Merge tag 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck...
[pandora-kernel.git] / fs / nfs / dir.c
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996  Added silly rename for unlink   --okir
9  * 28 Sep 1996  Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999  Cache readdir lookups in the page cache. -DaveM
18  */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36 #include <linux/kmemleak.h>
37 #include <linux/xattr.h>
38
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42 #include "fscache.h"
43
44 /* #define NFS_DEBUG_VERBOSE 1 */
45
46 static int nfs_opendir(struct inode *, struct file *);
47 static int nfs_closedir(struct inode *, struct file *);
48 static int nfs_readdir(struct file *, void *, filldir_t);
49 static struct dentry *nfs_lookup(struct inode *, struct dentry *, unsigned int);
50 static int nfs_create(struct inode *, struct dentry *, umode_t, bool);
51 static int nfs_mkdir(struct inode *, struct dentry *, umode_t);
52 static int nfs_rmdir(struct inode *, struct dentry *);
53 static int nfs_unlink(struct inode *, struct dentry *);
54 static int nfs_symlink(struct inode *, struct dentry *, const char *);
55 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
56 static int nfs_mknod(struct inode *, struct dentry *, umode_t, dev_t);
57 static int nfs_rename(struct inode *, struct dentry *,
58                       struct inode *, struct dentry *);
59 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
60 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
61 static void nfs_readdir_clear_array(struct page*);
62
63 const struct file_operations nfs_dir_operations = {
64         .llseek         = nfs_llseek_dir,
65         .read           = generic_read_dir,
66         .readdir        = nfs_readdir,
67         .open           = nfs_opendir,
68         .release        = nfs_closedir,
69         .fsync          = nfs_fsync_dir,
70 };
71
72 const struct inode_operations nfs_dir_inode_operations = {
73         .create         = nfs_create,
74         .lookup         = nfs_lookup,
75         .link           = nfs_link,
76         .unlink         = nfs_unlink,
77         .symlink        = nfs_symlink,
78         .mkdir          = nfs_mkdir,
79         .rmdir          = nfs_rmdir,
80         .mknod          = nfs_mknod,
81         .rename         = nfs_rename,
82         .permission     = nfs_permission,
83         .getattr        = nfs_getattr,
84         .setattr        = nfs_setattr,
85 };
86
87 const struct address_space_operations nfs_dir_aops = {
88         .freepage = nfs_readdir_clear_array,
89 };
90
91 #ifdef CONFIG_NFS_V3
92 const struct inode_operations nfs3_dir_inode_operations = {
93         .create         = nfs_create,
94         .lookup         = nfs_lookup,
95         .link           = nfs_link,
96         .unlink         = nfs_unlink,
97         .symlink        = nfs_symlink,
98         .mkdir          = nfs_mkdir,
99         .rmdir          = nfs_rmdir,
100         .mknod          = nfs_mknod,
101         .rename         = nfs_rename,
102         .permission     = nfs_permission,
103         .getattr        = nfs_getattr,
104         .setattr        = nfs_setattr,
105         .listxattr      = nfs3_listxattr,
106         .getxattr       = nfs3_getxattr,
107         .setxattr       = nfs3_setxattr,
108         .removexattr    = nfs3_removexattr,
109 };
110 #endif  /* CONFIG_NFS_V3 */
111
112 #ifdef CONFIG_NFS_V4
113
114 static int nfs_atomic_open(struct inode *, struct dentry *,
115                            struct file *, unsigned, umode_t,
116                            int *);
117 const struct inode_operations nfs4_dir_inode_operations = {
118         .create         = nfs_create,
119         .lookup         = nfs_lookup,
120         .atomic_open    = nfs_atomic_open,
121         .link           = nfs_link,
122         .unlink         = nfs_unlink,
123         .symlink        = nfs_symlink,
124         .mkdir          = nfs_mkdir,
125         .rmdir          = nfs_rmdir,
126         .mknod          = nfs_mknod,
127         .rename         = nfs_rename,
128         .permission     = nfs_permission,
129         .getattr        = nfs_getattr,
130         .setattr        = nfs_setattr,
131         .getxattr       = generic_getxattr,
132         .setxattr       = generic_setxattr,
133         .listxattr      = generic_listxattr,
134         .removexattr    = generic_removexattr,
135 };
136
137 #endif /* CONFIG_NFS_V4 */
138
139 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
140 {
141         struct nfs_open_dir_context *ctx;
142         ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
143         if (ctx != NULL) {
144                 ctx->duped = 0;
145                 ctx->attr_gencount = NFS_I(dir)->attr_gencount;
146                 ctx->dir_cookie = 0;
147                 ctx->dup_cookie = 0;
148                 ctx->cred = get_rpccred(cred);
149                 return ctx;
150         }
151         return  ERR_PTR(-ENOMEM);
152 }
153
154 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
155 {
156         put_rpccred(ctx->cred);
157         kfree(ctx);
158 }
159
160 /*
161  * Open file
162  */
163 static int
164 nfs_opendir(struct inode *inode, struct file *filp)
165 {
166         int res = 0;
167         struct nfs_open_dir_context *ctx;
168         struct rpc_cred *cred;
169
170         dfprintk(FILE, "NFS: open dir(%s/%s)\n",
171                         filp->f_path.dentry->d_parent->d_name.name,
172                         filp->f_path.dentry->d_name.name);
173
174         nfs_inc_stats(inode, NFSIOS_VFSOPEN);
175
176         cred = rpc_lookup_cred();
177         if (IS_ERR(cred))
178                 return PTR_ERR(cred);
179         ctx = alloc_nfs_open_dir_context(inode, cred);
180         if (IS_ERR(ctx)) {
181                 res = PTR_ERR(ctx);
182                 goto out;
183         }
184         filp->private_data = ctx;
185         if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
186                 /* This is a mountpoint, so d_revalidate will never
187                  * have been called, so we need to refresh the
188                  * inode (for close-open consistency) ourselves.
189                  */
190                 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
191         }
192 out:
193         put_rpccred(cred);
194         return res;
195 }
196
197 static int
198 nfs_closedir(struct inode *inode, struct file *filp)
199 {
200         put_nfs_open_dir_context(filp->private_data);
201         return 0;
202 }
203
204 struct nfs_cache_array_entry {
205         u64 cookie;
206         u64 ino;
207         struct qstr string;
208         unsigned char d_type;
209 };
210
211 struct nfs_cache_array {
212         int size;
213         int eof_index;
214         u64 last_cookie;
215         struct nfs_cache_array_entry array[0];
216 };
217
218 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
219 typedef struct {
220         struct file     *file;
221         struct page     *page;
222         unsigned long   page_index;
223         u64             *dir_cookie;
224         u64             last_cookie;
225         loff_t          current_index;
226         decode_dirent_t decode;
227
228         unsigned long   timestamp;
229         unsigned long   gencount;
230         unsigned int    cache_entry_index;
231         unsigned int    plus:1;
232         unsigned int    eof:1;
233 } nfs_readdir_descriptor_t;
234
235 /*
236  * The caller is responsible for calling nfs_readdir_release_array(page)
237  */
238 static
239 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
240 {
241         void *ptr;
242         if (page == NULL)
243                 return ERR_PTR(-EIO);
244         ptr = kmap(page);
245         if (ptr == NULL)
246                 return ERR_PTR(-ENOMEM);
247         return ptr;
248 }
249
250 static
251 void nfs_readdir_release_array(struct page *page)
252 {
253         kunmap(page);
254 }
255
256 /*
257  * we are freeing strings created by nfs_add_to_readdir_array()
258  */
259 static
260 void nfs_readdir_clear_array(struct page *page)
261 {
262         struct nfs_cache_array *array;
263         int i;
264
265         array = kmap_atomic(page);
266         for (i = 0; i < array->size; i++)
267                 kfree(array->array[i].string.name);
268         kunmap_atomic(array);
269 }
270
271 /*
272  * the caller is responsible for freeing qstr.name
273  * when called by nfs_readdir_add_to_array, the strings will be freed in
274  * nfs_clear_readdir_array()
275  */
276 static
277 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
278 {
279         string->len = len;
280         string->name = kmemdup(name, len, GFP_KERNEL);
281         if (string->name == NULL)
282                 return -ENOMEM;
283         /*
284          * Avoid a kmemleak false positive. The pointer to the name is stored
285          * in a page cache page which kmemleak does not scan.
286          */
287         kmemleak_not_leak(string->name);
288         string->hash = full_name_hash(name, len);
289         return 0;
290 }
291
292 static
293 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
294 {
295         struct nfs_cache_array *array = nfs_readdir_get_array(page);
296         struct nfs_cache_array_entry *cache_entry;
297         int ret;
298
299         if (IS_ERR(array))
300                 return PTR_ERR(array);
301
302         cache_entry = &array->array[array->size];
303
304         /* Check that this entry lies within the page bounds */
305         ret = -ENOSPC;
306         if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
307                 goto out;
308
309         cache_entry->cookie = entry->prev_cookie;
310         cache_entry->ino = entry->ino;
311         cache_entry->d_type = entry->d_type;
312         ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
313         if (ret)
314                 goto out;
315         array->last_cookie = entry->cookie;
316         array->size++;
317         if (entry->eof != 0)
318                 array->eof_index = array->size;
319 out:
320         nfs_readdir_release_array(page);
321         return ret;
322 }
323
324 static
325 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
326 {
327         loff_t diff = desc->file->f_pos - desc->current_index;
328         unsigned int index;
329
330         if (diff < 0)
331                 goto out_eof;
332         if (diff >= array->size) {
333                 if (array->eof_index >= 0)
334                         goto out_eof;
335                 return -EAGAIN;
336         }
337
338         index = (unsigned int)diff;
339         *desc->dir_cookie = array->array[index].cookie;
340         desc->cache_entry_index = index;
341         return 0;
342 out_eof:
343         desc->eof = 1;
344         return -EBADCOOKIE;
345 }
346
347 static
348 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
349 {
350         int i;
351         loff_t new_pos;
352         int status = -EAGAIN;
353
354         for (i = 0; i < array->size; i++) {
355                 if (array->array[i].cookie == *desc->dir_cookie) {
356                         struct nfs_inode *nfsi = NFS_I(desc->file->f_path.dentry->d_inode);
357                         struct nfs_open_dir_context *ctx = desc->file->private_data;
358
359                         new_pos = desc->current_index + i;
360                         if (ctx->attr_gencount != nfsi->attr_gencount
361                             || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
362                                 ctx->duped = 0;
363                                 ctx->attr_gencount = nfsi->attr_gencount;
364                         } else if (new_pos < desc->file->f_pos) {
365                                 if (ctx->duped > 0
366                                     && ctx->dup_cookie == *desc->dir_cookie) {
367                                         if (printk_ratelimit()) {
368                                                 pr_notice("NFS: directory %s/%s contains a readdir loop."
369                                                                 "Please contact your server vendor.  "
370                                                                 "The file: %s has duplicate cookie %llu\n",
371                                                                 desc->file->f_dentry->d_parent->d_name.name,
372                                                                 desc->file->f_dentry->d_name.name,
373                                                                 array->array[i].string.name,
374                                                                 *desc->dir_cookie);
375                                         }
376                                         status = -ELOOP;
377                                         goto out;
378                                 }
379                                 ctx->dup_cookie = *desc->dir_cookie;
380                                 ctx->duped = -1;
381                         }
382                         desc->file->f_pos = new_pos;
383                         desc->cache_entry_index = i;
384                         return 0;
385                 }
386         }
387         if (array->eof_index >= 0) {
388                 status = -EBADCOOKIE;
389                 if (*desc->dir_cookie == array->last_cookie)
390                         desc->eof = 1;
391         }
392 out:
393         return status;
394 }
395
396 static
397 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
398 {
399         struct nfs_cache_array *array;
400         int status;
401
402         array = nfs_readdir_get_array(desc->page);
403         if (IS_ERR(array)) {
404                 status = PTR_ERR(array);
405                 goto out;
406         }
407
408         if (*desc->dir_cookie == 0)
409                 status = nfs_readdir_search_for_pos(array, desc);
410         else
411                 status = nfs_readdir_search_for_cookie(array, desc);
412
413         if (status == -EAGAIN) {
414                 desc->last_cookie = array->last_cookie;
415                 desc->current_index += array->size;
416                 desc->page_index++;
417         }
418         nfs_readdir_release_array(desc->page);
419 out:
420         return status;
421 }
422
423 /* Fill a page with xdr information before transferring to the cache page */
424 static
425 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
426                         struct nfs_entry *entry, struct file *file, struct inode *inode)
427 {
428         struct nfs_open_dir_context *ctx = file->private_data;
429         struct rpc_cred *cred = ctx->cred;
430         unsigned long   timestamp, gencount;
431         int             error;
432
433  again:
434         timestamp = jiffies;
435         gencount = nfs_inc_attr_generation_counter();
436         error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
437                                           NFS_SERVER(inode)->dtsize, desc->plus);
438         if (error < 0) {
439                 /* We requested READDIRPLUS, but the server doesn't grok it */
440                 if (error == -ENOTSUPP && desc->plus) {
441                         NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
442                         clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
443                         desc->plus = 0;
444                         goto again;
445                 }
446                 goto error;
447         }
448         desc->timestamp = timestamp;
449         desc->gencount = gencount;
450 error:
451         return error;
452 }
453
454 static int xdr_decode(nfs_readdir_descriptor_t *desc,
455                       struct nfs_entry *entry, struct xdr_stream *xdr)
456 {
457         int error;
458
459         error = desc->decode(xdr, entry, desc->plus);
460         if (error)
461                 return error;
462         entry->fattr->time_start = desc->timestamp;
463         entry->fattr->gencount = desc->gencount;
464         return 0;
465 }
466
467 static
468 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
469 {
470         if (dentry->d_inode == NULL)
471                 goto different;
472         if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
473                 goto different;
474         return 1;
475 different:
476         return 0;
477 }
478
479 static
480 bool nfs_use_readdirplus(struct inode *dir, struct file *filp)
481 {
482         if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
483                 return false;
484         if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
485                 return true;
486         if (filp->f_pos == 0)
487                 return true;
488         return false;
489 }
490
491 /*
492  * This function is called by the lookup code to request the use of
493  * readdirplus to accelerate any future lookups in the same
494  * directory.
495  */
496 static
497 void nfs_advise_use_readdirplus(struct inode *dir)
498 {
499         set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
500 }
501
502 static
503 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
504 {
505         struct qstr filename = QSTR_INIT(entry->name, entry->len);
506         struct dentry *dentry;
507         struct dentry *alias;
508         struct inode *dir = parent->d_inode;
509         struct inode *inode;
510
511         if (filename.name[0] == '.') {
512                 if (filename.len == 1)
513                         return;
514                 if (filename.len == 2 && filename.name[1] == '.')
515                         return;
516         }
517         filename.hash = full_name_hash(filename.name, filename.len);
518
519         dentry = d_lookup(parent, &filename);
520         if (dentry != NULL) {
521                 if (nfs_same_file(dentry, entry)) {
522                         nfs_refresh_inode(dentry->d_inode, entry->fattr);
523                         goto out;
524                 } else {
525                         d_drop(dentry);
526                         dput(dentry);
527                 }
528         }
529
530         dentry = d_alloc(parent, &filename);
531         if (dentry == NULL)
532                 return;
533
534         inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
535         if (IS_ERR(inode))
536                 goto out;
537
538         alias = d_materialise_unique(dentry, inode);
539         if (IS_ERR(alias))
540                 goto out;
541         else if (alias) {
542                 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
543                 dput(alias);
544         } else
545                 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
546
547 out:
548         dput(dentry);
549 }
550
551 /* Perform conversion from xdr to cache array */
552 static
553 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
554                                 struct page **xdr_pages, struct page *page, unsigned int buflen)
555 {
556         struct xdr_stream stream;
557         struct xdr_buf buf;
558         struct page *scratch;
559         struct nfs_cache_array *array;
560         unsigned int count = 0;
561         int status;
562
563         scratch = alloc_page(GFP_KERNEL);
564         if (scratch == NULL)
565                 return -ENOMEM;
566
567         xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
568         xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
569
570         do {
571                 status = xdr_decode(desc, entry, &stream);
572                 if (status != 0) {
573                         if (status == -EAGAIN)
574                                 status = 0;
575                         break;
576                 }
577
578                 count++;
579
580                 if (desc->plus != 0)
581                         nfs_prime_dcache(desc->file->f_path.dentry, entry);
582
583                 status = nfs_readdir_add_to_array(entry, page);
584                 if (status != 0)
585                         break;
586         } while (!entry->eof);
587
588         if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
589                 array = nfs_readdir_get_array(page);
590                 if (!IS_ERR(array)) {
591                         array->eof_index = array->size;
592                         status = 0;
593                         nfs_readdir_release_array(page);
594                 } else
595                         status = PTR_ERR(array);
596         }
597
598         put_page(scratch);
599         return status;
600 }
601
602 static
603 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
604 {
605         unsigned int i;
606         for (i = 0; i < npages; i++)
607                 put_page(pages[i]);
608 }
609
610 static
611 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
612                 unsigned int npages)
613 {
614         nfs_readdir_free_pagearray(pages, npages);
615 }
616
617 /*
618  * nfs_readdir_large_page will allocate pages that must be freed with a call
619  * to nfs_readdir_free_large_page
620  */
621 static
622 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
623 {
624         unsigned int i;
625
626         for (i = 0; i < npages; i++) {
627                 struct page *page = alloc_page(GFP_KERNEL);
628                 if (page == NULL)
629                         goto out_freepages;
630                 pages[i] = page;
631         }
632         return 0;
633
634 out_freepages:
635         nfs_readdir_free_pagearray(pages, i);
636         return -ENOMEM;
637 }
638
639 static
640 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
641 {
642         struct page *pages[NFS_MAX_READDIR_PAGES];
643         void *pages_ptr = NULL;
644         struct nfs_entry entry;
645         struct file     *file = desc->file;
646         struct nfs_cache_array *array;
647         int status = -ENOMEM;
648         unsigned int array_size = ARRAY_SIZE(pages);
649
650         entry.prev_cookie = 0;
651         entry.cookie = desc->last_cookie;
652         entry.eof = 0;
653         entry.fh = nfs_alloc_fhandle();
654         entry.fattr = nfs_alloc_fattr();
655         entry.server = NFS_SERVER(inode);
656         if (entry.fh == NULL || entry.fattr == NULL)
657                 goto out;
658
659         array = nfs_readdir_get_array(page);
660         if (IS_ERR(array)) {
661                 status = PTR_ERR(array);
662                 goto out;
663         }
664         memset(array, 0, sizeof(struct nfs_cache_array));
665         array->eof_index = -1;
666
667         status = nfs_readdir_large_page(pages, array_size);
668         if (status < 0)
669                 goto out_release_array;
670         do {
671                 unsigned int pglen;
672                 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
673
674                 if (status < 0)
675                         break;
676                 pglen = status;
677                 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
678                 if (status < 0) {
679                         if (status == -ENOSPC)
680                                 status = 0;
681                         break;
682                 }
683         } while (array->eof_index < 0);
684
685         nfs_readdir_free_large_page(pages_ptr, pages, array_size);
686 out_release_array:
687         nfs_readdir_release_array(page);
688 out:
689         nfs_free_fattr(entry.fattr);
690         nfs_free_fhandle(entry.fh);
691         return status;
692 }
693
694 /*
695  * Now we cache directories properly, by converting xdr information
696  * to an array that can be used for lookups later.  This results in
697  * fewer cache pages, since we can store more information on each page.
698  * We only need to convert from xdr once so future lookups are much simpler
699  */
700 static
701 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
702 {
703         struct inode    *inode = desc->file->f_path.dentry->d_inode;
704         int ret;
705
706         ret = nfs_readdir_xdr_to_array(desc, page, inode);
707         if (ret < 0)
708                 goto error;
709         SetPageUptodate(page);
710
711         if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
712                 /* Should never happen */
713                 nfs_zap_mapping(inode, inode->i_mapping);
714         }
715         unlock_page(page);
716         return 0;
717  error:
718         unlock_page(page);
719         return ret;
720 }
721
722 static
723 void cache_page_release(nfs_readdir_descriptor_t *desc)
724 {
725         if (!desc->page->mapping)
726                 nfs_readdir_clear_array(desc->page);
727         page_cache_release(desc->page);
728         desc->page = NULL;
729 }
730
731 static
732 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
733 {
734         return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
735                         desc->page_index, (filler_t *)nfs_readdir_filler, desc);
736 }
737
738 /*
739  * Returns 0 if desc->dir_cookie was found on page desc->page_index
740  */
741 static
742 int find_cache_page(nfs_readdir_descriptor_t *desc)
743 {
744         int res;
745
746         desc->page = get_cache_page(desc);
747         if (IS_ERR(desc->page))
748                 return PTR_ERR(desc->page);
749
750         res = nfs_readdir_search_array(desc);
751         if (res != 0)
752                 cache_page_release(desc);
753         return res;
754 }
755
756 /* Search for desc->dir_cookie from the beginning of the page cache */
757 static inline
758 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
759 {
760         int res;
761
762         if (desc->page_index == 0) {
763                 desc->current_index = 0;
764                 desc->last_cookie = 0;
765         }
766         do {
767                 res = find_cache_page(desc);
768         } while (res == -EAGAIN);
769         return res;
770 }
771
772 /*
773  * Once we've found the start of the dirent within a page: fill 'er up...
774  */
775 static 
776 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
777                    filldir_t filldir)
778 {
779         struct file     *file = desc->file;
780         int i = 0;
781         int res = 0;
782         struct nfs_cache_array *array = NULL;
783         struct nfs_open_dir_context *ctx = file->private_data;
784
785         array = nfs_readdir_get_array(desc->page);
786         if (IS_ERR(array)) {
787                 res = PTR_ERR(array);
788                 goto out;
789         }
790
791         for (i = desc->cache_entry_index; i < array->size; i++) {
792                 struct nfs_cache_array_entry *ent;
793
794                 ent = &array->array[i];
795                 if (filldir(dirent, ent->string.name, ent->string.len,
796                     file->f_pos, nfs_compat_user_ino64(ent->ino),
797                     ent->d_type) < 0) {
798                         desc->eof = 1;
799                         break;
800                 }
801                 file->f_pos++;
802                 if (i < (array->size-1))
803                         *desc->dir_cookie = array->array[i+1].cookie;
804                 else
805                         *desc->dir_cookie = array->last_cookie;
806                 if (ctx->duped != 0)
807                         ctx->duped = 1;
808         }
809         if (array->eof_index >= 0)
810                 desc->eof = 1;
811
812         nfs_readdir_release_array(desc->page);
813 out:
814         cache_page_release(desc);
815         dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
816                         (unsigned long long)*desc->dir_cookie, res);
817         return res;
818 }
819
820 /*
821  * If we cannot find a cookie in our cache, we suspect that this is
822  * because it points to a deleted file, so we ask the server to return
823  * whatever it thinks is the next entry. We then feed this to filldir.
824  * If all goes well, we should then be able to find our way round the
825  * cache on the next call to readdir_search_pagecache();
826  *
827  * NOTE: we cannot add the anonymous page to the pagecache because
828  *       the data it contains might not be page aligned. Besides,
829  *       we should already have a complete representation of the
830  *       directory in the page cache by the time we get here.
831  */
832 static inline
833 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
834                      filldir_t filldir)
835 {
836         struct page     *page = NULL;
837         int             status;
838         struct inode *inode = desc->file->f_path.dentry->d_inode;
839         struct nfs_open_dir_context *ctx = desc->file->private_data;
840
841         dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
842                         (unsigned long long)*desc->dir_cookie);
843
844         page = alloc_page(GFP_HIGHUSER);
845         if (!page) {
846                 status = -ENOMEM;
847                 goto out;
848         }
849
850         desc->page_index = 0;
851         desc->last_cookie = *desc->dir_cookie;
852         desc->page = page;
853         ctx->duped = 0;
854
855         status = nfs_readdir_xdr_to_array(desc, page, inode);
856         if (status < 0)
857                 goto out_release;
858
859         status = nfs_do_filldir(desc, dirent, filldir);
860
861  out:
862         dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
863                         __func__, status);
864         return status;
865  out_release:
866         cache_page_release(desc);
867         goto out;
868 }
869
870 /* The file offset position represents the dirent entry number.  A
871    last cookie cache takes care of the common case of reading the
872    whole directory.
873  */
874 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
875 {
876         struct dentry   *dentry = filp->f_path.dentry;
877         struct inode    *inode = dentry->d_inode;
878         nfs_readdir_descriptor_t my_desc,
879                         *desc = &my_desc;
880         struct nfs_open_dir_context *dir_ctx = filp->private_data;
881         int res;
882
883         dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
884                         dentry->d_parent->d_name.name, dentry->d_name.name,
885                         (long long)filp->f_pos);
886         nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
887
888         /*
889          * filp->f_pos points to the dirent entry number.
890          * *desc->dir_cookie has the cookie for the next entry. We have
891          * to either find the entry with the appropriate number or
892          * revalidate the cookie.
893          */
894         memset(desc, 0, sizeof(*desc));
895
896         desc->file = filp;
897         desc->dir_cookie = &dir_ctx->dir_cookie;
898         desc->decode = NFS_PROTO(inode)->decode_dirent;
899         desc->plus = nfs_use_readdirplus(inode, filp) ? 1 : 0;
900
901         nfs_block_sillyrename(dentry);
902         res = nfs_revalidate_mapping(inode, filp->f_mapping);
903         if (res < 0)
904                 goto out;
905
906         do {
907                 res = readdir_search_pagecache(desc);
908
909                 if (res == -EBADCOOKIE) {
910                         res = 0;
911                         /* This means either end of directory */
912                         if (*desc->dir_cookie && desc->eof == 0) {
913                                 /* Or that the server has 'lost' a cookie */
914                                 res = uncached_readdir(desc, dirent, filldir);
915                                 if (res == 0)
916                                         continue;
917                         }
918                         break;
919                 }
920                 if (res == -ETOOSMALL && desc->plus) {
921                         clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
922                         nfs_zap_caches(inode);
923                         desc->page_index = 0;
924                         desc->plus = 0;
925                         desc->eof = 0;
926                         continue;
927                 }
928                 if (res < 0)
929                         break;
930
931                 res = nfs_do_filldir(desc, dirent, filldir);
932                 if (res < 0)
933                         break;
934         } while (!desc->eof);
935 out:
936         nfs_unblock_sillyrename(dentry);
937         if (res > 0)
938                 res = 0;
939         dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
940                         dentry->d_parent->d_name.name, dentry->d_name.name,
941                         res);
942         return res;
943 }
944
945 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
946 {
947         struct dentry *dentry = filp->f_path.dentry;
948         struct inode *inode = dentry->d_inode;
949         struct nfs_open_dir_context *dir_ctx = filp->private_data;
950
951         dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
952                         dentry->d_parent->d_name.name,
953                         dentry->d_name.name,
954                         offset, origin);
955
956         mutex_lock(&inode->i_mutex);
957         switch (origin) {
958                 case 1:
959                         offset += filp->f_pos;
960                 case 0:
961                         if (offset >= 0)
962                                 break;
963                 default:
964                         offset = -EINVAL;
965                         goto out;
966         }
967         if (offset != filp->f_pos) {
968                 filp->f_pos = offset;
969                 dir_ctx->dir_cookie = 0;
970                 dir_ctx->duped = 0;
971         }
972 out:
973         mutex_unlock(&inode->i_mutex);
974         return offset;
975 }
976
977 /*
978  * All directory operations under NFS are synchronous, so fsync()
979  * is a dummy operation.
980  */
981 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
982                          int datasync)
983 {
984         struct dentry *dentry = filp->f_path.dentry;
985         struct inode *inode = dentry->d_inode;
986
987         dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
988                         dentry->d_parent->d_name.name, dentry->d_name.name,
989                         datasync);
990
991         mutex_lock(&inode->i_mutex);
992         nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
993         mutex_unlock(&inode->i_mutex);
994         return 0;
995 }
996
997 /**
998  * nfs_force_lookup_revalidate - Mark the directory as having changed
999  * @dir - pointer to directory inode
1000  *
1001  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1002  * full lookup on all child dentries of 'dir' whenever a change occurs
1003  * on the server that might have invalidated our dcache.
1004  *
1005  * The caller should be holding dir->i_lock
1006  */
1007 void nfs_force_lookup_revalidate(struct inode *dir)
1008 {
1009         NFS_I(dir)->cache_change_attribute++;
1010 }
1011
1012 /*
1013  * A check for whether or not the parent directory has changed.
1014  * In the case it has, we assume that the dentries are untrustworthy
1015  * and may need to be looked up again.
1016  */
1017 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
1018 {
1019         if (IS_ROOT(dentry))
1020                 return 1;
1021         if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1022                 return 0;
1023         if (!nfs_verify_change_attribute(dir, dentry->d_time))
1024                 return 0;
1025         /* Revalidate nfsi->cache_change_attribute before we declare a match */
1026         if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1027                 return 0;
1028         if (!nfs_verify_change_attribute(dir, dentry->d_time))
1029                 return 0;
1030         return 1;
1031 }
1032
1033 /*
1034  * Use intent information to check whether or not we're going to do
1035  * an O_EXCL create using this path component.
1036  */
1037 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1038 {
1039         if (NFS_PROTO(dir)->version == 2)
1040                 return 0;
1041         return flags & LOOKUP_EXCL;
1042 }
1043
1044 /*
1045  * Inode and filehandle revalidation for lookups.
1046  *
1047  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1048  * or if the intent information indicates that we're about to open this
1049  * particular file and the "nocto" mount flag is not set.
1050  *
1051  */
1052 static inline
1053 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1054 {
1055         struct nfs_server *server = NFS_SERVER(inode);
1056
1057         if (IS_AUTOMOUNT(inode))
1058                 return 0;
1059         /* VFS wants an on-the-wire revalidation */
1060         if (flags & LOOKUP_REVAL)
1061                 goto out_force;
1062         /* This is an open(2) */
1063         if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1064             (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1065                 goto out_force;
1066         return 0;
1067 out_force:
1068         return __nfs_revalidate_inode(server, inode);
1069 }
1070
1071 /*
1072  * We judge how long we want to trust negative
1073  * dentries by looking at the parent inode mtime.
1074  *
1075  * If parent mtime has changed, we revalidate, else we wait for a
1076  * period corresponding to the parent's attribute cache timeout value.
1077  */
1078 static inline
1079 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1080                        unsigned int flags)
1081 {
1082         /* Don't revalidate a negative dentry if we're creating a new file */
1083         if (flags & LOOKUP_CREATE)
1084                 return 0;
1085         if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1086                 return 1;
1087         return !nfs_check_verifier(dir, dentry);
1088 }
1089
1090 /*
1091  * This is called every time the dcache has a lookup hit,
1092  * and we should check whether we can really trust that
1093  * lookup.
1094  *
1095  * NOTE! The hit can be a negative hit too, don't assume
1096  * we have an inode!
1097  *
1098  * If the parent directory is seen to have changed, we throw out the
1099  * cached dentry and do a new lookup.
1100  */
1101 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1102 {
1103         struct inode *dir;
1104         struct inode *inode;
1105         struct dentry *parent;
1106         struct nfs_fh *fhandle = NULL;
1107         struct nfs_fattr *fattr = NULL;
1108         int error;
1109
1110         if (flags & LOOKUP_RCU)
1111                 return -ECHILD;
1112
1113         parent = dget_parent(dentry);
1114         dir = parent->d_inode;
1115         nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1116         inode = dentry->d_inode;
1117
1118         if (!inode) {
1119                 if (nfs_neg_need_reval(dir, dentry, flags))
1120                         goto out_bad;
1121                 goto out_valid_noent;
1122         }
1123
1124         if (is_bad_inode(inode)) {
1125                 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1126                                 __func__, dentry->d_parent->d_name.name,
1127                                 dentry->d_name.name);
1128                 goto out_bad;
1129         }
1130
1131         if (nfs_have_delegation(inode, FMODE_READ))
1132                 goto out_set_verifier;
1133
1134         /* Force a full look up iff the parent directory has changed */
1135         if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) {
1136                 if (nfs_lookup_verify_inode(inode, flags))
1137                         goto out_zap_parent;
1138                 goto out_valid;
1139         }
1140
1141         if (NFS_STALE(inode))
1142                 goto out_bad;
1143
1144         error = -ENOMEM;
1145         fhandle = nfs_alloc_fhandle();
1146         fattr = nfs_alloc_fattr();
1147         if (fhandle == NULL || fattr == NULL)
1148                 goto out_error;
1149
1150         error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1151         if (error)
1152                 goto out_bad;
1153         if (nfs_compare_fh(NFS_FH(inode), fhandle))
1154                 goto out_bad;
1155         if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1156                 goto out_bad;
1157
1158         nfs_free_fattr(fattr);
1159         nfs_free_fhandle(fhandle);
1160 out_set_verifier:
1161         nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1162  out_valid:
1163         /* Success: notify readdir to use READDIRPLUS */
1164         nfs_advise_use_readdirplus(dir);
1165  out_valid_noent:
1166         dput(parent);
1167         dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1168                         __func__, dentry->d_parent->d_name.name,
1169                         dentry->d_name.name);
1170         return 1;
1171 out_zap_parent:
1172         nfs_zap_caches(dir);
1173  out_bad:
1174         nfs_mark_for_revalidate(dir);
1175         if (inode && S_ISDIR(inode->i_mode)) {
1176                 /* Purge readdir caches. */
1177                 nfs_zap_caches(inode);
1178                 /* If we have submounts, don't unhash ! */
1179                 if (have_submounts(dentry))
1180                         goto out_valid;
1181                 if (dentry->d_flags & DCACHE_DISCONNECTED)
1182                         goto out_valid;
1183                 shrink_dcache_parent(dentry);
1184         }
1185         d_drop(dentry);
1186         nfs_free_fattr(fattr);
1187         nfs_free_fhandle(fhandle);
1188         dput(parent);
1189         dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1190                         __func__, dentry->d_parent->d_name.name,
1191                         dentry->d_name.name);
1192         return 0;
1193 out_error:
1194         nfs_free_fattr(fattr);
1195         nfs_free_fhandle(fhandle);
1196         dput(parent);
1197         dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1198                         __func__, dentry->d_parent->d_name.name,
1199                         dentry->d_name.name, error);
1200         return error;
1201 }
1202
1203 /*
1204  * This is called from dput() when d_count is going to 0.
1205  */
1206 static int nfs_dentry_delete(const struct dentry *dentry)
1207 {
1208         dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1209                 dentry->d_parent->d_name.name, dentry->d_name.name,
1210                 dentry->d_flags);
1211
1212         /* Unhash any dentry with a stale inode */
1213         if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1214                 return 1;
1215
1216         if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1217                 /* Unhash it, so that ->d_iput() would be called */
1218                 return 1;
1219         }
1220         if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1221                 /* Unhash it, so that ancestors of killed async unlink
1222                  * files will be cleaned up during umount */
1223                 return 1;
1224         }
1225         return 0;
1226
1227 }
1228
1229 static void nfs_drop_nlink(struct inode *inode)
1230 {
1231         spin_lock(&inode->i_lock);
1232         if (inode->i_nlink > 0)
1233                 drop_nlink(inode);
1234         spin_unlock(&inode->i_lock);
1235 }
1236
1237 /*
1238  * Called when the dentry loses inode.
1239  * We use it to clean up silly-renamed files.
1240  */
1241 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1242 {
1243         if (S_ISDIR(inode->i_mode))
1244                 /* drop any readdir cache as it could easily be old */
1245                 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1246
1247         if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1248                 drop_nlink(inode);
1249                 nfs_complete_unlink(dentry, inode);
1250         }
1251         iput(inode);
1252 }
1253
1254 static void nfs_d_release(struct dentry *dentry)
1255 {
1256         /* free cached devname value, if it survived that far */
1257         if (unlikely(dentry->d_fsdata)) {
1258                 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1259                         WARN_ON(1);
1260                 else
1261                         kfree(dentry->d_fsdata);
1262         }
1263 }
1264
1265 const struct dentry_operations nfs_dentry_operations = {
1266         .d_revalidate   = nfs_lookup_revalidate,
1267         .d_delete       = nfs_dentry_delete,
1268         .d_iput         = nfs_dentry_iput,
1269         .d_automount    = nfs_d_automount,
1270         .d_release      = nfs_d_release,
1271 };
1272
1273 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1274 {
1275         struct dentry *res;
1276         struct dentry *parent;
1277         struct inode *inode = NULL;
1278         struct nfs_fh *fhandle = NULL;
1279         struct nfs_fattr *fattr = NULL;
1280         int error;
1281
1282         dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1283                 dentry->d_parent->d_name.name, dentry->d_name.name);
1284         nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1285
1286         res = ERR_PTR(-ENAMETOOLONG);
1287         if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1288                 goto out;
1289
1290         /*
1291          * If we're doing an exclusive create, optimize away the lookup
1292          * but don't hash the dentry.
1293          */
1294         if (nfs_is_exclusive_create(dir, flags)) {
1295                 d_instantiate(dentry, NULL);
1296                 res = NULL;
1297                 goto out;
1298         }
1299
1300         res = ERR_PTR(-ENOMEM);
1301         fhandle = nfs_alloc_fhandle();
1302         fattr = nfs_alloc_fattr();
1303         if (fhandle == NULL || fattr == NULL)
1304                 goto out;
1305
1306         parent = dentry->d_parent;
1307         /* Protect against concurrent sillydeletes */
1308         nfs_block_sillyrename(parent);
1309         error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1310         if (error == -ENOENT)
1311                 goto no_entry;
1312         if (error < 0) {
1313                 res = ERR_PTR(error);
1314                 goto out_unblock_sillyrename;
1315         }
1316         inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1317         res = ERR_CAST(inode);
1318         if (IS_ERR(res))
1319                 goto out_unblock_sillyrename;
1320
1321         /* Success: notify readdir to use READDIRPLUS */
1322         nfs_advise_use_readdirplus(dir);
1323
1324 no_entry:
1325         res = d_materialise_unique(dentry, inode);
1326         if (res != NULL) {
1327                 if (IS_ERR(res))
1328                         goto out_unblock_sillyrename;
1329                 dentry = res;
1330         }
1331         nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1332 out_unblock_sillyrename:
1333         nfs_unblock_sillyrename(parent);
1334 out:
1335         nfs_free_fattr(fattr);
1336         nfs_free_fhandle(fhandle);
1337         return res;
1338 }
1339
1340 #ifdef CONFIG_NFS_V4
1341 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1342
1343 const struct dentry_operations nfs4_dentry_operations = {
1344         .d_revalidate   = nfs4_lookup_revalidate,
1345         .d_delete       = nfs_dentry_delete,
1346         .d_iput         = nfs_dentry_iput,
1347         .d_automount    = nfs_d_automount,
1348         .d_release      = nfs_d_release,
1349 };
1350
1351 static fmode_t flags_to_mode(int flags)
1352 {
1353         fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1354         if ((flags & O_ACCMODE) != O_WRONLY)
1355                 res |= FMODE_READ;
1356         if ((flags & O_ACCMODE) != O_RDONLY)
1357                 res |= FMODE_WRITE;
1358         return res;
1359 }
1360
1361 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1362 {
1363         return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1364 }
1365
1366 static int do_open(struct inode *inode, struct file *filp)
1367 {
1368         nfs_fscache_set_inode_cookie(inode, filp);
1369         return 0;
1370 }
1371
1372 static int nfs_finish_open(struct nfs_open_context *ctx,
1373                            struct dentry *dentry,
1374                            struct file *file, unsigned open_flags,
1375                            int *opened)
1376 {
1377         int err;
1378
1379         if (ctx->dentry != dentry) {
1380                 dput(ctx->dentry);
1381                 ctx->dentry = dget(dentry);
1382         }
1383
1384         /* If the open_intent is for execute, we have an extra check to make */
1385         if (ctx->mode & FMODE_EXEC) {
1386                 err = nfs_may_open(dentry->d_inode, ctx->cred, open_flags);
1387                 if (err < 0)
1388                         goto out;
1389         }
1390
1391         err = finish_open(file, dentry, do_open, opened);
1392         if (err)
1393                 goto out;
1394         nfs_file_set_open_context(file, ctx);
1395
1396 out:
1397         put_nfs_open_context(ctx);
1398         return err;
1399 }
1400
1401 static int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1402                             struct file *file, unsigned open_flags,
1403                             umode_t mode, int *opened)
1404 {
1405         struct nfs_open_context *ctx;
1406         struct dentry *res;
1407         struct iattr attr = { .ia_valid = ATTR_OPEN };
1408         struct inode *inode;
1409         int err;
1410
1411         /* Expect a negative dentry */
1412         BUG_ON(dentry->d_inode);
1413
1414         dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n",
1415                         dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1416
1417         /* NFS only supports OPEN on regular files */
1418         if ((open_flags & O_DIRECTORY)) {
1419                 if (!d_unhashed(dentry)) {
1420                         /*
1421                          * Hashed negative dentry with O_DIRECTORY: dentry was
1422                          * revalidated and is fine, no need to perform lookup
1423                          * again
1424                          */
1425                         return -ENOENT;
1426                 }
1427                 goto no_open;
1428         }
1429
1430         if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1431                 return -ENAMETOOLONG;
1432
1433         if (open_flags & O_CREAT) {
1434                 attr.ia_valid |= ATTR_MODE;
1435                 attr.ia_mode = mode & ~current_umask();
1436         }
1437         if (open_flags & O_TRUNC) {
1438                 attr.ia_valid |= ATTR_SIZE;
1439                 attr.ia_size = 0;
1440         }
1441
1442         ctx = create_nfs_open_context(dentry, open_flags);
1443         err = PTR_ERR(ctx);
1444         if (IS_ERR(ctx))
1445                 goto out;
1446
1447         nfs_block_sillyrename(dentry->d_parent);
1448         inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1449         d_drop(dentry);
1450         if (IS_ERR(inode)) {
1451                 nfs_unblock_sillyrename(dentry->d_parent);
1452                 put_nfs_open_context(ctx);
1453                 err = PTR_ERR(inode);
1454                 switch (err) {
1455                 case -ENOENT:
1456                         d_add(dentry, NULL);
1457                         break;
1458                 case -EISDIR:
1459                 case -ENOTDIR:
1460                         goto no_open;
1461                 case -ELOOP:
1462                         if (!(open_flags & O_NOFOLLOW))
1463                                 goto no_open;
1464                         break;
1465                         /* case -EINVAL: */
1466                 default:
1467                         break;
1468                 }
1469                 goto out;
1470         }
1471         res = d_add_unique(dentry, inode);
1472         if (res != NULL)
1473                 dentry = res;
1474
1475         nfs_unblock_sillyrename(dentry->d_parent);
1476         nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1477
1478         err = nfs_finish_open(ctx, dentry, file, open_flags, opened);
1479
1480         dput(res);
1481 out:
1482         return err;
1483
1484 no_open:
1485         res = nfs_lookup(dir, dentry, 0);
1486         err = PTR_ERR(res);
1487         if (IS_ERR(res))
1488                 goto out;
1489
1490         return finish_no_open(file, res);
1491 }
1492
1493 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1494 {
1495         struct dentry *parent = NULL;
1496         struct inode *inode;
1497         struct inode *dir;
1498         int ret = 0;
1499
1500         if (flags & LOOKUP_RCU)
1501                 return -ECHILD;
1502
1503         if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1504                 goto no_open;
1505         if (d_mountpoint(dentry))
1506                 goto no_open;
1507
1508         inode = dentry->d_inode;
1509         parent = dget_parent(dentry);
1510         dir = parent->d_inode;
1511
1512         /* We can't create new files in nfs_open_revalidate(), so we
1513          * optimize away revalidation of negative dentries.
1514          */
1515         if (inode == NULL) {
1516                 if (!nfs_neg_need_reval(dir, dentry, flags))
1517                         ret = 1;
1518                 goto out;
1519         }
1520
1521         /* NFS only supports OPEN on regular files */
1522         if (!S_ISREG(inode->i_mode))
1523                 goto no_open_dput;
1524         /* We cannot do exclusive creation on a positive dentry */
1525         if (flags & LOOKUP_EXCL)
1526                 goto no_open_dput;
1527
1528         /* Let f_op->open() actually open (and revalidate) the file */
1529         ret = 1;
1530
1531 out:
1532         dput(parent);
1533         return ret;
1534
1535 no_open_dput:
1536         dput(parent);
1537 no_open:
1538         return nfs_lookup_revalidate(dentry, flags);
1539 }
1540
1541 #endif /* CONFIG_NFSV4 */
1542
1543 /*
1544  * Code common to create, mkdir, and mknod.
1545  */
1546 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1547                                 struct nfs_fattr *fattr)
1548 {
1549         struct dentry *parent = dget_parent(dentry);
1550         struct inode *dir = parent->d_inode;
1551         struct inode *inode;
1552         int error = -EACCES;
1553
1554         d_drop(dentry);
1555
1556         /* We may have been initialized further down */
1557         if (dentry->d_inode)
1558                 goto out;
1559         if (fhandle->size == 0) {
1560                 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1561                 if (error)
1562                         goto out_error;
1563         }
1564         nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1565         if (!(fattr->valid & NFS_ATTR_FATTR)) {
1566                 struct nfs_server *server = NFS_SB(dentry->d_sb);
1567                 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1568                 if (error < 0)
1569                         goto out_error;
1570         }
1571         inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1572         error = PTR_ERR(inode);
1573         if (IS_ERR(inode))
1574                 goto out_error;
1575         d_add(dentry, inode);
1576 out:
1577         dput(parent);
1578         return 0;
1579 out_error:
1580         nfs_mark_for_revalidate(dir);
1581         dput(parent);
1582         return error;
1583 }
1584
1585 /*
1586  * Following a failed create operation, we drop the dentry rather
1587  * than retain a negative dentry. This avoids a problem in the event
1588  * that the operation succeeded on the server, but an error in the
1589  * reply path made it appear to have failed.
1590  */
1591 static int nfs_create(struct inode *dir, struct dentry *dentry,
1592                 umode_t mode, bool excl)
1593 {
1594         struct iattr attr;
1595         int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1596         int error;
1597
1598         dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1599                         dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1600
1601         attr.ia_mode = mode;
1602         attr.ia_valid = ATTR_MODE;
1603
1604         error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1605         if (error != 0)
1606                 goto out_err;
1607         return 0;
1608 out_err:
1609         d_drop(dentry);
1610         return error;
1611 }
1612
1613 /*
1614  * See comments for nfs_proc_create regarding failed operations.
1615  */
1616 static int
1617 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1618 {
1619         struct iattr attr;
1620         int status;
1621
1622         dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1623                         dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1624
1625         if (!new_valid_dev(rdev))
1626                 return -EINVAL;
1627
1628         attr.ia_mode = mode;
1629         attr.ia_valid = ATTR_MODE;
1630
1631         status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1632         if (status != 0)
1633                 goto out_err;
1634         return 0;
1635 out_err:
1636         d_drop(dentry);
1637         return status;
1638 }
1639
1640 /*
1641  * See comments for nfs_proc_create regarding failed operations.
1642  */
1643 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1644 {
1645         struct iattr attr;
1646         int error;
1647
1648         dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1649                         dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1650
1651         attr.ia_valid = ATTR_MODE;
1652         attr.ia_mode = mode | S_IFDIR;
1653
1654         error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1655         if (error != 0)
1656                 goto out_err;
1657         return 0;
1658 out_err:
1659         d_drop(dentry);
1660         return error;
1661 }
1662
1663 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1664 {
1665         if (dentry->d_inode != NULL && !d_unhashed(dentry))
1666                 d_delete(dentry);
1667 }
1668
1669 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1670 {
1671         int error;
1672
1673         dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1674                         dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1675
1676         error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1677         /* Ensure the VFS deletes this inode */
1678         if (error == 0 && dentry->d_inode != NULL)
1679                 clear_nlink(dentry->d_inode);
1680         else if (error == -ENOENT)
1681                 nfs_dentry_handle_enoent(dentry);
1682
1683         return error;
1684 }
1685
1686 /*
1687  * Remove a file after making sure there are no pending writes,
1688  * and after checking that the file has only one user. 
1689  *
1690  * We invalidate the attribute cache and free the inode prior to the operation
1691  * to avoid possible races if the server reuses the inode.
1692  */
1693 static int nfs_safe_remove(struct dentry *dentry)
1694 {
1695         struct inode *dir = dentry->d_parent->d_inode;
1696         struct inode *inode = dentry->d_inode;
1697         int error = -EBUSY;
1698                 
1699         dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1700                 dentry->d_parent->d_name.name, dentry->d_name.name);
1701
1702         /* If the dentry was sillyrenamed, we simply call d_delete() */
1703         if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1704                 error = 0;
1705                 goto out;
1706         }
1707
1708         if (inode != NULL) {
1709                 nfs_inode_return_delegation(inode);
1710                 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1711                 /* The VFS may want to delete this inode */
1712                 if (error == 0)
1713                         nfs_drop_nlink(inode);
1714                 nfs_mark_for_revalidate(inode);
1715         } else
1716                 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1717         if (error == -ENOENT)
1718                 nfs_dentry_handle_enoent(dentry);
1719 out:
1720         return error;
1721 }
1722
1723 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1724  *  belongs to an active ".nfs..." file and we return -EBUSY.
1725  *
1726  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1727  */
1728 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1729 {
1730         int error;
1731         int need_rehash = 0;
1732
1733         dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1734                 dir->i_ino, dentry->d_name.name);
1735
1736         spin_lock(&dentry->d_lock);
1737         if (dentry->d_count > 1) {
1738                 spin_unlock(&dentry->d_lock);
1739                 /* Start asynchronous writeout of the inode */
1740                 write_inode_now(dentry->d_inode, 0);
1741                 error = nfs_sillyrename(dir, dentry);
1742                 return error;
1743         }
1744         if (!d_unhashed(dentry)) {
1745                 __d_drop(dentry);
1746                 need_rehash = 1;
1747         }
1748         spin_unlock(&dentry->d_lock);
1749         error = nfs_safe_remove(dentry);
1750         if (!error || error == -ENOENT) {
1751                 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1752         } else if (need_rehash)
1753                 d_rehash(dentry);
1754         return error;
1755 }
1756
1757 /*
1758  * To create a symbolic link, most file systems instantiate a new inode,
1759  * add a page to it containing the path, then write it out to the disk
1760  * using prepare_write/commit_write.
1761  *
1762  * Unfortunately the NFS client can't create the in-core inode first
1763  * because it needs a file handle to create an in-core inode (see
1764  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1765  * symlink request has completed on the server.
1766  *
1767  * So instead we allocate a raw page, copy the symname into it, then do
1768  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1769  * now have a new file handle and can instantiate an in-core NFS inode
1770  * and move the raw page into its mapping.
1771  */
1772 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1773 {
1774         struct pagevec lru_pvec;
1775         struct page *page;
1776         char *kaddr;
1777         struct iattr attr;
1778         unsigned int pathlen = strlen(symname);
1779         int error;
1780
1781         dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1782                 dir->i_ino, dentry->d_name.name, symname);
1783
1784         if (pathlen > PAGE_SIZE)
1785                 return -ENAMETOOLONG;
1786
1787         attr.ia_mode = S_IFLNK | S_IRWXUGO;
1788         attr.ia_valid = ATTR_MODE;
1789
1790         page = alloc_page(GFP_HIGHUSER);
1791         if (!page)
1792                 return -ENOMEM;
1793
1794         kaddr = kmap_atomic(page);
1795         memcpy(kaddr, symname, pathlen);
1796         if (pathlen < PAGE_SIZE)
1797                 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1798         kunmap_atomic(kaddr);
1799
1800         error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1801         if (error != 0) {
1802                 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1803                         dir->i_sb->s_id, dir->i_ino,
1804                         dentry->d_name.name, symname, error);
1805                 d_drop(dentry);
1806                 __free_page(page);
1807                 return error;
1808         }
1809
1810         /*
1811          * No big deal if we can't add this page to the page cache here.
1812          * READLINK will get the missing page from the server if needed.
1813          */
1814         pagevec_init(&lru_pvec, 0);
1815         if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1816                                                         GFP_KERNEL)) {
1817                 pagevec_add(&lru_pvec, page);
1818                 pagevec_lru_add_file(&lru_pvec);
1819                 SetPageUptodate(page);
1820                 unlock_page(page);
1821         } else
1822                 __free_page(page);
1823
1824         return 0;
1825 }
1826
1827 static int 
1828 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1829 {
1830         struct inode *inode = old_dentry->d_inode;
1831         int error;
1832
1833         dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1834                 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1835                 dentry->d_parent->d_name.name, dentry->d_name.name);
1836
1837         nfs_inode_return_delegation(inode);
1838
1839         d_drop(dentry);
1840         error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1841         if (error == 0) {
1842                 ihold(inode);
1843                 d_add(dentry, inode);
1844         }
1845         return error;
1846 }
1847
1848 /*
1849  * RENAME
1850  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1851  * different file handle for the same inode after a rename (e.g. when
1852  * moving to a different directory). A fail-safe method to do so would
1853  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1854  * rename the old file using the sillyrename stuff. This way, the original
1855  * file in old_dir will go away when the last process iput()s the inode.
1856  *
1857  * FIXED.
1858  * 
1859  * It actually works quite well. One needs to have the possibility for
1860  * at least one ".nfs..." file in each directory the file ever gets
1861  * moved or linked to which happens automagically with the new
1862  * implementation that only depends on the dcache stuff instead of
1863  * using the inode layer
1864  *
1865  * Unfortunately, things are a little more complicated than indicated
1866  * above. For a cross-directory move, we want to make sure we can get
1867  * rid of the old inode after the operation.  This means there must be
1868  * no pending writes (if it's a file), and the use count must be 1.
1869  * If these conditions are met, we can drop the dentries before doing
1870  * the rename.
1871  */
1872 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1873                       struct inode *new_dir, struct dentry *new_dentry)
1874 {
1875         struct inode *old_inode = old_dentry->d_inode;
1876         struct inode *new_inode = new_dentry->d_inode;
1877         struct dentry *dentry = NULL, *rehash = NULL;
1878         int error = -EBUSY;
1879
1880         dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1881                  old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1882                  new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1883                  new_dentry->d_count);
1884
1885         /*
1886          * For non-directories, check whether the target is busy and if so,
1887          * make a copy of the dentry and then do a silly-rename. If the
1888          * silly-rename succeeds, the copied dentry is hashed and becomes
1889          * the new target.
1890          */
1891         if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1892                 /*
1893                  * To prevent any new references to the target during the
1894                  * rename, we unhash the dentry in advance.
1895                  */
1896                 if (!d_unhashed(new_dentry)) {
1897                         d_drop(new_dentry);
1898                         rehash = new_dentry;
1899                 }
1900
1901                 if (new_dentry->d_count > 2) {
1902                         int err;
1903
1904                         /* copy the target dentry's name */
1905                         dentry = d_alloc(new_dentry->d_parent,
1906                                          &new_dentry->d_name);
1907                         if (!dentry)
1908                                 goto out;
1909
1910                         /* silly-rename the existing target ... */
1911                         err = nfs_sillyrename(new_dir, new_dentry);
1912                         if (err)
1913                                 goto out;
1914
1915                         new_dentry = dentry;
1916                         rehash = NULL;
1917                         new_inode = NULL;
1918                 }
1919         }
1920
1921         nfs_inode_return_delegation(old_inode);
1922         if (new_inode != NULL)
1923                 nfs_inode_return_delegation(new_inode);
1924
1925         error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1926                                            new_dir, &new_dentry->d_name);
1927         nfs_mark_for_revalidate(old_inode);
1928 out:
1929         if (rehash)
1930                 d_rehash(rehash);
1931         if (!error) {
1932                 if (new_inode != NULL)
1933                         nfs_drop_nlink(new_inode);
1934                 d_move(old_dentry, new_dentry);
1935                 nfs_set_verifier(new_dentry,
1936                                         nfs_save_change_attribute(new_dir));
1937         } else if (error == -ENOENT)
1938                 nfs_dentry_handle_enoent(old_dentry);
1939
1940         /* new dentry created? */
1941         if (dentry)
1942                 dput(dentry);
1943         return error;
1944 }
1945
1946 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1947 static LIST_HEAD(nfs_access_lru_list);
1948 static atomic_long_t nfs_access_nr_entries;
1949
1950 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1951 {
1952         put_rpccred(entry->cred);
1953         kfree(entry);
1954         smp_mb__before_atomic_dec();
1955         atomic_long_dec(&nfs_access_nr_entries);
1956         smp_mb__after_atomic_dec();
1957 }
1958
1959 static void nfs_access_free_list(struct list_head *head)
1960 {
1961         struct nfs_access_entry *cache;
1962
1963         while (!list_empty(head)) {
1964                 cache = list_entry(head->next, struct nfs_access_entry, lru);
1965                 list_del(&cache->lru);
1966                 nfs_access_free_entry(cache);
1967         }
1968 }
1969
1970 int nfs_access_cache_shrinker(struct shrinker *shrink,
1971                               struct shrink_control *sc)
1972 {
1973         LIST_HEAD(head);
1974         struct nfs_inode *nfsi, *next;
1975         struct nfs_access_entry *cache;
1976         int nr_to_scan = sc->nr_to_scan;
1977         gfp_t gfp_mask = sc->gfp_mask;
1978
1979         if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1980                 return (nr_to_scan == 0) ? 0 : -1;
1981
1982         spin_lock(&nfs_access_lru_lock);
1983         list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1984                 struct inode *inode;
1985
1986                 if (nr_to_scan-- == 0)
1987                         break;
1988                 inode = &nfsi->vfs_inode;
1989                 spin_lock(&inode->i_lock);
1990                 if (list_empty(&nfsi->access_cache_entry_lru))
1991                         goto remove_lru_entry;
1992                 cache = list_entry(nfsi->access_cache_entry_lru.next,
1993                                 struct nfs_access_entry, lru);
1994                 list_move(&cache->lru, &head);
1995                 rb_erase(&cache->rb_node, &nfsi->access_cache);
1996                 if (!list_empty(&nfsi->access_cache_entry_lru))
1997                         list_move_tail(&nfsi->access_cache_inode_lru,
1998                                         &nfs_access_lru_list);
1999                 else {
2000 remove_lru_entry:
2001                         list_del_init(&nfsi->access_cache_inode_lru);
2002                         smp_mb__before_clear_bit();
2003                         clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2004                         smp_mb__after_clear_bit();
2005                 }
2006                 spin_unlock(&inode->i_lock);
2007         }
2008         spin_unlock(&nfs_access_lru_lock);
2009         nfs_access_free_list(&head);
2010         return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
2011 }
2012
2013 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2014 {
2015         struct rb_root *root_node = &nfsi->access_cache;
2016         struct rb_node *n;
2017         struct nfs_access_entry *entry;
2018
2019         /* Unhook entries from the cache */
2020         while ((n = rb_first(root_node)) != NULL) {
2021                 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2022                 rb_erase(n, root_node);
2023                 list_move(&entry->lru, head);
2024         }
2025         nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2026 }
2027
2028 void nfs_access_zap_cache(struct inode *inode)
2029 {
2030         LIST_HEAD(head);
2031
2032         if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2033                 return;
2034         /* Remove from global LRU init */
2035         spin_lock(&nfs_access_lru_lock);
2036         if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2037                 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2038
2039         spin_lock(&inode->i_lock);
2040         __nfs_access_zap_cache(NFS_I(inode), &head);
2041         spin_unlock(&inode->i_lock);
2042         spin_unlock(&nfs_access_lru_lock);
2043         nfs_access_free_list(&head);
2044 }
2045
2046 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2047 {
2048         struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2049         struct nfs_access_entry *entry;
2050
2051         while (n != NULL) {
2052                 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2053
2054                 if (cred < entry->cred)
2055                         n = n->rb_left;
2056                 else if (cred > entry->cred)
2057                         n = n->rb_right;
2058                 else
2059                         return entry;
2060         }
2061         return NULL;
2062 }
2063
2064 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2065 {
2066         struct nfs_inode *nfsi = NFS_I(inode);
2067         struct nfs_access_entry *cache;
2068         int err = -ENOENT;
2069
2070         spin_lock(&inode->i_lock);
2071         if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2072                 goto out_zap;
2073         cache = nfs_access_search_rbtree(inode, cred);
2074         if (cache == NULL)
2075                 goto out;
2076         if (!nfs_have_delegated_attributes(inode) &&
2077             !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2078                 goto out_stale;
2079         res->jiffies = cache->jiffies;
2080         res->cred = cache->cred;
2081         res->mask = cache->mask;
2082         list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2083         err = 0;
2084 out:
2085         spin_unlock(&inode->i_lock);
2086         return err;
2087 out_stale:
2088         rb_erase(&cache->rb_node, &nfsi->access_cache);
2089         list_del(&cache->lru);
2090         spin_unlock(&inode->i_lock);
2091         nfs_access_free_entry(cache);
2092         return -ENOENT;
2093 out_zap:
2094         spin_unlock(&inode->i_lock);
2095         nfs_access_zap_cache(inode);
2096         return -ENOENT;
2097 }
2098
2099 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2100 {
2101         struct nfs_inode *nfsi = NFS_I(inode);
2102         struct rb_root *root_node = &nfsi->access_cache;
2103         struct rb_node **p = &root_node->rb_node;
2104         struct rb_node *parent = NULL;
2105         struct nfs_access_entry *entry;
2106
2107         spin_lock(&inode->i_lock);
2108         while (*p != NULL) {
2109                 parent = *p;
2110                 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2111
2112                 if (set->cred < entry->cred)
2113                         p = &parent->rb_left;
2114                 else if (set->cred > entry->cred)
2115                         p = &parent->rb_right;
2116                 else
2117                         goto found;
2118         }
2119         rb_link_node(&set->rb_node, parent, p);
2120         rb_insert_color(&set->rb_node, root_node);
2121         list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2122         spin_unlock(&inode->i_lock);
2123         return;
2124 found:
2125         rb_replace_node(parent, &set->rb_node, root_node);
2126         list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2127         list_del(&entry->lru);
2128         spin_unlock(&inode->i_lock);
2129         nfs_access_free_entry(entry);
2130 }
2131
2132 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2133 {
2134         struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2135         if (cache == NULL)
2136                 return;
2137         RB_CLEAR_NODE(&cache->rb_node);
2138         cache->jiffies = set->jiffies;
2139         cache->cred = get_rpccred(set->cred);
2140         cache->mask = set->mask;
2141
2142         nfs_access_add_rbtree(inode, cache);
2143
2144         /* Update accounting */
2145         smp_mb__before_atomic_inc();
2146         atomic_long_inc(&nfs_access_nr_entries);
2147         smp_mb__after_atomic_inc();
2148
2149         /* Add inode to global LRU list */
2150         if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2151                 spin_lock(&nfs_access_lru_lock);
2152                 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2153                         list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2154                                         &nfs_access_lru_list);
2155                 spin_unlock(&nfs_access_lru_lock);
2156         }
2157 }
2158
2159 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2160 {
2161         struct nfs_access_entry cache;
2162         int status;
2163
2164         status = nfs_access_get_cached(inode, cred, &cache);
2165         if (status == 0)
2166                 goto out;
2167
2168         /* Be clever: ask server to check for all possible rights */
2169         cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2170         cache.cred = cred;
2171         cache.jiffies = jiffies;
2172         status = NFS_PROTO(inode)->access(inode, &cache);
2173         if (status != 0) {
2174                 if (status == -ESTALE) {
2175                         nfs_zap_caches(inode);
2176                         if (!S_ISDIR(inode->i_mode))
2177                                 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2178                 }
2179                 return status;
2180         }
2181         nfs_access_add_cache(inode, &cache);
2182 out:
2183         if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2184                 return 0;
2185         return -EACCES;
2186 }
2187
2188 static int nfs_open_permission_mask(int openflags)
2189 {
2190         int mask = 0;
2191
2192         if ((openflags & O_ACCMODE) != O_WRONLY)
2193                 mask |= MAY_READ;
2194         if ((openflags & O_ACCMODE) != O_RDONLY)
2195                 mask |= MAY_WRITE;
2196         if (openflags & __FMODE_EXEC)
2197                 mask |= MAY_EXEC;
2198         return mask;
2199 }
2200
2201 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2202 {
2203         return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2204 }
2205
2206 int nfs_permission(struct inode *inode, int mask)
2207 {
2208         struct rpc_cred *cred;
2209         int res = 0;
2210
2211         if (mask & MAY_NOT_BLOCK)
2212                 return -ECHILD;
2213
2214         nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2215
2216         if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2217                 goto out;
2218         /* Is this sys_access() ? */
2219         if (mask & (MAY_ACCESS | MAY_CHDIR))
2220                 goto force_lookup;
2221
2222         switch (inode->i_mode & S_IFMT) {
2223                 case S_IFLNK:
2224                         goto out;
2225                 case S_IFREG:
2226                         /* NFSv4 has atomic_open... */
2227                         if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2228                                         && (mask & MAY_OPEN)
2229                                         && !(mask & MAY_EXEC))
2230                                 goto out;
2231                         break;
2232                 case S_IFDIR:
2233                         /*
2234                          * Optimize away all write operations, since the server
2235                          * will check permissions when we perform the op.
2236                          */
2237                         if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2238                                 goto out;
2239         }
2240
2241 force_lookup:
2242         if (!NFS_PROTO(inode)->access)
2243                 goto out_notsup;
2244
2245         cred = rpc_lookup_cred();
2246         if (!IS_ERR(cred)) {
2247                 res = nfs_do_access(inode, cred, mask);
2248                 put_rpccred(cred);
2249         } else
2250                 res = PTR_ERR(cred);
2251 out:
2252         if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2253                 res = -EACCES;
2254
2255         dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2256                 inode->i_sb->s_id, inode->i_ino, mask, res);
2257         return res;
2258 out_notsup:
2259         res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2260         if (res == 0)
2261                 res = generic_permission(inode, mask);
2262         goto out;
2263 }
2264
2265 /*
2266  * Local variables:
2267  *  version-control: t
2268  *  kept-new-versions: 5
2269  * End:
2270  */