[PATCH] pass b_size to ->get_block()
[pandora-kernel.git] / fs / mpage.c
1 /*
2  * fs/mpage.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to preparing and submitting BIOs which contain
7  * multiple pagecache pages.
8  *
9  * 15May2002    akpm@zip.com.au
10  *              Initial version
11  * 27Jun2002    axboe@suse.de
12  *              use bio_add_page() to build bio's just the right size
13  */
14
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/bio.h>
20 #include <linux/fs.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/highmem.h>
24 #include <linux/prefetch.h>
25 #include <linux/mpage.h>
26 #include <linux/writeback.h>
27 #include <linux/backing-dev.h>
28 #include <linux/pagevec.h>
29
30 /*
31  * I/O completion handler for multipage BIOs.
32  *
33  * The mpage code never puts partial pages into a BIO (except for end-of-file).
34  * If a page does not map to a contiguous run of blocks then it simply falls
35  * back to block_read_full_page().
36  *
37  * Why is this?  If a page's completion depends on a number of different BIOs
38  * which can complete in any order (or at the same time) then determining the
39  * status of that page is hard.  See end_buffer_async_read() for the details.
40  * There is no point in duplicating all that complexity.
41  */
42 static int mpage_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
43 {
44         const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
45         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
46
47         if (bio->bi_size)
48                 return 1;
49
50         do {
51                 struct page *page = bvec->bv_page;
52
53                 if (--bvec >= bio->bi_io_vec)
54                         prefetchw(&bvec->bv_page->flags);
55
56                 if (uptodate) {
57                         SetPageUptodate(page);
58                 } else {
59                         ClearPageUptodate(page);
60                         SetPageError(page);
61                 }
62                 unlock_page(page);
63         } while (bvec >= bio->bi_io_vec);
64         bio_put(bio);
65         return 0;
66 }
67
68 static int mpage_end_io_write(struct bio *bio, unsigned int bytes_done, int err)
69 {
70         const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
71         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
72
73         if (bio->bi_size)
74                 return 1;
75
76         do {
77                 struct page *page = bvec->bv_page;
78
79                 if (--bvec >= bio->bi_io_vec)
80                         prefetchw(&bvec->bv_page->flags);
81
82                 if (!uptodate){
83                         SetPageError(page);
84                         if (page->mapping)
85                                 set_bit(AS_EIO, &page->mapping->flags);
86                 }
87                 end_page_writeback(page);
88         } while (bvec >= bio->bi_io_vec);
89         bio_put(bio);
90         return 0;
91 }
92
93 static struct bio *mpage_bio_submit(int rw, struct bio *bio)
94 {
95         bio->bi_end_io = mpage_end_io_read;
96         if (rw == WRITE)
97                 bio->bi_end_io = mpage_end_io_write;
98         submit_bio(rw, bio);
99         return NULL;
100 }
101
102 static struct bio *
103 mpage_alloc(struct block_device *bdev,
104                 sector_t first_sector, int nr_vecs,
105                 gfp_t gfp_flags)
106 {
107         struct bio *bio;
108
109         bio = bio_alloc(gfp_flags, nr_vecs);
110
111         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
112                 while (!bio && (nr_vecs /= 2))
113                         bio = bio_alloc(gfp_flags, nr_vecs);
114         }
115
116         if (bio) {
117                 bio->bi_bdev = bdev;
118                 bio->bi_sector = first_sector;
119         }
120         return bio;
121 }
122
123 /*
124  * support function for mpage_readpages.  The fs supplied get_block might
125  * return an up to date buffer.  This is used to map that buffer into
126  * the page, which allows readpage to avoid triggering a duplicate call
127  * to get_block.
128  *
129  * The idea is to avoid adding buffers to pages that don't already have
130  * them.  So when the buffer is up to date and the page size == block size,
131  * this marks the page up to date instead of adding new buffers.
132  */
133 static void 
134 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 
135 {
136         struct inode *inode = page->mapping->host;
137         struct buffer_head *page_bh, *head;
138         int block = 0;
139
140         if (!page_has_buffers(page)) {
141                 /*
142                  * don't make any buffers if there is only one buffer on
143                  * the page and the page just needs to be set up to date
144                  */
145                 if (inode->i_blkbits == PAGE_CACHE_SHIFT && 
146                     buffer_uptodate(bh)) {
147                         SetPageUptodate(page);    
148                         return;
149                 }
150                 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
151         }
152         head = page_buffers(page);
153         page_bh = head;
154         do {
155                 if (block == page_block) {
156                         page_bh->b_state = bh->b_state;
157                         page_bh->b_bdev = bh->b_bdev;
158                         page_bh->b_blocknr = bh->b_blocknr;
159                         break;
160                 }
161                 page_bh = page_bh->b_this_page;
162                 block++;
163         } while (page_bh != head);
164 }
165
166 static struct bio *
167 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
168                         sector_t *last_block_in_bio, get_block_t get_block)
169 {
170         struct inode *inode = page->mapping->host;
171         const unsigned blkbits = inode->i_blkbits;
172         const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
173         const unsigned blocksize = 1 << blkbits;
174         sector_t block_in_file;
175         sector_t last_block;
176         sector_t blocks[MAX_BUF_PER_PAGE];
177         unsigned page_block;
178         unsigned first_hole = blocks_per_page;
179         struct block_device *bdev = NULL;
180         struct buffer_head bh;
181         int length;
182         int fully_mapped = 1;
183
184         if (page_has_buffers(page))
185                 goto confused;
186
187         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
188         last_block = (i_size_read(inode) + blocksize - 1) >> blkbits;
189
190         bh.b_page = page;
191         for (page_block = 0; page_block < blocks_per_page;
192                                 page_block++, block_in_file++) {
193                 bh.b_state = 0;
194                 if (block_in_file < last_block) {
195                         bh.b_size = blocksize;
196                         if (get_block(inode, block_in_file, &bh, 0))
197                                 goto confused;
198                 }
199
200                 if (!buffer_mapped(&bh)) {
201                         fully_mapped = 0;
202                         if (first_hole == blocks_per_page)
203                                 first_hole = page_block;
204                         continue;
205                 }
206
207                 /* some filesystems will copy data into the page during
208                  * the get_block call, in which case we don't want to
209                  * read it again.  map_buffer_to_page copies the data
210                  * we just collected from get_block into the page's buffers
211                  * so readpage doesn't have to repeat the get_block call
212                  */
213                 if (buffer_uptodate(&bh)) {
214                         map_buffer_to_page(page, &bh, page_block);
215                         goto confused;
216                 }
217         
218                 if (first_hole != blocks_per_page)
219                         goto confused;          /* hole -> non-hole */
220
221                 /* Contiguous blocks? */
222                 if (page_block && blocks[page_block-1] != bh.b_blocknr-1)
223                         goto confused;
224                 blocks[page_block] = bh.b_blocknr;
225                 bdev = bh.b_bdev;
226         }
227
228         if (first_hole != blocks_per_page) {
229                 char *kaddr = kmap_atomic(page, KM_USER0);
230                 memset(kaddr + (first_hole << blkbits), 0,
231                                 PAGE_CACHE_SIZE - (first_hole << blkbits));
232                 flush_dcache_page(page);
233                 kunmap_atomic(kaddr, KM_USER0);
234                 if (first_hole == 0) {
235                         SetPageUptodate(page);
236                         unlock_page(page);
237                         goto out;
238                 }
239         } else if (fully_mapped) {
240                 SetPageMappedToDisk(page);
241         }
242
243         /*
244          * This page will go to BIO.  Do we need to send this BIO off first?
245          */
246         if (bio && (*last_block_in_bio != blocks[0] - 1))
247                 bio = mpage_bio_submit(READ, bio);
248
249 alloc_new:
250         if (bio == NULL) {
251                 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
252                                 min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
253                                 GFP_KERNEL);
254                 if (bio == NULL)
255                         goto confused;
256         }
257
258         length = first_hole << blkbits;
259         if (bio_add_page(bio, page, length, 0) < length) {
260                 bio = mpage_bio_submit(READ, bio);
261                 goto alloc_new;
262         }
263
264         if (buffer_boundary(&bh) || (first_hole != blocks_per_page))
265                 bio = mpage_bio_submit(READ, bio);
266         else
267                 *last_block_in_bio = blocks[blocks_per_page - 1];
268 out:
269         return bio;
270
271 confused:
272         if (bio)
273                 bio = mpage_bio_submit(READ, bio);
274         if (!PageUptodate(page))
275                 block_read_full_page(page, get_block);
276         else
277                 unlock_page(page);
278         goto out;
279 }
280
281 /**
282  * mpage_readpages - populate an address space with some pages, and
283  *                       start reads against them.
284  *
285  * @mapping: the address_space
286  * @pages: The address of a list_head which contains the target pages.  These
287  *   pages have their ->index populated and are otherwise uninitialised.
288  *
289  *   The page at @pages->prev has the lowest file offset, and reads should be
290  *   issued in @pages->prev to @pages->next order.
291  *
292  * @nr_pages: The number of pages at *@pages
293  * @get_block: The filesystem's block mapper function.
294  *
295  * This function walks the pages and the blocks within each page, building and
296  * emitting large BIOs.
297  *
298  * If anything unusual happens, such as:
299  *
300  * - encountering a page which has buffers
301  * - encountering a page which has a non-hole after a hole
302  * - encountering a page with non-contiguous blocks
303  *
304  * then this code just gives up and calls the buffer_head-based read function.
305  * It does handle a page which has holes at the end - that is a common case:
306  * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
307  *
308  * BH_Boundary explanation:
309  *
310  * There is a problem.  The mpage read code assembles several pages, gets all
311  * their disk mappings, and then submits them all.  That's fine, but obtaining
312  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
313  *
314  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
315  * submitted in the following order:
316  *      12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
317  * because the indirect block has to be read to get the mappings of blocks
318  * 13,14,15,16.  Obviously, this impacts performance.
319  *
320  * So what we do it to allow the filesystem's get_block() function to set
321  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
322  * after this one will require I/O against a block which is probably close to
323  * this one.  So you should push what I/O you have currently accumulated.
324  *
325  * This all causes the disk requests to be issued in the correct order.
326  */
327 int
328 mpage_readpages(struct address_space *mapping, struct list_head *pages,
329                                 unsigned nr_pages, get_block_t get_block)
330 {
331         struct bio *bio = NULL;
332         unsigned page_idx;
333         sector_t last_block_in_bio = 0;
334         struct pagevec lru_pvec;
335
336         pagevec_init(&lru_pvec, 0);
337         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
338                 struct page *page = list_entry(pages->prev, struct page, lru);
339
340                 prefetchw(&page->flags);
341                 list_del(&page->lru);
342                 if (!add_to_page_cache(page, mapping,
343                                         page->index, GFP_KERNEL)) {
344                         bio = do_mpage_readpage(bio, page,
345                                         nr_pages - page_idx,
346                                         &last_block_in_bio, get_block);
347                         if (!pagevec_add(&lru_pvec, page))
348                                 __pagevec_lru_add(&lru_pvec);
349                 } else {
350                         page_cache_release(page);
351                 }
352         }
353         pagevec_lru_add(&lru_pvec);
354         BUG_ON(!list_empty(pages));
355         if (bio)
356                 mpage_bio_submit(READ, bio);
357         return 0;
358 }
359 EXPORT_SYMBOL(mpage_readpages);
360
361 /*
362  * This isn't called much at all
363  */
364 int mpage_readpage(struct page *page, get_block_t get_block)
365 {
366         struct bio *bio = NULL;
367         sector_t last_block_in_bio = 0;
368
369         bio = do_mpage_readpage(bio, page, 1,
370                         &last_block_in_bio, get_block);
371         if (bio)
372                 mpage_bio_submit(READ, bio);
373         return 0;
374 }
375 EXPORT_SYMBOL(mpage_readpage);
376
377 /*
378  * Writing is not so simple.
379  *
380  * If the page has buffers then they will be used for obtaining the disk
381  * mapping.  We only support pages which are fully mapped-and-dirty, with a
382  * special case for pages which are unmapped at the end: end-of-file.
383  *
384  * If the page has no buffers (preferred) then the page is mapped here.
385  *
386  * If all blocks are found to be contiguous then the page can go into the
387  * BIO.  Otherwise fall back to the mapping's writepage().
388  * 
389  * FIXME: This code wants an estimate of how many pages are still to be
390  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
391  * just allocate full-size (16-page) BIOs.
392  */
393 static struct bio *
394 __mpage_writepage(struct bio *bio, struct page *page, get_block_t get_block,
395         sector_t *last_block_in_bio, int *ret, struct writeback_control *wbc,
396         writepage_t writepage_fn)
397 {
398         struct address_space *mapping = page->mapping;
399         struct inode *inode = page->mapping->host;
400         const unsigned blkbits = inode->i_blkbits;
401         unsigned long end_index;
402         const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
403         sector_t last_block;
404         sector_t block_in_file;
405         sector_t blocks[MAX_BUF_PER_PAGE];
406         unsigned page_block;
407         unsigned first_unmapped = blocks_per_page;
408         struct block_device *bdev = NULL;
409         int boundary = 0;
410         sector_t boundary_block = 0;
411         struct block_device *boundary_bdev = NULL;
412         int length;
413         struct buffer_head map_bh;
414         loff_t i_size = i_size_read(inode);
415
416         if (page_has_buffers(page)) {
417                 struct buffer_head *head = page_buffers(page);
418                 struct buffer_head *bh = head;
419
420                 /* If they're all mapped and dirty, do it */
421                 page_block = 0;
422                 do {
423                         BUG_ON(buffer_locked(bh));
424                         if (!buffer_mapped(bh)) {
425                                 /*
426                                  * unmapped dirty buffers are created by
427                                  * __set_page_dirty_buffers -> mmapped data
428                                  */
429                                 if (buffer_dirty(bh))
430                                         goto confused;
431                                 if (first_unmapped == blocks_per_page)
432                                         first_unmapped = page_block;
433                                 continue;
434                         }
435
436                         if (first_unmapped != blocks_per_page)
437                                 goto confused;  /* hole -> non-hole */
438
439                         if (!buffer_dirty(bh) || !buffer_uptodate(bh))
440                                 goto confused;
441                         if (page_block) {
442                                 if (bh->b_blocknr != blocks[page_block-1] + 1)
443                                         goto confused;
444                         }
445                         blocks[page_block++] = bh->b_blocknr;
446                         boundary = buffer_boundary(bh);
447                         if (boundary) {
448                                 boundary_block = bh->b_blocknr;
449                                 boundary_bdev = bh->b_bdev;
450                         }
451                         bdev = bh->b_bdev;
452                 } while ((bh = bh->b_this_page) != head);
453
454                 if (first_unmapped)
455                         goto page_is_mapped;
456
457                 /*
458                  * Page has buffers, but they are all unmapped. The page was
459                  * created by pagein or read over a hole which was handled by
460                  * block_read_full_page().  If this address_space is also
461                  * using mpage_readpages then this can rarely happen.
462                  */
463                 goto confused;
464         }
465
466         /*
467          * The page has no buffers: map it to disk
468          */
469         BUG_ON(!PageUptodate(page));
470         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
471         last_block = (i_size - 1) >> blkbits;
472         map_bh.b_page = page;
473         for (page_block = 0; page_block < blocks_per_page; ) {
474
475                 map_bh.b_state = 0;
476                 map_bh.b_size = 1 << blkbits;
477                 if (get_block(inode, block_in_file, &map_bh, 1))
478                         goto confused;
479                 if (buffer_new(&map_bh))
480                         unmap_underlying_metadata(map_bh.b_bdev,
481                                                 map_bh.b_blocknr);
482                 if (buffer_boundary(&map_bh)) {
483                         boundary_block = map_bh.b_blocknr;
484                         boundary_bdev = map_bh.b_bdev;
485                 }
486                 if (page_block) {
487                         if (map_bh.b_blocknr != blocks[page_block-1] + 1)
488                                 goto confused;
489                 }
490                 blocks[page_block++] = map_bh.b_blocknr;
491                 boundary = buffer_boundary(&map_bh);
492                 bdev = map_bh.b_bdev;
493                 if (block_in_file == last_block)
494                         break;
495                 block_in_file++;
496         }
497         BUG_ON(page_block == 0);
498
499         first_unmapped = page_block;
500
501 page_is_mapped:
502         end_index = i_size >> PAGE_CACHE_SHIFT;
503         if (page->index >= end_index) {
504                 /*
505                  * The page straddles i_size.  It must be zeroed out on each
506                  * and every writepage invokation because it may be mmapped.
507                  * "A file is mapped in multiples of the page size.  For a file
508                  * that is not a multiple of the page size, the remaining memory
509                  * is zeroed when mapped, and writes to that region are not
510                  * written out to the file."
511                  */
512                 unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
513                 char *kaddr;
514
515                 if (page->index > end_index || !offset)
516                         goto confused;
517                 kaddr = kmap_atomic(page, KM_USER0);
518                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
519                 flush_dcache_page(page);
520                 kunmap_atomic(kaddr, KM_USER0);
521         }
522
523         /*
524          * This page will go to BIO.  Do we need to send this BIO off first?
525          */
526         if (bio && *last_block_in_bio != blocks[0] - 1)
527                 bio = mpage_bio_submit(WRITE, bio);
528
529 alloc_new:
530         if (bio == NULL) {
531                 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
532                                 bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
533                 if (bio == NULL)
534                         goto confused;
535         }
536
537         /*
538          * Must try to add the page before marking the buffer clean or
539          * the confused fail path above (OOM) will be very confused when
540          * it finds all bh marked clean (i.e. it will not write anything)
541          */
542         length = first_unmapped << blkbits;
543         if (bio_add_page(bio, page, length, 0) < length) {
544                 bio = mpage_bio_submit(WRITE, bio);
545                 goto alloc_new;
546         }
547
548         /*
549          * OK, we have our BIO, so we can now mark the buffers clean.  Make
550          * sure to only clean buffers which we know we'll be writing.
551          */
552         if (page_has_buffers(page)) {
553                 struct buffer_head *head = page_buffers(page);
554                 struct buffer_head *bh = head;
555                 unsigned buffer_counter = 0;
556
557                 do {
558                         if (buffer_counter++ == first_unmapped)
559                                 break;
560                         clear_buffer_dirty(bh);
561                         bh = bh->b_this_page;
562                 } while (bh != head);
563
564                 /*
565                  * we cannot drop the bh if the page is not uptodate
566                  * or a concurrent readpage would fail to serialize with the bh
567                  * and it would read from disk before we reach the platter.
568                  */
569                 if (buffer_heads_over_limit && PageUptodate(page))
570                         try_to_free_buffers(page);
571         }
572
573         BUG_ON(PageWriteback(page));
574         set_page_writeback(page);
575         unlock_page(page);
576         if (boundary || (first_unmapped != blocks_per_page)) {
577                 bio = mpage_bio_submit(WRITE, bio);
578                 if (boundary_block) {
579                         write_boundary_block(boundary_bdev,
580                                         boundary_block, 1 << blkbits);
581                 }
582         } else {
583                 *last_block_in_bio = blocks[blocks_per_page - 1];
584         }
585         goto out;
586
587 confused:
588         if (bio)
589                 bio = mpage_bio_submit(WRITE, bio);
590
591         if (writepage_fn) {
592                 *ret = (*writepage_fn)(page, wbc);
593         } else {
594                 *ret = -EAGAIN;
595                 goto out;
596         }
597         /*
598          * The caller has a ref on the inode, so *mapping is stable
599          */
600         if (*ret) {
601                 if (*ret == -ENOSPC)
602                         set_bit(AS_ENOSPC, &mapping->flags);
603                 else
604                         set_bit(AS_EIO, &mapping->flags);
605         }
606 out:
607         return bio;
608 }
609
610 /**
611  * mpage_writepages - walk the list of dirty pages of the given
612  * address space and writepage() all of them.
613  * 
614  * @mapping: address space structure to write
615  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
616  * @get_block: the filesystem's block mapper function.
617  *             If this is NULL then use a_ops->writepage.  Otherwise, go
618  *             direct-to-BIO.
619  *
620  * This is a library function, which implements the writepages()
621  * address_space_operation.
622  *
623  * If a page is already under I/O, generic_writepages() skips it, even
624  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
625  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
626  * and msync() need to guarantee that all the data which was dirty at the time
627  * the call was made get new I/O started against them.  If wbc->sync_mode is
628  * WB_SYNC_ALL then we were called for data integrity and we must wait for
629  * existing IO to complete.
630  */
631 int
632 mpage_writepages(struct address_space *mapping,
633                 struct writeback_control *wbc, get_block_t get_block)
634 {
635         struct backing_dev_info *bdi = mapping->backing_dev_info;
636         struct bio *bio = NULL;
637         sector_t last_block_in_bio = 0;
638         int ret = 0;
639         int done = 0;
640         int (*writepage)(struct page *page, struct writeback_control *wbc);
641         struct pagevec pvec;
642         int nr_pages;
643         pgoff_t index;
644         pgoff_t end = -1;               /* Inclusive */
645         int scanned = 0;
646         int is_range = 0;
647
648         if (wbc->nonblocking && bdi_write_congested(bdi)) {
649                 wbc->encountered_congestion = 1;
650                 return 0;
651         }
652
653         writepage = NULL;
654         if (get_block == NULL)
655                 writepage = mapping->a_ops->writepage;
656
657         pagevec_init(&pvec, 0);
658         if (wbc->sync_mode == WB_SYNC_NONE) {
659                 index = mapping->writeback_index; /* Start from prev offset */
660         } else {
661                 index = 0;                        /* whole-file sweep */
662                 scanned = 1;
663         }
664         if (wbc->start || wbc->end) {
665                 index = wbc->start >> PAGE_CACHE_SHIFT;
666                 end = wbc->end >> PAGE_CACHE_SHIFT;
667                 is_range = 1;
668                 scanned = 1;
669         }
670 retry:
671         while (!done && (index <= end) &&
672                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
673                         PAGECACHE_TAG_DIRTY,
674                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
675                 unsigned i;
676
677                 scanned = 1;
678                 for (i = 0; i < nr_pages; i++) {
679                         struct page *page = pvec.pages[i];
680
681                         /*
682                          * At this point we hold neither mapping->tree_lock nor
683                          * lock on the page itself: the page may be truncated or
684                          * invalidated (changing page->mapping to NULL), or even
685                          * swizzled back from swapper_space to tmpfs file
686                          * mapping
687                          */
688
689                         lock_page(page);
690
691                         if (unlikely(page->mapping != mapping)) {
692                                 unlock_page(page);
693                                 continue;
694                         }
695
696                         if (unlikely(is_range) && page->index > end) {
697                                 done = 1;
698                                 unlock_page(page);
699                                 continue;
700                         }
701
702                         if (wbc->sync_mode != WB_SYNC_NONE)
703                                 wait_on_page_writeback(page);
704
705                         if (PageWriteback(page) ||
706                                         !clear_page_dirty_for_io(page)) {
707                                 unlock_page(page);
708                                 continue;
709                         }
710
711                         if (writepage) {
712                                 ret = (*writepage)(page, wbc);
713                                 if (ret) {
714                                         if (ret == -ENOSPC)
715                                                 set_bit(AS_ENOSPC,
716                                                         &mapping->flags);
717                                         else
718                                                 set_bit(AS_EIO,
719                                                         &mapping->flags);
720                                 }
721                         } else {
722                                 bio = __mpage_writepage(bio, page, get_block,
723                                                 &last_block_in_bio, &ret, wbc,
724                                                 page->mapping->a_ops->writepage);
725                         }
726                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE))
727                                 unlock_page(page);
728                         if (ret || (--(wbc->nr_to_write) <= 0))
729                                 done = 1;
730                         if (wbc->nonblocking && bdi_write_congested(bdi)) {
731                                 wbc->encountered_congestion = 1;
732                                 done = 1;
733                         }
734                 }
735                 pagevec_release(&pvec);
736                 cond_resched();
737         }
738         if (!scanned && !done) {
739                 /*
740                  * We hit the last page and there is more work to be done: wrap
741                  * back to the start of the file
742                  */
743                 scanned = 1;
744                 index = 0;
745                 goto retry;
746         }
747         if (!is_range)
748                 mapping->writeback_index = index;
749         if (bio)
750                 mpage_bio_submit(WRITE, bio);
751         return ret;
752 }
753 EXPORT_SYMBOL(mpage_writepages);
754
755 int mpage_writepage(struct page *page, get_block_t get_block,
756         struct writeback_control *wbc)
757 {
758         int ret = 0;
759         struct bio *bio;
760         sector_t last_block_in_bio = 0;
761
762         bio = __mpage_writepage(NULL, page, get_block,
763                         &last_block_in_bio, &ret, wbc, NULL);
764         if (bio)
765                 mpage_bio_submit(WRITE, bio);
766
767         return ret;
768 }
769 EXPORT_SYMBOL(mpage_writepage);