NFS: make direct write path generate write requests concurrently
[pandora-kernel.git] / fs / nfs / direct.c
1 /*
2  * linux/fs/nfs/direct.c
3  *
4  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5  *
6  * High-performance uncached I/O for the Linux NFS client
7  *
8  * There are important applications whose performance or correctness
9  * depends on uncached access to file data.  Database clusters
10  * (multiple copies of the same instance running on separate hosts) 
11  * implement their own cache coherency protocol that subsumes file
12  * system cache protocols.  Applications that process datasets 
13  * considerably larger than the client's memory do not always benefit 
14  * from a local cache.  A streaming video server, for instance, has no 
15  * need to cache the contents of a file.
16  *
17  * When an application requests uncached I/O, all read and write requests
18  * are made directly to the server; data stored or fetched via these
19  * requests is not cached in the Linux page cache.  The client does not
20  * correct unaligned requests from applications.  All requested bytes are
21  * held on permanent storage before a direct write system call returns to
22  * an application.
23  *
24  * Solaris implements an uncached I/O facility called directio() that
25  * is used for backups and sequential I/O to very large files.  Solaris
26  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27  * an undocumented mount option.
28  *
29  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30  * help from Andrew Morton.
31  *
32  * 18 Dec 2001  Initial implementation for 2.4  --cel
33  * 08 Jul 2002  Version for 2.4.19, with bug fixes --trondmy
34  * 08 Jun 2003  Port to 2.5 APIs  --cel
35  * 31 Mar 2004  Handle direct I/O without VFS support  --cel
36  * 15 Sep 2004  Parallel async reads  --cel
37  *
38  */
39
40 #include <linux/config.h>
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/smp_lock.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
48
49 #include <linux/nfs_fs.h>
50 #include <linux/nfs_page.h>
51 #include <linux/sunrpc/clnt.h>
52
53 #include <asm/system.h>
54 #include <asm/uaccess.h>
55 #include <asm/atomic.h>
56
57 #include "iostat.h"
58
59 #define NFSDBG_FACILITY         NFSDBG_VFS
60 #define MAX_DIRECTIO_SIZE       (4096UL << PAGE_SHIFT)
61
62 static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty);
63 static kmem_cache_t *nfs_direct_cachep;
64
65 /*
66  * This represents a set of asynchronous requests that we're waiting on
67  */
68 struct nfs_direct_req {
69         struct kref             kref;           /* release manager */
70         struct list_head        list;           /* nfs_read_data structs */
71         struct file *           filp;           /* file descriptor */
72         struct kiocb *          iocb;           /* controlling i/o request */
73         wait_queue_head_t       wait;           /* wait for i/o completion */
74         struct inode *          inode;          /* target file of I/O */
75         struct page **          pages;          /* pages in our buffer */
76         unsigned int            npages;         /* count of pages */
77         atomic_t                complete,       /* i/os we're waiting for */
78                                 count,          /* bytes actually processed */
79                                 error;          /* any reported error */
80 };
81
82
83 /**
84  * nfs_direct_IO - NFS address space operation for direct I/O
85  * @rw: direction (read or write)
86  * @iocb: target I/O control block
87  * @iov: array of vectors that define I/O buffer
88  * @pos: offset in file to begin the operation
89  * @nr_segs: size of iovec array
90  *
91  * The presence of this routine in the address space ops vector means
92  * the NFS client supports direct I/O.  However, we shunt off direct
93  * read and write requests before the VFS gets them, so this method
94  * should never be called.
95  */
96 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
97 {
98         struct dentry *dentry = iocb->ki_filp->f_dentry;
99
100         dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
101                         dentry->d_name.name, (long long) pos, nr_segs);
102
103         return -EINVAL;
104 }
105
106 static inline int nfs_get_user_pages(int rw, unsigned long user_addr, size_t size, struct page ***pages)
107 {
108         int result = -ENOMEM;
109         unsigned long page_count;
110         size_t array_size;
111
112         /* set an arbitrary limit to prevent type overflow */
113         /* XXX: this can probably be as large as INT_MAX */
114         if (size > MAX_DIRECTIO_SIZE) {
115                 *pages = NULL;
116                 return -EFBIG;
117         }
118
119         page_count = (user_addr + size + PAGE_SIZE - 1) >> PAGE_SHIFT;
120         page_count -= user_addr >> PAGE_SHIFT;
121
122         array_size = (page_count * sizeof(struct page *));
123         *pages = kmalloc(array_size, GFP_KERNEL);
124         if (*pages) {
125                 down_read(&current->mm->mmap_sem);
126                 result = get_user_pages(current, current->mm, user_addr,
127                                         page_count, (rw == READ), 0,
128                                         *pages, NULL);
129                 up_read(&current->mm->mmap_sem);
130                 /*
131                  * If we got fewer pages than expected from get_user_pages(),
132                  * the user buffer runs off the end of a mapping; return EFAULT.
133                  */
134                 if (result >= 0 && result < page_count) {
135                         nfs_free_user_pages(*pages, result, 0);
136                         *pages = NULL;
137                         result = -EFAULT;
138                 }
139         }
140         return result;
141 }
142
143 static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty)
144 {
145         int i;
146         for (i = 0; i < npages; i++) {
147                 struct page *page = pages[i];
148                 if (do_dirty && !PageCompound(page))
149                         set_page_dirty_lock(page);
150                 page_cache_release(page);
151         }
152         kfree(pages);
153 }
154
155 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
156 {
157         struct nfs_direct_req *dreq;
158
159         dreq = kmem_cache_alloc(nfs_direct_cachep, SLAB_KERNEL);
160         if (!dreq)
161                 return NULL;
162
163         kref_init(&dreq->kref);
164         init_waitqueue_head(&dreq->wait);
165         INIT_LIST_HEAD(&dreq->list);
166         dreq->iocb = NULL;
167         atomic_set(&dreq->count, 0);
168         atomic_set(&dreq->error, 0);
169
170         return dreq;
171 }
172
173 static void nfs_direct_req_release(struct kref *kref)
174 {
175         struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
176         kmem_cache_free(nfs_direct_cachep, dreq);
177 }
178
179 /*
180  * Collects and returns the final error value/byte-count.
181  */
182 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
183 {
184         int result = -EIOCBQUEUED;
185
186         /* Async requests don't wait here */
187         if (dreq->iocb)
188                 goto out;
189
190         result = wait_event_interruptible(dreq->wait,
191                                         (atomic_read(&dreq->complete) == 0));
192
193         if (!result)
194                 result = atomic_read(&dreq->error);
195         if (!result)
196                 result = atomic_read(&dreq->count);
197
198 out:
199         kref_put(&dreq->kref, nfs_direct_req_release);
200         return (ssize_t) result;
201 }
202
203 /*
204  * We must hold a reference to all the pages in this direct read request
205  * until the RPCs complete.  This could be long *after* we are woken up in
206  * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
207  *
208  * In addition, synchronous I/O uses a stack-allocated iocb.  Thus we
209  * can't trust the iocb is still valid here if this is a synchronous
210  * request.  If the waiter is woken prematurely, the iocb is long gone.
211  */
212 static void nfs_direct_complete(struct nfs_direct_req *dreq)
213 {
214         nfs_free_user_pages(dreq->pages, dreq->npages, 1);
215
216         if (dreq->iocb) {
217                 long res = atomic_read(&dreq->error);
218                 if (!res)
219                         res = atomic_read(&dreq->count);
220                 aio_complete(dreq->iocb, res, 0);
221         } else
222                 wake_up(&dreq->wait);
223
224         kref_put(&dreq->kref, nfs_direct_req_release);
225 }
226
227 /*
228  * Note we also set the number of requests we have in the dreq when we are
229  * done.  This prevents races with I/O completion so we will always wait
230  * until all requests have been dispatched and completed.
231  */
232 static struct nfs_direct_req *nfs_direct_read_alloc(size_t nbytes, size_t rsize)
233 {
234         struct list_head *list;
235         struct nfs_direct_req *dreq;
236         unsigned int reads = 0;
237         unsigned int rpages = (rsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
238
239         dreq = nfs_direct_req_alloc();
240         if (!dreq)
241                 return NULL;
242
243         list = &dreq->list;
244         for(;;) {
245                 struct nfs_read_data *data = nfs_readdata_alloc(rpages);
246
247                 if (unlikely(!data)) {
248                         while (!list_empty(list)) {
249                                 data = list_entry(list->next,
250                                                   struct nfs_read_data, pages);
251                                 list_del(&data->pages);
252                                 nfs_readdata_free(data);
253                         }
254                         kref_put(&dreq->kref, nfs_direct_req_release);
255                         return NULL;
256                 }
257
258                 INIT_LIST_HEAD(&data->pages);
259                 list_add(&data->pages, list);
260
261                 data->req = (struct nfs_page *) dreq;
262                 reads++;
263                 if (nbytes <= rsize)
264                         break;
265                 nbytes -= rsize;
266         }
267         kref_get(&dreq->kref);
268         atomic_set(&dreq->complete, reads);
269         return dreq;
270 }
271
272 static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
273 {
274         struct nfs_read_data *data = calldata;
275         struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
276
277         if (nfs_readpage_result(task, data) != 0)
278                 return;
279         if (likely(task->tk_status >= 0))
280                 atomic_add(data->res.count, &dreq->count);
281         else
282                 atomic_set(&dreq->error, task->tk_status);
283
284         if (unlikely(atomic_dec_and_test(&dreq->complete)))
285                 nfs_direct_complete(dreq);
286 }
287
288 static const struct rpc_call_ops nfs_read_direct_ops = {
289         .rpc_call_done = nfs_direct_read_result,
290         .rpc_release = nfs_readdata_release,
291 };
292
293 /*
294  * For each nfs_read_data struct that was allocated on the list, dispatch
295  * an NFS READ operation
296  */
297 static void nfs_direct_read_schedule(struct nfs_direct_req *dreq, unsigned long user_addr, size_t count, loff_t file_offset)
298 {
299         struct file *file = dreq->filp;
300         struct inode *inode = file->f_mapping->host;
301         struct nfs_open_context *ctx = (struct nfs_open_context *)
302                                                         file->private_data;
303         struct list_head *list = &dreq->list;
304         struct page **pages = dreq->pages;
305         size_t rsize = NFS_SERVER(inode)->rsize;
306         unsigned int curpage, pgbase;
307
308         curpage = 0;
309         pgbase = user_addr & ~PAGE_MASK;
310         do {
311                 struct nfs_read_data *data;
312                 size_t bytes;
313
314                 bytes = rsize;
315                 if (count < rsize)
316                         bytes = count;
317
318                 data = list_entry(list->next, struct nfs_read_data, pages);
319                 list_del_init(&data->pages);
320
321                 data->inode = inode;
322                 data->cred = ctx->cred;
323                 data->args.fh = NFS_FH(inode);
324                 data->args.context = ctx;
325                 data->args.offset = file_offset;
326                 data->args.pgbase = pgbase;
327                 data->args.pages = &pages[curpage];
328                 data->args.count = bytes;
329                 data->res.fattr = &data->fattr;
330                 data->res.eof = 0;
331                 data->res.count = bytes;
332
333                 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
334                                 &nfs_read_direct_ops, data);
335                 NFS_PROTO(inode)->read_setup(data);
336
337                 data->task.tk_cookie = (unsigned long) inode;
338
339                 lock_kernel();
340                 rpc_execute(&data->task);
341                 unlock_kernel();
342
343                 dfprintk(VFS, "NFS: %4d initiated direct read call (req %s/%Ld, %u bytes @ offset %Lu)\n",
344                                 data->task.tk_pid,
345                                 inode->i_sb->s_id,
346                                 (long long)NFS_FILEID(inode),
347                                 bytes,
348                                 (unsigned long long)data->args.offset);
349
350                 file_offset += bytes;
351                 pgbase += bytes;
352                 curpage += pgbase >> PAGE_SHIFT;
353                 pgbase &= ~PAGE_MASK;
354
355                 count -= bytes;
356         } while (count != 0);
357 }
358
359 static ssize_t nfs_direct_read(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t file_offset, struct page **pages, unsigned int nr_pages)
360 {
361         ssize_t result;
362         sigset_t oldset;
363         struct inode *inode = iocb->ki_filp->f_mapping->host;
364         struct rpc_clnt *clnt = NFS_CLIENT(inode);
365         struct nfs_direct_req *dreq;
366
367         dreq = nfs_direct_read_alloc(count, NFS_SERVER(inode)->rsize);
368         if (!dreq)
369                 return -ENOMEM;
370
371         dreq->pages = pages;
372         dreq->npages = nr_pages;
373         dreq->inode = inode;
374         dreq->filp = iocb->ki_filp;
375         if (!is_sync_kiocb(iocb))
376                 dreq->iocb = iocb;
377
378         nfs_add_stats(inode, NFSIOS_DIRECTREADBYTES, count);
379         rpc_clnt_sigmask(clnt, &oldset);
380         nfs_direct_read_schedule(dreq, user_addr, count, file_offset);
381         result = nfs_direct_wait(dreq);
382         rpc_clnt_sigunmask(clnt, &oldset);
383
384         return result;
385 }
386
387 static struct nfs_direct_req *nfs_direct_write_alloc(size_t nbytes, size_t wsize)
388 {
389         struct list_head *list;
390         struct nfs_direct_req *dreq;
391         unsigned int writes = 0;
392         unsigned int wpages = (wsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
393
394         dreq = nfs_direct_req_alloc();
395         if (!dreq)
396                 return NULL;
397
398         list = &dreq->list;
399         for(;;) {
400                 struct nfs_write_data *data = nfs_writedata_alloc(wpages);
401
402                 if (unlikely(!data)) {
403                         while (!list_empty(list)) {
404                                 data = list_entry(list->next,
405                                                   struct nfs_write_data, pages);
406                                 list_del(&data->pages);
407                                 nfs_writedata_free(data);
408                         }
409                         kref_put(&dreq->kref, nfs_direct_req_release);
410                         return NULL;
411                 }
412
413                 INIT_LIST_HEAD(&data->pages);
414                 list_add(&data->pages, list);
415
416                 data->req = (struct nfs_page *) dreq;
417                 writes++;
418                 if (nbytes <= wsize)
419                         break;
420                 nbytes -= wsize;
421         }
422         kref_get(&dreq->kref);
423         atomic_set(&dreq->complete, writes);
424         return dreq;
425 }
426
427 /*
428  * Collects and returns the final error value/byte-count.
429  */
430 static ssize_t nfs_direct_write_wait(struct nfs_direct_req *dreq, int intr)
431 {
432         int result = 0;
433
434         if (intr) {
435                 result = wait_event_interruptible(dreq->wait,
436                                         (atomic_read(&dreq->complete) == 0));
437         } else {
438                 wait_event(dreq->wait, (atomic_read(&dreq->complete) == 0));
439         }
440
441         if (!result)
442                 result = atomic_read(&dreq->error);
443         if (!result)
444                 result = atomic_read(&dreq->count);
445
446         kref_put(&dreq->kref, nfs_direct_req_release);
447         return (ssize_t) result;
448 }
449
450 static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
451 {
452         struct nfs_write_data *data = calldata;
453         struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
454         int status = task->tk_status;
455
456         if (nfs_writeback_done(task, data) != 0)
457                 return;
458         /* If the server fell back to an UNSTABLE write, it's an error. */
459         if (unlikely(data->res.verf->committed != NFS_FILE_SYNC))
460                 status = -EIO;
461
462         if (likely(status >= 0))
463                 atomic_add(data->res.count, &dreq->count);
464         else
465                 atomic_set(&dreq->error, status);
466
467         if (unlikely(atomic_dec_and_test(&dreq->complete)))
468                 nfs_direct_complete(dreq);
469 }
470
471 static const struct rpc_call_ops nfs_write_direct_ops = {
472         .rpc_call_done = nfs_direct_write_result,
473         .rpc_release = nfs_writedata_release,
474 };
475
476 /*
477  * For each nfs_write_data struct that was allocated on the list, dispatch
478  * an NFS WRITE operation
479  *
480  * XXX: For now, support only FILE_SYNC writes.  Later we may add
481  *      support for UNSTABLE + COMMIT.
482  */
483 static void nfs_direct_write_schedule(struct nfs_direct_req *dreq, struct inode *inode, struct nfs_open_context *ctx, unsigned long user_addr, size_t count, loff_t file_offset)
484 {
485         struct list_head *list = &dreq->list;
486         struct page **pages = dreq->pages;
487         size_t wsize = NFS_SERVER(inode)->wsize;
488         unsigned int curpage, pgbase;
489
490         curpage = 0;
491         pgbase = user_addr & ~PAGE_MASK;
492         do {
493                 struct nfs_write_data *data;
494                 size_t bytes;
495
496                 bytes = wsize;
497                 if (count < wsize)
498                         bytes = count;
499
500                 data = list_entry(list->next, struct nfs_write_data, pages);
501                 list_del_init(&data->pages);
502
503                 data->inode = inode;
504                 data->cred = ctx->cred;
505                 data->args.fh = NFS_FH(inode);
506                 data->args.context = ctx;
507                 data->args.offset = file_offset;
508                 data->args.pgbase = pgbase;
509                 data->args.pages = &pages[curpage];
510                 data->args.count = bytes;
511                 data->res.fattr = &data->fattr;
512                 data->res.count = bytes;
513
514                 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
515                                 &nfs_write_direct_ops, data);
516                 NFS_PROTO(inode)->write_setup(data, FLUSH_STABLE);
517
518                 data->task.tk_priority = RPC_PRIORITY_NORMAL;
519                 data->task.tk_cookie = (unsigned long) inode;
520
521                 lock_kernel();
522                 rpc_execute(&data->task);
523                 unlock_kernel();
524
525                 dfprintk(VFS, "NFS: %4d initiated direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
526                                 data->task.tk_pid,
527                                 inode->i_sb->s_id,
528                                 (long long)NFS_FILEID(inode),
529                                 bytes,
530                                 (unsigned long long)data->args.offset);
531
532                 file_offset += bytes;
533                 pgbase += bytes;
534                 curpage += pgbase >> PAGE_SHIFT;
535                 pgbase &= ~PAGE_MASK;
536
537                 count -= bytes;
538         } while (count != 0);
539 }
540
541 static ssize_t nfs_direct_write_seg(struct inode *inode, struct nfs_open_context *ctx, unsigned long user_addr, size_t count, loff_t file_offset, struct page **pages, int nr_pages)
542 {
543         ssize_t result;
544         sigset_t oldset;
545         struct rpc_clnt *clnt = NFS_CLIENT(inode);
546         struct nfs_direct_req *dreq;
547
548         dreq = nfs_direct_write_alloc(count, NFS_SERVER(inode)->wsize);
549         if (!dreq)
550                 return -ENOMEM;
551
552         dreq->pages = pages;
553         dreq->npages = nr_pages;
554
555         nfs_begin_data_update(inode);
556
557         rpc_clnt_sigmask(clnt, &oldset);
558         nfs_direct_write_schedule(dreq, inode, ctx, user_addr, count,
559                                   file_offset);
560         result = nfs_direct_write_wait(dreq, clnt->cl_intr);
561         rpc_clnt_sigunmask(clnt, &oldset);
562
563         nfs_end_data_update(inode);
564
565         return result;
566 }
567
568 /*
569  * Upon return, generic_file_direct_IO invalidates any cached pages
570  * that non-direct readers might access, so they will pick up these
571  * writes immediately.
572  */
573 static ssize_t nfs_direct_write(struct inode *inode, struct nfs_open_context *ctx, const struct iovec *iov, loff_t file_offset, unsigned long nr_segs)
574 {
575         ssize_t tot_bytes = 0;
576         unsigned long seg = 0;
577
578         while ((seg < nr_segs) && (tot_bytes >= 0)) {
579                 ssize_t result;
580                 int page_count;
581                 struct page **pages;
582                 const struct iovec *vec = &iov[seg++];
583                 unsigned long user_addr = (unsigned long) vec->iov_base;
584                 size_t size = vec->iov_len;
585
586                 page_count = nfs_get_user_pages(WRITE, user_addr, size, &pages);
587                 if (page_count < 0) {
588                         nfs_free_user_pages(pages, 0, 0);
589                         if (tot_bytes > 0)
590                                 break;
591                         return page_count;
592                 }
593
594                 nfs_add_stats(inode, NFSIOS_DIRECTWRITTENBYTES, size);
595                 result = nfs_direct_write_seg(inode, ctx, user_addr, size,
596                                 file_offset, pages, page_count);
597
598                 if (result <= 0) {
599                         if (tot_bytes > 0)
600                                 break;
601                         return result;
602                 }
603                 nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, result);
604                 tot_bytes += result;
605                 file_offset += result;
606                 if (result < size)
607                         break;
608         }
609         return tot_bytes;
610 }
611
612 /**
613  * nfs_file_direct_read - file direct read operation for NFS files
614  * @iocb: target I/O control block
615  * @buf: user's buffer into which to read data
616  * count: number of bytes to read
617  * pos: byte offset in file where reading starts
618  *
619  * We use this function for direct reads instead of calling
620  * generic_file_aio_read() in order to avoid gfar's check to see if
621  * the request starts before the end of the file.  For that check
622  * to work, we must generate a GETATTR before each direct read, and
623  * even then there is a window between the GETATTR and the subsequent
624  * READ where the file size could change.  So our preference is simply
625  * to do all reads the application wants, and the server will take
626  * care of managing the end of file boundary.
627  * 
628  * This function also eliminates unnecessarily updating the file's
629  * atime locally, as the NFS server sets the file's atime, and this
630  * client must read the updated atime from the server back into its
631  * cache.
632  */
633 ssize_t nfs_file_direct_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
634 {
635         ssize_t retval = -EINVAL;
636         int page_count;
637         struct page **pages;
638         struct file *file = iocb->ki_filp;
639         struct address_space *mapping = file->f_mapping;
640
641         dprintk("nfs: direct read(%s/%s, %lu@%Ld)\n",
642                 file->f_dentry->d_parent->d_name.name,
643                 file->f_dentry->d_name.name,
644                 (unsigned long) count, (long long) pos);
645
646         if (count < 0)
647                 goto out;
648         retval = -EFAULT;
649         if (!access_ok(VERIFY_WRITE, buf, count))
650                 goto out;
651         retval = 0;
652         if (!count)
653                 goto out;
654
655         retval = nfs_sync_mapping(mapping);
656         if (retval)
657                 goto out;
658
659         page_count = nfs_get_user_pages(READ, (unsigned long) buf,
660                                                 count, &pages);
661         if (page_count < 0) {
662                 nfs_free_user_pages(pages, 0, 0);
663                 retval = page_count;
664                 goto out;
665         }
666
667         retval = nfs_direct_read(iocb, (unsigned long) buf, count, pos,
668                                                 pages, page_count);
669         if (retval > 0)
670                 iocb->ki_pos = pos + retval;
671
672 out:
673         return retval;
674 }
675
676 /**
677  * nfs_file_direct_write - file direct write operation for NFS files
678  * @iocb: target I/O control block
679  * @buf: user's buffer from which to write data
680  * count: number of bytes to write
681  * pos: byte offset in file where writing starts
682  *
683  * We use this function for direct writes instead of calling
684  * generic_file_aio_write() in order to avoid taking the inode
685  * semaphore and updating the i_size.  The NFS server will set
686  * the new i_size and this client must read the updated size
687  * back into its cache.  We let the server do generic write
688  * parameter checking and report problems.
689  *
690  * We also avoid an unnecessary invocation of generic_osync_inode(),
691  * as it is fairly meaningless to sync the metadata of an NFS file.
692  *
693  * We eliminate local atime updates, see direct read above.
694  *
695  * We avoid unnecessary page cache invalidations for normal cached
696  * readers of this file.
697  *
698  * Note that O_APPEND is not supported for NFS direct writes, as there
699  * is no atomic O_APPEND write facility in the NFS protocol.
700  */
701 ssize_t nfs_file_direct_write(struct kiocb *iocb, const char __user *buf, size_t count, loff_t pos)
702 {
703         ssize_t retval;
704         struct file *file = iocb->ki_filp;
705         struct nfs_open_context *ctx =
706                         (struct nfs_open_context *) file->private_data;
707         struct address_space *mapping = file->f_mapping;
708         struct inode *inode = mapping->host;
709         struct iovec iov = {
710                 .iov_base = (char __user *)buf,
711         };
712
713         dfprintk(VFS, "nfs: direct write(%s/%s, %lu@%Ld)\n",
714                 file->f_dentry->d_parent->d_name.name,
715                 file->f_dentry->d_name.name,
716                 (unsigned long) count, (long long) pos);
717
718         retval = -EINVAL;
719         if (!is_sync_kiocb(iocb))
720                 goto out;
721
722         retval = generic_write_checks(file, &pos, &count, 0);
723         if (retval)
724                 goto out;
725
726         retval = -EINVAL;
727         if ((ssize_t) count < 0)
728                 goto out;
729         retval = 0;
730         if (!count)
731                 goto out;
732         iov.iov_len = count,
733
734         retval = -EFAULT;
735         if (!access_ok(VERIFY_READ, iov.iov_base, iov.iov_len))
736                 goto out;
737
738         retval = nfs_sync_mapping(mapping);
739         if (retval)
740                 goto out;
741
742         retval = nfs_direct_write(inode, ctx, &iov, pos, 1);
743         if (mapping->nrpages)
744                 invalidate_inode_pages2(mapping);
745         if (retval > 0)
746                 iocb->ki_pos = pos + retval;
747
748 out:
749         return retval;
750 }
751
752 int nfs_init_directcache(void)
753 {
754         nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
755                                                 sizeof(struct nfs_direct_req),
756                                                 0, SLAB_RECLAIM_ACCOUNT,
757                                                 NULL, NULL);
758         if (nfs_direct_cachep == NULL)
759                 return -ENOMEM;
760
761         return 0;
762 }
763
764 void nfs_destroy_directcache(void)
765 {
766         if (kmem_cache_destroy(nfs_direct_cachep))
767                 printk(KERN_INFO "nfs_direct_cache: not all structures were freed\n");
768 }