xfs: fix unreferenced var error in xfs_buf.c
[pandora-kernel.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
37
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_log.h"
41 #include "xfs_ag.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46 STATIC int xfsbufd(void *);
47 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
48
49 static struct workqueue_struct *xfslogd_workqueue;
50 struct workqueue_struct *xfsdatad_workqueue;
51 struct workqueue_struct *xfsconvertd_workqueue;
52
53 #ifdef XFS_BUF_LOCK_TRACKING
54 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
55 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
56 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
57 #else
58 # define XB_SET_OWNER(bp)       do { } while (0)
59 # define XB_CLEAR_OWNER(bp)     do { } while (0)
60 # define XB_GET_OWNER(bp)       do { } while (0)
61 #endif
62
63 #define xb_to_gfp(flags) \
64         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
65           ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
66
67 #define xb_to_km(flags) \
68          (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
69
70 #define xfs_buf_allocate(flags) \
71         kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
72 #define xfs_buf_deallocate(bp) \
73         kmem_zone_free(xfs_buf_zone, (bp));
74
75 static inline int
76 xfs_buf_is_vmapped(
77         struct xfs_buf  *bp)
78 {
79         /*
80          * Return true if the buffer is vmapped.
81          *
82          * The XBF_MAPPED flag is set if the buffer should be mapped, but the
83          * code is clever enough to know it doesn't have to map a single page,
84          * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
85          */
86         return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
87 }
88
89 static inline int
90 xfs_buf_vmap_len(
91         struct xfs_buf  *bp)
92 {
93         return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
94 }
95
96 /*
97  * xfs_buf_lru_add - add a buffer to the LRU.
98  *
99  * The LRU takes a new reference to the buffer so that it will only be freed
100  * once the shrinker takes the buffer off the LRU.
101  */
102 STATIC void
103 xfs_buf_lru_add(
104         struct xfs_buf  *bp)
105 {
106         struct xfs_buftarg *btp = bp->b_target;
107
108         spin_lock(&btp->bt_lru_lock);
109         if (list_empty(&bp->b_lru)) {
110                 atomic_inc(&bp->b_hold);
111                 list_add_tail(&bp->b_lru, &btp->bt_lru);
112                 btp->bt_lru_nr++;
113         }
114         spin_unlock(&btp->bt_lru_lock);
115 }
116
117 /*
118  * xfs_buf_lru_del - remove a buffer from the LRU
119  *
120  * The unlocked check is safe here because it only occurs when there are not
121  * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
122  * to optimise the shrinker removing the buffer from the LRU and calling
123  * xfs_buf_free(). i.e. it removes an unneccessary round trip on the
124  * bt_lru_lock.
125  */
126 STATIC void
127 xfs_buf_lru_del(
128         struct xfs_buf  *bp)
129 {
130         struct xfs_buftarg *btp = bp->b_target;
131
132         if (list_empty(&bp->b_lru))
133                 return;
134
135         spin_lock(&btp->bt_lru_lock);
136         if (!list_empty(&bp->b_lru)) {
137                 list_del_init(&bp->b_lru);
138                 btp->bt_lru_nr--;
139         }
140         spin_unlock(&btp->bt_lru_lock);
141 }
142
143 /*
144  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
145  * b_lru_ref count so that the buffer is freed immediately when the buffer
146  * reference count falls to zero. If the buffer is already on the LRU, we need
147  * to remove the reference that LRU holds on the buffer.
148  *
149  * This prevents build-up of stale buffers on the LRU.
150  */
151 void
152 xfs_buf_stale(
153         struct xfs_buf  *bp)
154 {
155         bp->b_flags |= XBF_STALE;
156         atomic_set(&(bp)->b_lru_ref, 0);
157         if (!list_empty(&bp->b_lru)) {
158                 struct xfs_buftarg *btp = bp->b_target;
159
160                 spin_lock(&btp->bt_lru_lock);
161                 if (!list_empty(&bp->b_lru)) {
162                         list_del_init(&bp->b_lru);
163                         btp->bt_lru_nr--;
164                         atomic_dec(&bp->b_hold);
165                 }
166                 spin_unlock(&btp->bt_lru_lock);
167         }
168         ASSERT(atomic_read(&bp->b_hold) >= 1);
169 }
170
171 STATIC void
172 _xfs_buf_initialize(
173         xfs_buf_t               *bp,
174         xfs_buftarg_t           *target,
175         xfs_off_t               range_base,
176         size_t                  range_length,
177         xfs_buf_flags_t         flags)
178 {
179         /*
180          * We don't want certain flags to appear in b_flags.
181          */
182         flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
183
184         memset(bp, 0, sizeof(xfs_buf_t));
185         atomic_set(&bp->b_hold, 1);
186         atomic_set(&bp->b_lru_ref, 1);
187         init_completion(&bp->b_iowait);
188         INIT_LIST_HEAD(&bp->b_lru);
189         INIT_LIST_HEAD(&bp->b_list);
190         RB_CLEAR_NODE(&bp->b_rbnode);
191         sema_init(&bp->b_sema, 0); /* held, no waiters */
192         XB_SET_OWNER(bp);
193         bp->b_target = target;
194         bp->b_file_offset = range_base;
195         /*
196          * Set buffer_length and count_desired to the same value initially.
197          * I/O routines should use count_desired, which will be the same in
198          * most cases but may be reset (e.g. XFS recovery).
199          */
200         bp->b_buffer_length = bp->b_count_desired = range_length;
201         bp->b_flags = flags;
202         bp->b_bn = XFS_BUF_DADDR_NULL;
203         atomic_set(&bp->b_pin_count, 0);
204         init_waitqueue_head(&bp->b_waiters);
205
206         XFS_STATS_INC(xb_create);
207
208         trace_xfs_buf_init(bp, _RET_IP_);
209 }
210
211 /*
212  *      Allocate a page array capable of holding a specified number
213  *      of pages, and point the page buf at it.
214  */
215 STATIC int
216 _xfs_buf_get_pages(
217         xfs_buf_t               *bp,
218         int                     page_count,
219         xfs_buf_flags_t         flags)
220 {
221         /* Make sure that we have a page list */
222         if (bp->b_pages == NULL) {
223                 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
224                 bp->b_page_count = page_count;
225                 if (page_count <= XB_PAGES) {
226                         bp->b_pages = bp->b_page_array;
227                 } else {
228                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
229                                         page_count, xb_to_km(flags));
230                         if (bp->b_pages == NULL)
231                                 return -ENOMEM;
232                 }
233                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
234         }
235         return 0;
236 }
237
238 /*
239  *      Frees b_pages if it was allocated.
240  */
241 STATIC void
242 _xfs_buf_free_pages(
243         xfs_buf_t       *bp)
244 {
245         if (bp->b_pages != bp->b_page_array) {
246                 kmem_free(bp->b_pages);
247                 bp->b_pages = NULL;
248         }
249 }
250
251 /*
252  *      Releases the specified buffer.
253  *
254  *      The modification state of any associated pages is left unchanged.
255  *      The buffer most not be on any hash - use xfs_buf_rele instead for
256  *      hashed and refcounted buffers
257  */
258 void
259 xfs_buf_free(
260         xfs_buf_t               *bp)
261 {
262         trace_xfs_buf_free(bp, _RET_IP_);
263
264         ASSERT(list_empty(&bp->b_lru));
265
266         if (bp->b_flags & _XBF_PAGES) {
267                 uint            i;
268
269                 if (xfs_buf_is_vmapped(bp))
270                         vm_unmap_ram(bp->b_addr - bp->b_offset,
271                                         bp->b_page_count);
272
273                 for (i = 0; i < bp->b_page_count; i++) {
274                         struct page     *page = bp->b_pages[i];
275
276                         __free_page(page);
277                 }
278         } else if (bp->b_flags & _XBF_KMEM)
279                 kmem_free(bp->b_addr);
280         _xfs_buf_free_pages(bp);
281         xfs_buf_deallocate(bp);
282 }
283
284 /*
285  * Allocates all the pages for buffer in question and builds it's page list.
286  */
287 STATIC int
288 xfs_buf_allocate_memory(
289         xfs_buf_t               *bp,
290         uint                    flags)
291 {
292         size_t                  size = bp->b_count_desired;
293         size_t                  nbytes, offset;
294         gfp_t                   gfp_mask = xb_to_gfp(flags);
295         unsigned short          page_count, i;
296         pgoff_t                 first;
297         xfs_off_t               end;
298         int                     error;
299
300         /*
301          * for buffers that are contained within a single page, just allocate
302          * the memory from the heap - there's no need for the complexity of
303          * page arrays to keep allocation down to order 0.
304          */
305         if (bp->b_buffer_length < PAGE_SIZE) {
306                 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
307                 if (!bp->b_addr) {
308                         /* low memory - use alloc_page loop instead */
309                         goto use_alloc_page;
310                 }
311
312                 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
313                                                                 PAGE_MASK) !=
314                     ((unsigned long)bp->b_addr & PAGE_MASK)) {
315                         /* b_addr spans two pages - use alloc_page instead */
316                         kmem_free(bp->b_addr);
317                         bp->b_addr = NULL;
318                         goto use_alloc_page;
319                 }
320                 bp->b_offset = offset_in_page(bp->b_addr);
321                 bp->b_pages = bp->b_page_array;
322                 bp->b_pages[0] = virt_to_page(bp->b_addr);
323                 bp->b_page_count = 1;
324                 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
325                 return 0;
326         }
327
328 use_alloc_page:
329         end = bp->b_file_offset + bp->b_buffer_length;
330         page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
331         error = _xfs_buf_get_pages(bp, page_count, flags);
332         if (unlikely(error))
333                 return error;
334
335         offset = bp->b_offset;
336         first = bp->b_file_offset >> PAGE_SHIFT;
337         bp->b_flags |= _XBF_PAGES;
338
339         for (i = 0; i < bp->b_page_count; i++) {
340                 struct page     *page;
341                 uint            retries = 0;
342 retry:
343                 page = alloc_page(gfp_mask);
344                 if (unlikely(page == NULL)) {
345                         if (flags & XBF_READ_AHEAD) {
346                                 bp->b_page_count = i;
347                                 error = ENOMEM;
348                                 goto out_free_pages;
349                         }
350
351                         /*
352                          * This could deadlock.
353                          *
354                          * But until all the XFS lowlevel code is revamped to
355                          * handle buffer allocation failures we can't do much.
356                          */
357                         if (!(++retries % 100))
358                                 xfs_err(NULL,
359                 "possible memory allocation deadlock in %s (mode:0x%x)",
360                                         __func__, gfp_mask);
361
362                         XFS_STATS_INC(xb_page_retries);
363                         congestion_wait(BLK_RW_ASYNC, HZ/50);
364                         goto retry;
365                 }
366
367                 XFS_STATS_INC(xb_page_found);
368
369                 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
370                 size -= nbytes;
371                 bp->b_pages[i] = page;
372                 offset = 0;
373         }
374         return 0;
375
376 out_free_pages:
377         for (i = 0; i < bp->b_page_count; i++)
378                 __free_page(bp->b_pages[i]);
379         return error;
380 }
381
382 /*
383  *      Map buffer into kernel address-space if nessecary.
384  */
385 STATIC int
386 _xfs_buf_map_pages(
387         xfs_buf_t               *bp,
388         uint                    flags)
389 {
390         ASSERT(bp->b_flags & _XBF_PAGES);
391         if (bp->b_page_count == 1) {
392                 /* A single page buffer is always mappable */
393                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
394                 bp->b_flags |= XBF_MAPPED;
395         } else if (flags & XBF_MAPPED) {
396                 int retried = 0;
397
398                 do {
399                         bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
400                                                 -1, PAGE_KERNEL);
401                         if (bp->b_addr)
402                                 break;
403                         vm_unmap_aliases();
404                 } while (retried++ <= 1);
405
406                 if (!bp->b_addr)
407                         return -ENOMEM;
408                 bp->b_addr += bp->b_offset;
409                 bp->b_flags |= XBF_MAPPED;
410         }
411
412         return 0;
413 }
414
415 /*
416  *      Finding and Reading Buffers
417  */
418
419 /*
420  *      Look up, and creates if absent, a lockable buffer for
421  *      a given range of an inode.  The buffer is returned
422  *      locked.  If other overlapping buffers exist, they are
423  *      released before the new buffer is created and locked,
424  *      which may imply that this call will block until those buffers
425  *      are unlocked.  No I/O is implied by this call.
426  */
427 xfs_buf_t *
428 _xfs_buf_find(
429         xfs_buftarg_t           *btp,   /* block device target          */
430         xfs_off_t               ioff,   /* starting offset of range     */
431         size_t                  isize,  /* length of range              */
432         xfs_buf_flags_t         flags,
433         xfs_buf_t               *new_bp)
434 {
435         xfs_off_t               range_base;
436         size_t                  range_length;
437         struct xfs_perag        *pag;
438         struct rb_node          **rbp;
439         struct rb_node          *parent;
440         xfs_buf_t               *bp;
441
442         range_base = (ioff << BBSHIFT);
443         range_length = (isize << BBSHIFT);
444
445         /* Check for IOs smaller than the sector size / not sector aligned */
446         ASSERT(!(range_length < (1 << btp->bt_sshift)));
447         ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
448
449         /* get tree root */
450         pag = xfs_perag_get(btp->bt_mount,
451                                 xfs_daddr_to_agno(btp->bt_mount, ioff));
452
453         /* walk tree */
454         spin_lock(&pag->pag_buf_lock);
455         rbp = &pag->pag_buf_tree.rb_node;
456         parent = NULL;
457         bp = NULL;
458         while (*rbp) {
459                 parent = *rbp;
460                 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
461
462                 if (range_base < bp->b_file_offset)
463                         rbp = &(*rbp)->rb_left;
464                 else if (range_base > bp->b_file_offset)
465                         rbp = &(*rbp)->rb_right;
466                 else {
467                         /*
468                          * found a block offset match. If the range doesn't
469                          * match, the only way this is allowed is if the buffer
470                          * in the cache is stale and the transaction that made
471                          * it stale has not yet committed. i.e. we are
472                          * reallocating a busy extent. Skip this buffer and
473                          * continue searching to the right for an exact match.
474                          */
475                         if (bp->b_buffer_length != range_length) {
476                                 ASSERT(bp->b_flags & XBF_STALE);
477                                 rbp = &(*rbp)->rb_right;
478                                 continue;
479                         }
480                         atomic_inc(&bp->b_hold);
481                         goto found;
482                 }
483         }
484
485         /* No match found */
486         if (new_bp) {
487                 _xfs_buf_initialize(new_bp, btp, range_base,
488                                 range_length, flags);
489                 rb_link_node(&new_bp->b_rbnode, parent, rbp);
490                 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
491                 /* the buffer keeps the perag reference until it is freed */
492                 new_bp->b_pag = pag;
493                 spin_unlock(&pag->pag_buf_lock);
494         } else {
495                 XFS_STATS_INC(xb_miss_locked);
496                 spin_unlock(&pag->pag_buf_lock);
497                 xfs_perag_put(pag);
498         }
499         return new_bp;
500
501 found:
502         spin_unlock(&pag->pag_buf_lock);
503         xfs_perag_put(pag);
504
505         if (xfs_buf_cond_lock(bp)) {
506                 /* failed, so wait for the lock if requested. */
507                 if (!(flags & XBF_TRYLOCK)) {
508                         xfs_buf_lock(bp);
509                         XFS_STATS_INC(xb_get_locked_waited);
510                 } else {
511                         xfs_buf_rele(bp);
512                         XFS_STATS_INC(xb_busy_locked);
513                         return NULL;
514                 }
515         }
516
517         /*
518          * if the buffer is stale, clear all the external state associated with
519          * it. We need to keep flags such as how we allocated the buffer memory
520          * intact here.
521          */
522         if (bp->b_flags & XBF_STALE) {
523                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
524                 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
525         }
526
527         trace_xfs_buf_find(bp, flags, _RET_IP_);
528         XFS_STATS_INC(xb_get_locked);
529         return bp;
530 }
531
532 /*
533  *      Assembles a buffer covering the specified range.
534  *      Storage in memory for all portions of the buffer will be allocated,
535  *      although backing storage may not be.
536  */
537 xfs_buf_t *
538 xfs_buf_get(
539         xfs_buftarg_t           *target,/* target for buffer            */
540         xfs_off_t               ioff,   /* starting offset of range     */
541         size_t                  isize,  /* length of range              */
542         xfs_buf_flags_t         flags)
543 {
544         xfs_buf_t               *bp, *new_bp;
545         int                     error = 0;
546
547         new_bp = xfs_buf_allocate(flags);
548         if (unlikely(!new_bp))
549                 return NULL;
550
551         bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
552         if (bp == new_bp) {
553                 error = xfs_buf_allocate_memory(bp, flags);
554                 if (error)
555                         goto no_buffer;
556         } else {
557                 xfs_buf_deallocate(new_bp);
558                 if (unlikely(bp == NULL))
559                         return NULL;
560         }
561
562         if (!(bp->b_flags & XBF_MAPPED)) {
563                 error = _xfs_buf_map_pages(bp, flags);
564                 if (unlikely(error)) {
565                         xfs_warn(target->bt_mount,
566                                 "%s: failed to map pages\n", __func__);
567                         goto no_buffer;
568                 }
569         }
570
571         XFS_STATS_INC(xb_get);
572
573         /*
574          * Always fill in the block number now, the mapped cases can do
575          * their own overlay of this later.
576          */
577         bp->b_bn = ioff;
578         bp->b_count_desired = bp->b_buffer_length;
579
580         trace_xfs_buf_get(bp, flags, _RET_IP_);
581         return bp;
582
583  no_buffer:
584         if (flags & (XBF_LOCK | XBF_TRYLOCK))
585                 xfs_buf_unlock(bp);
586         xfs_buf_rele(bp);
587         return NULL;
588 }
589
590 STATIC int
591 _xfs_buf_read(
592         xfs_buf_t               *bp,
593         xfs_buf_flags_t         flags)
594 {
595         int                     status;
596
597         ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
598         ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
599
600         bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
601                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
602         bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
603                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
604
605         status = xfs_buf_iorequest(bp);
606         if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
607                 return status;
608         return xfs_buf_iowait(bp);
609 }
610
611 xfs_buf_t *
612 xfs_buf_read(
613         xfs_buftarg_t           *target,
614         xfs_off_t               ioff,
615         size_t                  isize,
616         xfs_buf_flags_t         flags)
617 {
618         xfs_buf_t               *bp;
619
620         flags |= XBF_READ;
621
622         bp = xfs_buf_get(target, ioff, isize, flags);
623         if (bp) {
624                 trace_xfs_buf_read(bp, flags, _RET_IP_);
625
626                 if (!XFS_BUF_ISDONE(bp)) {
627                         XFS_STATS_INC(xb_get_read);
628                         _xfs_buf_read(bp, flags);
629                 } else if (flags & XBF_ASYNC) {
630                         /*
631                          * Read ahead call which is already satisfied,
632                          * drop the buffer
633                          */
634                         goto no_buffer;
635                 } else {
636                         /* We do not want read in the flags */
637                         bp->b_flags &= ~XBF_READ;
638                 }
639         }
640
641         return bp;
642
643  no_buffer:
644         if (flags & (XBF_LOCK | XBF_TRYLOCK))
645                 xfs_buf_unlock(bp);
646         xfs_buf_rele(bp);
647         return NULL;
648 }
649
650 /*
651  *      If we are not low on memory then do the readahead in a deadlock
652  *      safe manner.
653  */
654 void
655 xfs_buf_readahead(
656         xfs_buftarg_t           *target,
657         xfs_off_t               ioff,
658         size_t                  isize)
659 {
660         if (bdi_read_congested(target->bt_bdi))
661                 return;
662
663         xfs_buf_read(target, ioff, isize,
664                      XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
665 }
666
667 /*
668  * Read an uncached buffer from disk. Allocates and returns a locked
669  * buffer containing the disk contents or nothing.
670  */
671 struct xfs_buf *
672 xfs_buf_read_uncached(
673         struct xfs_mount        *mp,
674         struct xfs_buftarg      *target,
675         xfs_daddr_t             daddr,
676         size_t                  length,
677         int                     flags)
678 {
679         xfs_buf_t               *bp;
680         int                     error;
681
682         bp = xfs_buf_get_uncached(target, length, flags);
683         if (!bp)
684                 return NULL;
685
686         /* set up the buffer for a read IO */
687         xfs_buf_lock(bp);
688         XFS_BUF_SET_ADDR(bp, daddr);
689         XFS_BUF_READ(bp);
690         XFS_BUF_BUSY(bp);
691
692         xfsbdstrat(mp, bp);
693         error = xfs_buf_iowait(bp);
694         if (error || bp->b_error) {
695                 xfs_buf_relse(bp);
696                 return NULL;
697         }
698         return bp;
699 }
700
701 xfs_buf_t *
702 xfs_buf_get_empty(
703         size_t                  len,
704         xfs_buftarg_t           *target)
705 {
706         xfs_buf_t               *bp;
707
708         bp = xfs_buf_allocate(0);
709         if (bp)
710                 _xfs_buf_initialize(bp, target, 0, len, 0);
711         return bp;
712 }
713
714 static inline struct page *
715 mem_to_page(
716         void                    *addr)
717 {
718         if ((!is_vmalloc_addr(addr))) {
719                 return virt_to_page(addr);
720         } else {
721                 return vmalloc_to_page(addr);
722         }
723 }
724
725 int
726 xfs_buf_associate_memory(
727         xfs_buf_t               *bp,
728         void                    *mem,
729         size_t                  len)
730 {
731         int                     rval;
732         int                     i = 0;
733         unsigned long           pageaddr;
734         unsigned long           offset;
735         size_t                  buflen;
736         int                     page_count;
737
738         pageaddr = (unsigned long)mem & PAGE_MASK;
739         offset = (unsigned long)mem - pageaddr;
740         buflen = PAGE_ALIGN(len + offset);
741         page_count = buflen >> PAGE_SHIFT;
742
743         /* Free any previous set of page pointers */
744         if (bp->b_pages)
745                 _xfs_buf_free_pages(bp);
746
747         bp->b_pages = NULL;
748         bp->b_addr = mem;
749
750         rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
751         if (rval)
752                 return rval;
753
754         bp->b_offset = offset;
755
756         for (i = 0; i < bp->b_page_count; i++) {
757                 bp->b_pages[i] = mem_to_page((void *)pageaddr);
758                 pageaddr += PAGE_SIZE;
759         }
760
761         bp->b_count_desired = len;
762         bp->b_buffer_length = buflen;
763         bp->b_flags |= XBF_MAPPED;
764
765         return 0;
766 }
767
768 xfs_buf_t *
769 xfs_buf_get_uncached(
770         struct xfs_buftarg      *target,
771         size_t                  len,
772         int                     flags)
773 {
774         unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
775         int                     error, i;
776         xfs_buf_t               *bp;
777
778         bp = xfs_buf_allocate(0);
779         if (unlikely(bp == NULL))
780                 goto fail;
781         _xfs_buf_initialize(bp, target, 0, len, 0);
782
783         error = _xfs_buf_get_pages(bp, page_count, 0);
784         if (error)
785                 goto fail_free_buf;
786
787         for (i = 0; i < page_count; i++) {
788                 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
789                 if (!bp->b_pages[i])
790                         goto fail_free_mem;
791         }
792         bp->b_flags |= _XBF_PAGES;
793
794         error = _xfs_buf_map_pages(bp, XBF_MAPPED);
795         if (unlikely(error)) {
796                 xfs_warn(target->bt_mount,
797                         "%s: failed to map pages\n", __func__);
798                 goto fail_free_mem;
799         }
800
801         xfs_buf_unlock(bp);
802
803         trace_xfs_buf_get_uncached(bp, _RET_IP_);
804         return bp;
805
806  fail_free_mem:
807         while (--i >= 0)
808                 __free_page(bp->b_pages[i]);
809         _xfs_buf_free_pages(bp);
810  fail_free_buf:
811         xfs_buf_deallocate(bp);
812  fail:
813         return NULL;
814 }
815
816 /*
817  *      Increment reference count on buffer, to hold the buffer concurrently
818  *      with another thread which may release (free) the buffer asynchronously.
819  *      Must hold the buffer already to call this function.
820  */
821 void
822 xfs_buf_hold(
823         xfs_buf_t               *bp)
824 {
825         trace_xfs_buf_hold(bp, _RET_IP_);
826         atomic_inc(&bp->b_hold);
827 }
828
829 /*
830  *      Releases a hold on the specified buffer.  If the
831  *      the hold count is 1, calls xfs_buf_free.
832  */
833 void
834 xfs_buf_rele(
835         xfs_buf_t               *bp)
836 {
837         struct xfs_perag        *pag = bp->b_pag;
838
839         trace_xfs_buf_rele(bp, _RET_IP_);
840
841         if (!pag) {
842                 ASSERT(list_empty(&bp->b_lru));
843                 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
844                 if (atomic_dec_and_test(&bp->b_hold))
845                         xfs_buf_free(bp);
846                 return;
847         }
848
849         ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
850
851         ASSERT(atomic_read(&bp->b_hold) > 0);
852         if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
853                 if (!(bp->b_flags & XBF_STALE) &&
854                            atomic_read(&bp->b_lru_ref)) {
855                         xfs_buf_lru_add(bp);
856                         spin_unlock(&pag->pag_buf_lock);
857                 } else {
858                         xfs_buf_lru_del(bp);
859                         ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
860                         rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
861                         spin_unlock(&pag->pag_buf_lock);
862                         xfs_perag_put(pag);
863                         xfs_buf_free(bp);
864                 }
865         }
866 }
867
868
869 /*
870  *      Lock a buffer object, if it is not already locked.
871  *
872  *      If we come across a stale, pinned, locked buffer, we know that we are
873  *      being asked to lock a buffer that has been reallocated. Because it is
874  *      pinned, we know that the log has not been pushed to disk and hence it
875  *      will still be locked.  Rather than continuing to have trylock attempts
876  *      fail until someone else pushes the log, push it ourselves before
877  *      returning.  This means that the xfsaild will not get stuck trying
878  *      to push on stale inode buffers.
879  */
880 int
881 xfs_buf_cond_lock(
882         xfs_buf_t               *bp)
883 {
884         int                     locked;
885
886         locked = down_trylock(&bp->b_sema) == 0;
887         if (locked)
888                 XB_SET_OWNER(bp);
889         else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
890                 xfs_log_force(bp->b_target->bt_mount, 0);
891
892         trace_xfs_buf_cond_lock(bp, _RET_IP_);
893         return locked ? 0 : -EBUSY;
894 }
895
896 int
897 xfs_buf_lock_value(
898         xfs_buf_t               *bp)
899 {
900         return bp->b_sema.count;
901 }
902
903 /*
904  *      Lock a buffer object.
905  *
906  *      If we come across a stale, pinned, locked buffer, we know that we
907  *      are being asked to lock a buffer that has been reallocated. Because
908  *      it is pinned, we know that the log has not been pushed to disk and
909  *      hence it will still be locked. Rather than sleeping until someone
910  *      else pushes the log, push it ourselves before trying to get the lock.
911  */
912 void
913 xfs_buf_lock(
914         xfs_buf_t               *bp)
915 {
916         trace_xfs_buf_lock(bp, _RET_IP_);
917
918         if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
919                 xfs_log_force(bp->b_target->bt_mount, 0);
920         if (atomic_read(&bp->b_io_remaining))
921                 blk_flush_plug(current);
922         down(&bp->b_sema);
923         XB_SET_OWNER(bp);
924
925         trace_xfs_buf_lock_done(bp, _RET_IP_);
926 }
927
928 /*
929  *      Releases the lock on the buffer object.
930  *      If the buffer is marked delwri but is not queued, do so before we
931  *      unlock the buffer as we need to set flags correctly.  We also need to
932  *      take a reference for the delwri queue because the unlocker is going to
933  *      drop their's and they don't know we just queued it.
934  */
935 void
936 xfs_buf_unlock(
937         xfs_buf_t               *bp)
938 {
939         if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
940                 atomic_inc(&bp->b_hold);
941                 bp->b_flags |= XBF_ASYNC;
942                 xfs_buf_delwri_queue(bp, 0);
943         }
944
945         XB_CLEAR_OWNER(bp);
946         up(&bp->b_sema);
947
948         trace_xfs_buf_unlock(bp, _RET_IP_);
949 }
950
951 STATIC void
952 xfs_buf_wait_unpin(
953         xfs_buf_t               *bp)
954 {
955         DECLARE_WAITQUEUE       (wait, current);
956
957         if (atomic_read(&bp->b_pin_count) == 0)
958                 return;
959
960         add_wait_queue(&bp->b_waiters, &wait);
961         for (;;) {
962                 set_current_state(TASK_UNINTERRUPTIBLE);
963                 if (atomic_read(&bp->b_pin_count) == 0)
964                         break;
965                 io_schedule();
966         }
967         remove_wait_queue(&bp->b_waiters, &wait);
968         set_current_state(TASK_RUNNING);
969 }
970
971 /*
972  *      Buffer Utility Routines
973  */
974
975 STATIC void
976 xfs_buf_iodone_work(
977         struct work_struct      *work)
978 {
979         xfs_buf_t               *bp =
980                 container_of(work, xfs_buf_t, b_iodone_work);
981
982         if (bp->b_iodone)
983                 (*(bp->b_iodone))(bp);
984         else if (bp->b_flags & XBF_ASYNC)
985                 xfs_buf_relse(bp);
986 }
987
988 void
989 xfs_buf_ioend(
990         xfs_buf_t               *bp,
991         int                     schedule)
992 {
993         trace_xfs_buf_iodone(bp, _RET_IP_);
994
995         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
996         if (bp->b_error == 0)
997                 bp->b_flags |= XBF_DONE;
998
999         if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1000                 if (schedule) {
1001                         INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1002                         queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1003                 } else {
1004                         xfs_buf_iodone_work(&bp->b_iodone_work);
1005                 }
1006         } else {
1007                 complete(&bp->b_iowait);
1008         }
1009 }
1010
1011 void
1012 xfs_buf_ioerror(
1013         xfs_buf_t               *bp,
1014         int                     error)
1015 {
1016         ASSERT(error >= 0 && error <= 0xffff);
1017         bp->b_error = (unsigned short)error;
1018         trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1019 }
1020
1021 int
1022 xfs_bwrite(
1023         struct xfs_mount        *mp,
1024         struct xfs_buf          *bp)
1025 {
1026         int                     error;
1027
1028         bp->b_flags |= XBF_WRITE;
1029         bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1030
1031         xfs_buf_delwri_dequeue(bp);
1032         xfs_bdstrat_cb(bp);
1033
1034         error = xfs_buf_iowait(bp);
1035         if (error)
1036                 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1037         xfs_buf_relse(bp);
1038         return error;
1039 }
1040
1041 void
1042 xfs_bdwrite(
1043         void                    *mp,
1044         struct xfs_buf          *bp)
1045 {
1046         trace_xfs_buf_bdwrite(bp, _RET_IP_);
1047
1048         bp->b_flags &= ~XBF_READ;
1049         bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1050
1051         xfs_buf_delwri_queue(bp, 1);
1052 }
1053
1054 /*
1055  * Called when we want to stop a buffer from getting written or read.
1056  * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1057  * so that the proper iodone callbacks get called.
1058  */
1059 STATIC int
1060 xfs_bioerror(
1061         xfs_buf_t *bp)
1062 {
1063 #ifdef XFSERRORDEBUG
1064         ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1065 #endif
1066
1067         /*
1068          * No need to wait until the buffer is unpinned, we aren't flushing it.
1069          */
1070         XFS_BUF_ERROR(bp, EIO);
1071
1072         /*
1073          * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1074          */
1075         XFS_BUF_UNREAD(bp);
1076         XFS_BUF_UNDELAYWRITE(bp);
1077         XFS_BUF_UNDONE(bp);
1078         XFS_BUF_STALE(bp);
1079
1080         xfs_buf_ioend(bp, 0);
1081
1082         return EIO;
1083 }
1084
1085 /*
1086  * Same as xfs_bioerror, except that we are releasing the buffer
1087  * here ourselves, and avoiding the xfs_buf_ioend call.
1088  * This is meant for userdata errors; metadata bufs come with
1089  * iodone functions attached, so that we can track down errors.
1090  */
1091 STATIC int
1092 xfs_bioerror_relse(
1093         struct xfs_buf  *bp)
1094 {
1095         int64_t         fl = XFS_BUF_BFLAGS(bp);
1096         /*
1097          * No need to wait until the buffer is unpinned.
1098          * We aren't flushing it.
1099          *
1100          * chunkhold expects B_DONE to be set, whether
1101          * we actually finish the I/O or not. We don't want to
1102          * change that interface.
1103          */
1104         XFS_BUF_UNREAD(bp);
1105         XFS_BUF_UNDELAYWRITE(bp);
1106         XFS_BUF_DONE(bp);
1107         XFS_BUF_STALE(bp);
1108         XFS_BUF_CLR_IODONE_FUNC(bp);
1109         if (!(fl & XBF_ASYNC)) {
1110                 /*
1111                  * Mark b_error and B_ERROR _both_.
1112                  * Lot's of chunkcache code assumes that.
1113                  * There's no reason to mark error for
1114                  * ASYNC buffers.
1115                  */
1116                 XFS_BUF_ERROR(bp, EIO);
1117                 XFS_BUF_FINISH_IOWAIT(bp);
1118         } else {
1119                 xfs_buf_relse(bp);
1120         }
1121
1122         return EIO;
1123 }
1124
1125
1126 /*
1127  * All xfs metadata buffers except log state machine buffers
1128  * get this attached as their b_bdstrat callback function.
1129  * This is so that we can catch a buffer
1130  * after prematurely unpinning it to forcibly shutdown the filesystem.
1131  */
1132 int
1133 xfs_bdstrat_cb(
1134         struct xfs_buf  *bp)
1135 {
1136         if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1137                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1138                 /*
1139                  * Metadata write that didn't get logged but
1140                  * written delayed anyway. These aren't associated
1141                  * with a transaction, and can be ignored.
1142                  */
1143                 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1144                         return xfs_bioerror_relse(bp);
1145                 else
1146                         return xfs_bioerror(bp);
1147         }
1148
1149         xfs_buf_iorequest(bp);
1150         return 0;
1151 }
1152
1153 /*
1154  * Wrapper around bdstrat so that we can stop data from going to disk in case
1155  * we are shutting down the filesystem.  Typically user data goes thru this
1156  * path; one of the exceptions is the superblock.
1157  */
1158 void
1159 xfsbdstrat(
1160         struct xfs_mount        *mp,
1161         struct xfs_buf          *bp)
1162 {
1163         if (XFS_FORCED_SHUTDOWN(mp)) {
1164                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1165                 xfs_bioerror_relse(bp);
1166                 return;
1167         }
1168
1169         xfs_buf_iorequest(bp);
1170 }
1171
1172 STATIC void
1173 _xfs_buf_ioend(
1174         xfs_buf_t               *bp,
1175         int                     schedule)
1176 {
1177         if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1178                 xfs_buf_ioend(bp, schedule);
1179 }
1180
1181 STATIC void
1182 xfs_buf_bio_end_io(
1183         struct bio              *bio,
1184         int                     error)
1185 {
1186         xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1187
1188         xfs_buf_ioerror(bp, -error);
1189
1190         if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1191                 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1192
1193         _xfs_buf_ioend(bp, 1);
1194         bio_put(bio);
1195 }
1196
1197 STATIC void
1198 _xfs_buf_ioapply(
1199         xfs_buf_t               *bp)
1200 {
1201         int                     rw, map_i, total_nr_pages, nr_pages;
1202         struct bio              *bio;
1203         int                     offset = bp->b_offset;
1204         int                     size = bp->b_count_desired;
1205         sector_t                sector = bp->b_bn;
1206
1207         total_nr_pages = bp->b_page_count;
1208         map_i = 0;
1209
1210         if (bp->b_flags & XBF_ORDERED) {
1211                 ASSERT(!(bp->b_flags & XBF_READ));
1212                 rw = WRITE_FLUSH_FUA;
1213         } else if (bp->b_flags & XBF_LOG_BUFFER) {
1214                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1215                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1216                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1217         } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1218                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1219                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1220                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1221         } else {
1222                 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1223                      (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1224         }
1225
1226
1227 next_chunk:
1228         atomic_inc(&bp->b_io_remaining);
1229         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1230         if (nr_pages > total_nr_pages)
1231                 nr_pages = total_nr_pages;
1232
1233         bio = bio_alloc(GFP_NOIO, nr_pages);
1234         bio->bi_bdev = bp->b_target->bt_bdev;
1235         bio->bi_sector = sector;
1236         bio->bi_end_io = xfs_buf_bio_end_io;
1237         bio->bi_private = bp;
1238
1239
1240         for (; size && nr_pages; nr_pages--, map_i++) {
1241                 int     rbytes, nbytes = PAGE_SIZE - offset;
1242
1243                 if (nbytes > size)
1244                         nbytes = size;
1245
1246                 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1247                 if (rbytes < nbytes)
1248                         break;
1249
1250                 offset = 0;
1251                 sector += nbytes >> BBSHIFT;
1252                 size -= nbytes;
1253                 total_nr_pages--;
1254         }
1255
1256         if (likely(bio->bi_size)) {
1257                 if (xfs_buf_is_vmapped(bp)) {
1258                         flush_kernel_vmap_range(bp->b_addr,
1259                                                 xfs_buf_vmap_len(bp));
1260                 }
1261                 submit_bio(rw, bio);
1262                 if (size)
1263                         goto next_chunk;
1264         } else {
1265                 xfs_buf_ioerror(bp, EIO);
1266                 bio_put(bio);
1267         }
1268 }
1269
1270 int
1271 xfs_buf_iorequest(
1272         xfs_buf_t               *bp)
1273 {
1274         trace_xfs_buf_iorequest(bp, _RET_IP_);
1275
1276         if (bp->b_flags & XBF_DELWRI) {
1277                 xfs_buf_delwri_queue(bp, 1);
1278                 return 0;
1279         }
1280
1281         if (bp->b_flags & XBF_WRITE) {
1282                 xfs_buf_wait_unpin(bp);
1283         }
1284
1285         xfs_buf_hold(bp);
1286
1287         /* Set the count to 1 initially, this will stop an I/O
1288          * completion callout which happens before we have started
1289          * all the I/O from calling xfs_buf_ioend too early.
1290          */
1291         atomic_set(&bp->b_io_remaining, 1);
1292         _xfs_buf_ioapply(bp);
1293         _xfs_buf_ioend(bp, 0);
1294
1295         xfs_buf_rele(bp);
1296         return 0;
1297 }
1298
1299 /*
1300  *      Waits for I/O to complete on the buffer supplied.
1301  *      It returns immediately if no I/O is pending.
1302  *      It returns the I/O error code, if any, or 0 if there was no error.
1303  */
1304 int
1305 xfs_buf_iowait(
1306         xfs_buf_t               *bp)
1307 {
1308         trace_xfs_buf_iowait(bp, _RET_IP_);
1309
1310         if (atomic_read(&bp->b_io_remaining))
1311                 blk_flush_plug(current);
1312         wait_for_completion(&bp->b_iowait);
1313
1314         trace_xfs_buf_iowait_done(bp, _RET_IP_);
1315         return bp->b_error;
1316 }
1317
1318 xfs_caddr_t
1319 xfs_buf_offset(
1320         xfs_buf_t               *bp,
1321         size_t                  offset)
1322 {
1323         struct page             *page;
1324
1325         if (bp->b_flags & XBF_MAPPED)
1326                 return XFS_BUF_PTR(bp) + offset;
1327
1328         offset += bp->b_offset;
1329         page = bp->b_pages[offset >> PAGE_SHIFT];
1330         return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1331 }
1332
1333 /*
1334  *      Move data into or out of a buffer.
1335  */
1336 void
1337 xfs_buf_iomove(
1338         xfs_buf_t               *bp,    /* buffer to process            */
1339         size_t                  boff,   /* starting buffer offset       */
1340         size_t                  bsize,  /* length to copy               */
1341         void                    *data,  /* data address                 */
1342         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1343 {
1344         size_t                  bend, cpoff, csize;
1345         struct page             *page;
1346
1347         bend = boff + bsize;
1348         while (boff < bend) {
1349                 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1350                 cpoff = xfs_buf_poff(boff + bp->b_offset);
1351                 csize = min_t(size_t,
1352                               PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1353
1354                 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1355
1356                 switch (mode) {
1357                 case XBRW_ZERO:
1358                         memset(page_address(page) + cpoff, 0, csize);
1359                         break;
1360                 case XBRW_READ:
1361                         memcpy(data, page_address(page) + cpoff, csize);
1362                         break;
1363                 case XBRW_WRITE:
1364                         memcpy(page_address(page) + cpoff, data, csize);
1365                 }
1366
1367                 boff += csize;
1368                 data += csize;
1369         }
1370 }
1371
1372 /*
1373  *      Handling of buffer targets (buftargs).
1374  */
1375
1376 /*
1377  * Wait for any bufs with callbacks that have been submitted but have not yet
1378  * returned. These buffers will have an elevated hold count, so wait on those
1379  * while freeing all the buffers only held by the LRU.
1380  */
1381 void
1382 xfs_wait_buftarg(
1383         struct xfs_buftarg      *btp)
1384 {
1385         struct xfs_buf          *bp;
1386
1387 restart:
1388         spin_lock(&btp->bt_lru_lock);
1389         while (!list_empty(&btp->bt_lru)) {
1390                 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1391                 if (atomic_read(&bp->b_hold) > 1) {
1392                         spin_unlock(&btp->bt_lru_lock);
1393                         delay(100);
1394                         goto restart;
1395                 }
1396                 /*
1397                  * clear the LRU reference count so the bufer doesn't get
1398                  * ignored in xfs_buf_rele().
1399                  */
1400                 atomic_set(&bp->b_lru_ref, 0);
1401                 spin_unlock(&btp->bt_lru_lock);
1402                 xfs_buf_rele(bp);
1403                 spin_lock(&btp->bt_lru_lock);
1404         }
1405         spin_unlock(&btp->bt_lru_lock);
1406 }
1407
1408 int
1409 xfs_buftarg_shrink(
1410         struct shrinker         *shrink,
1411         int                     nr_to_scan,
1412         gfp_t                   mask)
1413 {
1414         struct xfs_buftarg      *btp = container_of(shrink,
1415                                         struct xfs_buftarg, bt_shrinker);
1416         struct xfs_buf          *bp;
1417         LIST_HEAD(dispose);
1418
1419         if (!nr_to_scan)
1420                 return btp->bt_lru_nr;
1421
1422         spin_lock(&btp->bt_lru_lock);
1423         while (!list_empty(&btp->bt_lru)) {
1424                 if (nr_to_scan-- <= 0)
1425                         break;
1426
1427                 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1428
1429                 /*
1430                  * Decrement the b_lru_ref count unless the value is already
1431                  * zero. If the value is already zero, we need to reclaim the
1432                  * buffer, otherwise it gets another trip through the LRU.
1433                  */
1434                 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1435                         list_move_tail(&bp->b_lru, &btp->bt_lru);
1436                         continue;
1437                 }
1438
1439                 /*
1440                  * remove the buffer from the LRU now to avoid needing another
1441                  * lock round trip inside xfs_buf_rele().
1442                  */
1443                 list_move(&bp->b_lru, &dispose);
1444                 btp->bt_lru_nr--;
1445         }
1446         spin_unlock(&btp->bt_lru_lock);
1447
1448         while (!list_empty(&dispose)) {
1449                 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1450                 list_del_init(&bp->b_lru);
1451                 xfs_buf_rele(bp);
1452         }
1453
1454         return btp->bt_lru_nr;
1455 }
1456
1457 void
1458 xfs_free_buftarg(
1459         struct xfs_mount        *mp,
1460         struct xfs_buftarg      *btp)
1461 {
1462         unregister_shrinker(&btp->bt_shrinker);
1463
1464         xfs_flush_buftarg(btp, 1);
1465         if (mp->m_flags & XFS_MOUNT_BARRIER)
1466                 xfs_blkdev_issue_flush(btp);
1467
1468         kthread_stop(btp->bt_task);
1469         kmem_free(btp);
1470 }
1471
1472 STATIC int
1473 xfs_setsize_buftarg_flags(
1474         xfs_buftarg_t           *btp,
1475         unsigned int            blocksize,
1476         unsigned int            sectorsize,
1477         int                     verbose)
1478 {
1479         btp->bt_bsize = blocksize;
1480         btp->bt_sshift = ffs(sectorsize) - 1;
1481         btp->bt_smask = sectorsize - 1;
1482
1483         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1484                 xfs_warn(btp->bt_mount,
1485                         "Cannot set_blocksize to %u on device %s\n",
1486                         sectorsize, XFS_BUFTARG_NAME(btp));
1487                 return EINVAL;
1488         }
1489
1490         return 0;
1491 }
1492
1493 /*
1494  *      When allocating the initial buffer target we have not yet
1495  *      read in the superblock, so don't know what sized sectors
1496  *      are being used is at this early stage.  Play safe.
1497  */
1498 STATIC int
1499 xfs_setsize_buftarg_early(
1500         xfs_buftarg_t           *btp,
1501         struct block_device     *bdev)
1502 {
1503         return xfs_setsize_buftarg_flags(btp,
1504                         PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1505 }
1506
1507 int
1508 xfs_setsize_buftarg(
1509         xfs_buftarg_t           *btp,
1510         unsigned int            blocksize,
1511         unsigned int            sectorsize)
1512 {
1513         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1514 }
1515
1516 STATIC int
1517 xfs_alloc_delwrite_queue(
1518         xfs_buftarg_t           *btp,
1519         const char              *fsname)
1520 {
1521         INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1522         spin_lock_init(&btp->bt_delwrite_lock);
1523         btp->bt_flags = 0;
1524         btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1525         if (IS_ERR(btp->bt_task))
1526                 return PTR_ERR(btp->bt_task);
1527         return 0;
1528 }
1529
1530 xfs_buftarg_t *
1531 xfs_alloc_buftarg(
1532         struct xfs_mount        *mp,
1533         struct block_device     *bdev,
1534         int                     external,
1535         const char              *fsname)
1536 {
1537         xfs_buftarg_t           *btp;
1538
1539         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1540
1541         btp->bt_mount = mp;
1542         btp->bt_dev =  bdev->bd_dev;
1543         btp->bt_bdev = bdev;
1544         btp->bt_bdi = blk_get_backing_dev_info(bdev);
1545         if (!btp->bt_bdi)
1546                 goto error;
1547
1548         INIT_LIST_HEAD(&btp->bt_lru);
1549         spin_lock_init(&btp->bt_lru_lock);
1550         if (xfs_setsize_buftarg_early(btp, bdev))
1551                 goto error;
1552         if (xfs_alloc_delwrite_queue(btp, fsname))
1553                 goto error;
1554         btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1555         btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1556         register_shrinker(&btp->bt_shrinker);
1557         return btp;
1558
1559 error:
1560         kmem_free(btp);
1561         return NULL;
1562 }
1563
1564
1565 /*
1566  *      Delayed write buffer handling
1567  */
1568 STATIC void
1569 xfs_buf_delwri_queue(
1570         xfs_buf_t               *bp,
1571         int                     unlock)
1572 {
1573         struct list_head        *dwq = &bp->b_target->bt_delwrite_queue;
1574         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1575
1576         trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1577
1578         ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1579
1580         spin_lock(dwlk);
1581         /* If already in the queue, dequeue and place at tail */
1582         if (!list_empty(&bp->b_list)) {
1583                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1584                 if (unlock)
1585                         atomic_dec(&bp->b_hold);
1586                 list_del(&bp->b_list);
1587         }
1588
1589         if (list_empty(dwq)) {
1590                 /* start xfsbufd as it is about to have something to do */
1591                 wake_up_process(bp->b_target->bt_task);
1592         }
1593
1594         bp->b_flags |= _XBF_DELWRI_Q;
1595         list_add_tail(&bp->b_list, dwq);
1596         bp->b_queuetime = jiffies;
1597         spin_unlock(dwlk);
1598
1599         if (unlock)
1600                 xfs_buf_unlock(bp);
1601 }
1602
1603 void
1604 xfs_buf_delwri_dequeue(
1605         xfs_buf_t               *bp)
1606 {
1607         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1608         int                     dequeued = 0;
1609
1610         spin_lock(dwlk);
1611         if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1612                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1613                 list_del_init(&bp->b_list);
1614                 dequeued = 1;
1615         }
1616         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1617         spin_unlock(dwlk);
1618
1619         if (dequeued)
1620                 xfs_buf_rele(bp);
1621
1622         trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1623 }
1624
1625 /*
1626  * If a delwri buffer needs to be pushed before it has aged out, then promote
1627  * it to the head of the delwri queue so that it will be flushed on the next
1628  * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1629  * than the age currently needed to flush the buffer. Hence the next time the
1630  * xfsbufd sees it is guaranteed to be considered old enough to flush.
1631  */
1632 void
1633 xfs_buf_delwri_promote(
1634         struct xfs_buf  *bp)
1635 {
1636         struct xfs_buftarg *btp = bp->b_target;
1637         long            age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1638
1639         ASSERT(bp->b_flags & XBF_DELWRI);
1640         ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1641
1642         /*
1643          * Check the buffer age before locking the delayed write queue as we
1644          * don't need to promote buffers that are already past the flush age.
1645          */
1646         if (bp->b_queuetime < jiffies - age)
1647                 return;
1648         bp->b_queuetime = jiffies - age;
1649         spin_lock(&btp->bt_delwrite_lock);
1650         list_move(&bp->b_list, &btp->bt_delwrite_queue);
1651         spin_unlock(&btp->bt_delwrite_lock);
1652 }
1653
1654 STATIC void
1655 xfs_buf_runall_queues(
1656         struct workqueue_struct *queue)
1657 {
1658         flush_workqueue(queue);
1659 }
1660
1661 /*
1662  * Move as many buffers as specified to the supplied list
1663  * idicating if we skipped any buffers to prevent deadlocks.
1664  */
1665 STATIC int
1666 xfs_buf_delwri_split(
1667         xfs_buftarg_t   *target,
1668         struct list_head *list,
1669         unsigned long   age)
1670 {
1671         xfs_buf_t       *bp, *n;
1672         struct list_head *dwq = &target->bt_delwrite_queue;
1673         spinlock_t      *dwlk = &target->bt_delwrite_lock;
1674         int             skipped = 0;
1675         int             force;
1676
1677         force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1678         INIT_LIST_HEAD(list);
1679         spin_lock(dwlk);
1680         list_for_each_entry_safe(bp, n, dwq, b_list) {
1681                 ASSERT(bp->b_flags & XBF_DELWRI);
1682
1683                 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
1684                         if (!force &&
1685                             time_before(jiffies, bp->b_queuetime + age)) {
1686                                 xfs_buf_unlock(bp);
1687                                 break;
1688                         }
1689
1690                         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1691                                          _XBF_RUN_QUEUES);
1692                         bp->b_flags |= XBF_WRITE;
1693                         list_move_tail(&bp->b_list, list);
1694                         trace_xfs_buf_delwri_split(bp, _RET_IP_);
1695                 } else
1696                         skipped++;
1697         }
1698         spin_unlock(dwlk);
1699
1700         return skipped;
1701
1702 }
1703
1704 /*
1705  * Compare function is more complex than it needs to be because
1706  * the return value is only 32 bits and we are doing comparisons
1707  * on 64 bit values
1708  */
1709 static int
1710 xfs_buf_cmp(
1711         void            *priv,
1712         struct list_head *a,
1713         struct list_head *b)
1714 {
1715         struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1716         struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1717         xfs_daddr_t             diff;
1718
1719         diff = ap->b_bn - bp->b_bn;
1720         if (diff < 0)
1721                 return -1;
1722         if (diff > 0)
1723                 return 1;
1724         return 0;
1725 }
1726
1727 void
1728 xfs_buf_delwri_sort(
1729         xfs_buftarg_t   *target,
1730         struct list_head *list)
1731 {
1732         list_sort(NULL, list, xfs_buf_cmp);
1733 }
1734
1735 STATIC int
1736 xfsbufd(
1737         void            *data)
1738 {
1739         xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1740
1741         current->flags |= PF_MEMALLOC;
1742
1743         set_freezable();
1744
1745         do {
1746                 long    age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1747                 long    tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1748                 int     count = 0;
1749                 struct list_head tmp;
1750
1751                 if (unlikely(freezing(current))) {
1752                         set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1753                         refrigerator();
1754                 } else {
1755                         clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1756                 }
1757
1758                 /* sleep for a long time if there is nothing to do. */
1759                 if (list_empty(&target->bt_delwrite_queue))
1760                         tout = MAX_SCHEDULE_TIMEOUT;
1761                 schedule_timeout_interruptible(tout);
1762
1763                 xfs_buf_delwri_split(target, &tmp, age);
1764                 list_sort(NULL, &tmp, xfs_buf_cmp);
1765                 while (!list_empty(&tmp)) {
1766                         struct xfs_buf *bp;
1767                         bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1768                         list_del_init(&bp->b_list);
1769                         xfs_bdstrat_cb(bp);
1770                         count++;
1771                 }
1772                 if (count)
1773                         blk_flush_plug(current);
1774
1775         } while (!kthread_should_stop());
1776
1777         return 0;
1778 }
1779
1780 /*
1781  *      Go through all incore buffers, and release buffers if they belong to
1782  *      the given device. This is used in filesystem error handling to
1783  *      preserve the consistency of its metadata.
1784  */
1785 int
1786 xfs_flush_buftarg(
1787         xfs_buftarg_t   *target,
1788         int             wait)
1789 {
1790         xfs_buf_t       *bp;
1791         int             pincount = 0;
1792         LIST_HEAD(tmp_list);
1793         LIST_HEAD(wait_list);
1794
1795         xfs_buf_runall_queues(xfsconvertd_workqueue);
1796         xfs_buf_runall_queues(xfsdatad_workqueue);
1797         xfs_buf_runall_queues(xfslogd_workqueue);
1798
1799         set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1800         pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1801
1802         /*
1803          * Dropped the delayed write list lock, now walk the temporary list.
1804          * All I/O is issued async and then if we need to wait for completion
1805          * we do that after issuing all the IO.
1806          */
1807         list_sort(NULL, &tmp_list, xfs_buf_cmp);
1808         while (!list_empty(&tmp_list)) {
1809                 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1810                 ASSERT(target == bp->b_target);
1811                 list_del_init(&bp->b_list);
1812                 if (wait) {
1813                         bp->b_flags &= ~XBF_ASYNC;
1814                         list_add(&bp->b_list, &wait_list);
1815                 }
1816                 xfs_bdstrat_cb(bp);
1817         }
1818
1819         if (wait) {
1820                 /* Expedite and wait for IO to complete. */
1821                 blk_flush_plug(current);
1822                 while (!list_empty(&wait_list)) {
1823                         bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1824
1825                         list_del_init(&bp->b_list);
1826                         xfs_buf_iowait(bp);
1827                         xfs_buf_relse(bp);
1828                 }
1829         }
1830
1831         return pincount;
1832 }
1833
1834 int __init
1835 xfs_buf_init(void)
1836 {
1837         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1838                                                 KM_ZONE_HWALIGN, NULL);
1839         if (!xfs_buf_zone)
1840                 goto out;
1841
1842         xfslogd_workqueue = alloc_workqueue("xfslogd",
1843                                         WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1844         if (!xfslogd_workqueue)
1845                 goto out_free_buf_zone;
1846
1847         xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
1848         if (!xfsdatad_workqueue)
1849                 goto out_destroy_xfslogd_workqueue;
1850
1851         xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
1852                                                 WQ_MEM_RECLAIM, 1);
1853         if (!xfsconvertd_workqueue)
1854                 goto out_destroy_xfsdatad_workqueue;
1855
1856         return 0;
1857
1858  out_destroy_xfsdatad_workqueue:
1859         destroy_workqueue(xfsdatad_workqueue);
1860  out_destroy_xfslogd_workqueue:
1861         destroy_workqueue(xfslogd_workqueue);
1862  out_free_buf_zone:
1863         kmem_zone_destroy(xfs_buf_zone);
1864  out:
1865         return -ENOMEM;
1866 }
1867
1868 void
1869 xfs_buf_terminate(void)
1870 {
1871         destroy_workqueue(xfsconvertd_workqueue);
1872         destroy_workqueue(xfsdatad_workqueue);
1873         destroy_workqueue(xfslogd_workqueue);
1874         kmem_zone_destroy(xfs_buf_zone);
1875 }
1876
1877 #ifdef CONFIG_KDB_MODULES
1878 struct list_head *
1879 xfs_get_buftarg_list(void)
1880 {
1881         return &xfs_buftarg_list;
1882 }
1883 #endif