nilfs2: separate function that updates log position
[pandora-kernel.git] / fs / nilfs2 / super.c
1 /*
2  * super.c - NILFS module and super block management.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  */
22 /*
23  *  linux/fs/ext2/super.c
24  *
25  * Copyright (C) 1992, 1993, 1994, 1995
26  * Remy Card (card@masi.ibp.fr)
27  * Laboratoire MASI - Institut Blaise Pascal
28  * Universite Pierre et Marie Curie (Paris VI)
29  *
30  *  from
31  *
32  *  linux/fs/minix/inode.c
33  *
34  *  Copyright (C) 1991, 1992  Linus Torvalds
35  *
36  *  Big-endian to little-endian byte-swapping/bitmaps by
37  *        David S. Miller (davem@caip.rutgers.edu), 1995
38  */
39
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/random.h>
47 #include <linux/crc32.h>
48 #include <linux/smp_lock.h>
49 #include <linux/vfs.h>
50 #include <linux/writeback.h>
51 #include <linux/kobject.h>
52 #include <linux/exportfs.h>
53 #include <linux/seq_file.h>
54 #include <linux/mount.h>
55 #include "nilfs.h"
56 #include "mdt.h"
57 #include "alloc.h"
58 #include "page.h"
59 #include "cpfile.h"
60 #include "ifile.h"
61 #include "dat.h"
62 #include "segment.h"
63 #include "segbuf.h"
64
65 MODULE_AUTHOR("NTT Corp.");
66 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
67                    "(NILFS)");
68 MODULE_LICENSE("GPL");
69
70 struct kmem_cache *nilfs_inode_cachep;
71 struct kmem_cache *nilfs_transaction_cachep;
72 struct kmem_cache *nilfs_segbuf_cachep;
73 struct kmem_cache *nilfs_btree_path_cache;
74
75 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
76
77 static void nilfs_set_error(struct nilfs_sb_info *sbi)
78 {
79         struct the_nilfs *nilfs = sbi->s_nilfs;
80
81         down_write(&nilfs->ns_sem);
82         if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
83                 nilfs->ns_mount_state |= NILFS_ERROR_FS;
84                 nilfs->ns_sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
85                 nilfs_commit_super(sbi, 1);
86         }
87         up_write(&nilfs->ns_sem);
88 }
89
90 /**
91  * nilfs_error() - report failure condition on a filesystem
92  *
93  * nilfs_error() sets an ERROR_FS flag on the superblock as well as
94  * reporting an error message.  It should be called when NILFS detects
95  * incoherences or defects of meta data on disk.  As for sustainable
96  * errors such as a single-shot I/O error, nilfs_warning() or the printk()
97  * function should be used instead.
98  *
99  * The segment constructor must not call this function because it can
100  * kill itself.
101  */
102 void nilfs_error(struct super_block *sb, const char *function,
103                  const char *fmt, ...)
104 {
105         struct nilfs_sb_info *sbi = NILFS_SB(sb);
106         va_list args;
107
108         va_start(args, fmt);
109         printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
110         vprintk(fmt, args);
111         printk("\n");
112         va_end(args);
113
114         if (!(sb->s_flags & MS_RDONLY)) {
115                 nilfs_set_error(sbi);
116
117                 if (nilfs_test_opt(sbi, ERRORS_RO)) {
118                         printk(KERN_CRIT "Remounting filesystem read-only\n");
119                         sb->s_flags |= MS_RDONLY;
120                 }
121         }
122
123         if (nilfs_test_opt(sbi, ERRORS_PANIC))
124                 panic("NILFS (device %s): panic forced after error\n",
125                       sb->s_id);
126 }
127
128 void nilfs_warning(struct super_block *sb, const char *function,
129                    const char *fmt, ...)
130 {
131         va_list args;
132
133         va_start(args, fmt);
134         printk(KERN_WARNING "NILFS warning (device %s): %s: ",
135                sb->s_id, function);
136         vprintk(fmt, args);
137         printk("\n");
138         va_end(args);
139 }
140
141
142 struct inode *nilfs_alloc_inode_common(struct the_nilfs *nilfs)
143 {
144         struct nilfs_inode_info *ii;
145
146         ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
147         if (!ii)
148                 return NULL;
149         ii->i_bh = NULL;
150         ii->i_state = 0;
151         ii->vfs_inode.i_version = 1;
152         nilfs_btnode_cache_init(&ii->i_btnode_cache, nilfs->ns_bdi);
153         return &ii->vfs_inode;
154 }
155
156 struct inode *nilfs_alloc_inode(struct super_block *sb)
157 {
158         return nilfs_alloc_inode_common(NILFS_SB(sb)->s_nilfs);
159 }
160
161 void nilfs_destroy_inode(struct inode *inode)
162 {
163         kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
164 }
165
166 static void nilfs_clear_inode(struct inode *inode)
167 {
168         struct nilfs_inode_info *ii = NILFS_I(inode);
169
170         /*
171          * Free resources allocated in nilfs_read_inode(), here.
172          */
173         BUG_ON(!list_empty(&ii->i_dirty));
174         brelse(ii->i_bh);
175         ii->i_bh = NULL;
176
177         if (test_bit(NILFS_I_BMAP, &ii->i_state))
178                 nilfs_bmap_clear(ii->i_bmap);
179
180         nilfs_btnode_cache_clear(&ii->i_btnode_cache);
181 }
182
183 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int dupsb)
184 {
185         struct the_nilfs *nilfs = sbi->s_nilfs;
186         int err;
187         int barrier_done = 0;
188
189         if (nilfs_test_opt(sbi, BARRIER)) {
190                 set_buffer_ordered(nilfs->ns_sbh[0]);
191                 barrier_done = 1;
192         }
193  retry:
194         set_buffer_dirty(nilfs->ns_sbh[0]);
195         err = sync_dirty_buffer(nilfs->ns_sbh[0]);
196         if (err == -EOPNOTSUPP && barrier_done) {
197                 nilfs_warning(sbi->s_super, __func__,
198                               "barrier-based sync failed. "
199                               "disabling barriers\n");
200                 nilfs_clear_opt(sbi, BARRIER);
201                 barrier_done = 0;
202                 clear_buffer_ordered(nilfs->ns_sbh[0]);
203                 goto retry;
204         }
205         if (unlikely(err)) {
206                 printk(KERN_ERR
207                        "NILFS: unable to write superblock (err=%d)\n", err);
208                 if (err == -EIO && nilfs->ns_sbh[1]) {
209                         nilfs_fall_back_super_block(nilfs);
210                         goto retry;
211                 }
212         } else {
213                 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
214
215                 /*
216                  * The latest segment becomes trailable from the position
217                  * written in superblock.
218                  */
219                 clear_nilfs_discontinued(nilfs);
220
221                 /* update GC protection for recent segments */
222                 if (nilfs->ns_sbh[1]) {
223                         sbp = NULL;
224                         if (dupsb) {
225                                 set_buffer_dirty(nilfs->ns_sbh[1]);
226                                 if (!sync_dirty_buffer(nilfs->ns_sbh[1]))
227                                         sbp = nilfs->ns_sbp[1];
228                         }
229                 }
230                 if (sbp) {
231                         spin_lock(&nilfs->ns_last_segment_lock);
232                         nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
233                         spin_unlock(&nilfs->ns_last_segment_lock);
234                 }
235         }
236
237         return err;
238 }
239
240 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
241                           struct the_nilfs *nilfs)
242 {
243         sector_t nfreeblocks;
244
245         /* nilfs->ns_sem must be locked by the caller. */
246         nilfs_count_free_blocks(nilfs, &nfreeblocks);
247         sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
248
249         spin_lock(&nilfs->ns_last_segment_lock);
250         sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
251         sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
252         sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
253         spin_unlock(&nilfs->ns_last_segment_lock);
254 }
255
256 int nilfs_commit_super(struct nilfs_sb_info *sbi, int dupsb)
257 {
258         struct the_nilfs *nilfs = sbi->s_nilfs;
259         struct nilfs_super_block **sbp = nilfs->ns_sbp;
260         time_t t;
261
262         /* nilfs->sem must be locked by the caller. */
263         if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
264                 if (sbp[1] && sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC))
265                         nilfs_swap_super_block(nilfs);
266                 else {
267                         printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
268                                sbi->s_super->s_id);
269                         return -EIO;
270                 }
271         }
272         nilfs_set_log_cursor(sbp[0], nilfs);
273
274         t = get_seconds();
275         nilfs->ns_sbwtime[0] = t;
276         sbp[0]->s_wtime = cpu_to_le64(t);
277         sbp[0]->s_sum = 0;
278         sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
279                                              (unsigned char *)sbp[0],
280                                              nilfs->ns_sbsize));
281         if (dupsb && sbp[1]) {
282                 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
283                 nilfs->ns_sbwtime[1] = t;
284         }
285         clear_nilfs_sb_dirty(nilfs);
286         return nilfs_sync_super(sbi, dupsb);
287 }
288
289 /**
290  * nilfs_cleanup_super() - write filesystem state for cleanup
291  * @sbi: nilfs_sb_info to be unmounted or degraded to read-only
292  *
293  * This function restores state flags in the on-disk super block.
294  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
295  * filesystem was not clean previously.
296  */
297 int nilfs_cleanup_super(struct nilfs_sb_info *sbi)
298 {
299         struct nilfs_super_block **sbp = sbi->s_nilfs->ns_sbp;
300         int ret;
301
302         sbp[0]->s_state = cpu_to_le16(sbi->s_nilfs->ns_mount_state);
303         ret = nilfs_commit_super(sbi, 1);
304         return ret;
305 }
306
307 static void nilfs_put_super(struct super_block *sb)
308 {
309         struct nilfs_sb_info *sbi = NILFS_SB(sb);
310         struct the_nilfs *nilfs = sbi->s_nilfs;
311
312         lock_kernel();
313
314         nilfs_detach_segment_constructor(sbi);
315
316         if (!(sb->s_flags & MS_RDONLY)) {
317                 down_write(&nilfs->ns_sem);
318                 nilfs_cleanup_super(sbi);
319                 up_write(&nilfs->ns_sem);
320         }
321         down_write(&nilfs->ns_super_sem);
322         if (nilfs->ns_current == sbi)
323                 nilfs->ns_current = NULL;
324         up_write(&nilfs->ns_super_sem);
325
326         nilfs_detach_checkpoint(sbi);
327         put_nilfs(sbi->s_nilfs);
328         sbi->s_super = NULL;
329         sb->s_fs_info = NULL;
330         nilfs_put_sbinfo(sbi);
331
332         unlock_kernel();
333 }
334
335 static int nilfs_sync_fs(struct super_block *sb, int wait)
336 {
337         struct nilfs_sb_info *sbi = NILFS_SB(sb);
338         struct the_nilfs *nilfs = sbi->s_nilfs;
339         int err = 0;
340
341         /* This function is called when super block should be written back */
342         if (wait)
343                 err = nilfs_construct_segment(sb);
344
345         down_write(&nilfs->ns_sem);
346         if (nilfs_sb_dirty(nilfs))
347                 nilfs_commit_super(sbi, 1);
348         up_write(&nilfs->ns_sem);
349
350         return err;
351 }
352
353 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno)
354 {
355         struct the_nilfs *nilfs = sbi->s_nilfs;
356         struct nilfs_checkpoint *raw_cp;
357         struct buffer_head *bh_cp;
358         int err;
359
360         down_write(&nilfs->ns_super_sem);
361         list_add(&sbi->s_list, &nilfs->ns_supers);
362         up_write(&nilfs->ns_super_sem);
363
364         sbi->s_ifile = nilfs_ifile_new(sbi, nilfs->ns_inode_size);
365         if (!sbi->s_ifile)
366                 return -ENOMEM;
367
368         down_read(&nilfs->ns_segctor_sem);
369         err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
370                                           &bh_cp);
371         up_read(&nilfs->ns_segctor_sem);
372         if (unlikely(err)) {
373                 if (err == -ENOENT || err == -EINVAL) {
374                         printk(KERN_ERR
375                                "NILFS: Invalid checkpoint "
376                                "(checkpoint number=%llu)\n",
377                                (unsigned long long)cno);
378                         err = -EINVAL;
379                 }
380                 goto failed;
381         }
382         err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode);
383         if (unlikely(err))
384                 goto failed_bh;
385         atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
386         atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
387
388         nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
389         return 0;
390
391  failed_bh:
392         nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
393  failed:
394         nilfs_mdt_destroy(sbi->s_ifile);
395         sbi->s_ifile = NULL;
396
397         down_write(&nilfs->ns_super_sem);
398         list_del_init(&sbi->s_list);
399         up_write(&nilfs->ns_super_sem);
400
401         return err;
402 }
403
404 void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi)
405 {
406         struct the_nilfs *nilfs = sbi->s_nilfs;
407
408         nilfs_mdt_destroy(sbi->s_ifile);
409         sbi->s_ifile = NULL;
410         down_write(&nilfs->ns_super_sem);
411         list_del_init(&sbi->s_list);
412         up_write(&nilfs->ns_super_sem);
413 }
414
415 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
416 {
417         struct super_block *sb = dentry->d_sb;
418         struct nilfs_sb_info *sbi = NILFS_SB(sb);
419         struct the_nilfs *nilfs = sbi->s_nilfs;
420         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
421         unsigned long long blocks;
422         unsigned long overhead;
423         unsigned long nrsvblocks;
424         sector_t nfreeblocks;
425         int err;
426
427         /*
428          * Compute all of the segment blocks
429          *
430          * The blocks before first segment and after last segment
431          * are excluded.
432          */
433         blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
434                 - nilfs->ns_first_data_block;
435         nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
436
437         /*
438          * Compute the overhead
439          *
440          * When distributing meta data blocks outside segment structure,
441          * We must count them as the overhead.
442          */
443         overhead = 0;
444
445         err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
446         if (unlikely(err))
447                 return err;
448
449         buf->f_type = NILFS_SUPER_MAGIC;
450         buf->f_bsize = sb->s_blocksize;
451         buf->f_blocks = blocks - overhead;
452         buf->f_bfree = nfreeblocks;
453         buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
454                 (buf->f_bfree - nrsvblocks) : 0;
455         buf->f_files = atomic_read(&sbi->s_inodes_count);
456         buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
457         buf->f_namelen = NILFS_NAME_LEN;
458         buf->f_fsid.val[0] = (u32)id;
459         buf->f_fsid.val[1] = (u32)(id >> 32);
460
461         return 0;
462 }
463
464 static int nilfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
465 {
466         struct super_block *sb = vfs->mnt_sb;
467         struct nilfs_sb_info *sbi = NILFS_SB(sb);
468
469         if (!nilfs_test_opt(sbi, BARRIER))
470                 seq_printf(seq, ",nobarrier");
471         if (nilfs_test_opt(sbi, SNAPSHOT))
472                 seq_printf(seq, ",cp=%llu",
473                            (unsigned long long int)sbi->s_snapshot_cno);
474         if (nilfs_test_opt(sbi, ERRORS_PANIC))
475                 seq_printf(seq, ",errors=panic");
476         if (nilfs_test_opt(sbi, ERRORS_CONT))
477                 seq_printf(seq, ",errors=continue");
478         if (nilfs_test_opt(sbi, STRICT_ORDER))
479                 seq_printf(seq, ",order=strict");
480         if (nilfs_test_opt(sbi, NORECOVERY))
481                 seq_printf(seq, ",norecovery");
482         if (nilfs_test_opt(sbi, DISCARD))
483                 seq_printf(seq, ",discard");
484
485         return 0;
486 }
487
488 static const struct super_operations nilfs_sops = {
489         .alloc_inode    = nilfs_alloc_inode,
490         .destroy_inode  = nilfs_destroy_inode,
491         .dirty_inode    = nilfs_dirty_inode,
492         /* .write_inode    = nilfs_write_inode, */
493         /* .put_inode      = nilfs_put_inode, */
494         /* .drop_inode    = nilfs_drop_inode, */
495         .delete_inode   = nilfs_delete_inode,
496         .put_super      = nilfs_put_super,
497         /* .write_super    = nilfs_write_super, */
498         .sync_fs        = nilfs_sync_fs,
499         /* .write_super_lockfs */
500         /* .unlockfs */
501         .statfs         = nilfs_statfs,
502         .remount_fs     = nilfs_remount,
503         .clear_inode    = nilfs_clear_inode,
504         /* .umount_begin */
505         .show_options = nilfs_show_options
506 };
507
508 static struct inode *
509 nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
510 {
511         struct inode *inode;
512
513         if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO &&
514             ino != NILFS_SKETCH_INO)
515                 return ERR_PTR(-ESTALE);
516
517         inode = nilfs_iget(sb, ino);
518         if (IS_ERR(inode))
519                 return ERR_CAST(inode);
520         if (generation && inode->i_generation != generation) {
521                 iput(inode);
522                 return ERR_PTR(-ESTALE);
523         }
524
525         return inode;
526 }
527
528 static struct dentry *
529 nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len,
530                    int fh_type)
531 {
532         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
533                                     nilfs_nfs_get_inode);
534 }
535
536 static struct dentry *
537 nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len,
538                    int fh_type)
539 {
540         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
541                                     nilfs_nfs_get_inode);
542 }
543
544 static const struct export_operations nilfs_export_ops = {
545         .fh_to_dentry = nilfs_fh_to_dentry,
546         .fh_to_parent = nilfs_fh_to_parent,
547         .get_parent = nilfs_get_parent,
548 };
549
550 enum {
551         Opt_err_cont, Opt_err_panic, Opt_err_ro,
552         Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
553         Opt_discard, Opt_err,
554 };
555
556 static match_table_t tokens = {
557         {Opt_err_cont, "errors=continue"},
558         {Opt_err_panic, "errors=panic"},
559         {Opt_err_ro, "errors=remount-ro"},
560         {Opt_nobarrier, "nobarrier"},
561         {Opt_snapshot, "cp=%u"},
562         {Opt_order, "order=%s"},
563         {Opt_norecovery, "norecovery"},
564         {Opt_discard, "discard"},
565         {Opt_err, NULL}
566 };
567
568 static int parse_options(char *options, struct super_block *sb)
569 {
570         struct nilfs_sb_info *sbi = NILFS_SB(sb);
571         char *p;
572         substring_t args[MAX_OPT_ARGS];
573         int option;
574
575         if (!options)
576                 return 1;
577
578         while ((p = strsep(&options, ",")) != NULL) {
579                 int token;
580                 if (!*p)
581                         continue;
582
583                 token = match_token(p, tokens, args);
584                 switch (token) {
585                 case Opt_nobarrier:
586                         nilfs_clear_opt(sbi, BARRIER);
587                         break;
588                 case Opt_order:
589                         if (strcmp(args[0].from, "relaxed") == 0)
590                                 /* Ordered data semantics */
591                                 nilfs_clear_opt(sbi, STRICT_ORDER);
592                         else if (strcmp(args[0].from, "strict") == 0)
593                                 /* Strict in-order semantics */
594                                 nilfs_set_opt(sbi, STRICT_ORDER);
595                         else
596                                 return 0;
597                         break;
598                 case Opt_err_panic:
599                         nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
600                         break;
601                 case Opt_err_ro:
602                         nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
603                         break;
604                 case Opt_err_cont:
605                         nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
606                         break;
607                 case Opt_snapshot:
608                         if (match_int(&args[0], &option) || option <= 0)
609                                 return 0;
610                         if (!(sb->s_flags & MS_RDONLY))
611                                 return 0;
612                         sbi->s_snapshot_cno = option;
613                         nilfs_set_opt(sbi, SNAPSHOT);
614                         break;
615                 case Opt_norecovery:
616                         nilfs_set_opt(sbi, NORECOVERY);
617                         break;
618                 case Opt_discard:
619                         nilfs_set_opt(sbi, DISCARD);
620                         break;
621                 default:
622                         printk(KERN_ERR
623                                "NILFS: Unrecognized mount option \"%s\"\n", p);
624                         return 0;
625                 }
626         }
627         return 1;
628 }
629
630 static inline void
631 nilfs_set_default_options(struct nilfs_sb_info *sbi,
632                           struct nilfs_super_block *sbp)
633 {
634         sbi->s_mount_opt =
635                 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
636 }
637
638 static int nilfs_setup_super(struct nilfs_sb_info *sbi)
639 {
640         struct the_nilfs *nilfs = sbi->s_nilfs;
641         struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
642         int max_mnt_count = le16_to_cpu(sbp->s_max_mnt_count);
643         int mnt_count = le16_to_cpu(sbp->s_mnt_count);
644
645         /* nilfs->sem must be locked by the caller. */
646         if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
647                 printk(KERN_WARNING
648                        "NILFS warning: mounting fs with errors\n");
649 #if 0
650         } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
651                 printk(KERN_WARNING
652                        "NILFS warning: maximal mount count reached\n");
653 #endif
654         }
655         if (!max_mnt_count)
656                 sbp->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
657
658         sbp->s_mnt_count = cpu_to_le16(mnt_count + 1);
659         sbp->s_state = cpu_to_le16(le16_to_cpu(sbp->s_state) & ~NILFS_VALID_FS);
660         sbp->s_mtime = cpu_to_le64(get_seconds());
661         return nilfs_commit_super(sbi, 1);
662 }
663
664 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
665                                                  u64 pos, int blocksize,
666                                                  struct buffer_head **pbh)
667 {
668         unsigned long long sb_index = pos;
669         unsigned long offset;
670
671         offset = do_div(sb_index, blocksize);
672         *pbh = sb_bread(sb, sb_index);
673         if (!*pbh)
674                 return NULL;
675         return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
676 }
677
678 int nilfs_store_magic_and_option(struct super_block *sb,
679                                  struct nilfs_super_block *sbp,
680                                  char *data)
681 {
682         struct nilfs_sb_info *sbi = NILFS_SB(sb);
683
684         sb->s_magic = le16_to_cpu(sbp->s_magic);
685
686         /* FS independent flags */
687 #ifdef NILFS_ATIME_DISABLE
688         sb->s_flags |= MS_NOATIME;
689 #endif
690
691         nilfs_set_default_options(sbi, sbp);
692
693         sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
694         sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
695         sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
696         sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
697
698         return !parse_options(data, sb) ? -EINVAL : 0 ;
699 }
700
701 /**
702  * nilfs_fill_super() - initialize a super block instance
703  * @sb: super_block
704  * @data: mount options
705  * @silent: silent mode flag
706  * @nilfs: the_nilfs struct
707  *
708  * This function is called exclusively by nilfs->ns_mount_mutex.
709  * So, the recovery process is protected from other simultaneous mounts.
710  */
711 static int
712 nilfs_fill_super(struct super_block *sb, void *data, int silent,
713                  struct the_nilfs *nilfs)
714 {
715         struct nilfs_sb_info *sbi;
716         struct inode *root;
717         __u64 cno;
718         int err;
719
720         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
721         if (!sbi)
722                 return -ENOMEM;
723
724         sb->s_fs_info = sbi;
725
726         get_nilfs(nilfs);
727         sbi->s_nilfs = nilfs;
728         sbi->s_super = sb;
729         atomic_set(&sbi->s_count, 1);
730
731         err = init_nilfs(nilfs, sbi, (char *)data);
732         if (err)
733                 goto failed_sbi;
734
735         spin_lock_init(&sbi->s_inode_lock);
736         INIT_LIST_HEAD(&sbi->s_dirty_files);
737         INIT_LIST_HEAD(&sbi->s_list);
738
739         /*
740          * Following initialization is overlapped because
741          * nilfs_sb_info structure has been cleared at the beginning.
742          * But we reserve them to keep our interest and make ready
743          * for the future change.
744          */
745         get_random_bytes(&sbi->s_next_generation,
746                          sizeof(sbi->s_next_generation));
747         spin_lock_init(&sbi->s_next_gen_lock);
748
749         sb->s_op = &nilfs_sops;
750         sb->s_export_op = &nilfs_export_ops;
751         sb->s_root = NULL;
752         sb->s_time_gran = 1;
753         sb->s_bdi = nilfs->ns_bdi;
754
755         err = load_nilfs(nilfs, sbi);
756         if (err)
757                 goto failed_sbi;
758
759         cno = nilfs_last_cno(nilfs);
760
761         if (sb->s_flags & MS_RDONLY) {
762                 if (nilfs_test_opt(sbi, SNAPSHOT)) {
763                         down_read(&nilfs->ns_segctor_sem);
764                         err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
765                                                        sbi->s_snapshot_cno);
766                         up_read(&nilfs->ns_segctor_sem);
767                         if (err < 0) {
768                                 if (err == -ENOENT)
769                                         err = -EINVAL;
770                                 goto failed_sbi;
771                         }
772                         if (!err) {
773                                 printk(KERN_ERR
774                                        "NILFS: The specified checkpoint is "
775                                        "not a snapshot "
776                                        "(checkpoint number=%llu).\n",
777                                        (unsigned long long)sbi->s_snapshot_cno);
778                                 err = -EINVAL;
779                                 goto failed_sbi;
780                         }
781                         cno = sbi->s_snapshot_cno;
782                 }
783         }
784
785         err = nilfs_attach_checkpoint(sbi, cno);
786         if (err) {
787                 printk(KERN_ERR "NILFS: error loading a checkpoint"
788                        " (checkpoint number=%llu).\n", (unsigned long long)cno);
789                 goto failed_sbi;
790         }
791
792         if (!(sb->s_flags & MS_RDONLY)) {
793                 err = nilfs_attach_segment_constructor(sbi);
794                 if (err)
795                         goto failed_checkpoint;
796         }
797
798         root = nilfs_iget(sb, NILFS_ROOT_INO);
799         if (IS_ERR(root)) {
800                 printk(KERN_ERR "NILFS: get root inode failed\n");
801                 err = PTR_ERR(root);
802                 goto failed_segctor;
803         }
804         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
805                 iput(root);
806                 printk(KERN_ERR "NILFS: corrupt root inode.\n");
807                 err = -EINVAL;
808                 goto failed_segctor;
809         }
810         sb->s_root = d_alloc_root(root);
811         if (!sb->s_root) {
812                 iput(root);
813                 printk(KERN_ERR "NILFS: get root dentry failed\n");
814                 err = -ENOMEM;
815                 goto failed_segctor;
816         }
817
818         if (!(sb->s_flags & MS_RDONLY)) {
819                 down_write(&nilfs->ns_sem);
820                 nilfs_setup_super(sbi);
821                 up_write(&nilfs->ns_sem);
822         }
823
824         down_write(&nilfs->ns_super_sem);
825         if (!nilfs_test_opt(sbi, SNAPSHOT))
826                 nilfs->ns_current = sbi;
827         up_write(&nilfs->ns_super_sem);
828
829         return 0;
830
831  failed_segctor:
832         nilfs_detach_segment_constructor(sbi);
833
834  failed_checkpoint:
835         nilfs_detach_checkpoint(sbi);
836
837  failed_sbi:
838         put_nilfs(nilfs);
839         sb->s_fs_info = NULL;
840         nilfs_put_sbinfo(sbi);
841         return err;
842 }
843
844 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
845 {
846         struct nilfs_sb_info *sbi = NILFS_SB(sb);
847         struct the_nilfs *nilfs = sbi->s_nilfs;
848         unsigned long old_sb_flags;
849         struct nilfs_mount_options old_opts;
850         int was_snapshot, err;
851
852         lock_kernel();
853
854         down_write(&nilfs->ns_super_sem);
855         old_sb_flags = sb->s_flags;
856         old_opts.mount_opt = sbi->s_mount_opt;
857         old_opts.snapshot_cno = sbi->s_snapshot_cno;
858         was_snapshot = nilfs_test_opt(sbi, SNAPSHOT);
859
860         if (!parse_options(data, sb)) {
861                 err = -EINVAL;
862                 goto restore_opts;
863         }
864         sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
865
866         err = -EINVAL;
867         if (was_snapshot) {
868                 if (!(*flags & MS_RDONLY)) {
869                         printk(KERN_ERR "NILFS (device %s): cannot remount "
870                                "snapshot read/write.\n",
871                                sb->s_id);
872                         goto restore_opts;
873                 } else if (sbi->s_snapshot_cno != old_opts.snapshot_cno) {
874                         printk(KERN_ERR "NILFS (device %s): cannot "
875                                "remount to a different snapshot.\n",
876                                sb->s_id);
877                         goto restore_opts;
878                 }
879         } else {
880                 if (nilfs_test_opt(sbi, SNAPSHOT)) {
881                         printk(KERN_ERR "NILFS (device %s): cannot change "
882                                "a regular mount to a snapshot.\n",
883                                sb->s_id);
884                         goto restore_opts;
885                 }
886         }
887
888         if (!nilfs_valid_fs(nilfs)) {
889                 printk(KERN_WARNING "NILFS (device %s): couldn't "
890                        "remount because the filesystem is in an "
891                        "incomplete recovery state.\n", sb->s_id);
892                 goto restore_opts;
893         }
894
895         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
896                 goto out;
897         if (*flags & MS_RDONLY) {
898                 /* Shutting down the segment constructor */
899                 nilfs_detach_segment_constructor(sbi);
900                 sb->s_flags |= MS_RDONLY;
901
902                 /*
903                  * Remounting a valid RW partition RDONLY, so set
904                  * the RDONLY flag and then mark the partition as valid again.
905                  */
906                 down_write(&nilfs->ns_sem);
907                 nilfs_cleanup_super(sbi);
908                 up_write(&nilfs->ns_sem);
909         } else {
910                 /*
911                  * Mounting a RDONLY partition read-write, so reread and
912                  * store the current valid flag.  (It may have been changed
913                  * by fsck since we originally mounted the partition.)
914                  */
915                 sb->s_flags &= ~MS_RDONLY;
916
917                 err = nilfs_attach_segment_constructor(sbi);
918                 if (err)
919                         goto restore_opts;
920
921                 down_write(&nilfs->ns_sem);
922                 nilfs_setup_super(sbi);
923                 up_write(&nilfs->ns_sem);
924         }
925  out:
926         up_write(&nilfs->ns_super_sem);
927         unlock_kernel();
928         return 0;
929
930  restore_opts:
931         sb->s_flags = old_sb_flags;
932         sbi->s_mount_opt = old_opts.mount_opt;
933         sbi->s_snapshot_cno = old_opts.snapshot_cno;
934         up_write(&nilfs->ns_super_sem);
935         unlock_kernel();
936         return err;
937 }
938
939 struct nilfs_super_data {
940         struct block_device *bdev;
941         struct nilfs_sb_info *sbi;
942         __u64 cno;
943         int flags;
944 };
945
946 /**
947  * nilfs_identify - pre-read mount options needed to identify mount instance
948  * @data: mount options
949  * @sd: nilfs_super_data
950  */
951 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
952 {
953         char *p, *options = data;
954         substring_t args[MAX_OPT_ARGS];
955         int option, token;
956         int ret = 0;
957
958         do {
959                 p = strsep(&options, ",");
960                 if (p != NULL && *p) {
961                         token = match_token(p, tokens, args);
962                         if (token == Opt_snapshot) {
963                                 if (!(sd->flags & MS_RDONLY))
964                                         ret++;
965                                 else {
966                                         ret = match_int(&args[0], &option);
967                                         if (!ret) {
968                                                 if (option > 0)
969                                                         sd->cno = option;
970                                                 else
971                                                         ret++;
972                                         }
973                                 }
974                         }
975                         if (ret)
976                                 printk(KERN_ERR
977                                        "NILFS: invalid mount option: %s\n", p);
978                 }
979                 if (!options)
980                         break;
981                 BUG_ON(options == data);
982                 *(options - 1) = ',';
983         } while (!ret);
984         return ret;
985 }
986
987 static int nilfs_set_bdev_super(struct super_block *s, void *data)
988 {
989         struct nilfs_super_data *sd = data;
990
991         s->s_bdev = sd->bdev;
992         s->s_dev = s->s_bdev->bd_dev;
993         return 0;
994 }
995
996 static int nilfs_test_bdev_super(struct super_block *s, void *data)
997 {
998         struct nilfs_super_data *sd = data;
999
1000         return sd->sbi && s->s_fs_info == (void *)sd->sbi;
1001 }
1002
1003 static int
1004 nilfs_get_sb(struct file_system_type *fs_type, int flags,
1005              const char *dev_name, void *data, struct vfsmount *mnt)
1006 {
1007         struct nilfs_super_data sd;
1008         struct super_block *s;
1009         fmode_t mode = FMODE_READ;
1010         struct the_nilfs *nilfs;
1011         int err, need_to_close = 1;
1012
1013         if (!(flags & MS_RDONLY))
1014                 mode |= FMODE_WRITE;
1015
1016         sd.bdev = open_bdev_exclusive(dev_name, mode, fs_type);
1017         if (IS_ERR(sd.bdev))
1018                 return PTR_ERR(sd.bdev);
1019
1020         /*
1021          * To get mount instance using sget() vfs-routine, NILFS needs
1022          * much more information than normal filesystems to identify mount
1023          * instance.  For snapshot mounts, not only a mount type (ro-mount
1024          * or rw-mount) but also a checkpoint number is required.
1025          */
1026         sd.cno = 0;
1027         sd.flags = flags;
1028         if (nilfs_identify((char *)data, &sd)) {
1029                 err = -EINVAL;
1030                 goto failed;
1031         }
1032
1033         nilfs = find_or_create_nilfs(sd.bdev);
1034         if (!nilfs) {
1035                 err = -ENOMEM;
1036                 goto failed;
1037         }
1038
1039         mutex_lock(&nilfs->ns_mount_mutex);
1040
1041         if (!sd.cno) {
1042                 /*
1043                  * Check if an exclusive mount exists or not.
1044                  * Snapshot mounts coexist with a current mount
1045                  * (i.e. rw-mount or ro-mount), whereas rw-mount and
1046                  * ro-mount are mutually exclusive.
1047                  */
1048                 down_read(&nilfs->ns_super_sem);
1049                 if (nilfs->ns_current &&
1050                     ((nilfs->ns_current->s_super->s_flags ^ flags)
1051                      & MS_RDONLY)) {
1052                         up_read(&nilfs->ns_super_sem);
1053                         err = -EBUSY;
1054                         goto failed_unlock;
1055                 }
1056                 up_read(&nilfs->ns_super_sem);
1057         }
1058
1059         /*
1060          * Find existing nilfs_sb_info struct
1061          */
1062         sd.sbi = nilfs_find_sbinfo(nilfs, !(flags & MS_RDONLY), sd.cno);
1063
1064         /*
1065          * Get super block instance holding the nilfs_sb_info struct.
1066          * A new instance is allocated if no existing mount is present or
1067          * existing instance has been unmounted.
1068          */
1069         s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
1070         if (sd.sbi)
1071                 nilfs_put_sbinfo(sd.sbi);
1072
1073         if (IS_ERR(s)) {
1074                 err = PTR_ERR(s);
1075                 goto failed_unlock;
1076         }
1077
1078         if (!s->s_root) {
1079                 char b[BDEVNAME_SIZE];
1080
1081                 /* New superblock instance created */
1082                 s->s_flags = flags;
1083                 s->s_mode = mode;
1084                 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1085                 sb_set_blocksize(s, block_size(sd.bdev));
1086
1087                 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0,
1088                                        nilfs);
1089                 if (err)
1090                         goto cancel_new;
1091
1092                 s->s_flags |= MS_ACTIVE;
1093                 need_to_close = 0;
1094         }
1095
1096         mutex_unlock(&nilfs->ns_mount_mutex);
1097         put_nilfs(nilfs);
1098         if (need_to_close)
1099                 close_bdev_exclusive(sd.bdev, mode);
1100         simple_set_mnt(mnt, s);
1101         return 0;
1102
1103  failed_unlock:
1104         mutex_unlock(&nilfs->ns_mount_mutex);
1105         put_nilfs(nilfs);
1106  failed:
1107         close_bdev_exclusive(sd.bdev, mode);
1108
1109         return err;
1110
1111  cancel_new:
1112         /* Abandoning the newly allocated superblock */
1113         mutex_unlock(&nilfs->ns_mount_mutex);
1114         put_nilfs(nilfs);
1115         deactivate_locked_super(s);
1116         /*
1117          * deactivate_locked_super() invokes close_bdev_exclusive().
1118          * We must finish all post-cleaning before this call;
1119          * put_nilfs() needs the block device.
1120          */
1121         return err;
1122 }
1123
1124 struct file_system_type nilfs_fs_type = {
1125         .owner    = THIS_MODULE,
1126         .name     = "nilfs2",
1127         .get_sb   = nilfs_get_sb,
1128         .kill_sb  = kill_block_super,
1129         .fs_flags = FS_REQUIRES_DEV,
1130 };
1131
1132 static void nilfs_inode_init_once(void *obj)
1133 {
1134         struct nilfs_inode_info *ii = obj;
1135
1136         INIT_LIST_HEAD(&ii->i_dirty);
1137 #ifdef CONFIG_NILFS_XATTR
1138         init_rwsem(&ii->xattr_sem);
1139 #endif
1140         nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
1141         ii->i_bmap = (struct nilfs_bmap *)&ii->i_bmap_union;
1142         inode_init_once(&ii->vfs_inode);
1143 }
1144
1145 static void nilfs_segbuf_init_once(void *obj)
1146 {
1147         memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1148 }
1149
1150 static void nilfs_destroy_cachep(void)
1151 {
1152         if (nilfs_inode_cachep)
1153                 kmem_cache_destroy(nilfs_inode_cachep);
1154         if (nilfs_transaction_cachep)
1155                 kmem_cache_destroy(nilfs_transaction_cachep);
1156         if (nilfs_segbuf_cachep)
1157                 kmem_cache_destroy(nilfs_segbuf_cachep);
1158         if (nilfs_btree_path_cache)
1159                 kmem_cache_destroy(nilfs_btree_path_cache);
1160 }
1161
1162 static int __init nilfs_init_cachep(void)
1163 {
1164         nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1165                         sizeof(struct nilfs_inode_info), 0,
1166                         SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1167         if (!nilfs_inode_cachep)
1168                 goto fail;
1169
1170         nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1171                         sizeof(struct nilfs_transaction_info), 0,
1172                         SLAB_RECLAIM_ACCOUNT, NULL);
1173         if (!nilfs_transaction_cachep)
1174                 goto fail;
1175
1176         nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1177                         sizeof(struct nilfs_segment_buffer), 0,
1178                         SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1179         if (!nilfs_segbuf_cachep)
1180                 goto fail;
1181
1182         nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1183                         sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1184                         0, 0, NULL);
1185         if (!nilfs_btree_path_cache)
1186                 goto fail;
1187
1188         return 0;
1189
1190 fail:
1191         nilfs_destroy_cachep();
1192         return -ENOMEM;
1193 }
1194
1195 static int __init init_nilfs_fs(void)
1196 {
1197         int err;
1198
1199         err = nilfs_init_cachep();
1200         if (err)
1201                 goto fail;
1202
1203         err = register_filesystem(&nilfs_fs_type);
1204         if (err)
1205                 goto free_cachep;
1206
1207         printk(KERN_INFO "NILFS version 2 loaded\n");
1208         return 0;
1209
1210 free_cachep:
1211         nilfs_destroy_cachep();
1212 fail:
1213         return err;
1214 }
1215
1216 static void __exit exit_nilfs_fs(void)
1217 {
1218         nilfs_destroy_cachep();
1219         unregister_filesystem(&nilfs_fs_type);
1220 }
1221
1222 module_init(init_nilfs_fs)
1223 module_exit(exit_nilfs_fs)