xfs: kill XBF_FS_MANAGED buffers
[pandora-kernel.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
37
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_log.h"
41 #include "xfs_ag.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46 STATIC int xfsbufd(void *);
47 STATIC int xfsbufd_wakeup(struct shrinker *, int, gfp_t);
48 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
49 static struct shrinker xfs_buf_shake = {
50         .shrink = xfsbufd_wakeup,
51         .seeks = DEFAULT_SEEKS,
52 };
53
54 static struct workqueue_struct *xfslogd_workqueue;
55 struct workqueue_struct *xfsdatad_workqueue;
56 struct workqueue_struct *xfsconvertd_workqueue;
57
58 #ifdef XFS_BUF_LOCK_TRACKING
59 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
60 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
61 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
62 #else
63 # define XB_SET_OWNER(bp)       do { } while (0)
64 # define XB_CLEAR_OWNER(bp)     do { } while (0)
65 # define XB_GET_OWNER(bp)       do { } while (0)
66 #endif
67
68 #define xb_to_gfp(flags) \
69         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
70           ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
71
72 #define xb_to_km(flags) \
73          (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
74
75 #define xfs_buf_allocate(flags) \
76         kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
77 #define xfs_buf_deallocate(bp) \
78         kmem_zone_free(xfs_buf_zone, (bp));
79
80 static inline int
81 xfs_buf_is_vmapped(
82         struct xfs_buf  *bp)
83 {
84         /*
85          * Return true if the buffer is vmapped.
86          *
87          * The XBF_MAPPED flag is set if the buffer should be mapped, but the
88          * code is clever enough to know it doesn't have to map a single page,
89          * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
90          */
91         return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
92 }
93
94 static inline int
95 xfs_buf_vmap_len(
96         struct xfs_buf  *bp)
97 {
98         return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
99 }
100
101 /*
102  *      Page Region interfaces.
103  *
104  *      For pages in filesystems where the blocksize is smaller than the
105  *      pagesize, we use the page->private field (long) to hold a bitmap
106  *      of uptodate regions within the page.
107  *
108  *      Each such region is "bytes per page / bits per long" bytes long.
109  *
110  *      NBPPR == number-of-bytes-per-page-region
111  *      BTOPR == bytes-to-page-region (rounded up)
112  *      BTOPRT == bytes-to-page-region-truncated (rounded down)
113  */
114 #if (BITS_PER_LONG == 32)
115 #define PRSHIFT         (PAGE_CACHE_SHIFT - 5)  /* (32 == 1<<5) */
116 #elif (BITS_PER_LONG == 64)
117 #define PRSHIFT         (PAGE_CACHE_SHIFT - 6)  /* (64 == 1<<6) */
118 #else
119 #error BITS_PER_LONG must be 32 or 64
120 #endif
121 #define NBPPR           (PAGE_CACHE_SIZE/BITS_PER_LONG)
122 #define BTOPR(b)        (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
123 #define BTOPRT(b)       (((unsigned int)(b) >> PRSHIFT))
124
125 STATIC unsigned long
126 page_region_mask(
127         size_t          offset,
128         size_t          length)
129 {
130         unsigned long   mask;
131         int             first, final;
132
133         first = BTOPR(offset);
134         final = BTOPRT(offset + length - 1);
135         first = min(first, final);
136
137         mask = ~0UL;
138         mask <<= BITS_PER_LONG - (final - first);
139         mask >>= BITS_PER_LONG - (final);
140
141         ASSERT(offset + length <= PAGE_CACHE_SIZE);
142         ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
143
144         return mask;
145 }
146
147 STATIC void
148 set_page_region(
149         struct page     *page,
150         size_t          offset,
151         size_t          length)
152 {
153         set_page_private(page,
154                 page_private(page) | page_region_mask(offset, length));
155         if (page_private(page) == ~0UL)
156                 SetPageUptodate(page);
157 }
158
159 STATIC int
160 test_page_region(
161         struct page     *page,
162         size_t          offset,
163         size_t          length)
164 {
165         unsigned long   mask = page_region_mask(offset, length);
166
167         return (mask && (page_private(page) & mask) == mask);
168 }
169
170 /*
171  *      Internal xfs_buf_t object manipulation
172  */
173
174 STATIC void
175 _xfs_buf_initialize(
176         xfs_buf_t               *bp,
177         xfs_buftarg_t           *target,
178         xfs_off_t               range_base,
179         size_t                  range_length,
180         xfs_buf_flags_t         flags)
181 {
182         /*
183          * We don't want certain flags to appear in b_flags.
184          */
185         flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
186
187         memset(bp, 0, sizeof(xfs_buf_t));
188         atomic_set(&bp->b_hold, 1);
189         init_completion(&bp->b_iowait);
190         INIT_LIST_HEAD(&bp->b_list);
191         INIT_LIST_HEAD(&bp->b_hash_list);
192         init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
193         XB_SET_OWNER(bp);
194         bp->b_target = target;
195         bp->b_file_offset = range_base;
196         /*
197          * Set buffer_length and count_desired to the same value initially.
198          * I/O routines should use count_desired, which will be the same in
199          * most cases but may be reset (e.g. XFS recovery).
200          */
201         bp->b_buffer_length = bp->b_count_desired = range_length;
202         bp->b_flags = flags;
203         bp->b_bn = XFS_BUF_DADDR_NULL;
204         atomic_set(&bp->b_pin_count, 0);
205         init_waitqueue_head(&bp->b_waiters);
206
207         XFS_STATS_INC(xb_create);
208
209         trace_xfs_buf_init(bp, _RET_IP_);
210 }
211
212 /*
213  *      Allocate a page array capable of holding a specified number
214  *      of pages, and point the page buf at it.
215  */
216 STATIC int
217 _xfs_buf_get_pages(
218         xfs_buf_t               *bp,
219         int                     page_count,
220         xfs_buf_flags_t         flags)
221 {
222         /* Make sure that we have a page list */
223         if (bp->b_pages == NULL) {
224                 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225                 bp->b_page_count = page_count;
226                 if (page_count <= XB_PAGES) {
227                         bp->b_pages = bp->b_page_array;
228                 } else {
229                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
230                                         page_count, xb_to_km(flags));
231                         if (bp->b_pages == NULL)
232                                 return -ENOMEM;
233                 }
234                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
235         }
236         return 0;
237 }
238
239 /*
240  *      Frees b_pages if it was allocated.
241  */
242 STATIC void
243 _xfs_buf_free_pages(
244         xfs_buf_t       *bp)
245 {
246         if (bp->b_pages != bp->b_page_array) {
247                 kmem_free(bp->b_pages);
248                 bp->b_pages = NULL;
249         }
250 }
251
252 /*
253  *      Releases the specified buffer.
254  *
255  *      The modification state of any associated pages is left unchanged.
256  *      The buffer most not be on any hash - use xfs_buf_rele instead for
257  *      hashed and refcounted buffers
258  */
259 void
260 xfs_buf_free(
261         xfs_buf_t               *bp)
262 {
263         trace_xfs_buf_free(bp, _RET_IP_);
264
265         ASSERT(list_empty(&bp->b_hash_list));
266
267         if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
268                 uint            i;
269
270                 if (xfs_buf_is_vmapped(bp))
271                         vm_unmap_ram(bp->b_addr - bp->b_offset,
272                                         bp->b_page_count);
273
274                 for (i = 0; i < bp->b_page_count; i++) {
275                         struct page     *page = bp->b_pages[i];
276
277                         if (bp->b_flags & _XBF_PAGE_CACHE)
278                                 ASSERT(!PagePrivate(page));
279                         page_cache_release(page);
280                 }
281         }
282         _xfs_buf_free_pages(bp);
283         xfs_buf_deallocate(bp);
284 }
285
286 /*
287  *      Finds all pages for buffer in question and builds it's page list.
288  */
289 STATIC int
290 _xfs_buf_lookup_pages(
291         xfs_buf_t               *bp,
292         uint                    flags)
293 {
294         struct address_space    *mapping = bp->b_target->bt_mapping;
295         size_t                  blocksize = bp->b_target->bt_bsize;
296         size_t                  size = bp->b_count_desired;
297         size_t                  nbytes, offset;
298         gfp_t                   gfp_mask = xb_to_gfp(flags);
299         unsigned short          page_count, i;
300         pgoff_t                 first;
301         xfs_off_t               end;
302         int                     error;
303
304         end = bp->b_file_offset + bp->b_buffer_length;
305         page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
306
307         error = _xfs_buf_get_pages(bp, page_count, flags);
308         if (unlikely(error))
309                 return error;
310         bp->b_flags |= _XBF_PAGE_CACHE;
311
312         offset = bp->b_offset;
313         first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
314
315         for (i = 0; i < bp->b_page_count; i++) {
316                 struct page     *page;
317                 uint            retries = 0;
318
319               retry:
320                 page = find_or_create_page(mapping, first + i, gfp_mask);
321                 if (unlikely(page == NULL)) {
322                         if (flags & XBF_READ_AHEAD) {
323                                 bp->b_page_count = i;
324                                 for (i = 0; i < bp->b_page_count; i++)
325                                         unlock_page(bp->b_pages[i]);
326                                 return -ENOMEM;
327                         }
328
329                         /*
330                          * This could deadlock.
331                          *
332                          * But until all the XFS lowlevel code is revamped to
333                          * handle buffer allocation failures we can't do much.
334                          */
335                         if (!(++retries % 100))
336                                 printk(KERN_ERR
337                                         "XFS: possible memory allocation "
338                                         "deadlock in %s (mode:0x%x)\n",
339                                         __func__, gfp_mask);
340
341                         XFS_STATS_INC(xb_page_retries);
342                         xfsbufd_wakeup(NULL, 0, gfp_mask);
343                         congestion_wait(BLK_RW_ASYNC, HZ/50);
344                         goto retry;
345                 }
346
347                 XFS_STATS_INC(xb_page_found);
348
349                 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
350                 size -= nbytes;
351
352                 ASSERT(!PagePrivate(page));
353                 if (!PageUptodate(page)) {
354                         page_count--;
355                         if (blocksize >= PAGE_CACHE_SIZE) {
356                                 if (flags & XBF_READ)
357                                         bp->b_flags |= _XBF_PAGE_LOCKED;
358                         } else if (!PagePrivate(page)) {
359                                 if (test_page_region(page, offset, nbytes))
360                                         page_count++;
361                         }
362                 }
363
364                 bp->b_pages[i] = page;
365                 offset = 0;
366         }
367
368         if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
369                 for (i = 0; i < bp->b_page_count; i++)
370                         unlock_page(bp->b_pages[i]);
371         }
372
373         if (page_count == bp->b_page_count)
374                 bp->b_flags |= XBF_DONE;
375
376         return error;
377 }
378
379 /*
380  *      Map buffer into kernel address-space if nessecary.
381  */
382 STATIC int
383 _xfs_buf_map_pages(
384         xfs_buf_t               *bp,
385         uint                    flags)
386 {
387         /* A single page buffer is always mappable */
388         if (bp->b_page_count == 1) {
389                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
390                 bp->b_flags |= XBF_MAPPED;
391         } else if (flags & XBF_MAPPED) {
392                 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
393                                         -1, PAGE_KERNEL);
394                 if (unlikely(bp->b_addr == NULL))
395                         return -ENOMEM;
396                 bp->b_addr += bp->b_offset;
397                 bp->b_flags |= XBF_MAPPED;
398         }
399
400         return 0;
401 }
402
403 /*
404  *      Finding and Reading Buffers
405  */
406
407 /*
408  *      Look up, and creates if absent, a lockable buffer for
409  *      a given range of an inode.  The buffer is returned
410  *      locked.  If other overlapping buffers exist, they are
411  *      released before the new buffer is created and locked,
412  *      which may imply that this call will block until those buffers
413  *      are unlocked.  No I/O is implied by this call.
414  */
415 xfs_buf_t *
416 _xfs_buf_find(
417         xfs_buftarg_t           *btp,   /* block device target          */
418         xfs_off_t               ioff,   /* starting offset of range     */
419         size_t                  isize,  /* length of range              */
420         xfs_buf_flags_t         flags,
421         xfs_buf_t               *new_bp)
422 {
423         xfs_off_t               range_base;
424         size_t                  range_length;
425         xfs_bufhash_t           *hash;
426         xfs_buf_t               *bp, *n;
427
428         range_base = (ioff << BBSHIFT);
429         range_length = (isize << BBSHIFT);
430
431         /* Check for IOs smaller than the sector size / not sector aligned */
432         ASSERT(!(range_length < (1 << btp->bt_sshift)));
433         ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
434
435         hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
436
437         spin_lock(&hash->bh_lock);
438
439         list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
440                 ASSERT(btp == bp->b_target);
441                 if (bp->b_file_offset == range_base &&
442                     bp->b_buffer_length == range_length) {
443                         atomic_inc(&bp->b_hold);
444                         goto found;
445                 }
446         }
447
448         /* No match found */
449         if (new_bp) {
450                 _xfs_buf_initialize(new_bp, btp, range_base,
451                                 range_length, flags);
452                 new_bp->b_hash = hash;
453                 list_add(&new_bp->b_hash_list, &hash->bh_list);
454         } else {
455                 XFS_STATS_INC(xb_miss_locked);
456         }
457
458         spin_unlock(&hash->bh_lock);
459         return new_bp;
460
461 found:
462         spin_unlock(&hash->bh_lock);
463
464         /* Attempt to get the semaphore without sleeping,
465          * if this does not work then we need to drop the
466          * spinlock and do a hard attempt on the semaphore.
467          */
468         if (down_trylock(&bp->b_sema)) {
469                 if (!(flags & XBF_TRYLOCK)) {
470                         /* wait for buffer ownership */
471                         xfs_buf_lock(bp);
472                         XFS_STATS_INC(xb_get_locked_waited);
473                 } else {
474                         /* We asked for a trylock and failed, no need
475                          * to look at file offset and length here, we
476                          * know that this buffer at least overlaps our
477                          * buffer and is locked, therefore our buffer
478                          * either does not exist, or is this buffer.
479                          */
480                         xfs_buf_rele(bp);
481                         XFS_STATS_INC(xb_busy_locked);
482                         return NULL;
483                 }
484         } else {
485                 /* trylock worked */
486                 XB_SET_OWNER(bp);
487         }
488
489         if (bp->b_flags & XBF_STALE) {
490                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
491                 bp->b_flags &= XBF_MAPPED;
492         }
493
494         trace_xfs_buf_find(bp, flags, _RET_IP_);
495         XFS_STATS_INC(xb_get_locked);
496         return bp;
497 }
498
499 /*
500  *      Assembles a buffer covering the specified range.
501  *      Storage in memory for all portions of the buffer will be allocated,
502  *      although backing storage may not be.
503  */
504 xfs_buf_t *
505 xfs_buf_get(
506         xfs_buftarg_t           *target,/* target for buffer            */
507         xfs_off_t               ioff,   /* starting offset of range     */
508         size_t                  isize,  /* length of range              */
509         xfs_buf_flags_t         flags)
510 {
511         xfs_buf_t               *bp, *new_bp;
512         int                     error = 0, i;
513
514         new_bp = xfs_buf_allocate(flags);
515         if (unlikely(!new_bp))
516                 return NULL;
517
518         bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
519         if (bp == new_bp) {
520                 error = _xfs_buf_lookup_pages(bp, flags);
521                 if (error)
522                         goto no_buffer;
523         } else {
524                 xfs_buf_deallocate(new_bp);
525                 if (unlikely(bp == NULL))
526                         return NULL;
527         }
528
529         for (i = 0; i < bp->b_page_count; i++)
530                 mark_page_accessed(bp->b_pages[i]);
531
532         if (!(bp->b_flags & XBF_MAPPED)) {
533                 error = _xfs_buf_map_pages(bp, flags);
534                 if (unlikely(error)) {
535                         printk(KERN_WARNING "%s: failed to map pages\n",
536                                         __func__);
537                         goto no_buffer;
538                 }
539         }
540
541         XFS_STATS_INC(xb_get);
542
543         /*
544          * Always fill in the block number now, the mapped cases can do
545          * their own overlay of this later.
546          */
547         bp->b_bn = ioff;
548         bp->b_count_desired = bp->b_buffer_length;
549
550         trace_xfs_buf_get(bp, flags, _RET_IP_);
551         return bp;
552
553  no_buffer:
554         if (flags & (XBF_LOCK | XBF_TRYLOCK))
555                 xfs_buf_unlock(bp);
556         xfs_buf_rele(bp);
557         return NULL;
558 }
559
560 STATIC int
561 _xfs_buf_read(
562         xfs_buf_t               *bp,
563         xfs_buf_flags_t         flags)
564 {
565         int                     status;
566
567         ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
568         ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
569
570         bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
571                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
572         bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
573                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
574
575         status = xfs_buf_iorequest(bp);
576         if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
577                 return status;
578         return xfs_buf_iowait(bp);
579 }
580
581 xfs_buf_t *
582 xfs_buf_read(
583         xfs_buftarg_t           *target,
584         xfs_off_t               ioff,
585         size_t                  isize,
586         xfs_buf_flags_t         flags)
587 {
588         xfs_buf_t               *bp;
589
590         flags |= XBF_READ;
591
592         bp = xfs_buf_get(target, ioff, isize, flags);
593         if (bp) {
594                 trace_xfs_buf_read(bp, flags, _RET_IP_);
595
596                 if (!XFS_BUF_ISDONE(bp)) {
597                         XFS_STATS_INC(xb_get_read);
598                         _xfs_buf_read(bp, flags);
599                 } else if (flags & XBF_ASYNC) {
600                         /*
601                          * Read ahead call which is already satisfied,
602                          * drop the buffer
603                          */
604                         goto no_buffer;
605                 } else {
606                         /* We do not want read in the flags */
607                         bp->b_flags &= ~XBF_READ;
608                 }
609         }
610
611         return bp;
612
613  no_buffer:
614         if (flags & (XBF_LOCK | XBF_TRYLOCK))
615                 xfs_buf_unlock(bp);
616         xfs_buf_rele(bp);
617         return NULL;
618 }
619
620 /*
621  *      If we are not low on memory then do the readahead in a deadlock
622  *      safe manner.
623  */
624 void
625 xfs_buf_readahead(
626         xfs_buftarg_t           *target,
627         xfs_off_t               ioff,
628         size_t                  isize,
629         xfs_buf_flags_t         flags)
630 {
631         struct backing_dev_info *bdi;
632
633         bdi = target->bt_mapping->backing_dev_info;
634         if (bdi_read_congested(bdi))
635                 return;
636
637         flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
638         xfs_buf_read(target, ioff, isize, flags);
639 }
640
641 /*
642  * Read an uncached buffer from disk. Allocates and returns a locked
643  * buffer containing the disk contents or nothing.
644  */
645 struct xfs_buf *
646 xfs_buf_read_uncached(
647         struct xfs_mount        *mp,
648         struct xfs_buftarg      *target,
649         xfs_daddr_t             daddr,
650         size_t                  length,
651         int                     flags)
652 {
653         xfs_buf_t               *bp;
654         int                     error;
655
656         bp = xfs_buf_get_uncached(target, length, flags);
657         if (!bp)
658                 return NULL;
659
660         /* set up the buffer for a read IO */
661         xfs_buf_lock(bp);
662         XFS_BUF_SET_ADDR(bp, daddr);
663         XFS_BUF_READ(bp);
664         XFS_BUF_BUSY(bp);
665
666         xfsbdstrat(mp, bp);
667         error = xfs_iowait(bp);
668         if (error || bp->b_error) {
669                 xfs_buf_relse(bp);
670                 return NULL;
671         }
672         return bp;
673 }
674
675 xfs_buf_t *
676 xfs_buf_get_empty(
677         size_t                  len,
678         xfs_buftarg_t           *target)
679 {
680         xfs_buf_t               *bp;
681
682         bp = xfs_buf_allocate(0);
683         if (bp)
684                 _xfs_buf_initialize(bp, target, 0, len, 0);
685         return bp;
686 }
687
688 static inline struct page *
689 mem_to_page(
690         void                    *addr)
691 {
692         if ((!is_vmalloc_addr(addr))) {
693                 return virt_to_page(addr);
694         } else {
695                 return vmalloc_to_page(addr);
696         }
697 }
698
699 int
700 xfs_buf_associate_memory(
701         xfs_buf_t               *bp,
702         void                    *mem,
703         size_t                  len)
704 {
705         int                     rval;
706         int                     i = 0;
707         unsigned long           pageaddr;
708         unsigned long           offset;
709         size_t                  buflen;
710         int                     page_count;
711
712         pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
713         offset = (unsigned long)mem - pageaddr;
714         buflen = PAGE_CACHE_ALIGN(len + offset);
715         page_count = buflen >> PAGE_CACHE_SHIFT;
716
717         /* Free any previous set of page pointers */
718         if (bp->b_pages)
719                 _xfs_buf_free_pages(bp);
720
721         bp->b_pages = NULL;
722         bp->b_addr = mem;
723
724         rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
725         if (rval)
726                 return rval;
727
728         bp->b_offset = offset;
729
730         for (i = 0; i < bp->b_page_count; i++) {
731                 bp->b_pages[i] = mem_to_page((void *)pageaddr);
732                 pageaddr += PAGE_CACHE_SIZE;
733         }
734
735         bp->b_count_desired = len;
736         bp->b_buffer_length = buflen;
737         bp->b_flags |= XBF_MAPPED;
738         bp->b_flags &= ~_XBF_PAGE_LOCKED;
739
740         return 0;
741 }
742
743 xfs_buf_t *
744 xfs_buf_get_uncached(
745         struct xfs_buftarg      *target,
746         size_t                  len,
747         int                     flags)
748 {
749         unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
750         int                     error, i;
751         xfs_buf_t               *bp;
752
753         bp = xfs_buf_allocate(0);
754         if (unlikely(bp == NULL))
755                 goto fail;
756         _xfs_buf_initialize(bp, target, 0, len, 0);
757
758         error = _xfs_buf_get_pages(bp, page_count, 0);
759         if (error)
760                 goto fail_free_buf;
761
762         for (i = 0; i < page_count; i++) {
763                 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
764                 if (!bp->b_pages[i])
765                         goto fail_free_mem;
766         }
767         bp->b_flags |= _XBF_PAGES;
768
769         error = _xfs_buf_map_pages(bp, XBF_MAPPED);
770         if (unlikely(error)) {
771                 printk(KERN_WARNING "%s: failed to map pages\n",
772                                 __func__);
773                 goto fail_free_mem;
774         }
775
776         xfs_buf_unlock(bp);
777
778         trace_xfs_buf_get_uncached(bp, _RET_IP_);
779         return bp;
780
781  fail_free_mem:
782         while (--i >= 0)
783                 __free_page(bp->b_pages[i]);
784         _xfs_buf_free_pages(bp);
785  fail_free_buf:
786         xfs_buf_deallocate(bp);
787  fail:
788         return NULL;
789 }
790
791 /*
792  *      Increment reference count on buffer, to hold the buffer concurrently
793  *      with another thread which may release (free) the buffer asynchronously.
794  *      Must hold the buffer already to call this function.
795  */
796 void
797 xfs_buf_hold(
798         xfs_buf_t               *bp)
799 {
800         trace_xfs_buf_hold(bp, _RET_IP_);
801         atomic_inc(&bp->b_hold);
802 }
803
804 /*
805  *      Releases a hold on the specified buffer.  If the
806  *      the hold count is 1, calls xfs_buf_free.
807  */
808 void
809 xfs_buf_rele(
810         xfs_buf_t               *bp)
811 {
812         xfs_bufhash_t           *hash = bp->b_hash;
813
814         trace_xfs_buf_rele(bp, _RET_IP_);
815
816         if (unlikely(!hash)) {
817                 ASSERT(!bp->b_relse);
818                 if (atomic_dec_and_test(&bp->b_hold))
819                         xfs_buf_free(bp);
820                 return;
821         }
822
823         ASSERT(atomic_read(&bp->b_hold) > 0);
824         if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
825                 if (bp->b_relse) {
826                         atomic_inc(&bp->b_hold);
827                         spin_unlock(&hash->bh_lock);
828                         (*(bp->b_relse)) (bp);
829                 } else {
830                         ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
831                         list_del_init(&bp->b_hash_list);
832                         spin_unlock(&hash->bh_lock);
833                         xfs_buf_free(bp);
834                 }
835         }
836 }
837
838
839 /*
840  *      Mutual exclusion on buffers.  Locking model:
841  *
842  *      Buffers associated with inodes for which buffer locking
843  *      is not enabled are not protected by semaphores, and are
844  *      assumed to be exclusively owned by the caller.  There is a
845  *      spinlock in the buffer, used by the caller when concurrent
846  *      access is possible.
847  */
848
849 /*
850  *      Locks a buffer object, if it is not already locked.
851  *      Note that this in no way locks the underlying pages, so it is only
852  *      useful for synchronizing concurrent use of buffer objects, not for
853  *      synchronizing independent access to the underlying pages.
854  */
855 int
856 xfs_buf_cond_lock(
857         xfs_buf_t               *bp)
858 {
859         int                     locked;
860
861         locked = down_trylock(&bp->b_sema) == 0;
862         if (locked)
863                 XB_SET_OWNER(bp);
864
865         trace_xfs_buf_cond_lock(bp, _RET_IP_);
866         return locked ? 0 : -EBUSY;
867 }
868
869 int
870 xfs_buf_lock_value(
871         xfs_buf_t               *bp)
872 {
873         return bp->b_sema.count;
874 }
875
876 /*
877  *      Locks a buffer object.
878  *      Note that this in no way locks the underlying pages, so it is only
879  *      useful for synchronizing concurrent use of buffer objects, not for
880  *      synchronizing independent access to the underlying pages.
881  *
882  *      If we come across a stale, pinned, locked buffer, we know that we
883  *      are being asked to lock a buffer that has been reallocated. Because
884  *      it is pinned, we know that the log has not been pushed to disk and
885  *      hence it will still be locked. Rather than sleeping until someone
886  *      else pushes the log, push it ourselves before trying to get the lock.
887  */
888 void
889 xfs_buf_lock(
890         xfs_buf_t               *bp)
891 {
892         trace_xfs_buf_lock(bp, _RET_IP_);
893
894         if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
895                 xfs_log_force(bp->b_target->bt_mount, 0);
896         if (atomic_read(&bp->b_io_remaining))
897                 blk_run_address_space(bp->b_target->bt_mapping);
898         down(&bp->b_sema);
899         XB_SET_OWNER(bp);
900
901         trace_xfs_buf_lock_done(bp, _RET_IP_);
902 }
903
904 /*
905  *      Releases the lock on the buffer object.
906  *      If the buffer is marked delwri but is not queued, do so before we
907  *      unlock the buffer as we need to set flags correctly.  We also need to
908  *      take a reference for the delwri queue because the unlocker is going to
909  *      drop their's and they don't know we just queued it.
910  */
911 void
912 xfs_buf_unlock(
913         xfs_buf_t               *bp)
914 {
915         if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
916                 atomic_inc(&bp->b_hold);
917                 bp->b_flags |= XBF_ASYNC;
918                 xfs_buf_delwri_queue(bp, 0);
919         }
920
921         XB_CLEAR_OWNER(bp);
922         up(&bp->b_sema);
923
924         trace_xfs_buf_unlock(bp, _RET_IP_);
925 }
926
927 STATIC void
928 xfs_buf_wait_unpin(
929         xfs_buf_t               *bp)
930 {
931         DECLARE_WAITQUEUE       (wait, current);
932
933         if (atomic_read(&bp->b_pin_count) == 0)
934                 return;
935
936         add_wait_queue(&bp->b_waiters, &wait);
937         for (;;) {
938                 set_current_state(TASK_UNINTERRUPTIBLE);
939                 if (atomic_read(&bp->b_pin_count) == 0)
940                         break;
941                 if (atomic_read(&bp->b_io_remaining))
942                         blk_run_address_space(bp->b_target->bt_mapping);
943                 schedule();
944         }
945         remove_wait_queue(&bp->b_waiters, &wait);
946         set_current_state(TASK_RUNNING);
947 }
948
949 /*
950  *      Buffer Utility Routines
951  */
952
953 STATIC void
954 xfs_buf_iodone_work(
955         struct work_struct      *work)
956 {
957         xfs_buf_t               *bp =
958                 container_of(work, xfs_buf_t, b_iodone_work);
959
960         /*
961          * We can get an EOPNOTSUPP to ordered writes.  Here we clear the
962          * ordered flag and reissue them.  Because we can't tell the higher
963          * layers directly that they should not issue ordered I/O anymore, they
964          * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
965          */
966         if ((bp->b_error == EOPNOTSUPP) &&
967             (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
968                 trace_xfs_buf_ordered_retry(bp, _RET_IP_);
969                 bp->b_flags &= ~XBF_ORDERED;
970                 bp->b_flags |= _XFS_BARRIER_FAILED;
971                 xfs_buf_iorequest(bp);
972         } else if (bp->b_iodone)
973                 (*(bp->b_iodone))(bp);
974         else if (bp->b_flags & XBF_ASYNC)
975                 xfs_buf_relse(bp);
976 }
977
978 void
979 xfs_buf_ioend(
980         xfs_buf_t               *bp,
981         int                     schedule)
982 {
983         trace_xfs_buf_iodone(bp, _RET_IP_);
984
985         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
986         if (bp->b_error == 0)
987                 bp->b_flags |= XBF_DONE;
988
989         if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
990                 if (schedule) {
991                         INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
992                         queue_work(xfslogd_workqueue, &bp->b_iodone_work);
993                 } else {
994                         xfs_buf_iodone_work(&bp->b_iodone_work);
995                 }
996         } else {
997                 complete(&bp->b_iowait);
998         }
999 }
1000
1001 void
1002 xfs_buf_ioerror(
1003         xfs_buf_t               *bp,
1004         int                     error)
1005 {
1006         ASSERT(error >= 0 && error <= 0xffff);
1007         bp->b_error = (unsigned short)error;
1008         trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1009 }
1010
1011 int
1012 xfs_bwrite(
1013         struct xfs_mount        *mp,
1014         struct xfs_buf          *bp)
1015 {
1016         int                     error;
1017
1018         bp->b_flags |= XBF_WRITE;
1019         bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1020
1021         xfs_buf_delwri_dequeue(bp);
1022         xfs_bdstrat_cb(bp);
1023
1024         error = xfs_buf_iowait(bp);
1025         if (error)
1026                 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1027         xfs_buf_relse(bp);
1028         return error;
1029 }
1030
1031 void
1032 xfs_bdwrite(
1033         void                    *mp,
1034         struct xfs_buf          *bp)
1035 {
1036         trace_xfs_buf_bdwrite(bp, _RET_IP_);
1037
1038         bp->b_flags &= ~XBF_READ;
1039         bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1040
1041         xfs_buf_delwri_queue(bp, 1);
1042 }
1043
1044 /*
1045  * Called when we want to stop a buffer from getting written or read.
1046  * We attach the EIO error, muck with its flags, and call biodone
1047  * so that the proper iodone callbacks get called.
1048  */
1049 STATIC int
1050 xfs_bioerror(
1051         xfs_buf_t *bp)
1052 {
1053 #ifdef XFSERRORDEBUG
1054         ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1055 #endif
1056
1057         /*
1058          * No need to wait until the buffer is unpinned, we aren't flushing it.
1059          */
1060         XFS_BUF_ERROR(bp, EIO);
1061
1062         /*
1063          * We're calling biodone, so delete XBF_DONE flag.
1064          */
1065         XFS_BUF_UNREAD(bp);
1066         XFS_BUF_UNDELAYWRITE(bp);
1067         XFS_BUF_UNDONE(bp);
1068         XFS_BUF_STALE(bp);
1069
1070         xfs_biodone(bp);
1071
1072         return EIO;
1073 }
1074
1075 /*
1076  * Same as xfs_bioerror, except that we are releasing the buffer
1077  * here ourselves, and avoiding the biodone call.
1078  * This is meant for userdata errors; metadata bufs come with
1079  * iodone functions attached, so that we can track down errors.
1080  */
1081 STATIC int
1082 xfs_bioerror_relse(
1083         struct xfs_buf  *bp)
1084 {
1085         int64_t         fl = XFS_BUF_BFLAGS(bp);
1086         /*
1087          * No need to wait until the buffer is unpinned.
1088          * We aren't flushing it.
1089          *
1090          * chunkhold expects B_DONE to be set, whether
1091          * we actually finish the I/O or not. We don't want to
1092          * change that interface.
1093          */
1094         XFS_BUF_UNREAD(bp);
1095         XFS_BUF_UNDELAYWRITE(bp);
1096         XFS_BUF_DONE(bp);
1097         XFS_BUF_STALE(bp);
1098         XFS_BUF_CLR_IODONE_FUNC(bp);
1099         if (!(fl & XBF_ASYNC)) {
1100                 /*
1101                  * Mark b_error and B_ERROR _both_.
1102                  * Lot's of chunkcache code assumes that.
1103                  * There's no reason to mark error for
1104                  * ASYNC buffers.
1105                  */
1106                 XFS_BUF_ERROR(bp, EIO);
1107                 XFS_BUF_FINISH_IOWAIT(bp);
1108         } else {
1109                 xfs_buf_relse(bp);
1110         }
1111
1112         return EIO;
1113 }
1114
1115
1116 /*
1117  * All xfs metadata buffers except log state machine buffers
1118  * get this attached as their b_bdstrat callback function.
1119  * This is so that we can catch a buffer
1120  * after prematurely unpinning it to forcibly shutdown the filesystem.
1121  */
1122 int
1123 xfs_bdstrat_cb(
1124         struct xfs_buf  *bp)
1125 {
1126         if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1127                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1128                 /*
1129                  * Metadata write that didn't get logged but
1130                  * written delayed anyway. These aren't associated
1131                  * with a transaction, and can be ignored.
1132                  */
1133                 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1134                         return xfs_bioerror_relse(bp);
1135                 else
1136                         return xfs_bioerror(bp);
1137         }
1138
1139         xfs_buf_iorequest(bp);
1140         return 0;
1141 }
1142
1143 /*
1144  * Wrapper around bdstrat so that we can stop data from going to disk in case
1145  * we are shutting down the filesystem.  Typically user data goes thru this
1146  * path; one of the exceptions is the superblock.
1147  */
1148 void
1149 xfsbdstrat(
1150         struct xfs_mount        *mp,
1151         struct xfs_buf          *bp)
1152 {
1153         if (XFS_FORCED_SHUTDOWN(mp)) {
1154                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1155                 xfs_bioerror_relse(bp);
1156                 return;
1157         }
1158
1159         xfs_buf_iorequest(bp);
1160 }
1161
1162 STATIC void
1163 _xfs_buf_ioend(
1164         xfs_buf_t               *bp,
1165         int                     schedule)
1166 {
1167         if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1168                 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1169                 xfs_buf_ioend(bp, schedule);
1170         }
1171 }
1172
1173 STATIC void
1174 xfs_buf_bio_end_io(
1175         struct bio              *bio,
1176         int                     error)
1177 {
1178         xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1179         unsigned int            blocksize = bp->b_target->bt_bsize;
1180         struct bio_vec          *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1181
1182         xfs_buf_ioerror(bp, -error);
1183
1184         if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1185                 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1186
1187         do {
1188                 struct page     *page = bvec->bv_page;
1189
1190                 ASSERT(!PagePrivate(page));
1191                 if (unlikely(bp->b_error)) {
1192                         if (bp->b_flags & XBF_READ)
1193                                 ClearPageUptodate(page);
1194                 } else if (blocksize >= PAGE_CACHE_SIZE) {
1195                         SetPageUptodate(page);
1196                 } else if (!PagePrivate(page) &&
1197                                 (bp->b_flags & _XBF_PAGE_CACHE)) {
1198                         set_page_region(page, bvec->bv_offset, bvec->bv_len);
1199                 }
1200
1201                 if (--bvec >= bio->bi_io_vec)
1202                         prefetchw(&bvec->bv_page->flags);
1203
1204                 if (bp->b_flags & _XBF_PAGE_LOCKED)
1205                         unlock_page(page);
1206         } while (bvec >= bio->bi_io_vec);
1207
1208         _xfs_buf_ioend(bp, 1);
1209         bio_put(bio);
1210 }
1211
1212 STATIC void
1213 _xfs_buf_ioapply(
1214         xfs_buf_t               *bp)
1215 {
1216         int                     rw, map_i, total_nr_pages, nr_pages;
1217         struct bio              *bio;
1218         int                     offset = bp->b_offset;
1219         int                     size = bp->b_count_desired;
1220         sector_t                sector = bp->b_bn;
1221         unsigned int            blocksize = bp->b_target->bt_bsize;
1222
1223         total_nr_pages = bp->b_page_count;
1224         map_i = 0;
1225
1226         if (bp->b_flags & XBF_ORDERED) {
1227                 ASSERT(!(bp->b_flags & XBF_READ));
1228                 rw = WRITE_BARRIER;
1229         } else if (bp->b_flags & XBF_LOG_BUFFER) {
1230                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1231                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1232                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1233         } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1234                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1235                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1236                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1237         } else {
1238                 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1239                      (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1240         }
1241
1242         /* Special code path for reading a sub page size buffer in --
1243          * we populate up the whole page, and hence the other metadata
1244          * in the same page.  This optimization is only valid when the
1245          * filesystem block size is not smaller than the page size.
1246          */
1247         if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1248             ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1249               (XBF_READ|_XBF_PAGE_LOCKED)) &&
1250             (blocksize >= PAGE_CACHE_SIZE)) {
1251                 bio = bio_alloc(GFP_NOIO, 1);
1252
1253                 bio->bi_bdev = bp->b_target->bt_bdev;
1254                 bio->bi_sector = sector - (offset >> BBSHIFT);
1255                 bio->bi_end_io = xfs_buf_bio_end_io;
1256                 bio->bi_private = bp;
1257
1258                 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1259                 size = 0;
1260
1261                 atomic_inc(&bp->b_io_remaining);
1262
1263                 goto submit_io;
1264         }
1265
1266 next_chunk:
1267         atomic_inc(&bp->b_io_remaining);
1268         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1269         if (nr_pages > total_nr_pages)
1270                 nr_pages = total_nr_pages;
1271
1272         bio = bio_alloc(GFP_NOIO, nr_pages);
1273         bio->bi_bdev = bp->b_target->bt_bdev;
1274         bio->bi_sector = sector;
1275         bio->bi_end_io = xfs_buf_bio_end_io;
1276         bio->bi_private = bp;
1277
1278         for (; size && nr_pages; nr_pages--, map_i++) {
1279                 int     rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1280
1281                 if (nbytes > size)
1282                         nbytes = size;
1283
1284                 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1285                 if (rbytes < nbytes)
1286                         break;
1287
1288                 offset = 0;
1289                 sector += nbytes >> BBSHIFT;
1290                 size -= nbytes;
1291                 total_nr_pages--;
1292         }
1293
1294 submit_io:
1295         if (likely(bio->bi_size)) {
1296                 if (xfs_buf_is_vmapped(bp)) {
1297                         flush_kernel_vmap_range(bp->b_addr,
1298                                                 xfs_buf_vmap_len(bp));
1299                 }
1300                 submit_bio(rw, bio);
1301                 if (size)
1302                         goto next_chunk;
1303         } else {
1304                 /*
1305                  * if we get here, no pages were added to the bio. However,
1306                  * we can't just error out here - if the pages are locked then
1307                  * we have to unlock them otherwise we can hang on a later
1308                  * access to the page.
1309                  */
1310                 xfs_buf_ioerror(bp, EIO);
1311                 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1312                         int i;
1313                         for (i = 0; i < bp->b_page_count; i++)
1314                                 unlock_page(bp->b_pages[i]);
1315                 }
1316                 bio_put(bio);
1317         }
1318 }
1319
1320 int
1321 xfs_buf_iorequest(
1322         xfs_buf_t               *bp)
1323 {
1324         trace_xfs_buf_iorequest(bp, _RET_IP_);
1325
1326         if (bp->b_flags & XBF_DELWRI) {
1327                 xfs_buf_delwri_queue(bp, 1);
1328                 return 0;
1329         }
1330
1331         if (bp->b_flags & XBF_WRITE) {
1332                 xfs_buf_wait_unpin(bp);
1333         }
1334
1335         xfs_buf_hold(bp);
1336
1337         /* Set the count to 1 initially, this will stop an I/O
1338          * completion callout which happens before we have started
1339          * all the I/O from calling xfs_buf_ioend too early.
1340          */
1341         atomic_set(&bp->b_io_remaining, 1);
1342         _xfs_buf_ioapply(bp);
1343         _xfs_buf_ioend(bp, 0);
1344
1345         xfs_buf_rele(bp);
1346         return 0;
1347 }
1348
1349 /*
1350  *      Waits for I/O to complete on the buffer supplied.
1351  *      It returns immediately if no I/O is pending.
1352  *      It returns the I/O error code, if any, or 0 if there was no error.
1353  */
1354 int
1355 xfs_buf_iowait(
1356         xfs_buf_t               *bp)
1357 {
1358         trace_xfs_buf_iowait(bp, _RET_IP_);
1359
1360         if (atomic_read(&bp->b_io_remaining))
1361                 blk_run_address_space(bp->b_target->bt_mapping);
1362         wait_for_completion(&bp->b_iowait);
1363
1364         trace_xfs_buf_iowait_done(bp, _RET_IP_);
1365         return bp->b_error;
1366 }
1367
1368 xfs_caddr_t
1369 xfs_buf_offset(
1370         xfs_buf_t               *bp,
1371         size_t                  offset)
1372 {
1373         struct page             *page;
1374
1375         if (bp->b_flags & XBF_MAPPED)
1376                 return XFS_BUF_PTR(bp) + offset;
1377
1378         offset += bp->b_offset;
1379         page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1380         return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1381 }
1382
1383 /*
1384  *      Move data into or out of a buffer.
1385  */
1386 void
1387 xfs_buf_iomove(
1388         xfs_buf_t               *bp,    /* buffer to process            */
1389         size_t                  boff,   /* starting buffer offset       */
1390         size_t                  bsize,  /* length to copy               */
1391         void                    *data,  /* data address                 */
1392         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1393 {
1394         size_t                  bend, cpoff, csize;
1395         struct page             *page;
1396
1397         bend = boff + bsize;
1398         while (boff < bend) {
1399                 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1400                 cpoff = xfs_buf_poff(boff + bp->b_offset);
1401                 csize = min_t(size_t,
1402                               PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1403
1404                 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1405
1406                 switch (mode) {
1407                 case XBRW_ZERO:
1408                         memset(page_address(page) + cpoff, 0, csize);
1409                         break;
1410                 case XBRW_READ:
1411                         memcpy(data, page_address(page) + cpoff, csize);
1412                         break;
1413                 case XBRW_WRITE:
1414                         memcpy(page_address(page) + cpoff, data, csize);
1415                 }
1416
1417                 boff += csize;
1418                 data += csize;
1419         }
1420 }
1421
1422 /*
1423  *      Handling of buffer targets (buftargs).
1424  */
1425
1426 /*
1427  *      Wait for any bufs with callbacks that have been submitted but
1428  *      have not yet returned... walk the hash list for the target.
1429  */
1430 void
1431 xfs_wait_buftarg(
1432         xfs_buftarg_t   *btp)
1433 {
1434         xfs_bufhash_t   *hash;
1435         uint            i;
1436
1437         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1438                 hash = &btp->bt_hash[i];
1439                 spin_lock(&hash->bh_lock);
1440                 while (!list_empty(&hash->bh_list)) {
1441                         spin_unlock(&hash->bh_lock);
1442                         delay(100);
1443                         spin_lock(&hash->bh_lock);
1444                 }
1445                 spin_unlock(&hash->bh_lock);
1446         }
1447 }
1448
1449 /*
1450  *      Allocate buffer hash table for a given target.
1451  *      For devices containing metadata (i.e. not the log/realtime devices)
1452  *      we need to allocate a much larger hash table.
1453  */
1454 STATIC void
1455 xfs_alloc_bufhash(
1456         xfs_buftarg_t           *btp,
1457         int                     external)
1458 {
1459         unsigned int            i;
1460
1461         btp->bt_hashshift = external ? 3 : 12;  /* 8 or 4096 buckets */
1462         btp->bt_hash = kmem_zalloc_large((1 << btp->bt_hashshift) *
1463                                          sizeof(xfs_bufhash_t));
1464         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1465                 spin_lock_init(&btp->bt_hash[i].bh_lock);
1466                 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1467         }
1468 }
1469
1470 STATIC void
1471 xfs_free_bufhash(
1472         xfs_buftarg_t           *btp)
1473 {
1474         kmem_free_large(btp->bt_hash);
1475         btp->bt_hash = NULL;
1476 }
1477
1478 /*
1479  *      buftarg list for delwrite queue processing
1480  */
1481 static LIST_HEAD(xfs_buftarg_list);
1482 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1483
1484 STATIC void
1485 xfs_register_buftarg(
1486         xfs_buftarg_t           *btp)
1487 {
1488         spin_lock(&xfs_buftarg_lock);
1489         list_add(&btp->bt_list, &xfs_buftarg_list);
1490         spin_unlock(&xfs_buftarg_lock);
1491 }
1492
1493 STATIC void
1494 xfs_unregister_buftarg(
1495         xfs_buftarg_t           *btp)
1496 {
1497         spin_lock(&xfs_buftarg_lock);
1498         list_del(&btp->bt_list);
1499         spin_unlock(&xfs_buftarg_lock);
1500 }
1501
1502 void
1503 xfs_free_buftarg(
1504         struct xfs_mount        *mp,
1505         struct xfs_buftarg      *btp)
1506 {
1507         xfs_flush_buftarg(btp, 1);
1508         if (mp->m_flags & XFS_MOUNT_BARRIER)
1509                 xfs_blkdev_issue_flush(btp);
1510         xfs_free_bufhash(btp);
1511         iput(btp->bt_mapping->host);
1512
1513         /* Unregister the buftarg first so that we don't get a
1514          * wakeup finding a non-existent task
1515          */
1516         xfs_unregister_buftarg(btp);
1517         kthread_stop(btp->bt_task);
1518
1519         kmem_free(btp);
1520 }
1521
1522 STATIC int
1523 xfs_setsize_buftarg_flags(
1524         xfs_buftarg_t           *btp,
1525         unsigned int            blocksize,
1526         unsigned int            sectorsize,
1527         int                     verbose)
1528 {
1529         btp->bt_bsize = blocksize;
1530         btp->bt_sshift = ffs(sectorsize) - 1;
1531         btp->bt_smask = sectorsize - 1;
1532
1533         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1534                 printk(KERN_WARNING
1535                         "XFS: Cannot set_blocksize to %u on device %s\n",
1536                         sectorsize, XFS_BUFTARG_NAME(btp));
1537                 return EINVAL;
1538         }
1539
1540         if (verbose &&
1541             (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1542                 printk(KERN_WARNING
1543                         "XFS: %u byte sectors in use on device %s.  "
1544                         "This is suboptimal; %u or greater is ideal.\n",
1545                         sectorsize, XFS_BUFTARG_NAME(btp),
1546                         (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1547         }
1548
1549         return 0;
1550 }
1551
1552 /*
1553  *      When allocating the initial buffer target we have not yet
1554  *      read in the superblock, so don't know what sized sectors
1555  *      are being used is at this early stage.  Play safe.
1556  */
1557 STATIC int
1558 xfs_setsize_buftarg_early(
1559         xfs_buftarg_t           *btp,
1560         struct block_device     *bdev)
1561 {
1562         return xfs_setsize_buftarg_flags(btp,
1563                         PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1564 }
1565
1566 int
1567 xfs_setsize_buftarg(
1568         xfs_buftarg_t           *btp,
1569         unsigned int            blocksize,
1570         unsigned int            sectorsize)
1571 {
1572         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1573 }
1574
1575 STATIC int
1576 xfs_mapping_buftarg(
1577         xfs_buftarg_t           *btp,
1578         struct block_device     *bdev)
1579 {
1580         struct backing_dev_info *bdi;
1581         struct inode            *inode;
1582         struct address_space    *mapping;
1583         static const struct address_space_operations mapping_aops = {
1584                 .sync_page = block_sync_page,
1585                 .migratepage = fail_migrate_page,
1586         };
1587
1588         inode = new_inode(bdev->bd_inode->i_sb);
1589         if (!inode) {
1590                 printk(KERN_WARNING
1591                         "XFS: Cannot allocate mapping inode for device %s\n",
1592                         XFS_BUFTARG_NAME(btp));
1593                 return ENOMEM;
1594         }
1595         inode->i_mode = S_IFBLK;
1596         inode->i_bdev = bdev;
1597         inode->i_rdev = bdev->bd_dev;
1598         bdi = blk_get_backing_dev_info(bdev);
1599         if (!bdi)
1600                 bdi = &default_backing_dev_info;
1601         mapping = &inode->i_data;
1602         mapping->a_ops = &mapping_aops;
1603         mapping->backing_dev_info = bdi;
1604         mapping_set_gfp_mask(mapping, GFP_NOFS);
1605         btp->bt_mapping = mapping;
1606         return 0;
1607 }
1608
1609 STATIC int
1610 xfs_alloc_delwrite_queue(
1611         xfs_buftarg_t           *btp,
1612         const char              *fsname)
1613 {
1614         int     error = 0;
1615
1616         INIT_LIST_HEAD(&btp->bt_list);
1617         INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1618         spin_lock_init(&btp->bt_delwrite_lock);
1619         btp->bt_flags = 0;
1620         btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1621         if (IS_ERR(btp->bt_task)) {
1622                 error = PTR_ERR(btp->bt_task);
1623                 goto out_error;
1624         }
1625         xfs_register_buftarg(btp);
1626 out_error:
1627         return error;
1628 }
1629
1630 xfs_buftarg_t *
1631 xfs_alloc_buftarg(
1632         struct xfs_mount        *mp,
1633         struct block_device     *bdev,
1634         int                     external,
1635         const char              *fsname)
1636 {
1637         xfs_buftarg_t           *btp;
1638
1639         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1640
1641         btp->bt_mount = mp;
1642         btp->bt_dev =  bdev->bd_dev;
1643         btp->bt_bdev = bdev;
1644         if (xfs_setsize_buftarg_early(btp, bdev))
1645                 goto error;
1646         if (xfs_mapping_buftarg(btp, bdev))
1647                 goto error;
1648         if (xfs_alloc_delwrite_queue(btp, fsname))
1649                 goto error;
1650         xfs_alloc_bufhash(btp, external);
1651         return btp;
1652
1653 error:
1654         kmem_free(btp);
1655         return NULL;
1656 }
1657
1658
1659 /*
1660  *      Delayed write buffer handling
1661  */
1662 STATIC void
1663 xfs_buf_delwri_queue(
1664         xfs_buf_t               *bp,
1665         int                     unlock)
1666 {
1667         struct list_head        *dwq = &bp->b_target->bt_delwrite_queue;
1668         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1669
1670         trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1671
1672         ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1673
1674         spin_lock(dwlk);
1675         /* If already in the queue, dequeue and place at tail */
1676         if (!list_empty(&bp->b_list)) {
1677                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1678                 if (unlock)
1679                         atomic_dec(&bp->b_hold);
1680                 list_del(&bp->b_list);
1681         }
1682
1683         if (list_empty(dwq)) {
1684                 /* start xfsbufd as it is about to have something to do */
1685                 wake_up_process(bp->b_target->bt_task);
1686         }
1687
1688         bp->b_flags |= _XBF_DELWRI_Q;
1689         list_add_tail(&bp->b_list, dwq);
1690         bp->b_queuetime = jiffies;
1691         spin_unlock(dwlk);
1692
1693         if (unlock)
1694                 xfs_buf_unlock(bp);
1695 }
1696
1697 void
1698 xfs_buf_delwri_dequeue(
1699         xfs_buf_t               *bp)
1700 {
1701         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1702         int                     dequeued = 0;
1703
1704         spin_lock(dwlk);
1705         if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1706                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1707                 list_del_init(&bp->b_list);
1708                 dequeued = 1;
1709         }
1710         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1711         spin_unlock(dwlk);
1712
1713         if (dequeued)
1714                 xfs_buf_rele(bp);
1715
1716         trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1717 }
1718
1719 /*
1720  * If a delwri buffer needs to be pushed before it has aged out, then promote
1721  * it to the head of the delwri queue so that it will be flushed on the next
1722  * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1723  * than the age currently needed to flush the buffer. Hence the next time the
1724  * xfsbufd sees it is guaranteed to be considered old enough to flush.
1725  */
1726 void
1727 xfs_buf_delwri_promote(
1728         struct xfs_buf  *bp)
1729 {
1730         struct xfs_buftarg *btp = bp->b_target;
1731         long            age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1732
1733         ASSERT(bp->b_flags & XBF_DELWRI);
1734         ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1735
1736         /*
1737          * Check the buffer age before locking the delayed write queue as we
1738          * don't need to promote buffers that are already past the flush age.
1739          */
1740         if (bp->b_queuetime < jiffies - age)
1741                 return;
1742         bp->b_queuetime = jiffies - age;
1743         spin_lock(&btp->bt_delwrite_lock);
1744         list_move(&bp->b_list, &btp->bt_delwrite_queue);
1745         spin_unlock(&btp->bt_delwrite_lock);
1746 }
1747
1748 STATIC void
1749 xfs_buf_runall_queues(
1750         struct workqueue_struct *queue)
1751 {
1752         flush_workqueue(queue);
1753 }
1754
1755 STATIC int
1756 xfsbufd_wakeup(
1757         struct shrinker         *shrink,
1758         int                     priority,
1759         gfp_t                   mask)
1760 {
1761         xfs_buftarg_t           *btp;
1762
1763         spin_lock(&xfs_buftarg_lock);
1764         list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1765                 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1766                         continue;
1767                 if (list_empty(&btp->bt_delwrite_queue))
1768                         continue;
1769                 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1770                 wake_up_process(btp->bt_task);
1771         }
1772         spin_unlock(&xfs_buftarg_lock);
1773         return 0;
1774 }
1775
1776 /*
1777  * Move as many buffers as specified to the supplied list
1778  * idicating if we skipped any buffers to prevent deadlocks.
1779  */
1780 STATIC int
1781 xfs_buf_delwri_split(
1782         xfs_buftarg_t   *target,
1783         struct list_head *list,
1784         unsigned long   age)
1785 {
1786         xfs_buf_t       *bp, *n;
1787         struct list_head *dwq = &target->bt_delwrite_queue;
1788         spinlock_t      *dwlk = &target->bt_delwrite_lock;
1789         int             skipped = 0;
1790         int             force;
1791
1792         force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1793         INIT_LIST_HEAD(list);
1794         spin_lock(dwlk);
1795         list_for_each_entry_safe(bp, n, dwq, b_list) {
1796                 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1797                 ASSERT(bp->b_flags & XBF_DELWRI);
1798
1799                 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
1800                         if (!force &&
1801                             time_before(jiffies, bp->b_queuetime + age)) {
1802                                 xfs_buf_unlock(bp);
1803                                 break;
1804                         }
1805
1806                         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1807                                          _XBF_RUN_QUEUES);
1808                         bp->b_flags |= XBF_WRITE;
1809                         list_move_tail(&bp->b_list, list);
1810                 } else
1811                         skipped++;
1812         }
1813         spin_unlock(dwlk);
1814
1815         return skipped;
1816
1817 }
1818
1819 /*
1820  * Compare function is more complex than it needs to be because
1821  * the return value is only 32 bits and we are doing comparisons
1822  * on 64 bit values
1823  */
1824 static int
1825 xfs_buf_cmp(
1826         void            *priv,
1827         struct list_head *a,
1828         struct list_head *b)
1829 {
1830         struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1831         struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1832         xfs_daddr_t             diff;
1833
1834         diff = ap->b_bn - bp->b_bn;
1835         if (diff < 0)
1836                 return -1;
1837         if (diff > 0)
1838                 return 1;
1839         return 0;
1840 }
1841
1842 void
1843 xfs_buf_delwri_sort(
1844         xfs_buftarg_t   *target,
1845         struct list_head *list)
1846 {
1847         list_sort(NULL, list, xfs_buf_cmp);
1848 }
1849
1850 STATIC int
1851 xfsbufd(
1852         void            *data)
1853 {
1854         xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1855
1856         current->flags |= PF_MEMALLOC;
1857
1858         set_freezable();
1859
1860         do {
1861                 long    age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1862                 long    tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1863                 int     count = 0;
1864                 struct list_head tmp;
1865
1866                 if (unlikely(freezing(current))) {
1867                         set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1868                         refrigerator();
1869                 } else {
1870                         clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1871                 }
1872
1873                 /* sleep for a long time if there is nothing to do. */
1874                 if (list_empty(&target->bt_delwrite_queue))
1875                         tout = MAX_SCHEDULE_TIMEOUT;
1876                 schedule_timeout_interruptible(tout);
1877
1878                 xfs_buf_delwri_split(target, &tmp, age);
1879                 list_sort(NULL, &tmp, xfs_buf_cmp);
1880                 while (!list_empty(&tmp)) {
1881                         struct xfs_buf *bp;
1882                         bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1883                         list_del_init(&bp->b_list);
1884                         xfs_bdstrat_cb(bp);
1885                         count++;
1886                 }
1887                 if (count)
1888                         blk_run_address_space(target->bt_mapping);
1889
1890         } while (!kthread_should_stop());
1891
1892         return 0;
1893 }
1894
1895 /*
1896  *      Go through all incore buffers, and release buffers if they belong to
1897  *      the given device. This is used in filesystem error handling to
1898  *      preserve the consistency of its metadata.
1899  */
1900 int
1901 xfs_flush_buftarg(
1902         xfs_buftarg_t   *target,
1903         int             wait)
1904 {
1905         xfs_buf_t       *bp;
1906         int             pincount = 0;
1907         LIST_HEAD(tmp_list);
1908         LIST_HEAD(wait_list);
1909
1910         xfs_buf_runall_queues(xfsconvertd_workqueue);
1911         xfs_buf_runall_queues(xfsdatad_workqueue);
1912         xfs_buf_runall_queues(xfslogd_workqueue);
1913
1914         set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1915         pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1916
1917         /*
1918          * Dropped the delayed write list lock, now walk the temporary list.
1919          * All I/O is issued async and then if we need to wait for completion
1920          * we do that after issuing all the IO.
1921          */
1922         list_sort(NULL, &tmp_list, xfs_buf_cmp);
1923         while (!list_empty(&tmp_list)) {
1924                 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1925                 ASSERT(target == bp->b_target);
1926                 list_del_init(&bp->b_list);
1927                 if (wait) {
1928                         bp->b_flags &= ~XBF_ASYNC;
1929                         list_add(&bp->b_list, &wait_list);
1930                 }
1931                 xfs_bdstrat_cb(bp);
1932         }
1933
1934         if (wait) {
1935                 /* Expedite and wait for IO to complete. */
1936                 blk_run_address_space(target->bt_mapping);
1937                 while (!list_empty(&wait_list)) {
1938                         bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1939
1940                         list_del_init(&bp->b_list);
1941                         xfs_iowait(bp);
1942                         xfs_buf_relse(bp);
1943                 }
1944         }
1945
1946         return pincount;
1947 }
1948
1949 int __init
1950 xfs_buf_init(void)
1951 {
1952         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1953                                                 KM_ZONE_HWALIGN, NULL);
1954         if (!xfs_buf_zone)
1955                 goto out;
1956
1957         xfslogd_workqueue = alloc_workqueue("xfslogd",
1958                                         WQ_RESCUER | WQ_HIGHPRI, 1);
1959         if (!xfslogd_workqueue)
1960                 goto out_free_buf_zone;
1961
1962         xfsdatad_workqueue = create_workqueue("xfsdatad");
1963         if (!xfsdatad_workqueue)
1964                 goto out_destroy_xfslogd_workqueue;
1965
1966         xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1967         if (!xfsconvertd_workqueue)
1968                 goto out_destroy_xfsdatad_workqueue;
1969
1970         register_shrinker(&xfs_buf_shake);
1971         return 0;
1972
1973  out_destroy_xfsdatad_workqueue:
1974         destroy_workqueue(xfsdatad_workqueue);
1975  out_destroy_xfslogd_workqueue:
1976         destroy_workqueue(xfslogd_workqueue);
1977  out_free_buf_zone:
1978         kmem_zone_destroy(xfs_buf_zone);
1979  out:
1980         return -ENOMEM;
1981 }
1982
1983 void
1984 xfs_buf_terminate(void)
1985 {
1986         unregister_shrinker(&xfs_buf_shake);
1987         destroy_workqueue(xfsconvertd_workqueue);
1988         destroy_workqueue(xfsdatad_workqueue);
1989         destroy_workqueue(xfslogd_workqueue);
1990         kmem_zone_destroy(xfs_buf_zone);
1991 }
1992
1993 #ifdef CONFIG_KDB_MODULES
1994 struct list_head *
1995 xfs_get_buftarg_list(void)
1996 {
1997         return &xfs_buftarg_list;
1998 }
1999 #endif