2 * super.c - NILFS module and super block management.
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
23 * linux/fs/ext2/super.c
25 * Copyright (C) 1992, 1993, 1994, 1995
26 * Remy Card (card@masi.ibp.fr)
27 * Laboratoire MASI - Institut Blaise Pascal
28 * Universite Pierre et Marie Curie (Paris VI)
32 * linux/fs/minix/inode.c
34 * Copyright (C) 1991, 1992 Linus Torvalds
36 * Big-endian to little-endian byte-swapping/bitmaps by
37 * David S. Miller (davem@caip.rutgers.edu), 1995
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/random.h>
47 #include <linux/crc32.h>
48 #include <linux/smp_lock.h>
49 #include <linux/vfs.h>
50 #include <linux/writeback.h>
51 #include <linux/kobject.h>
52 #include <linux/exportfs.h>
53 #include <linux/seq_file.h>
54 #include <linux/mount.h>
67 MODULE_AUTHOR("NTT Corp.");
68 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
70 MODULE_LICENSE("GPL");
72 struct kmem_cache *nilfs_inode_cachep;
73 struct kmem_cache *nilfs_transaction_cachep;
74 struct kmem_cache *nilfs_segbuf_cachep;
75 struct kmem_cache *nilfs_btree_path_cache;
77 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
79 static void nilfs_set_error(struct nilfs_sb_info *sbi)
81 struct the_nilfs *nilfs = sbi->s_nilfs;
82 struct nilfs_super_block **sbp;
84 down_write(&nilfs->ns_sem);
85 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
86 nilfs->ns_mount_state |= NILFS_ERROR_FS;
87 sbp = nilfs_prepare_super(sbi, 0);
89 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
91 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
92 nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL);
95 up_write(&nilfs->ns_sem);
99 * nilfs_error() - report failure condition on a filesystem
101 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
102 * reporting an error message. It should be called when NILFS detects
103 * incoherences or defects of meta data on disk. As for sustainable
104 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
105 * function should be used instead.
107 * The segment constructor must not call this function because it can
110 void nilfs_error(struct super_block *sb, const char *function,
111 const char *fmt, ...)
113 struct nilfs_sb_info *sbi = NILFS_SB(sb);
117 printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
122 if (!(sb->s_flags & MS_RDONLY)) {
123 nilfs_set_error(sbi);
125 if (nilfs_test_opt(sbi, ERRORS_RO)) {
126 printk(KERN_CRIT "Remounting filesystem read-only\n");
127 sb->s_flags |= MS_RDONLY;
131 if (nilfs_test_opt(sbi, ERRORS_PANIC))
132 panic("NILFS (device %s): panic forced after error\n",
136 void nilfs_warning(struct super_block *sb, const char *function,
137 const char *fmt, ...)
142 printk(KERN_WARNING "NILFS warning (device %s): %s: ",
150 struct inode *nilfs_alloc_inode_common(struct the_nilfs *nilfs)
152 struct nilfs_inode_info *ii;
154 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
159 ii->vfs_inode.i_version = 1;
160 nilfs_btnode_cache_init(&ii->i_btnode_cache, nilfs->ns_bdi);
161 return &ii->vfs_inode;
164 struct inode *nilfs_alloc_inode(struct super_block *sb)
166 return nilfs_alloc_inode_common(NILFS_SB(sb)->s_nilfs);
169 void nilfs_destroy_inode(struct inode *inode)
171 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
174 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int flag)
176 struct the_nilfs *nilfs = sbi->s_nilfs;
178 int barrier_done = 0;
180 if (nilfs_test_opt(sbi, BARRIER)) {
181 set_buffer_ordered(nilfs->ns_sbh[0]);
185 set_buffer_dirty(nilfs->ns_sbh[0]);
186 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
187 if (err == -EOPNOTSUPP && barrier_done) {
188 nilfs_warning(sbi->s_super, __func__,
189 "barrier-based sync failed. "
190 "disabling barriers\n");
191 nilfs_clear_opt(sbi, BARRIER);
193 clear_buffer_ordered(nilfs->ns_sbh[0]);
198 "NILFS: unable to write superblock (err=%d)\n", err);
199 if (err == -EIO && nilfs->ns_sbh[1]) {
201 * sbp[0] points to newer log than sbp[1],
202 * so copy sbp[0] to sbp[1] to take over sbp[0].
204 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
206 nilfs_fall_back_super_block(nilfs);
210 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
212 nilfs->ns_sbwcount++;
215 * The latest segment becomes trailable from the position
216 * written in superblock.
218 clear_nilfs_discontinued(nilfs);
220 /* update GC protection for recent segments */
221 if (nilfs->ns_sbh[1]) {
222 if (flag == NILFS_SB_COMMIT_ALL) {
223 set_buffer_dirty(nilfs->ns_sbh[1]);
224 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
227 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
228 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
229 sbp = nilfs->ns_sbp[1];
232 spin_lock(&nilfs->ns_last_segment_lock);
233 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
234 spin_unlock(&nilfs->ns_last_segment_lock);
240 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
241 struct the_nilfs *nilfs)
243 sector_t nfreeblocks;
245 /* nilfs->ns_sem must be locked by the caller. */
246 nilfs_count_free_blocks(nilfs, &nfreeblocks);
247 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
249 spin_lock(&nilfs->ns_last_segment_lock);
250 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
251 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
252 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
253 spin_unlock(&nilfs->ns_last_segment_lock);
256 struct nilfs_super_block **nilfs_prepare_super(struct nilfs_sb_info *sbi,
259 struct the_nilfs *nilfs = sbi->s_nilfs;
260 struct nilfs_super_block **sbp = nilfs->ns_sbp;
262 /* nilfs->ns_sem must be locked by the caller. */
263 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
265 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
266 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
268 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
273 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
274 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
278 nilfs_swap_super_block(nilfs);
283 int nilfs_commit_super(struct nilfs_sb_info *sbi, int flag)
285 struct the_nilfs *nilfs = sbi->s_nilfs;
286 struct nilfs_super_block **sbp = nilfs->ns_sbp;
289 /* nilfs->ns_sem must be locked by the caller. */
291 nilfs->ns_sbwtime = t;
292 sbp[0]->s_wtime = cpu_to_le64(t);
294 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
295 (unsigned char *)sbp[0],
297 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
298 sbp[1]->s_wtime = sbp[0]->s_wtime;
300 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
301 (unsigned char *)sbp[1],
304 clear_nilfs_sb_dirty(nilfs);
305 return nilfs_sync_super(sbi, flag);
309 * nilfs_cleanup_super() - write filesystem state for cleanup
310 * @sbi: nilfs_sb_info to be unmounted or degraded to read-only
312 * This function restores state flags in the on-disk super block.
313 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
314 * filesystem was not clean previously.
316 int nilfs_cleanup_super(struct nilfs_sb_info *sbi)
318 struct nilfs_super_block **sbp;
319 int flag = NILFS_SB_COMMIT;
322 sbp = nilfs_prepare_super(sbi, 0);
324 sbp[0]->s_state = cpu_to_le16(sbi->s_nilfs->ns_mount_state);
325 nilfs_set_log_cursor(sbp[0], sbi->s_nilfs);
326 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
328 * make the "clean" flag also to the opposite
329 * super block if both super blocks point to
330 * the same checkpoint.
332 sbp[1]->s_state = sbp[0]->s_state;
333 flag = NILFS_SB_COMMIT_ALL;
335 ret = nilfs_commit_super(sbi, flag);
340 static void nilfs_put_super(struct super_block *sb)
342 struct nilfs_sb_info *sbi = NILFS_SB(sb);
343 struct the_nilfs *nilfs = sbi->s_nilfs;
347 nilfs_detach_segment_constructor(sbi);
349 if (!(sb->s_flags & MS_RDONLY)) {
350 down_write(&nilfs->ns_sem);
351 nilfs_cleanup_super(sbi);
352 up_write(&nilfs->ns_sem);
354 down_write(&nilfs->ns_super_sem);
355 if (nilfs->ns_current == sbi)
356 nilfs->ns_current = NULL;
357 up_write(&nilfs->ns_super_sem);
359 nilfs_detach_checkpoint(sbi);
360 put_nilfs(sbi->s_nilfs);
362 sb->s_fs_info = NULL;
363 nilfs_put_sbinfo(sbi);
368 static int nilfs_sync_fs(struct super_block *sb, int wait)
370 struct nilfs_sb_info *sbi = NILFS_SB(sb);
371 struct the_nilfs *nilfs = sbi->s_nilfs;
372 struct nilfs_super_block **sbp;
375 /* This function is called when super block should be written back */
377 err = nilfs_construct_segment(sb);
379 down_write(&nilfs->ns_sem);
380 if (nilfs_sb_dirty(nilfs)) {
381 sbp = nilfs_prepare_super(sbi, nilfs_sb_will_flip(nilfs));
383 nilfs_set_log_cursor(sbp[0], nilfs);
384 nilfs_commit_super(sbi, NILFS_SB_COMMIT);
387 up_write(&nilfs->ns_sem);
392 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno)
394 struct the_nilfs *nilfs = sbi->s_nilfs;
395 struct nilfs_checkpoint *raw_cp;
396 struct buffer_head *bh_cp;
399 down_write(&nilfs->ns_super_sem);
400 list_add(&sbi->s_list, &nilfs->ns_supers);
401 up_write(&nilfs->ns_super_sem);
404 sbi->s_ifile = nilfs_ifile_new(sbi, nilfs->ns_inode_size);
408 down_read(&nilfs->ns_segctor_sem);
409 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
411 up_read(&nilfs->ns_segctor_sem);
413 if (err == -ENOENT || err == -EINVAL) {
415 "NILFS: Invalid checkpoint "
416 "(checkpoint number=%llu)\n",
417 (unsigned long long)cno);
422 err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode);
425 atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
426 atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
428 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
432 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
434 nilfs_mdt_destroy(sbi->s_ifile);
438 down_write(&nilfs->ns_super_sem);
439 list_del_init(&sbi->s_list);
440 up_write(&nilfs->ns_super_sem);
445 void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi)
447 struct the_nilfs *nilfs = sbi->s_nilfs;
449 nilfs_mdt_destroy(sbi->s_ifile);
451 down_write(&nilfs->ns_super_sem);
452 list_del_init(&sbi->s_list);
453 up_write(&nilfs->ns_super_sem);
456 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
458 struct super_block *sb = dentry->d_sb;
459 struct nilfs_sb_info *sbi = NILFS_SB(sb);
460 struct the_nilfs *nilfs = sbi->s_nilfs;
461 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
462 unsigned long long blocks;
463 unsigned long overhead;
464 unsigned long nrsvblocks;
465 sector_t nfreeblocks;
469 * Compute all of the segment blocks
471 * The blocks before first segment and after last segment
474 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
475 - nilfs->ns_first_data_block;
476 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
479 * Compute the overhead
481 * When distributing meta data blocks outside segment structure,
482 * We must count them as the overhead.
486 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
490 buf->f_type = NILFS_SUPER_MAGIC;
491 buf->f_bsize = sb->s_blocksize;
492 buf->f_blocks = blocks - overhead;
493 buf->f_bfree = nfreeblocks;
494 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
495 (buf->f_bfree - nrsvblocks) : 0;
496 buf->f_files = atomic_read(&sbi->s_inodes_count);
497 buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
498 buf->f_namelen = NILFS_NAME_LEN;
499 buf->f_fsid.val[0] = (u32)id;
500 buf->f_fsid.val[1] = (u32)(id >> 32);
505 static int nilfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
507 struct super_block *sb = vfs->mnt_sb;
508 struct nilfs_sb_info *sbi = NILFS_SB(sb);
510 if (!nilfs_test_opt(sbi, BARRIER))
511 seq_puts(seq, ",nobarrier");
512 if (nilfs_test_opt(sbi, SNAPSHOT))
513 seq_printf(seq, ",cp=%llu",
514 (unsigned long long int)sbi->s_snapshot_cno);
515 if (nilfs_test_opt(sbi, ERRORS_PANIC))
516 seq_puts(seq, ",errors=panic");
517 if (nilfs_test_opt(sbi, ERRORS_CONT))
518 seq_puts(seq, ",errors=continue");
519 if (nilfs_test_opt(sbi, STRICT_ORDER))
520 seq_puts(seq, ",order=strict");
521 if (nilfs_test_opt(sbi, NORECOVERY))
522 seq_puts(seq, ",norecovery");
523 if (nilfs_test_opt(sbi, DISCARD))
524 seq_puts(seq, ",discard");
529 static const struct super_operations nilfs_sops = {
530 .alloc_inode = nilfs_alloc_inode,
531 .destroy_inode = nilfs_destroy_inode,
532 .dirty_inode = nilfs_dirty_inode,
533 /* .write_inode = nilfs_write_inode, */
534 /* .put_inode = nilfs_put_inode, */
535 /* .drop_inode = nilfs_drop_inode, */
536 .evict_inode = nilfs_evict_inode,
537 .put_super = nilfs_put_super,
538 /* .write_super = nilfs_write_super, */
539 .sync_fs = nilfs_sync_fs,
540 /* .write_super_lockfs */
542 .statfs = nilfs_statfs,
543 .remount_fs = nilfs_remount,
545 .show_options = nilfs_show_options
548 static struct inode *
549 nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
553 if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO &&
554 ino != NILFS_SKETCH_INO)
555 return ERR_PTR(-ESTALE);
557 inode = nilfs_iget(sb, ino);
559 return ERR_CAST(inode);
560 if (generation && inode->i_generation != generation) {
562 return ERR_PTR(-ESTALE);
568 static struct dentry *
569 nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len,
572 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
573 nilfs_nfs_get_inode);
576 static struct dentry *
577 nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len,
580 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
581 nilfs_nfs_get_inode);
584 static const struct export_operations nilfs_export_ops = {
585 .fh_to_dentry = nilfs_fh_to_dentry,
586 .fh_to_parent = nilfs_fh_to_parent,
587 .get_parent = nilfs_get_parent,
591 Opt_err_cont, Opt_err_panic, Opt_err_ro,
592 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
593 Opt_discard, Opt_nodiscard, Opt_err,
596 static match_table_t tokens = {
597 {Opt_err_cont, "errors=continue"},
598 {Opt_err_panic, "errors=panic"},
599 {Opt_err_ro, "errors=remount-ro"},
600 {Opt_barrier, "barrier"},
601 {Opt_nobarrier, "nobarrier"},
602 {Opt_snapshot, "cp=%u"},
603 {Opt_order, "order=%s"},
604 {Opt_norecovery, "norecovery"},
605 {Opt_discard, "discard"},
606 {Opt_nodiscard, "nodiscard"},
610 static int parse_options(char *options, struct super_block *sb, int is_remount)
612 struct nilfs_sb_info *sbi = NILFS_SB(sb);
614 substring_t args[MAX_OPT_ARGS];
620 while ((p = strsep(&options, ",")) != NULL) {
625 token = match_token(p, tokens, args);
628 nilfs_set_opt(sbi, BARRIER);
631 nilfs_clear_opt(sbi, BARRIER);
634 if (strcmp(args[0].from, "relaxed") == 0)
635 /* Ordered data semantics */
636 nilfs_clear_opt(sbi, STRICT_ORDER);
637 else if (strcmp(args[0].from, "strict") == 0)
638 /* Strict in-order semantics */
639 nilfs_set_opt(sbi, STRICT_ORDER);
644 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
647 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
650 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
653 if (match_int(&args[0], &option) || option <= 0)
656 if (!nilfs_test_opt(sbi, SNAPSHOT)) {
658 "NILFS: cannot change regular "
659 "mount to snapshot.\n");
661 } else if (option != sbi->s_snapshot_cno) {
663 "NILFS: cannot remount to a "
664 "different snapshot.\n");
669 if (!(sb->s_flags & MS_RDONLY)) {
670 printk(KERN_ERR "NILFS: cannot mount snapshot "
671 "read/write. A read-only option is "
675 sbi->s_snapshot_cno = option;
676 nilfs_set_opt(sbi, SNAPSHOT);
679 nilfs_set_opt(sbi, NORECOVERY);
682 nilfs_set_opt(sbi, DISCARD);
685 nilfs_clear_opt(sbi, DISCARD);
689 "NILFS: Unrecognized mount option \"%s\"\n", p);
697 nilfs_set_default_options(struct nilfs_sb_info *sbi,
698 struct nilfs_super_block *sbp)
701 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
704 static int nilfs_setup_super(struct nilfs_sb_info *sbi)
706 struct the_nilfs *nilfs = sbi->s_nilfs;
707 struct nilfs_super_block **sbp;
711 /* nilfs->ns_sem must be locked by the caller. */
712 sbp = nilfs_prepare_super(sbi, 0);
716 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
717 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
719 if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
721 "NILFS warning: mounting fs with errors\n");
723 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
725 "NILFS warning: maximal mount count reached\n");
729 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
731 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
733 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
734 sbp[0]->s_mtime = cpu_to_le64(get_seconds());
735 /* synchronize sbp[1] with sbp[0] */
736 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
737 return nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL);
740 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
741 u64 pos, int blocksize,
742 struct buffer_head **pbh)
744 unsigned long long sb_index = pos;
745 unsigned long offset;
747 offset = do_div(sb_index, blocksize);
748 *pbh = sb_bread(sb, sb_index);
751 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
754 int nilfs_store_magic_and_option(struct super_block *sb,
755 struct nilfs_super_block *sbp,
758 struct nilfs_sb_info *sbi = NILFS_SB(sb);
760 sb->s_magic = le16_to_cpu(sbp->s_magic);
762 /* FS independent flags */
763 #ifdef NILFS_ATIME_DISABLE
764 sb->s_flags |= MS_NOATIME;
767 nilfs_set_default_options(sbi, sbp);
769 sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
770 sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
771 sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
772 sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
774 return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
777 int nilfs_check_feature_compatibility(struct super_block *sb,
778 struct nilfs_super_block *sbp)
782 features = le64_to_cpu(sbp->s_feature_incompat) &
783 ~NILFS_FEATURE_INCOMPAT_SUPP;
785 printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
786 "optional features (%llx)\n",
787 (unsigned long long)features);
790 features = le64_to_cpu(sbp->s_feature_compat_ro) &
791 ~NILFS_FEATURE_COMPAT_RO_SUPP;
792 if (!(sb->s_flags & MS_RDONLY) && features) {
793 printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
794 "unsupported optional features (%llx)\n",
795 (unsigned long long)features);
802 * nilfs_fill_super() - initialize a super block instance
804 * @data: mount options
805 * @silent: silent mode flag
806 * @nilfs: the_nilfs struct
808 * This function is called exclusively by nilfs->ns_mount_mutex.
809 * So, the recovery process is protected from other simultaneous mounts.
812 nilfs_fill_super(struct super_block *sb, void *data, int silent,
813 struct the_nilfs *nilfs)
815 struct nilfs_sb_info *sbi;
820 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
827 sbi->s_nilfs = nilfs;
829 atomic_set(&sbi->s_count, 1);
831 err = init_nilfs(nilfs, sbi, (char *)data);
835 spin_lock_init(&sbi->s_inode_lock);
836 INIT_LIST_HEAD(&sbi->s_dirty_files);
837 INIT_LIST_HEAD(&sbi->s_list);
840 * Following initialization is overlapped because
841 * nilfs_sb_info structure has been cleared at the beginning.
842 * But we reserve them to keep our interest and make ready
843 * for the future change.
845 get_random_bytes(&sbi->s_next_generation,
846 sizeof(sbi->s_next_generation));
847 spin_lock_init(&sbi->s_next_gen_lock);
849 sb->s_op = &nilfs_sops;
850 sb->s_export_op = &nilfs_export_ops;
853 sb->s_bdi = nilfs->ns_bdi;
855 err = load_nilfs(nilfs, sbi);
859 cno = nilfs_last_cno(nilfs);
861 if (sb->s_flags & MS_RDONLY) {
862 if (nilfs_test_opt(sbi, SNAPSHOT)) {
863 down_read(&nilfs->ns_segctor_sem);
864 err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
865 sbi->s_snapshot_cno);
866 up_read(&nilfs->ns_segctor_sem);
874 "NILFS: The specified checkpoint is "
876 "(checkpoint number=%llu).\n",
877 (unsigned long long)sbi->s_snapshot_cno);
881 cno = sbi->s_snapshot_cno;
885 err = nilfs_attach_checkpoint(sbi, cno);
887 printk(KERN_ERR "NILFS: error loading a checkpoint"
888 " (checkpoint number=%llu).\n", (unsigned long long)cno);
892 if (!(sb->s_flags & MS_RDONLY)) {
893 err = nilfs_attach_segment_constructor(sbi);
895 goto failed_checkpoint;
898 root = nilfs_iget(sb, NILFS_ROOT_INO);
900 printk(KERN_ERR "NILFS: get root inode failed\n");
904 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
906 printk(KERN_ERR "NILFS: corrupt root inode.\n");
910 sb->s_root = d_alloc_root(root);
913 printk(KERN_ERR "NILFS: get root dentry failed\n");
918 if (!(sb->s_flags & MS_RDONLY)) {
919 down_write(&nilfs->ns_sem);
920 nilfs_setup_super(sbi);
921 up_write(&nilfs->ns_sem);
924 down_write(&nilfs->ns_super_sem);
925 if (!nilfs_test_opt(sbi, SNAPSHOT))
926 nilfs->ns_current = sbi;
927 up_write(&nilfs->ns_super_sem);
932 nilfs_detach_segment_constructor(sbi);
935 nilfs_detach_checkpoint(sbi);
939 sb->s_fs_info = NULL;
940 nilfs_put_sbinfo(sbi);
944 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
946 struct nilfs_sb_info *sbi = NILFS_SB(sb);
947 struct the_nilfs *nilfs = sbi->s_nilfs;
948 unsigned long old_sb_flags;
949 struct nilfs_mount_options old_opts;
950 int was_snapshot, err;
954 down_write(&nilfs->ns_super_sem);
955 old_sb_flags = sb->s_flags;
956 old_opts.mount_opt = sbi->s_mount_opt;
957 old_opts.snapshot_cno = sbi->s_snapshot_cno;
958 was_snapshot = nilfs_test_opt(sbi, SNAPSHOT);
960 if (!parse_options(data, sb, 1)) {
964 sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
967 if (was_snapshot && !(*flags & MS_RDONLY)) {
968 printk(KERN_ERR "NILFS (device %s): cannot remount snapshot "
969 "read/write.\n", sb->s_id);
973 if (!nilfs_valid_fs(nilfs)) {
974 printk(KERN_WARNING "NILFS (device %s): couldn't "
975 "remount because the filesystem is in an "
976 "incomplete recovery state.\n", sb->s_id);
980 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
982 if (*flags & MS_RDONLY) {
983 /* Shutting down the segment constructor */
984 nilfs_detach_segment_constructor(sbi);
985 sb->s_flags |= MS_RDONLY;
988 * Remounting a valid RW partition RDONLY, so set
989 * the RDONLY flag and then mark the partition as valid again.
991 down_write(&nilfs->ns_sem);
992 nilfs_cleanup_super(sbi);
993 up_write(&nilfs->ns_sem);
998 * Mounting a RDONLY partition read-write, so reread and
999 * store the current valid flag. (It may have been changed
1000 * by fsck since we originally mounted the partition.)
1002 down_read(&nilfs->ns_sem);
1003 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1004 ~NILFS_FEATURE_COMPAT_RO_SUPP;
1005 up_read(&nilfs->ns_sem);
1007 printk(KERN_WARNING "NILFS (device %s): couldn't "
1008 "remount RDWR because of unsupported optional "
1009 "features (%llx)\n",
1010 sb->s_id, (unsigned long long)features);
1015 sb->s_flags &= ~MS_RDONLY;
1017 err = nilfs_attach_segment_constructor(sbi);
1021 down_write(&nilfs->ns_sem);
1022 nilfs_setup_super(sbi);
1023 up_write(&nilfs->ns_sem);
1026 up_write(&nilfs->ns_super_sem);
1031 sb->s_flags = old_sb_flags;
1032 sbi->s_mount_opt = old_opts.mount_opt;
1033 sbi->s_snapshot_cno = old_opts.snapshot_cno;
1034 up_write(&nilfs->ns_super_sem);
1039 struct nilfs_super_data {
1040 struct block_device *bdev;
1041 struct nilfs_sb_info *sbi;
1047 * nilfs_identify - pre-read mount options needed to identify mount instance
1048 * @data: mount options
1049 * @sd: nilfs_super_data
1051 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1053 char *p, *options = data;
1054 substring_t args[MAX_OPT_ARGS];
1059 p = strsep(&options, ",");
1060 if (p != NULL && *p) {
1061 token = match_token(p, tokens, args);
1062 if (token == Opt_snapshot) {
1063 if (!(sd->flags & MS_RDONLY))
1066 ret = match_int(&args[0], &option);
1077 "NILFS: invalid mount option: %s\n", p);
1081 BUG_ON(options == data);
1082 *(options - 1) = ',';
1087 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1089 struct nilfs_super_data *sd = data;
1091 s->s_bdev = sd->bdev;
1092 s->s_dev = s->s_bdev->bd_dev;
1096 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1098 struct nilfs_super_data *sd = data;
1100 return sd->sbi && s->s_fs_info == (void *)sd->sbi;
1104 nilfs_get_sb(struct file_system_type *fs_type, int flags,
1105 const char *dev_name, void *data, struct vfsmount *mnt)
1107 struct nilfs_super_data sd;
1108 struct super_block *s;
1109 fmode_t mode = FMODE_READ;
1110 struct the_nilfs *nilfs;
1111 int err, need_to_close = 1;
1113 if (!(flags & MS_RDONLY))
1114 mode |= FMODE_WRITE;
1116 sd.bdev = open_bdev_exclusive(dev_name, mode, fs_type);
1117 if (IS_ERR(sd.bdev))
1118 return PTR_ERR(sd.bdev);
1121 * To get mount instance using sget() vfs-routine, NILFS needs
1122 * much more information than normal filesystems to identify mount
1123 * instance. For snapshot mounts, not only a mount type (ro-mount
1124 * or rw-mount) but also a checkpoint number is required.
1128 if (nilfs_identify((char *)data, &sd)) {
1133 nilfs = find_or_create_nilfs(sd.bdev);
1139 mutex_lock(&nilfs->ns_mount_mutex);
1143 * Check if an exclusive mount exists or not.
1144 * Snapshot mounts coexist with a current mount
1145 * (i.e. rw-mount or ro-mount), whereas rw-mount and
1146 * ro-mount are mutually exclusive.
1148 down_read(&nilfs->ns_super_sem);
1149 if (nilfs->ns_current &&
1150 ((nilfs->ns_current->s_super->s_flags ^ flags)
1152 up_read(&nilfs->ns_super_sem);
1156 up_read(&nilfs->ns_super_sem);
1160 * Find existing nilfs_sb_info struct
1162 sd.sbi = nilfs_find_sbinfo(nilfs, !(flags & MS_RDONLY), sd.cno);
1165 * Get super block instance holding the nilfs_sb_info struct.
1166 * A new instance is allocated if no existing mount is present or
1167 * existing instance has been unmounted.
1169 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
1171 nilfs_put_sbinfo(sd.sbi);
1179 char b[BDEVNAME_SIZE];
1181 /* New superblock instance created */
1184 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1185 sb_set_blocksize(s, block_size(sd.bdev));
1187 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0,
1192 s->s_flags |= MS_ACTIVE;
1196 mutex_unlock(&nilfs->ns_mount_mutex);
1199 close_bdev_exclusive(sd.bdev, mode);
1200 simple_set_mnt(mnt, s);
1204 mutex_unlock(&nilfs->ns_mount_mutex);
1207 close_bdev_exclusive(sd.bdev, mode);
1212 /* Abandoning the newly allocated superblock */
1213 mutex_unlock(&nilfs->ns_mount_mutex);
1215 deactivate_locked_super(s);
1217 * deactivate_locked_super() invokes close_bdev_exclusive().
1218 * We must finish all post-cleaning before this call;
1219 * put_nilfs() needs the block device.
1224 struct file_system_type nilfs_fs_type = {
1225 .owner = THIS_MODULE,
1227 .get_sb = nilfs_get_sb,
1228 .kill_sb = kill_block_super,
1229 .fs_flags = FS_REQUIRES_DEV,
1232 static void nilfs_inode_init_once(void *obj)
1234 struct nilfs_inode_info *ii = obj;
1236 INIT_LIST_HEAD(&ii->i_dirty);
1237 #ifdef CONFIG_NILFS_XATTR
1238 init_rwsem(&ii->xattr_sem);
1240 nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
1241 ii->i_bmap = &ii->i_bmap_data;
1242 inode_init_once(&ii->vfs_inode);
1245 static void nilfs_segbuf_init_once(void *obj)
1247 memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1250 static void nilfs_destroy_cachep(void)
1252 if (nilfs_inode_cachep)
1253 kmem_cache_destroy(nilfs_inode_cachep);
1254 if (nilfs_transaction_cachep)
1255 kmem_cache_destroy(nilfs_transaction_cachep);
1256 if (nilfs_segbuf_cachep)
1257 kmem_cache_destroy(nilfs_segbuf_cachep);
1258 if (nilfs_btree_path_cache)
1259 kmem_cache_destroy(nilfs_btree_path_cache);
1262 static int __init nilfs_init_cachep(void)
1264 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1265 sizeof(struct nilfs_inode_info), 0,
1266 SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1267 if (!nilfs_inode_cachep)
1270 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1271 sizeof(struct nilfs_transaction_info), 0,
1272 SLAB_RECLAIM_ACCOUNT, NULL);
1273 if (!nilfs_transaction_cachep)
1276 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1277 sizeof(struct nilfs_segment_buffer), 0,
1278 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1279 if (!nilfs_segbuf_cachep)
1282 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1283 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1285 if (!nilfs_btree_path_cache)
1291 nilfs_destroy_cachep();
1295 static int __init init_nilfs_fs(void)
1299 err = nilfs_init_cachep();
1303 err = register_filesystem(&nilfs_fs_type);
1307 printk(KERN_INFO "NILFS version 2 loaded\n");
1311 nilfs_destroy_cachep();
1316 static void __exit exit_nilfs_fs(void)
1318 nilfs_destroy_cachep();
1319 unregister_filesystem(&nilfs_fs_type);
1322 module_init(init_nilfs_fs)
1323 module_exit(exit_nilfs_fs)