
549         long                    timeleft;
550         bhv_vfs_sync_work_t     *work, *n;
551         LIST_HEAD               (tmp);
552
553         set_freezable();
554         timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
555         for (;;) {
556                 timeleft = schedule_timeout_interruptible(timeleft);
557                 /* swsusp */
558                 try_to_freeze();
559                 if (kthread_should_stop() && list_empty(&mp->m_sync_list))
560                         break;
561
562                 spin_lock(&mp->m_sync_lock);
563                 /*
564                  * We can get woken by laptop mode, to do a sync -
565                  * that's the (only!) case where the list would be
566                  * empty with time remaining.
567                  */
568                 if (!timeleft || list_empty(&mp->m_sync_list)) {
569                         if (!timeleft)
570                                 timeleft = xfs_syncd_centisecs *
571                                                         msecs_to_jiffies(10);
572                         INIT_LIST_HEAD(&mp->m_sync_work.w_list);
573                         list_add_tail(&mp->m_sync_work.w_list,
574                                         &mp->m_sync_list);
575                 }
576                 list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
577                         list_move(&work->w_list, &tmp);
578                 spin_unlock(&mp->m_sync_lock);
579
580                 list_for_each_entry_safe(work, n, &tmp, w_list) {
581                         (*work->w_syncer)(mp, work->w_data);
582                         list_del(&work->w_list);
583                         if (work == &mp->m_sync_work)
584                                 continue;
585                         kmem_free(work, sizeof(struct bhv_vfs_sync_work));
586                 }
587         }
588
589         return 0;
590 }
591
592 STATIC void
593 xfs_fs_put_super(
594         struct super_block      *sb)
595 {
596         struct xfs_mount        *mp = XFS_M(sb);
597         int                     error;
598
599         kthread_stop(mp->m_sync_task);
600
601         xfs_sync(mp, SYNC_ATTR | SYNC_DELWRI);
602         error = xfs_unmount(mp, 0, NULL);
603         if (error)
604                 printk("XFS: unmount got error=%d\n", error);
605 }
606
607 STATIC void
608 xfs_fs_write_super(
609         struct super_block      *sb)
610 {
611         if (!(sb->s_flags & MS_RDONLY))
612                 xfs_sync(XFS_M(sb), SYNC_FSDATA);
613         sb->s_dirt = 0;
614 }
615
616 STATIC int
617 xfs_fs_sync_super(
618         struct super_block      *sb,
619         int                     wait)
620 {
621         struct xfs_mount        *mp = XFS_M(sb);
622         int                     error;
623         int                     flags;
624
625         if (unlikely(sb->s_frozen == SB_FREEZE_WRITE)) {
626                 /*
627                  * First stage of freeze - no more writers will make progress
628                  * now we are here, so we flush delwri and delalloc buffers
629                  * here, then wait for all I/O to complete.  Data is frozen at
630                  * that point. Metadata is not frozen, transactions can still
631                  * occur here so don't bother flushing the buftarg (i.e
632                  * SYNC_QUIESCE) because it'll just get dirty again.
633                  */
634                 flags = SYNC_DATA_QUIESCE;
635         } else
636                 flags = SYNC_FSDATA | (wait ? SYNC_WAIT : 0);
637
638         error = xfs_sync(mp, flags);
639         sb->s_dirt = 0;
640
641         if (unlikely(laptop_mode)) {
642                 int     prev_sync_seq = mp->m_sync_seq;
643
644                 /*
645                  * The disk must be active because we're syncing.
646                  * We schedule xfssyncd now (now that the disk is
647                  * active) instead of later (when it might not be).
648                  */
649                 wake_up_process(mp->m_sync_task);
650                 /*
651                  * We have to wait for the sync iteration to complete.
652                  * If we don't, the disk activity caused by the sync
653                  * will come after the sync is completed, and that
654                  * triggers another sync from laptop mode.
655                  */
656                 wait_event(mp->m_wait_single_sync_task,
657                                 mp->m_sync_seq != prev_sync_seq);
658         }
659
660         return -error;
661 }
662
663 STATIC int
664 xfs_fs_statfs(
665         struct dentry           *dentry,
666         struct kstatfs          *statp)
667 {
668         return -xfs_statvfs(XFS_M(dentry->d_sb), statp,
669                                 vn_from_inode(dentry->d_inode));
670 }
671
672 STATIC int
673 xfs_fs_remount(
674         struct super_block      *sb,
675         int                     *flags,
676         char                    *options)
677 {
678         struct xfs_mount        *mp = XFS_M(sb);
679         struct xfs_mount_args   *args = xfs_args_allocate(sb, 0);
680         int                     error;
681
682         error = xfs_parseargs(mp, options, args, 1);
683         if (!error)
684                 error = xfs_mntupdate(mp, flags, args);
685         kmem_free(args, sizeof(*args));
686         return -error;
687 }
688
689 STATIC void
690 xfs_fs_lockfs(
691         struct super_block      *sb)
692 {
693         xfs_freeze(XFS_M(sb));
694 }
695
696 STATIC int
697 xfs_fs_show_options(
698         struct seq_file         *m,
699         struct vfsmount         *mnt)
700 {
701         return -xfs_showargs(XFS_M(mnt->mnt_sb), m);
702 }
703
704 STATIC int
705 xfs_fs_quotasync(
706         struct super_block      *sb,
707         int                     type)
708 {
709         return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XQUOTASYNC, 0, NULL);
710 }
711
712 STATIC int
713 xfs_fs_getxstate(
714         struct super_block      *sb,
715         struct fs_quota_stat    *fqs)
716 {
717         return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
718 }
719
720 STATIC int
721 xfs_fs_setxstate(
722         struct super_block      *sb,
723         unsigned int            flags,
724         int                     op)
725 {
726         return -XFS_QM_QUOTACTL(XFS_M(sb), op, 0, (caddr_t)&flags);
727 }
728
729 STATIC int
730 xfs_fs_getxquota(
731         struct super_block      *sb,
732         int                     type,
733         qid_t                   id,
734         struct fs_disk_quota    *fdq)
735 {
736         return -XFS_QM_QUOTACTL(XFS_M(sb),
737                                  (type == USRQUOTA) ? Q_XGETQUOTA :
738                                   ((type == GRPQUOTA) ? Q_XGETGQUOTA :
739                                    Q_XGETPQUOTA), id, (caddr_t)fdq);
740 }
741
742 STATIC int
743 xfs_fs_setxquota(
744         struct super_block      *sb,
745         int                     type,
746         qid_t                   id,
747         struct fs_disk_quota    *fdq)
748 {
749         return -XFS_QM_QUOTACTL(XFS_M(sb),
750                                  (type == USRQUOTA) ? Q_XSETQLIM :
751                                   ((type == GRPQUOTA) ? Q_XSETGQLIM :
752                                    Q_XSETPQLIM), id, (caddr_t)fdq);
753 }
754
755 STATIC int
756 xfs_fs_fill_super(
757         struct super_block      *sb,
758         void                    *data,
759         int                     silent)
760 {
761         struct inode            *rootvp;
762         struct xfs_mount        *mp = NULL;
763         struct xfs_mount_args   *args = xfs_args_allocate(sb, silent);
764         struct kstatfs          statvfs;
765         int                     error;
766
767         mp = xfs_mount_init();
768
769         INIT_LIST_HEAD(&mp->m_sync_list);
770         spin_lock_init(&mp->m_sync_lock);
771         init_waitqueue_head(&mp->m_wait_single_sync_task);
772
773         mp->m_super = sb;
774         sb->s_fs_info = mp;
775
776         if (sb->s_flags & MS_RDONLY)
777                 mp->m_flags |= XFS_MOUNT_RDONLY;
778
779         error = xfs_parseargs(mp, (char *)data, args, 0);
780         if (error)
781                 goto fail_vfsop;
782
783         sb_min_blocksize(sb, BBSIZE);
784         sb->s_export_op = &xfs_export_operations;
785         sb->s_qcop = &xfs_quotactl_operations;
786         sb->s_op = &xfs_super_operations;
787
788         error = xfs_mount(mp, args, NULL);
789         if (error)
790                 goto fail_vfsop;
791
792         error = xfs_statvfs(mp, &statvfs, NULL);
793         if (error)
794                 goto fail_unmount;
795
796         sb->s_dirt = 1;
797         sb->s_magic = statvfs.f_type;
798         sb->s_blocksize = statvfs.f_bsize;
799         sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
800         sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
801         sb->s_time_gran = 1;
802         set_posix_acl_flag(sb);
803
804         error = xfs_root(mp, &rootvp);
805         if (error)
806                 goto fail_unmount;
807
808         sb->s_root = d_alloc_root(vn_to_inode(rootvp));
809         if (!sb->s_root) {
810                 error = ENOMEM;
811                 goto fail_vnrele;
812         }
813         if (is_bad_inode(sb->s_root->d_inode)) {
814                 error = EINVAL;
815                 goto fail_vnrele;
816         }
817
818         mp->m_sync_work.w_syncer = xfs_sync_worker;
819         mp->m_sync_work.w_mount = mp;
820         mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
821         if (IS_ERR(mp->m_sync_task)) {
822                 error = -PTR_ERR(mp->m_sync_task);
823                 goto fail_vnrele;
824         }
825
826         vn_trace_exit(XFS_I(sb->s_root->d_inode), __FUNCTION__,
827                         (inst_t *)__return_address);
828
829         kmem_free(args, sizeof(*args));
830         return 0;
831
832 fail_vnrele:
833         if (sb->s_root) {
834                 dput(sb->s_root);
835                 sb->s_root = NULL;
836         } else {
837                 VN_RELE(rootvp);
838         }
839
840 fail_unmount:
841         xfs_unmount(mp, 0, NULL);
842
843 fail_vfsop:
844         kmem_free(args, sizeof(*args));
845         return -error;
846 }
847
848 STATIC int
849 xfs_fs_get_sb(
850         struct file_system_type *fs_type,
851         int                     flags,
852         const char              *dev_name,
853         void                    *data,
854         struct vfsmount         *mnt)
855 {
856         return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
857                            mnt);
858 }
859
860 static struct super_operations xfs_super_operations = {
861         .alloc_inode            = xfs_fs_alloc_inode,
862         .destroy_inode          = xfs_fs_destroy_inode,
863         .write_inode            = xfs_fs_write_inode,
864         .clear_inode            = xfs_fs_clear_inode,
865         .put_super              = xfs_fs_put_super,
866         .write_super            = xfs_fs_write_super,
867         .sync_fs                = xfs_fs_sync_super,
868         .write_super_lockfs     = xfs_fs_lockfs,
869         .statfs                 = xfs_fs_statfs,
870         .remount_fs             = xfs_fs_remount,
871         .show_options           = xfs_fs_show_options,
872 };
873
874 static struct quotactl_ops xfs_quotactl_operations = {
875         .quota_sync             = xfs_fs_quotasync,
876         .get_xstate             = xfs_fs_getxstate,
877         .set_xstate             = xfs_fs_setxstate,
878         .get_xquota             = xfs_fs_getxquota,
879         .set_xquota             = xfs_fs_setxquota,
880 };
881
882 static struct file_system_type xfs_fs_type = {
883         .owner                  = THIS_MODULE,
884         .name                   = "xfs",
885         .get_sb                 = xfs_fs_get_sb,
886         .kill_sb                = kill_block_super,
887         .fs_flags               = FS_REQUIRES_DEV,
888 };
889
890
891 STATIC int __init
892 init_xfs_fs( void )
893 {
894         int                     error;
895         static char             message[] __initdata = KERN_INFO \
896                 XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
897
898         printk(message);
899
900         ktrace_init(64);
901
902         error = xfs_init_zones();
903         if (error < 0)
904                 goto undo_zones;
905
906         error = xfs_buf_init();
907         if (error < 0)
908                 goto undo_buffers;
909
910         vn_init();
911         xfs_init();
912         uuid_init();
913         vfs_initquota();
914
915         error = register_filesystem(&xfs_fs_type);
916         if (error)
917                 goto undo_register;
918         return 0;
919
920 undo_register:
921         xfs_buf_terminate();
922
923 undo_buffers:
924         xfs_destroy_zones();
925
926 undo_zones:
927         return error;
928 }
929
930 STATIC void __exit
931 exit_xfs_fs( void )
932 {
933         vfs_exitquota();
934         unregister_filesystem(&xfs_fs_type);
935         xfs_cleanup();
936         xfs_buf_terminate();
937         xfs_destroy_zones();
938         ktrace_uninit();
939 }
940
941 module_init(init_xfs_fs);
942 module_exit(exit_xfs_fs);
943
944 MODULE_AUTHOR("Silicon Graphics, Inc.");
945 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
946 MODULE_LICENSE("GPL");