staging: comedi: comedi_pcmcia: introduce comedi_pcmcia_{enable, disable}
[pandora-kernel.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 #include <linux/ratelimit.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50
51 #include <asm/uaccess.h>
52 #include <asm/page.h>
53
54 EXPORT_SYMBOL(jbd2_journal_extend);
55 EXPORT_SYMBOL(jbd2_journal_stop);
56 EXPORT_SYMBOL(jbd2_journal_lock_updates);
57 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
58 EXPORT_SYMBOL(jbd2_journal_get_write_access);
59 EXPORT_SYMBOL(jbd2_journal_get_create_access);
60 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
61 EXPORT_SYMBOL(jbd2_journal_set_triggers);
62 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
63 EXPORT_SYMBOL(jbd2_journal_forget);
64 #if 0
65 EXPORT_SYMBOL(journal_sync_buffer);
66 #endif
67 EXPORT_SYMBOL(jbd2_journal_flush);
68 EXPORT_SYMBOL(jbd2_journal_revoke);
69
70 EXPORT_SYMBOL(jbd2_journal_init_dev);
71 EXPORT_SYMBOL(jbd2_journal_init_inode);
72 EXPORT_SYMBOL(jbd2_journal_check_used_features);
73 EXPORT_SYMBOL(jbd2_journal_check_available_features);
74 EXPORT_SYMBOL(jbd2_journal_set_features);
75 EXPORT_SYMBOL(jbd2_journal_load);
76 EXPORT_SYMBOL(jbd2_journal_destroy);
77 EXPORT_SYMBOL(jbd2_journal_abort);
78 EXPORT_SYMBOL(jbd2_journal_errno);
79 EXPORT_SYMBOL(jbd2_journal_ack_err);
80 EXPORT_SYMBOL(jbd2_journal_clear_err);
81 EXPORT_SYMBOL(jbd2_log_wait_commit);
82 EXPORT_SYMBOL(jbd2_log_start_commit);
83 EXPORT_SYMBOL(jbd2_journal_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
85 EXPORT_SYMBOL(jbd2_journal_wipe);
86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
87 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
89 EXPORT_SYMBOL(jbd2_journal_force_commit);
90 EXPORT_SYMBOL(jbd2_journal_file_inode);
91 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
92 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
93 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
94 EXPORT_SYMBOL(jbd2_inode_cache);
95
96 static void __journal_abort_soft (journal_t *journal, int errno);
97 static int jbd2_journal_create_slab(size_t slab_size);
98
99 /* Checksumming functions */
100 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
101 {
102         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
103                 return 1;
104
105         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
106 }
107
108 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
109 {
110         __u32 csum, old_csum;
111
112         old_csum = sb->s_checksum;
113         sb->s_checksum = 0;
114         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
115         sb->s_checksum = old_csum;
116
117         return cpu_to_be32(csum);
118 }
119
120 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
121 {
122         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
123                 return 1;
124
125         return sb->s_checksum == jbd2_superblock_csum(j, sb);
126 }
127
128 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
129 {
130         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
131                 return;
132
133         sb->s_checksum = jbd2_superblock_csum(j, sb);
134 }
135
136 /*
137  * Helper function used to manage commit timeouts
138  */
139
140 static void commit_timeout(unsigned long __data)
141 {
142         struct task_struct * p = (struct task_struct *) __data;
143
144         wake_up_process(p);
145 }
146
147 /*
148  * kjournald2: The main thread function used to manage a logging device
149  * journal.
150  *
151  * This kernel thread is responsible for two things:
152  *
153  * 1) COMMIT:  Every so often we need to commit the current state of the
154  *    filesystem to disk.  The journal thread is responsible for writing
155  *    all of the metadata buffers to disk.
156  *
157  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
158  *    of the data in that part of the log has been rewritten elsewhere on
159  *    the disk.  Flushing these old buffers to reclaim space in the log is
160  *    known as checkpointing, and this thread is responsible for that job.
161  */
162
163 static int kjournald2(void *arg)
164 {
165         journal_t *journal = arg;
166         transaction_t *transaction;
167
168         /*
169          * Set up an interval timer which can be used to trigger a commit wakeup
170          * after the commit interval expires
171          */
172         setup_timer(&journal->j_commit_timer, commit_timeout,
173                         (unsigned long)current);
174
175         set_freezable();
176
177         /* Record that the journal thread is running */
178         journal->j_task = current;
179         wake_up(&journal->j_wait_done_commit);
180
181         /*
182          * And now, wait forever for commit wakeup events.
183          */
184         write_lock(&journal->j_state_lock);
185
186 loop:
187         if (journal->j_flags & JBD2_UNMOUNT)
188                 goto end_loop;
189
190         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
191                 journal->j_commit_sequence, journal->j_commit_request);
192
193         if (journal->j_commit_sequence != journal->j_commit_request) {
194                 jbd_debug(1, "OK, requests differ\n");
195                 write_unlock(&journal->j_state_lock);
196                 del_timer_sync(&journal->j_commit_timer);
197                 jbd2_journal_commit_transaction(journal);
198                 write_lock(&journal->j_state_lock);
199                 goto loop;
200         }
201
202         wake_up(&journal->j_wait_done_commit);
203         if (freezing(current)) {
204                 /*
205                  * The simpler the better. Flushing journal isn't a
206                  * good idea, because that depends on threads that may
207                  * be already stopped.
208                  */
209                 jbd_debug(1, "Now suspending kjournald2\n");
210                 write_unlock(&journal->j_state_lock);
211                 try_to_freeze();
212                 write_lock(&journal->j_state_lock);
213         } else {
214                 /*
215                  * We assume on resume that commits are already there,
216                  * so we don't sleep
217                  */
218                 DEFINE_WAIT(wait);
219                 int should_sleep = 1;
220
221                 prepare_to_wait(&journal->j_wait_commit, &wait,
222                                 TASK_INTERRUPTIBLE);
223                 if (journal->j_commit_sequence != journal->j_commit_request)
224                         should_sleep = 0;
225                 transaction = journal->j_running_transaction;
226                 if (transaction && time_after_eq(jiffies,
227                                                 transaction->t_expires))
228                         should_sleep = 0;
229                 if (journal->j_flags & JBD2_UNMOUNT)
230                         should_sleep = 0;
231                 if (should_sleep) {
232                         write_unlock(&journal->j_state_lock);
233                         schedule();
234                         write_lock(&journal->j_state_lock);
235                 }
236                 finish_wait(&journal->j_wait_commit, &wait);
237         }
238
239         jbd_debug(1, "kjournald2 wakes\n");
240
241         /*
242          * Were we woken up by a commit wakeup event?
243          */
244         transaction = journal->j_running_transaction;
245         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
246                 journal->j_commit_request = transaction->t_tid;
247                 jbd_debug(1, "woke because of timeout\n");
248         }
249         goto loop;
250
251 end_loop:
252         write_unlock(&journal->j_state_lock);
253         del_timer_sync(&journal->j_commit_timer);
254         journal->j_task = NULL;
255         wake_up(&journal->j_wait_done_commit);
256         jbd_debug(1, "Journal thread exiting.\n");
257         return 0;
258 }
259
260 static int jbd2_journal_start_thread(journal_t *journal)
261 {
262         struct task_struct *t;
263
264         t = kthread_run(kjournald2, journal, "jbd2/%s",
265                         journal->j_devname);
266         if (IS_ERR(t))
267                 return PTR_ERR(t);
268
269         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
270         return 0;
271 }
272
273 static void journal_kill_thread(journal_t *journal)
274 {
275         write_lock(&journal->j_state_lock);
276         journal->j_flags |= JBD2_UNMOUNT;
277
278         while (journal->j_task) {
279                 wake_up(&journal->j_wait_commit);
280                 write_unlock(&journal->j_state_lock);
281                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
282                 write_lock(&journal->j_state_lock);
283         }
284         write_unlock(&journal->j_state_lock);
285 }
286
287 /*
288  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
289  *
290  * Writes a metadata buffer to a given disk block.  The actual IO is not
291  * performed but a new buffer_head is constructed which labels the data
292  * to be written with the correct destination disk block.
293  *
294  * Any magic-number escaping which needs to be done will cause a
295  * copy-out here.  If the buffer happens to start with the
296  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
297  * magic number is only written to the log for descripter blocks.  In
298  * this case, we copy the data and replace the first word with 0, and we
299  * return a result code which indicates that this buffer needs to be
300  * marked as an escaped buffer in the corresponding log descriptor
301  * block.  The missing word can then be restored when the block is read
302  * during recovery.
303  *
304  * If the source buffer has already been modified by a new transaction
305  * since we took the last commit snapshot, we use the frozen copy of
306  * that data for IO.  If we end up using the existing buffer_head's data
307  * for the write, then we *have* to lock the buffer to prevent anyone
308  * else from using and possibly modifying it while the IO is in
309  * progress.
310  *
311  * The function returns a pointer to the buffer_heads to be used for IO.
312  *
313  * We assume that the journal has already been locked in this function.
314  *
315  * Return value:
316  *  <0: Error
317  * >=0: Finished OK
318  *
319  * On success:
320  * Bit 0 set == escape performed on the data
321  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
322  */
323
324 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
325                                   struct journal_head  *jh_in,
326                                   struct journal_head **jh_out,
327                                   unsigned long long blocknr)
328 {
329         int need_copy_out = 0;
330         int done_copy_out = 0;
331         int do_escape = 0;
332         char *mapped_data;
333         struct buffer_head *new_bh;
334         struct journal_head *new_jh;
335         struct page *new_page;
336         unsigned int new_offset;
337         struct buffer_head *bh_in = jh2bh(jh_in);
338         journal_t *journal = transaction->t_journal;
339
340         /*
341          * The buffer really shouldn't be locked: only the current committing
342          * transaction is allowed to write it, so nobody else is allowed
343          * to do any IO.
344          *
345          * akpm: except if we're journalling data, and write() output is
346          * also part of a shared mapping, and another thread has
347          * decided to launch a writepage() against this buffer.
348          */
349         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
350
351 retry_alloc:
352         new_bh = alloc_buffer_head(GFP_NOFS);
353         if (!new_bh) {
354                 /*
355                  * Failure is not an option, but __GFP_NOFAIL is going
356                  * away; so we retry ourselves here.
357                  */
358                 congestion_wait(BLK_RW_ASYNC, HZ/50);
359                 goto retry_alloc;
360         }
361
362         /* keep subsequent assertions sane */
363         new_bh->b_state = 0;
364         init_buffer(new_bh, NULL, NULL);
365         atomic_set(&new_bh->b_count, 1);
366         new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
367
368         /*
369          * If a new transaction has already done a buffer copy-out, then
370          * we use that version of the data for the commit.
371          */
372         jbd_lock_bh_state(bh_in);
373 repeat:
374         if (jh_in->b_frozen_data) {
375                 done_copy_out = 1;
376                 new_page = virt_to_page(jh_in->b_frozen_data);
377                 new_offset = offset_in_page(jh_in->b_frozen_data);
378         } else {
379                 new_page = jh2bh(jh_in)->b_page;
380                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
381         }
382
383         mapped_data = kmap_atomic(new_page);
384         /*
385          * Fire data frozen trigger if data already wasn't frozen.  Do this
386          * before checking for escaping, as the trigger may modify the magic
387          * offset.  If a copy-out happens afterwards, it will have the correct
388          * data in the buffer.
389          */
390         if (!done_copy_out)
391                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
392                                            jh_in->b_triggers);
393
394         /*
395          * Check for escaping
396          */
397         if (*((__be32 *)(mapped_data + new_offset)) ==
398                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
399                 need_copy_out = 1;
400                 do_escape = 1;
401         }
402         kunmap_atomic(mapped_data);
403
404         /*
405          * Do we need to do a data copy?
406          */
407         if (need_copy_out && !done_copy_out) {
408                 char *tmp;
409
410                 jbd_unlock_bh_state(bh_in);
411                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
412                 if (!tmp) {
413                         jbd2_journal_put_journal_head(new_jh);
414                         return -ENOMEM;
415                 }
416                 jbd_lock_bh_state(bh_in);
417                 if (jh_in->b_frozen_data) {
418                         jbd2_free(tmp, bh_in->b_size);
419                         goto repeat;
420                 }
421
422                 jh_in->b_frozen_data = tmp;
423                 mapped_data = kmap_atomic(new_page);
424                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
425                 kunmap_atomic(mapped_data);
426
427                 new_page = virt_to_page(tmp);
428                 new_offset = offset_in_page(tmp);
429                 done_copy_out = 1;
430
431                 /*
432                  * This isn't strictly necessary, as we're using frozen
433                  * data for the escaping, but it keeps consistency with
434                  * b_frozen_data usage.
435                  */
436                 jh_in->b_frozen_triggers = jh_in->b_triggers;
437         }
438
439         /*
440          * Did we need to do an escaping?  Now we've done all the
441          * copying, we can finally do so.
442          */
443         if (do_escape) {
444                 mapped_data = kmap_atomic(new_page);
445                 *((unsigned int *)(mapped_data + new_offset)) = 0;
446                 kunmap_atomic(mapped_data);
447         }
448
449         set_bh_page(new_bh, new_page, new_offset);
450         new_jh->b_transaction = NULL;
451         new_bh->b_size = jh2bh(jh_in)->b_size;
452         new_bh->b_bdev = transaction->t_journal->j_dev;
453         new_bh->b_blocknr = blocknr;
454         set_buffer_mapped(new_bh);
455         set_buffer_dirty(new_bh);
456
457         *jh_out = new_jh;
458
459         /*
460          * The to-be-written buffer needs to get moved to the io queue,
461          * and the original buffer whose contents we are shadowing or
462          * copying is moved to the transaction's shadow queue.
463          */
464         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
465         spin_lock(&journal->j_list_lock);
466         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
467         spin_unlock(&journal->j_list_lock);
468         jbd_unlock_bh_state(bh_in);
469
470         JBUFFER_TRACE(new_jh, "file as BJ_IO");
471         jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
472
473         return do_escape | (done_copy_out << 1);
474 }
475
476 /*
477  * Allocation code for the journal file.  Manage the space left in the
478  * journal, so that we can begin checkpointing when appropriate.
479  */
480
481 /*
482  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
483  *
484  * Called with the journal already locked.
485  *
486  * Called under j_state_lock
487  */
488
489 int __jbd2_log_space_left(journal_t *journal)
490 {
491         int left = journal->j_free;
492
493         /* assert_spin_locked(&journal->j_state_lock); */
494
495         /*
496          * Be pessimistic here about the number of those free blocks which
497          * might be required for log descriptor control blocks.
498          */
499
500 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
501
502         left -= MIN_LOG_RESERVED_BLOCKS;
503
504         if (left <= 0)
505                 return 0;
506         left -= (left >> 3);
507         return left;
508 }
509
510 /*
511  * Called with j_state_lock locked for writing.
512  * Returns true if a transaction commit was started.
513  */
514 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
515 {
516         /*
517          * The only transaction we can possibly wait upon is the
518          * currently running transaction (if it exists).  Otherwise,
519          * the target tid must be an old one.
520          */
521         if (journal->j_running_transaction &&
522             journal->j_running_transaction->t_tid == target) {
523                 /*
524                  * We want a new commit: OK, mark the request and wakeup the
525                  * commit thread.  We do _not_ do the commit ourselves.
526                  */
527
528                 journal->j_commit_request = target;
529                 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
530                           journal->j_commit_request,
531                           journal->j_commit_sequence);
532                 wake_up(&journal->j_wait_commit);
533                 return 1;
534         } else if (!tid_geq(journal->j_commit_request, target))
535                 /* This should never happen, but if it does, preserve
536                    the evidence before kjournald goes into a loop and
537                    increments j_commit_sequence beyond all recognition. */
538                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
539                           journal->j_commit_request,
540                           journal->j_commit_sequence,
541                           target, journal->j_running_transaction ? 
542                           journal->j_running_transaction->t_tid : 0);
543         return 0;
544 }
545
546 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
547 {
548         int ret;
549
550         write_lock(&journal->j_state_lock);
551         ret = __jbd2_log_start_commit(journal, tid);
552         write_unlock(&journal->j_state_lock);
553         return ret;
554 }
555
556 /*
557  * Force and wait upon a commit if the calling process is not within
558  * transaction.  This is used for forcing out undo-protected data which contains
559  * bitmaps, when the fs is running out of space.
560  *
561  * We can only force the running transaction if we don't have an active handle;
562  * otherwise, we will deadlock.
563  *
564  * Returns true if a transaction was started.
565  */
566 int jbd2_journal_force_commit_nested(journal_t *journal)
567 {
568         transaction_t *transaction = NULL;
569         tid_t tid;
570         int need_to_start = 0;
571
572         read_lock(&journal->j_state_lock);
573         if (journal->j_running_transaction && !current->journal_info) {
574                 transaction = journal->j_running_transaction;
575                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
576                         need_to_start = 1;
577         } else if (journal->j_committing_transaction)
578                 transaction = journal->j_committing_transaction;
579
580         if (!transaction) {
581                 read_unlock(&journal->j_state_lock);
582                 return 0;       /* Nothing to retry */
583         }
584
585         tid = transaction->t_tid;
586         read_unlock(&journal->j_state_lock);
587         if (need_to_start)
588                 jbd2_log_start_commit(journal, tid);
589         jbd2_log_wait_commit(journal, tid);
590         return 1;
591 }
592
593 /*
594  * Start a commit of the current running transaction (if any).  Returns true
595  * if a transaction is going to be committed (or is currently already
596  * committing), and fills its tid in at *ptid
597  */
598 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
599 {
600         int ret = 0;
601
602         write_lock(&journal->j_state_lock);
603         if (journal->j_running_transaction) {
604                 tid_t tid = journal->j_running_transaction->t_tid;
605
606                 __jbd2_log_start_commit(journal, tid);
607                 /* There's a running transaction and we've just made sure
608                  * it's commit has been scheduled. */
609                 if (ptid)
610                         *ptid = tid;
611                 ret = 1;
612         } else if (journal->j_committing_transaction) {
613                 /*
614                  * If commit has been started, then we have to wait for
615                  * completion of that transaction.
616                  */
617                 if (ptid)
618                         *ptid = journal->j_committing_transaction->t_tid;
619                 ret = 1;
620         }
621         write_unlock(&journal->j_state_lock);
622         return ret;
623 }
624
625 /*
626  * Return 1 if a given transaction has not yet sent barrier request
627  * connected with a transaction commit. If 0 is returned, transaction
628  * may or may not have sent the barrier. Used to avoid sending barrier
629  * twice in common cases.
630  */
631 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
632 {
633         int ret = 0;
634         transaction_t *commit_trans;
635
636         if (!(journal->j_flags & JBD2_BARRIER))
637                 return 0;
638         read_lock(&journal->j_state_lock);
639         /* Transaction already committed? */
640         if (tid_geq(journal->j_commit_sequence, tid))
641                 goto out;
642         commit_trans = journal->j_committing_transaction;
643         if (!commit_trans || commit_trans->t_tid != tid) {
644                 ret = 1;
645                 goto out;
646         }
647         /*
648          * Transaction is being committed and we already proceeded to
649          * submitting a flush to fs partition?
650          */
651         if (journal->j_fs_dev != journal->j_dev) {
652                 if (!commit_trans->t_need_data_flush ||
653                     commit_trans->t_state >= T_COMMIT_DFLUSH)
654                         goto out;
655         } else {
656                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
657                         goto out;
658         }
659         ret = 1;
660 out:
661         read_unlock(&journal->j_state_lock);
662         return ret;
663 }
664 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
665
666 /*
667  * Wait for a specified commit to complete.
668  * The caller may not hold the journal lock.
669  */
670 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
671 {
672         int err = 0;
673
674         read_lock(&journal->j_state_lock);
675 #ifdef CONFIG_JBD2_DEBUG
676         if (!tid_geq(journal->j_commit_request, tid)) {
677                 printk(KERN_EMERG
678                        "%s: error: j_commit_request=%d, tid=%d\n",
679                        __func__, journal->j_commit_request, tid);
680         }
681 #endif
682         while (tid_gt(tid, journal->j_commit_sequence)) {
683                 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
684                                   tid, journal->j_commit_sequence);
685                 wake_up(&journal->j_wait_commit);
686                 read_unlock(&journal->j_state_lock);
687                 wait_event(journal->j_wait_done_commit,
688                                 !tid_gt(tid, journal->j_commit_sequence));
689                 read_lock(&journal->j_state_lock);
690         }
691         read_unlock(&journal->j_state_lock);
692
693         if (unlikely(is_journal_aborted(journal))) {
694                 printk(KERN_EMERG "journal commit I/O error\n");
695                 err = -EIO;
696         }
697         return err;
698 }
699
700 /*
701  * Log buffer allocation routines:
702  */
703
704 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
705 {
706         unsigned long blocknr;
707
708         write_lock(&journal->j_state_lock);
709         J_ASSERT(journal->j_free > 1);
710
711         blocknr = journal->j_head;
712         journal->j_head++;
713         journal->j_free--;
714         if (journal->j_head == journal->j_last)
715                 journal->j_head = journal->j_first;
716         write_unlock(&journal->j_state_lock);
717         return jbd2_journal_bmap(journal, blocknr, retp);
718 }
719
720 /*
721  * Conversion of logical to physical block numbers for the journal
722  *
723  * On external journals the journal blocks are identity-mapped, so
724  * this is a no-op.  If needed, we can use j_blk_offset - everything is
725  * ready.
726  */
727 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
728                  unsigned long long *retp)
729 {
730         int err = 0;
731         unsigned long long ret;
732
733         if (journal->j_inode) {
734                 ret = bmap(journal->j_inode, blocknr);
735                 if (ret)
736                         *retp = ret;
737                 else {
738                         printk(KERN_ALERT "%s: journal block not found "
739                                         "at offset %lu on %s\n",
740                                __func__, blocknr, journal->j_devname);
741                         err = -EIO;
742                         __journal_abort_soft(journal, err);
743                 }
744         } else {
745                 *retp = blocknr; /* +journal->j_blk_offset */
746         }
747         return err;
748 }
749
750 /*
751  * We play buffer_head aliasing tricks to write data/metadata blocks to
752  * the journal without copying their contents, but for journal
753  * descriptor blocks we do need to generate bona fide buffers.
754  *
755  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
756  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
757  * But we don't bother doing that, so there will be coherency problems with
758  * mmaps of blockdevs which hold live JBD-controlled filesystems.
759  */
760 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
761 {
762         struct buffer_head *bh;
763         unsigned long long blocknr;
764         int err;
765
766         err = jbd2_journal_next_log_block(journal, &blocknr);
767
768         if (err)
769                 return NULL;
770
771         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
772         if (!bh)
773                 return NULL;
774         lock_buffer(bh);
775         memset(bh->b_data, 0, journal->j_blocksize);
776         set_buffer_uptodate(bh);
777         unlock_buffer(bh);
778         BUFFER_TRACE(bh, "return this buffer");
779         return jbd2_journal_add_journal_head(bh);
780 }
781
782 /*
783  * Return tid of the oldest transaction in the journal and block in the journal
784  * where the transaction starts.
785  *
786  * If the journal is now empty, return which will be the next transaction ID
787  * we will write and where will that transaction start.
788  *
789  * The return value is 0 if journal tail cannot be pushed any further, 1 if
790  * it can.
791  */
792 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
793                               unsigned long *block)
794 {
795         transaction_t *transaction;
796         int ret;
797
798         read_lock(&journal->j_state_lock);
799         spin_lock(&journal->j_list_lock);
800         transaction = journal->j_checkpoint_transactions;
801         if (transaction) {
802                 *tid = transaction->t_tid;
803                 *block = transaction->t_log_start;
804         } else if ((transaction = journal->j_committing_transaction) != NULL) {
805                 *tid = transaction->t_tid;
806                 *block = transaction->t_log_start;
807         } else if ((transaction = journal->j_running_transaction) != NULL) {
808                 *tid = transaction->t_tid;
809                 *block = journal->j_head;
810         } else {
811                 *tid = journal->j_transaction_sequence;
812                 *block = journal->j_head;
813         }
814         ret = tid_gt(*tid, journal->j_tail_sequence);
815         spin_unlock(&journal->j_list_lock);
816         read_unlock(&journal->j_state_lock);
817
818         return ret;
819 }
820
821 /*
822  * Update information in journal structure and in on disk journal superblock
823  * about log tail. This function does not check whether information passed in
824  * really pushes log tail further. It's responsibility of the caller to make
825  * sure provided log tail information is valid (e.g. by holding
826  * j_checkpoint_mutex all the time between computing log tail and calling this
827  * function as is the case with jbd2_cleanup_journal_tail()).
828  *
829  * Requires j_checkpoint_mutex
830  */
831 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
832 {
833         unsigned long freed;
834
835         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
836
837         /*
838          * We cannot afford for write to remain in drive's caches since as
839          * soon as we update j_tail, next transaction can start reusing journal
840          * space and if we lose sb update during power failure we'd replay
841          * old transaction with possibly newly overwritten data.
842          */
843         jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
844         write_lock(&journal->j_state_lock);
845         freed = block - journal->j_tail;
846         if (block < journal->j_tail)
847                 freed += journal->j_last - journal->j_first;
848
849         trace_jbd2_update_log_tail(journal, tid, block, freed);
850         jbd_debug(1,
851                   "Cleaning journal tail from %d to %d (offset %lu), "
852                   "freeing %lu\n",
853                   journal->j_tail_sequence, tid, block, freed);
854
855         journal->j_free += freed;
856         journal->j_tail_sequence = tid;
857         journal->j_tail = block;
858         write_unlock(&journal->j_state_lock);
859 }
860
861 /*
862  * This is a variaon of __jbd2_update_log_tail which checks for validity of
863  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
864  * with other threads updating log tail.
865  */
866 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
867 {
868         mutex_lock(&journal->j_checkpoint_mutex);
869         if (tid_gt(tid, journal->j_tail_sequence))
870                 __jbd2_update_log_tail(journal, tid, block);
871         mutex_unlock(&journal->j_checkpoint_mutex);
872 }
873
874 struct jbd2_stats_proc_session {
875         journal_t *journal;
876         struct transaction_stats_s *stats;
877         int start;
878         int max;
879 };
880
881 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
882 {
883         return *pos ? NULL : SEQ_START_TOKEN;
884 }
885
886 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
887 {
888         return NULL;
889 }
890
891 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
892 {
893         struct jbd2_stats_proc_session *s = seq->private;
894
895         if (v != SEQ_START_TOKEN)
896                 return 0;
897         seq_printf(seq, "%lu transaction, each up to %u blocks\n",
898                         s->stats->ts_tid,
899                         s->journal->j_max_transaction_buffers);
900         if (s->stats->ts_tid == 0)
901                 return 0;
902         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
903             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
904         seq_printf(seq, "  %ums running transaction\n",
905             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
906         seq_printf(seq, "  %ums transaction was being locked\n",
907             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
908         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
909             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
910         seq_printf(seq, "  %ums logging transaction\n",
911             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
912         seq_printf(seq, "  %lluus average transaction commit time\n",
913                    div_u64(s->journal->j_average_commit_time, 1000));
914         seq_printf(seq, "  %lu handles per transaction\n",
915             s->stats->run.rs_handle_count / s->stats->ts_tid);
916         seq_printf(seq, "  %lu blocks per transaction\n",
917             s->stats->run.rs_blocks / s->stats->ts_tid);
918         seq_printf(seq, "  %lu logged blocks per transaction\n",
919             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
920         return 0;
921 }
922
923 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
924 {
925 }
926
927 static const struct seq_operations jbd2_seq_info_ops = {
928         .start  = jbd2_seq_info_start,
929         .next   = jbd2_seq_info_next,
930         .stop   = jbd2_seq_info_stop,
931         .show   = jbd2_seq_info_show,
932 };
933
934 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
935 {
936         journal_t *journal = PDE(inode)->data;
937         struct jbd2_stats_proc_session *s;
938         int rc, size;
939
940         s = kmalloc(sizeof(*s), GFP_KERNEL);
941         if (s == NULL)
942                 return -ENOMEM;
943         size = sizeof(struct transaction_stats_s);
944         s->stats = kmalloc(size, GFP_KERNEL);
945         if (s->stats == NULL) {
946                 kfree(s);
947                 return -ENOMEM;
948         }
949         spin_lock(&journal->j_history_lock);
950         memcpy(s->stats, &journal->j_stats, size);
951         s->journal = journal;
952         spin_unlock(&journal->j_history_lock);
953
954         rc = seq_open(file, &jbd2_seq_info_ops);
955         if (rc == 0) {
956                 struct seq_file *m = file->private_data;
957                 m->private = s;
958         } else {
959                 kfree(s->stats);
960                 kfree(s);
961         }
962         return rc;
963
964 }
965
966 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
967 {
968         struct seq_file *seq = file->private_data;
969         struct jbd2_stats_proc_session *s = seq->private;
970         kfree(s->stats);
971         kfree(s);
972         return seq_release(inode, file);
973 }
974
975 static const struct file_operations jbd2_seq_info_fops = {
976         .owner          = THIS_MODULE,
977         .open           = jbd2_seq_info_open,
978         .read           = seq_read,
979         .llseek         = seq_lseek,
980         .release        = jbd2_seq_info_release,
981 };
982
983 static struct proc_dir_entry *proc_jbd2_stats;
984
985 static void jbd2_stats_proc_init(journal_t *journal)
986 {
987         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
988         if (journal->j_proc_entry) {
989                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
990                                  &jbd2_seq_info_fops, journal);
991         }
992 }
993
994 static void jbd2_stats_proc_exit(journal_t *journal)
995 {
996         remove_proc_entry("info", journal->j_proc_entry);
997         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
998 }
999
1000 /*
1001  * Management for journal control blocks: functions to create and
1002  * destroy journal_t structures, and to initialise and read existing
1003  * journal blocks from disk.  */
1004
1005 /* First: create and setup a journal_t object in memory.  We initialise
1006  * very few fields yet: that has to wait until we have created the
1007  * journal structures from from scratch, or loaded them from disk. */
1008
1009 static journal_t * journal_init_common (void)
1010 {
1011         journal_t *journal;
1012         int err;
1013
1014         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1015         if (!journal)
1016                 return NULL;
1017
1018         init_waitqueue_head(&journal->j_wait_transaction_locked);
1019         init_waitqueue_head(&journal->j_wait_logspace);
1020         init_waitqueue_head(&journal->j_wait_done_commit);
1021         init_waitqueue_head(&journal->j_wait_checkpoint);
1022         init_waitqueue_head(&journal->j_wait_commit);
1023         init_waitqueue_head(&journal->j_wait_updates);
1024         mutex_init(&journal->j_barrier);
1025         mutex_init(&journal->j_checkpoint_mutex);
1026         spin_lock_init(&journal->j_revoke_lock);
1027         spin_lock_init(&journal->j_list_lock);
1028         rwlock_init(&journal->j_state_lock);
1029
1030         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1031         journal->j_min_batch_time = 0;
1032         journal->j_max_batch_time = 15000; /* 15ms */
1033
1034         /* The journal is marked for error until we succeed with recovery! */
1035         journal->j_flags = JBD2_ABORT;
1036
1037         /* Set up a default-sized revoke table for the new mount. */
1038         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1039         if (err) {
1040                 kfree(journal);
1041                 return NULL;
1042         }
1043
1044         spin_lock_init(&journal->j_history_lock);
1045
1046         return journal;
1047 }
1048
1049 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1050  *
1051  * Create a journal structure assigned some fixed set of disk blocks to
1052  * the journal.  We don't actually touch those disk blocks yet, but we
1053  * need to set up all of the mapping information to tell the journaling
1054  * system where the journal blocks are.
1055  *
1056  */
1057
1058 /**
1059  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1060  *  @bdev: Block device on which to create the journal
1061  *  @fs_dev: Device which hold journalled filesystem for this journal.
1062  *  @start: Block nr Start of journal.
1063  *  @len:  Length of the journal in blocks.
1064  *  @blocksize: blocksize of journalling device
1065  *
1066  *  Returns: a newly created journal_t *
1067  *
1068  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1069  *  range of blocks on an arbitrary block device.
1070  *
1071  */
1072 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1073                         struct block_device *fs_dev,
1074                         unsigned long long start, int len, int blocksize)
1075 {
1076         journal_t *journal = journal_init_common();
1077         struct buffer_head *bh;
1078         char *p;
1079         int n;
1080
1081         if (!journal)
1082                 return NULL;
1083
1084         /* journal descriptor can store up to n blocks -bzzz */
1085         journal->j_blocksize = blocksize;
1086         journal->j_dev = bdev;
1087         journal->j_fs_dev = fs_dev;
1088         journal->j_blk_offset = start;
1089         journal->j_maxlen = len;
1090         bdevname(journal->j_dev, journal->j_devname);
1091         p = journal->j_devname;
1092         while ((p = strchr(p, '/')))
1093                 *p = '!';
1094         jbd2_stats_proc_init(journal);
1095         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1096         journal->j_wbufsize = n;
1097         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1098         if (!journal->j_wbuf) {
1099                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1100                         __func__);
1101                 goto out_err;
1102         }
1103
1104         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1105         if (!bh) {
1106                 printk(KERN_ERR
1107                        "%s: Cannot get buffer for journal superblock\n",
1108                        __func__);
1109                 goto out_err;
1110         }
1111         journal->j_sb_buffer = bh;
1112         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1113
1114         return journal;
1115 out_err:
1116         kfree(journal->j_wbuf);
1117         jbd2_stats_proc_exit(journal);
1118         kfree(journal);
1119         return NULL;
1120 }
1121
1122 /**
1123  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1124  *  @inode: An inode to create the journal in
1125  *
1126  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1127  * the journal.  The inode must exist already, must support bmap() and
1128  * must have all data blocks preallocated.
1129  */
1130 journal_t * jbd2_journal_init_inode (struct inode *inode)
1131 {
1132         struct buffer_head *bh;
1133         journal_t *journal = journal_init_common();
1134         char *p;
1135         int err;
1136         int n;
1137         unsigned long long blocknr;
1138
1139         if (!journal)
1140                 return NULL;
1141
1142         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1143         journal->j_inode = inode;
1144         bdevname(journal->j_dev, journal->j_devname);
1145         p = journal->j_devname;
1146         while ((p = strchr(p, '/')))
1147                 *p = '!';
1148         p = journal->j_devname + strlen(journal->j_devname);
1149         sprintf(p, "-%lu", journal->j_inode->i_ino);
1150         jbd_debug(1,
1151                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1152                   journal, inode->i_sb->s_id, inode->i_ino,
1153                   (long long) inode->i_size,
1154                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1155
1156         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1157         journal->j_blocksize = inode->i_sb->s_blocksize;
1158         jbd2_stats_proc_init(journal);
1159
1160         /* journal descriptor can store up to n blocks -bzzz */
1161         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1162         journal->j_wbufsize = n;
1163         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1164         if (!journal->j_wbuf) {
1165                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1166                         __func__);
1167                 goto out_err;
1168         }
1169
1170         err = jbd2_journal_bmap(journal, 0, &blocknr);
1171         /* If that failed, give up */
1172         if (err) {
1173                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1174                        __func__);
1175                 goto out_err;
1176         }
1177
1178         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1179         if (!bh) {
1180                 printk(KERN_ERR
1181                        "%s: Cannot get buffer for journal superblock\n",
1182                        __func__);
1183                 goto out_err;
1184         }
1185         journal->j_sb_buffer = bh;
1186         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1187
1188         return journal;
1189 out_err:
1190         kfree(journal->j_wbuf);
1191         jbd2_stats_proc_exit(journal);
1192         kfree(journal);
1193         return NULL;
1194 }
1195
1196 /*
1197  * If the journal init or create aborts, we need to mark the journal
1198  * superblock as being NULL to prevent the journal destroy from writing
1199  * back a bogus superblock.
1200  */
1201 static void journal_fail_superblock (journal_t *journal)
1202 {
1203         struct buffer_head *bh = journal->j_sb_buffer;
1204         brelse(bh);
1205         journal->j_sb_buffer = NULL;
1206 }
1207
1208 /*
1209  * Given a journal_t structure, initialise the various fields for
1210  * startup of a new journaling session.  We use this both when creating
1211  * a journal, and after recovering an old journal to reset it for
1212  * subsequent use.
1213  */
1214
1215 static int journal_reset(journal_t *journal)
1216 {
1217         journal_superblock_t *sb = journal->j_superblock;
1218         unsigned long long first, last;
1219
1220         first = be32_to_cpu(sb->s_first);
1221         last = be32_to_cpu(sb->s_maxlen);
1222         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1223                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1224                        first, last);
1225                 journal_fail_superblock(journal);
1226                 return -EINVAL;
1227         }
1228
1229         journal->j_first = first;
1230         journal->j_last = last;
1231
1232         journal->j_head = first;
1233         journal->j_tail = first;
1234         journal->j_free = last - first;
1235
1236         journal->j_tail_sequence = journal->j_transaction_sequence;
1237         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1238         journal->j_commit_request = journal->j_commit_sequence;
1239
1240         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1241
1242         /*
1243          * As a special case, if the on-disk copy is already marked as needing
1244          * no recovery (s_start == 0), then we can safely defer the superblock
1245          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1246          * attempting a write to a potential-readonly device.
1247          */
1248         if (sb->s_start == 0) {
1249                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1250                         "(start %ld, seq %d, errno %d)\n",
1251                         journal->j_tail, journal->j_tail_sequence,
1252                         journal->j_errno);
1253                 journal->j_flags |= JBD2_FLUSHED;
1254         } else {
1255                 /* Lock here to make assertions happy... */
1256                 mutex_lock(&journal->j_checkpoint_mutex);
1257                 /*
1258                  * Update log tail information. We use WRITE_FUA since new
1259                  * transaction will start reusing journal space and so we
1260                  * must make sure information about current log tail is on
1261                  * disk before that.
1262                  */
1263                 jbd2_journal_update_sb_log_tail(journal,
1264                                                 journal->j_tail_sequence,
1265                                                 journal->j_tail,
1266                                                 WRITE_FUA);
1267                 mutex_unlock(&journal->j_checkpoint_mutex);
1268         }
1269         return jbd2_journal_start_thread(journal);
1270 }
1271
1272 static void jbd2_write_superblock(journal_t *journal, int write_op)
1273 {
1274         struct buffer_head *bh = journal->j_sb_buffer;
1275         int ret;
1276
1277         trace_jbd2_write_superblock(journal, write_op);
1278         if (!(journal->j_flags & JBD2_BARRIER))
1279                 write_op &= ~(REQ_FUA | REQ_FLUSH);
1280         lock_buffer(bh);
1281         if (buffer_write_io_error(bh)) {
1282                 /*
1283                  * Oh, dear.  A previous attempt to write the journal
1284                  * superblock failed.  This could happen because the
1285                  * USB device was yanked out.  Or it could happen to
1286                  * be a transient write error and maybe the block will
1287                  * be remapped.  Nothing we can do but to retry the
1288                  * write and hope for the best.
1289                  */
1290                 printk(KERN_ERR "JBD2: previous I/O error detected "
1291                        "for journal superblock update for %s.\n",
1292                        journal->j_devname);
1293                 clear_buffer_write_io_error(bh);
1294                 set_buffer_uptodate(bh);
1295         }
1296         get_bh(bh);
1297         bh->b_end_io = end_buffer_write_sync;
1298         ret = submit_bh(write_op, bh);
1299         wait_on_buffer(bh);
1300         if (buffer_write_io_error(bh)) {
1301                 clear_buffer_write_io_error(bh);
1302                 set_buffer_uptodate(bh);
1303                 ret = -EIO;
1304         }
1305         if (ret) {
1306                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1307                        "journal superblock for %s.\n", ret,
1308                        journal->j_devname);
1309         }
1310 }
1311
1312 /**
1313  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1314  * @journal: The journal to update.
1315  * @tail_tid: TID of the new transaction at the tail of the log
1316  * @tail_block: The first block of the transaction at the tail of the log
1317  * @write_op: With which operation should we write the journal sb
1318  *
1319  * Update a journal's superblock information about log tail and write it to
1320  * disk, waiting for the IO to complete.
1321  */
1322 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1323                                      unsigned long tail_block, int write_op)
1324 {
1325         journal_superblock_t *sb = journal->j_superblock;
1326
1327         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1328         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1329                   tail_block, tail_tid);
1330
1331         sb->s_sequence = cpu_to_be32(tail_tid);
1332         sb->s_start    = cpu_to_be32(tail_block);
1333
1334         jbd2_write_superblock(journal, write_op);
1335
1336         /* Log is no longer empty */
1337         write_lock(&journal->j_state_lock);
1338         WARN_ON(!sb->s_sequence);
1339         journal->j_flags &= ~JBD2_FLUSHED;
1340         write_unlock(&journal->j_state_lock);
1341 }
1342
1343 /**
1344  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1345  * @journal: The journal to update.
1346  *
1347  * Update a journal's dynamic superblock fields to show that journal is empty.
1348  * Write updated superblock to disk waiting for IO to complete.
1349  */
1350 static void jbd2_mark_journal_empty(journal_t *journal)
1351 {
1352         journal_superblock_t *sb = journal->j_superblock;
1353
1354         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1355         read_lock(&journal->j_state_lock);
1356         /* Is it already empty? */
1357         if (sb->s_start == 0) {
1358                 read_unlock(&journal->j_state_lock);
1359                 return;
1360         }
1361         jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1362                   journal->j_tail_sequence);
1363
1364         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1365         sb->s_start    = cpu_to_be32(0);
1366         read_unlock(&journal->j_state_lock);
1367
1368         jbd2_write_superblock(journal, WRITE_FUA);
1369
1370         /* Log is no longer empty */
1371         write_lock(&journal->j_state_lock);
1372         journal->j_flags |= JBD2_FLUSHED;
1373         write_unlock(&journal->j_state_lock);
1374 }
1375
1376
1377 /**
1378  * jbd2_journal_update_sb_errno() - Update error in the journal.
1379  * @journal: The journal to update.
1380  *
1381  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1382  * to complete.
1383  */
1384 void jbd2_journal_update_sb_errno(journal_t *journal)
1385 {
1386         journal_superblock_t *sb = journal->j_superblock;
1387
1388         read_lock(&journal->j_state_lock);
1389         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1390                   journal->j_errno);
1391         sb->s_errno    = cpu_to_be32(journal->j_errno);
1392         jbd2_superblock_csum_set(journal, sb);
1393         read_unlock(&journal->j_state_lock);
1394
1395         jbd2_write_superblock(journal, WRITE_SYNC);
1396 }
1397 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1398
1399 /*
1400  * Read the superblock for a given journal, performing initial
1401  * validation of the format.
1402  */
1403 static int journal_get_superblock(journal_t *journal)
1404 {
1405         struct buffer_head *bh;
1406         journal_superblock_t *sb;
1407         int err = -EIO;
1408
1409         bh = journal->j_sb_buffer;
1410
1411         J_ASSERT(bh != NULL);
1412         if (!buffer_uptodate(bh)) {
1413                 ll_rw_block(READ, 1, &bh);
1414                 wait_on_buffer(bh);
1415                 if (!buffer_uptodate(bh)) {
1416                         printk(KERN_ERR
1417                                 "JBD2: IO error reading journal superblock\n");
1418                         goto out;
1419                 }
1420         }
1421
1422         if (buffer_verified(bh))
1423                 return 0;
1424
1425         sb = journal->j_superblock;
1426
1427         err = -EINVAL;
1428
1429         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1430             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1431                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1432                 goto out;
1433         }
1434
1435         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1436         case JBD2_SUPERBLOCK_V1:
1437                 journal->j_format_version = 1;
1438                 break;
1439         case JBD2_SUPERBLOCK_V2:
1440                 journal->j_format_version = 2;
1441                 break;
1442         default:
1443                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1444                 goto out;
1445         }
1446
1447         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1448                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1449         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1450                 printk(KERN_WARNING "JBD2: journal file too short\n");
1451                 goto out;
1452         }
1453
1454         if (be32_to_cpu(sb->s_first) == 0 ||
1455             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1456                 printk(KERN_WARNING
1457                         "JBD2: Invalid start block of journal: %u\n",
1458                         be32_to_cpu(sb->s_first));
1459                 goto out;
1460         }
1461
1462         if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1463             JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1464                 /* Can't have checksum v1 and v2 on at the same time! */
1465                 printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
1466                        "at the same time!\n");
1467                 goto out;
1468         }
1469
1470         if (!jbd2_verify_csum_type(journal, sb)) {
1471                 printk(KERN_ERR "JBD: Unknown checksum type\n");
1472                 goto out;
1473         }
1474
1475         /* Load the checksum driver */
1476         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1477                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1478                 if (IS_ERR(journal->j_chksum_driver)) {
1479                         printk(KERN_ERR "JBD: Cannot load crc32c driver.\n");
1480                         err = PTR_ERR(journal->j_chksum_driver);
1481                         journal->j_chksum_driver = NULL;
1482                         goto out;
1483                 }
1484         }
1485
1486         /* Check superblock checksum */
1487         if (!jbd2_superblock_csum_verify(journal, sb)) {
1488                 printk(KERN_ERR "JBD: journal checksum error\n");
1489                 goto out;
1490         }
1491
1492         /* Precompute checksum seed for all metadata */
1493         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
1494                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1495                                                    sizeof(sb->s_uuid));
1496
1497         set_buffer_verified(bh);
1498
1499         return 0;
1500
1501 out:
1502         journal_fail_superblock(journal);
1503         return err;
1504 }
1505
1506 /*
1507  * Load the on-disk journal superblock and read the key fields into the
1508  * journal_t.
1509  */
1510
1511 static int load_superblock(journal_t *journal)
1512 {
1513         int err;
1514         journal_superblock_t *sb;
1515
1516         err = journal_get_superblock(journal);
1517         if (err)
1518                 return err;
1519
1520         sb = journal->j_superblock;
1521
1522         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1523         journal->j_tail = be32_to_cpu(sb->s_start);
1524         journal->j_first = be32_to_cpu(sb->s_first);
1525         journal->j_last = be32_to_cpu(sb->s_maxlen);
1526         journal->j_errno = be32_to_cpu(sb->s_errno);
1527
1528         return 0;
1529 }
1530
1531
1532 /**
1533  * int jbd2_journal_load() - Read journal from disk.
1534  * @journal: Journal to act on.
1535  *
1536  * Given a journal_t structure which tells us which disk blocks contain
1537  * a journal, read the journal from disk to initialise the in-memory
1538  * structures.
1539  */
1540 int jbd2_journal_load(journal_t *journal)
1541 {
1542         int err;
1543         journal_superblock_t *sb;
1544
1545         err = load_superblock(journal);
1546         if (err)
1547                 return err;
1548
1549         sb = journal->j_superblock;
1550         /* If this is a V2 superblock, then we have to check the
1551          * features flags on it. */
1552
1553         if (journal->j_format_version >= 2) {
1554                 if ((sb->s_feature_ro_compat &
1555                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1556                     (sb->s_feature_incompat &
1557                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1558                         printk(KERN_WARNING
1559                                 "JBD2: Unrecognised features on journal\n");
1560                         return -EINVAL;
1561                 }
1562         }
1563
1564         /*
1565          * Create a slab for this blocksize
1566          */
1567         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1568         if (err)
1569                 return err;
1570
1571         /* Let the recovery code check whether it needs to recover any
1572          * data from the journal. */
1573         if (jbd2_journal_recover(journal))
1574                 goto recovery_error;
1575
1576         if (journal->j_failed_commit) {
1577                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1578                        "is corrupt.\n", journal->j_failed_commit,
1579                        journal->j_devname);
1580                 return -EIO;
1581         }
1582
1583         /* OK, we've finished with the dynamic journal bits:
1584          * reinitialise the dynamic contents of the superblock in memory
1585          * and reset them on disk. */
1586         if (journal_reset(journal))
1587                 goto recovery_error;
1588
1589         journal->j_flags &= ~JBD2_ABORT;
1590         journal->j_flags |= JBD2_LOADED;
1591         return 0;
1592
1593 recovery_error:
1594         printk(KERN_WARNING "JBD2: recovery failed\n");
1595         return -EIO;
1596 }
1597
1598 /**
1599  * void jbd2_journal_destroy() - Release a journal_t structure.
1600  * @journal: Journal to act on.
1601  *
1602  * Release a journal_t structure once it is no longer in use by the
1603  * journaled object.
1604  * Return <0 if we couldn't clean up the journal.
1605  */
1606 int jbd2_journal_destroy(journal_t *journal)
1607 {
1608         int err = 0;
1609
1610         /* Wait for the commit thread to wake up and die. */
1611         journal_kill_thread(journal);
1612
1613         /* Force a final log commit */
1614         if (journal->j_running_transaction)
1615                 jbd2_journal_commit_transaction(journal);
1616
1617         /* Force any old transactions to disk */
1618
1619         /* Totally anal locking here... */
1620         spin_lock(&journal->j_list_lock);
1621         while (journal->j_checkpoint_transactions != NULL) {
1622                 spin_unlock(&journal->j_list_lock);
1623                 mutex_lock(&journal->j_checkpoint_mutex);
1624                 jbd2_log_do_checkpoint(journal);
1625                 mutex_unlock(&journal->j_checkpoint_mutex);
1626                 spin_lock(&journal->j_list_lock);
1627         }
1628
1629         J_ASSERT(journal->j_running_transaction == NULL);
1630         J_ASSERT(journal->j_committing_transaction == NULL);
1631         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1632         spin_unlock(&journal->j_list_lock);
1633
1634         if (journal->j_sb_buffer) {
1635                 if (!is_journal_aborted(journal)) {
1636                         mutex_lock(&journal->j_checkpoint_mutex);
1637                         jbd2_mark_journal_empty(journal);
1638                         mutex_unlock(&journal->j_checkpoint_mutex);
1639                 } else
1640                         err = -EIO;
1641                 brelse(journal->j_sb_buffer);
1642         }
1643
1644         if (journal->j_proc_entry)
1645                 jbd2_stats_proc_exit(journal);
1646         if (journal->j_inode)
1647                 iput(journal->j_inode);
1648         if (journal->j_revoke)
1649                 jbd2_journal_destroy_revoke(journal);
1650         if (journal->j_chksum_driver)
1651                 crypto_free_shash(journal->j_chksum_driver);
1652         kfree(journal->j_wbuf);
1653         kfree(journal);
1654
1655         return err;
1656 }
1657
1658
1659 /**
1660  *int jbd2_journal_check_used_features () - Check if features specified are used.
1661  * @journal: Journal to check.
1662  * @compat: bitmask of compatible features
1663  * @ro: bitmask of features that force read-only mount
1664  * @incompat: bitmask of incompatible features
1665  *
1666  * Check whether the journal uses all of a given set of
1667  * features.  Return true (non-zero) if it does.
1668  **/
1669
1670 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1671                                  unsigned long ro, unsigned long incompat)
1672 {
1673         journal_superblock_t *sb;
1674
1675         if (!compat && !ro && !incompat)
1676                 return 1;
1677         /* Load journal superblock if it is not loaded yet. */
1678         if (journal->j_format_version == 0 &&
1679             journal_get_superblock(journal) != 0)
1680                 return 0;
1681         if (journal->j_format_version == 1)
1682                 return 0;
1683
1684         sb = journal->j_superblock;
1685
1686         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1687             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1688             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1689                 return 1;
1690
1691         return 0;
1692 }
1693
1694 /**
1695  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1696  * @journal: Journal to check.
1697  * @compat: bitmask of compatible features
1698  * @ro: bitmask of features that force read-only mount
1699  * @incompat: bitmask of incompatible features
1700  *
1701  * Check whether the journaling code supports the use of
1702  * all of a given set of features on this journal.  Return true
1703  * (non-zero) if it can. */
1704
1705 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1706                                       unsigned long ro, unsigned long incompat)
1707 {
1708         if (!compat && !ro && !incompat)
1709                 return 1;
1710
1711         /* We can support any known requested features iff the
1712          * superblock is in version 2.  Otherwise we fail to support any
1713          * extended sb features. */
1714
1715         if (journal->j_format_version != 2)
1716                 return 0;
1717
1718         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1719             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1720             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1721                 return 1;
1722
1723         return 0;
1724 }
1725
1726 /**
1727  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1728  * @journal: Journal to act on.
1729  * @compat: bitmask of compatible features
1730  * @ro: bitmask of features that force read-only mount
1731  * @incompat: bitmask of incompatible features
1732  *
1733  * Mark a given journal feature as present on the
1734  * superblock.  Returns true if the requested features could be set.
1735  *
1736  */
1737
1738 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1739                           unsigned long ro, unsigned long incompat)
1740 {
1741 #define INCOMPAT_FEATURE_ON(f) \
1742                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1743 #define COMPAT_FEATURE_ON(f) \
1744                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1745         journal_superblock_t *sb;
1746
1747         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1748                 return 1;
1749
1750         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1751                 return 0;
1752
1753         /* Asking for checksumming v2 and v1?  Only give them v2. */
1754         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1755             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1756                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1757
1758         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1759                   compat, ro, incompat);
1760
1761         sb = journal->j_superblock;
1762
1763         /* If enabling v2 checksums, update superblock */
1764         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1765                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1766                 sb->s_feature_compat &=
1767                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1768
1769                 /* Load the checksum driver */
1770                 if (journal->j_chksum_driver == NULL) {
1771                         journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1772                                                                       0, 0);
1773                         if (IS_ERR(journal->j_chksum_driver)) {
1774                                 printk(KERN_ERR "JBD: Cannot load crc32c "
1775                                        "driver.\n");
1776                                 journal->j_chksum_driver = NULL;
1777                                 return 0;
1778                         }
1779                 }
1780
1781                 /* Precompute checksum seed for all metadata */
1782                 if (JBD2_HAS_INCOMPAT_FEATURE(journal,
1783                                               JBD2_FEATURE_INCOMPAT_CSUM_V2))
1784                         journal->j_csum_seed = jbd2_chksum(journal, ~0,
1785                                                            sb->s_uuid,
1786                                                            sizeof(sb->s_uuid));
1787         }
1788
1789         /* If enabling v1 checksums, downgrade superblock */
1790         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1791                 sb->s_feature_incompat &=
1792                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1793
1794         sb->s_feature_compat    |= cpu_to_be32(compat);
1795         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1796         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1797
1798         return 1;
1799 #undef COMPAT_FEATURE_ON
1800 #undef INCOMPAT_FEATURE_ON
1801 }
1802
1803 /*
1804  * jbd2_journal_clear_features () - Clear a given journal feature in the
1805  *                                  superblock
1806  * @journal: Journal to act on.
1807  * @compat: bitmask of compatible features
1808  * @ro: bitmask of features that force read-only mount
1809  * @incompat: bitmask of incompatible features
1810  *
1811  * Clear a given journal feature as present on the
1812  * superblock.
1813  */
1814 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1815                                 unsigned long ro, unsigned long incompat)
1816 {
1817         journal_superblock_t *sb;
1818
1819         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1820                   compat, ro, incompat);
1821
1822         sb = journal->j_superblock;
1823
1824         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1825         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1826         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1827 }
1828 EXPORT_SYMBOL(jbd2_journal_clear_features);
1829
1830 /**
1831  * int jbd2_journal_flush () - Flush journal
1832  * @journal: Journal to act on.
1833  *
1834  * Flush all data for a given journal to disk and empty the journal.
1835  * Filesystems can use this when remounting readonly to ensure that
1836  * recovery does not need to happen on remount.
1837  */
1838
1839 int jbd2_journal_flush(journal_t *journal)
1840 {
1841         int err = 0;
1842         transaction_t *transaction = NULL;
1843
1844         write_lock(&journal->j_state_lock);
1845
1846         /* Force everything buffered to the log... */
1847         if (journal->j_running_transaction) {
1848                 transaction = journal->j_running_transaction;
1849                 __jbd2_log_start_commit(journal, transaction->t_tid);
1850         } else if (journal->j_committing_transaction)
1851                 transaction = journal->j_committing_transaction;
1852
1853         /* Wait for the log commit to complete... */
1854         if (transaction) {
1855                 tid_t tid = transaction->t_tid;
1856
1857                 write_unlock(&journal->j_state_lock);
1858                 jbd2_log_wait_commit(journal, tid);
1859         } else {
1860                 write_unlock(&journal->j_state_lock);
1861         }
1862
1863         /* ...and flush everything in the log out to disk. */
1864         spin_lock(&journal->j_list_lock);
1865         while (!err && journal->j_checkpoint_transactions != NULL) {
1866                 spin_unlock(&journal->j_list_lock);
1867                 mutex_lock(&journal->j_checkpoint_mutex);
1868                 err = jbd2_log_do_checkpoint(journal);
1869                 mutex_unlock(&journal->j_checkpoint_mutex);
1870                 spin_lock(&journal->j_list_lock);
1871         }
1872         spin_unlock(&journal->j_list_lock);
1873
1874         if (is_journal_aborted(journal))
1875                 return -EIO;
1876
1877         mutex_lock(&journal->j_checkpoint_mutex);
1878         jbd2_cleanup_journal_tail(journal);
1879
1880         /* Finally, mark the journal as really needing no recovery.
1881          * This sets s_start==0 in the underlying superblock, which is
1882          * the magic code for a fully-recovered superblock.  Any future
1883          * commits of data to the journal will restore the current
1884          * s_start value. */
1885         jbd2_mark_journal_empty(journal);
1886         mutex_unlock(&journal->j_checkpoint_mutex);
1887         write_lock(&journal->j_state_lock);
1888         J_ASSERT(!journal->j_running_transaction);
1889         J_ASSERT(!journal->j_committing_transaction);
1890         J_ASSERT(!journal->j_checkpoint_transactions);
1891         J_ASSERT(journal->j_head == journal->j_tail);
1892         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1893         write_unlock(&journal->j_state_lock);
1894         return 0;
1895 }
1896
1897 /**
1898  * int jbd2_journal_wipe() - Wipe journal contents
1899  * @journal: Journal to act on.
1900  * @write: flag (see below)
1901  *
1902  * Wipe out all of the contents of a journal, safely.  This will produce
1903  * a warning if the journal contains any valid recovery information.
1904  * Must be called between journal_init_*() and jbd2_journal_load().
1905  *
1906  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1907  * we merely suppress recovery.
1908  */
1909
1910 int jbd2_journal_wipe(journal_t *journal, int write)
1911 {
1912         int err = 0;
1913
1914         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1915
1916         err = load_superblock(journal);
1917         if (err)
1918                 return err;
1919
1920         if (!journal->j_tail)
1921                 goto no_recovery;
1922
1923         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1924                 write ? "Clearing" : "Ignoring");
1925
1926         err = jbd2_journal_skip_recovery(journal);
1927         if (write) {
1928                 /* Lock to make assertions happy... */
1929                 mutex_lock(&journal->j_checkpoint_mutex);
1930                 jbd2_mark_journal_empty(journal);
1931                 mutex_unlock(&journal->j_checkpoint_mutex);
1932         }
1933
1934  no_recovery:
1935         return err;
1936 }
1937
1938 /*
1939  * Journal abort has very specific semantics, which we describe
1940  * for journal abort.
1941  *
1942  * Two internal functions, which provide abort to the jbd layer
1943  * itself are here.
1944  */
1945
1946 /*
1947  * Quick version for internal journal use (doesn't lock the journal).
1948  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1949  * and don't attempt to make any other journal updates.
1950  */
1951 void __jbd2_journal_abort_hard(journal_t *journal)
1952 {
1953         transaction_t *transaction;
1954
1955         if (journal->j_flags & JBD2_ABORT)
1956                 return;
1957
1958         printk(KERN_ERR "Aborting journal on device %s.\n",
1959                journal->j_devname);
1960
1961         write_lock(&journal->j_state_lock);
1962         journal->j_flags |= JBD2_ABORT;
1963         transaction = journal->j_running_transaction;
1964         if (transaction)
1965                 __jbd2_log_start_commit(journal, transaction->t_tid);
1966         write_unlock(&journal->j_state_lock);
1967 }
1968
1969 /* Soft abort: record the abort error status in the journal superblock,
1970  * but don't do any other IO. */
1971 static void __journal_abort_soft (journal_t *journal, int errno)
1972 {
1973         if (journal->j_flags & JBD2_ABORT)
1974                 return;
1975
1976         if (!journal->j_errno)
1977                 journal->j_errno = errno;
1978
1979         __jbd2_journal_abort_hard(journal);
1980
1981         if (errno)
1982                 jbd2_journal_update_sb_errno(journal);
1983 }
1984
1985 /**
1986  * void jbd2_journal_abort () - Shutdown the journal immediately.
1987  * @journal: the journal to shutdown.
1988  * @errno:   an error number to record in the journal indicating
1989  *           the reason for the shutdown.
1990  *
1991  * Perform a complete, immediate shutdown of the ENTIRE
1992  * journal (not of a single transaction).  This operation cannot be
1993  * undone without closing and reopening the journal.
1994  *
1995  * The jbd2_journal_abort function is intended to support higher level error
1996  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1997  * mode.
1998  *
1999  * Journal abort has very specific semantics.  Any existing dirty,
2000  * unjournaled buffers in the main filesystem will still be written to
2001  * disk by bdflush, but the journaling mechanism will be suspended
2002  * immediately and no further transaction commits will be honoured.
2003  *
2004  * Any dirty, journaled buffers will be written back to disk without
2005  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2006  * filesystem, but we _do_ attempt to leave as much data as possible
2007  * behind for fsck to use for cleanup.
2008  *
2009  * Any attempt to get a new transaction handle on a journal which is in
2010  * ABORT state will just result in an -EROFS error return.  A
2011  * jbd2_journal_stop on an existing handle will return -EIO if we have
2012  * entered abort state during the update.
2013  *
2014  * Recursive transactions are not disturbed by journal abort until the
2015  * final jbd2_journal_stop, which will receive the -EIO error.
2016  *
2017  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2018  * which will be recorded (if possible) in the journal superblock.  This
2019  * allows a client to record failure conditions in the middle of a
2020  * transaction without having to complete the transaction to record the
2021  * failure to disk.  ext3_error, for example, now uses this
2022  * functionality.
2023  *
2024  * Errors which originate from within the journaling layer will NOT
2025  * supply an errno; a null errno implies that absolutely no further
2026  * writes are done to the journal (unless there are any already in
2027  * progress).
2028  *
2029  */
2030
2031 void jbd2_journal_abort(journal_t *journal, int errno)
2032 {
2033         __journal_abort_soft(journal, errno);
2034 }
2035
2036 /**
2037  * int jbd2_journal_errno () - returns the journal's error state.
2038  * @journal: journal to examine.
2039  *
2040  * This is the errno number set with jbd2_journal_abort(), the last
2041  * time the journal was mounted - if the journal was stopped
2042  * without calling abort this will be 0.
2043  *
2044  * If the journal has been aborted on this mount time -EROFS will
2045  * be returned.
2046  */
2047 int jbd2_journal_errno(journal_t *journal)
2048 {
2049         int err;
2050
2051         read_lock(&journal->j_state_lock);
2052         if (journal->j_flags & JBD2_ABORT)
2053                 err = -EROFS;
2054         else
2055                 err = journal->j_errno;
2056         read_unlock(&journal->j_state_lock);
2057         return err;
2058 }
2059
2060 /**
2061  * int jbd2_journal_clear_err () - clears the journal's error state
2062  * @journal: journal to act on.
2063  *
2064  * An error must be cleared or acked to take a FS out of readonly
2065  * mode.
2066  */
2067 int jbd2_journal_clear_err(journal_t *journal)
2068 {
2069         int err = 0;
2070
2071         write_lock(&journal->j_state_lock);
2072         if (journal->j_flags & JBD2_ABORT)
2073                 err = -EROFS;
2074         else
2075                 journal->j_errno = 0;
2076         write_unlock(&journal->j_state_lock);
2077         return err;
2078 }
2079
2080 /**
2081  * void jbd2_journal_ack_err() - Ack journal err.
2082  * @journal: journal to act on.
2083  *
2084  * An error must be cleared or acked to take a FS out of readonly
2085  * mode.
2086  */
2087 void jbd2_journal_ack_err(journal_t *journal)
2088 {
2089         write_lock(&journal->j_state_lock);
2090         if (journal->j_errno)
2091                 journal->j_flags |= JBD2_ACK_ERR;
2092         write_unlock(&journal->j_state_lock);
2093 }
2094
2095 int jbd2_journal_blocks_per_page(struct inode *inode)
2096 {
2097         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2098 }
2099
2100 /*
2101  * helper functions to deal with 32 or 64bit block numbers.
2102  */
2103 size_t journal_tag_bytes(journal_t *journal)
2104 {
2105         journal_block_tag_t tag;
2106         size_t x = 0;
2107
2108         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2109                 x += sizeof(tag.t_checksum);
2110
2111         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2112                 return x + JBD2_TAG_SIZE64;
2113         else
2114                 return x + JBD2_TAG_SIZE32;
2115 }
2116
2117 /*
2118  * JBD memory management
2119  *
2120  * These functions are used to allocate block-sized chunks of memory
2121  * used for making copies of buffer_head data.  Very often it will be
2122  * page-sized chunks of data, but sometimes it will be in
2123  * sub-page-size chunks.  (For example, 16k pages on Power systems
2124  * with a 4k block file system.)  For blocks smaller than a page, we
2125  * use a SLAB allocator.  There are slab caches for each block size,
2126  * which are allocated at mount time, if necessary, and we only free
2127  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2128  * this reason we don't need to a mutex to protect access to
2129  * jbd2_slab[] allocating or releasing memory; only in
2130  * jbd2_journal_create_slab().
2131  */
2132 #define JBD2_MAX_SLABS 8
2133 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2134
2135 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2136         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2137         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2138 };
2139
2140
2141 static void jbd2_journal_destroy_slabs(void)
2142 {
2143         int i;
2144
2145         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2146                 if (jbd2_slab[i])
2147                         kmem_cache_destroy(jbd2_slab[i]);
2148                 jbd2_slab[i] = NULL;
2149         }
2150 }
2151
2152 static int jbd2_journal_create_slab(size_t size)
2153 {
2154         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2155         int i = order_base_2(size) - 10;
2156         size_t slab_size;
2157
2158         if (size == PAGE_SIZE)
2159                 return 0;
2160
2161         if (i >= JBD2_MAX_SLABS)
2162                 return -EINVAL;
2163
2164         if (unlikely(i < 0))
2165                 i = 0;
2166         mutex_lock(&jbd2_slab_create_mutex);
2167         if (jbd2_slab[i]) {
2168                 mutex_unlock(&jbd2_slab_create_mutex);
2169                 return 0;       /* Already created */
2170         }
2171
2172         slab_size = 1 << (i+10);
2173         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2174                                          slab_size, 0, NULL);
2175         mutex_unlock(&jbd2_slab_create_mutex);
2176         if (!jbd2_slab[i]) {
2177                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2178                 return -ENOMEM;
2179         }
2180         return 0;
2181 }
2182
2183 static struct kmem_cache *get_slab(size_t size)
2184 {
2185         int i = order_base_2(size) - 10;
2186
2187         BUG_ON(i >= JBD2_MAX_SLABS);
2188         if (unlikely(i < 0))
2189                 i = 0;
2190         BUG_ON(jbd2_slab[i] == NULL);
2191         return jbd2_slab[i];
2192 }
2193
2194 void *jbd2_alloc(size_t size, gfp_t flags)
2195 {
2196         void *ptr;
2197
2198         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2199
2200         flags |= __GFP_REPEAT;
2201         if (size == PAGE_SIZE)
2202                 ptr = (void *)__get_free_pages(flags, 0);
2203         else if (size > PAGE_SIZE) {
2204                 int order = get_order(size);
2205
2206                 if (order < 3)
2207                         ptr = (void *)__get_free_pages(flags, order);
2208                 else
2209                         ptr = vmalloc(size);
2210         } else
2211                 ptr = kmem_cache_alloc(get_slab(size), flags);
2212
2213         /* Check alignment; SLUB has gotten this wrong in the past,
2214          * and this can lead to user data corruption! */
2215         BUG_ON(((unsigned long) ptr) & (size-1));
2216
2217         return ptr;
2218 }
2219
2220 void jbd2_free(void *ptr, size_t size)
2221 {
2222         if (size == PAGE_SIZE) {
2223                 free_pages((unsigned long)ptr, 0);
2224                 return;
2225         }
2226         if (size > PAGE_SIZE) {
2227                 int order = get_order(size);
2228
2229                 if (order < 3)
2230                         free_pages((unsigned long)ptr, order);
2231                 else
2232                         vfree(ptr);
2233                 return;
2234         }
2235         kmem_cache_free(get_slab(size), ptr);
2236 };
2237
2238 /*
2239  * Journal_head storage management
2240  */
2241 static struct kmem_cache *jbd2_journal_head_cache;
2242 #ifdef CONFIG_JBD2_DEBUG
2243 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2244 #endif
2245
2246 static int jbd2_journal_init_journal_head_cache(void)
2247 {
2248         int retval;
2249
2250         J_ASSERT(jbd2_journal_head_cache == NULL);
2251         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2252                                 sizeof(struct journal_head),
2253                                 0,              /* offset */
2254                                 SLAB_TEMPORARY, /* flags */
2255                                 NULL);          /* ctor */
2256         retval = 0;
2257         if (!jbd2_journal_head_cache) {
2258                 retval = -ENOMEM;
2259                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2260         }
2261         return retval;
2262 }
2263
2264 static void jbd2_journal_destroy_journal_head_cache(void)
2265 {
2266         if (jbd2_journal_head_cache) {
2267                 kmem_cache_destroy(jbd2_journal_head_cache);
2268                 jbd2_journal_head_cache = NULL;
2269         }
2270 }
2271
2272 /*
2273  * journal_head splicing and dicing
2274  */
2275 static struct journal_head *journal_alloc_journal_head(void)
2276 {
2277         struct journal_head *ret;
2278
2279 #ifdef CONFIG_JBD2_DEBUG
2280         atomic_inc(&nr_journal_heads);
2281 #endif
2282         ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2283         if (!ret) {
2284                 jbd_debug(1, "out of memory for journal_head\n");
2285                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2286                 while (!ret) {
2287                         yield();
2288                         ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2289                 }
2290         }
2291         return ret;
2292 }
2293
2294 static void journal_free_journal_head(struct journal_head *jh)
2295 {
2296 #ifdef CONFIG_JBD2_DEBUG
2297         atomic_dec(&nr_journal_heads);
2298         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2299 #endif
2300         kmem_cache_free(jbd2_journal_head_cache, jh);
2301 }
2302
2303 /*
2304  * A journal_head is attached to a buffer_head whenever JBD has an
2305  * interest in the buffer.
2306  *
2307  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2308  * is set.  This bit is tested in core kernel code where we need to take
2309  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2310  * there.
2311  *
2312  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2313  *
2314  * When a buffer has its BH_JBD bit set it is immune from being released by
2315  * core kernel code, mainly via ->b_count.
2316  *
2317  * A journal_head is detached from its buffer_head when the journal_head's
2318  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2319  * transaction (b_cp_transaction) hold their references to b_jcount.
2320  *
2321  * Various places in the kernel want to attach a journal_head to a buffer_head
2322  * _before_ attaching the journal_head to a transaction.  To protect the
2323  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2324  * journal_head's b_jcount refcount by one.  The caller must call
2325  * jbd2_journal_put_journal_head() to undo this.
2326  *
2327  * So the typical usage would be:
2328  *
2329  *      (Attach a journal_head if needed.  Increments b_jcount)
2330  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2331  *      ...
2332  *      (Get another reference for transaction)
2333  *      jbd2_journal_grab_journal_head(bh);
2334  *      jh->b_transaction = xxx;
2335  *      (Put original reference)
2336  *      jbd2_journal_put_journal_head(jh);
2337  */
2338
2339 /*
2340  * Give a buffer_head a journal_head.
2341  *
2342  * May sleep.
2343  */
2344 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2345 {
2346         struct journal_head *jh;
2347         struct journal_head *new_jh = NULL;
2348
2349 repeat:
2350         if (!buffer_jbd(bh)) {
2351                 new_jh = journal_alloc_journal_head();
2352                 memset(new_jh, 0, sizeof(*new_jh));
2353         }
2354
2355         jbd_lock_bh_journal_head(bh);
2356         if (buffer_jbd(bh)) {
2357                 jh = bh2jh(bh);
2358         } else {
2359                 J_ASSERT_BH(bh,
2360                         (atomic_read(&bh->b_count) > 0) ||
2361                         (bh->b_page && bh->b_page->mapping));
2362
2363                 if (!new_jh) {
2364                         jbd_unlock_bh_journal_head(bh);
2365                         goto repeat;
2366                 }
2367
2368                 jh = new_jh;
2369                 new_jh = NULL;          /* We consumed it */
2370                 set_buffer_jbd(bh);
2371                 bh->b_private = jh;
2372                 jh->b_bh = bh;
2373                 get_bh(bh);
2374                 BUFFER_TRACE(bh, "added journal_head");
2375         }
2376         jh->b_jcount++;
2377         jbd_unlock_bh_journal_head(bh);
2378         if (new_jh)
2379                 journal_free_journal_head(new_jh);
2380         return bh->b_private;
2381 }
2382
2383 /*
2384  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2385  * having a journal_head, return NULL
2386  */
2387 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2388 {
2389         struct journal_head *jh = NULL;
2390
2391         jbd_lock_bh_journal_head(bh);
2392         if (buffer_jbd(bh)) {
2393                 jh = bh2jh(bh);
2394                 jh->b_jcount++;
2395         }
2396         jbd_unlock_bh_journal_head(bh);
2397         return jh;
2398 }
2399
2400 static void __journal_remove_journal_head(struct buffer_head *bh)
2401 {
2402         struct journal_head *jh = bh2jh(bh);
2403
2404         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2405         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2406         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2407         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2408         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2409         J_ASSERT_BH(bh, buffer_jbd(bh));
2410         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2411         BUFFER_TRACE(bh, "remove journal_head");
2412         if (jh->b_frozen_data) {
2413                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2414                 jbd2_free(jh->b_frozen_data, bh->b_size);
2415         }
2416         if (jh->b_committed_data) {
2417                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2418                 jbd2_free(jh->b_committed_data, bh->b_size);
2419         }
2420         bh->b_private = NULL;
2421         jh->b_bh = NULL;        /* debug, really */
2422         clear_buffer_jbd(bh);
2423         journal_free_journal_head(jh);
2424 }
2425
2426 /*
2427  * Drop a reference on the passed journal_head.  If it fell to zero then
2428  * release the journal_head from the buffer_head.
2429  */
2430 void jbd2_journal_put_journal_head(struct journal_head *jh)
2431 {
2432         struct buffer_head *bh = jh2bh(jh);
2433
2434         jbd_lock_bh_journal_head(bh);
2435         J_ASSERT_JH(jh, jh->b_jcount > 0);
2436         --jh->b_jcount;
2437         if (!jh->b_jcount) {
2438                 __journal_remove_journal_head(bh);
2439                 jbd_unlock_bh_journal_head(bh);
2440                 __brelse(bh);
2441         } else
2442                 jbd_unlock_bh_journal_head(bh);
2443 }
2444
2445 /*
2446  * Initialize jbd inode head
2447  */
2448 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2449 {
2450         jinode->i_transaction = NULL;
2451         jinode->i_next_transaction = NULL;
2452         jinode->i_vfs_inode = inode;
2453         jinode->i_flags = 0;
2454         INIT_LIST_HEAD(&jinode->i_list);
2455 }
2456
2457 /*
2458  * Function to be called before we start removing inode from memory (i.e.,
2459  * clear_inode() is a fine place to be called from). It removes inode from
2460  * transaction's lists.
2461  */
2462 void jbd2_journal_release_jbd_inode(journal_t *journal,
2463                                     struct jbd2_inode *jinode)
2464 {
2465         if (!journal)
2466                 return;
2467 restart:
2468         spin_lock(&journal->j_list_lock);
2469         /* Is commit writing out inode - we have to wait */
2470         if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2471                 wait_queue_head_t *wq;
2472                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2473                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2474                 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2475                 spin_unlock(&journal->j_list_lock);
2476                 schedule();
2477                 finish_wait(wq, &wait.wait);
2478                 goto restart;
2479         }
2480
2481         if (jinode->i_transaction) {
2482                 list_del(&jinode->i_list);
2483                 jinode->i_transaction = NULL;
2484         }
2485         spin_unlock(&journal->j_list_lock);
2486 }
2487
2488 /*
2489  * debugfs tunables
2490  */
2491 #ifdef CONFIG_JBD2_DEBUG
2492 u8 jbd2_journal_enable_debug __read_mostly;
2493 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2494
2495 #define JBD2_DEBUG_NAME "jbd2-debug"
2496
2497 static struct dentry *jbd2_debugfs_dir;
2498 static struct dentry *jbd2_debug;
2499
2500 static void __init jbd2_create_debugfs_entry(void)
2501 {
2502         jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2503         if (jbd2_debugfs_dir)
2504                 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2505                                                S_IRUGO | S_IWUSR,
2506                                                jbd2_debugfs_dir,
2507                                                &jbd2_journal_enable_debug);
2508 }
2509
2510 static void __exit jbd2_remove_debugfs_entry(void)
2511 {
2512         debugfs_remove(jbd2_debug);
2513         debugfs_remove(jbd2_debugfs_dir);
2514 }
2515
2516 #else
2517
2518 static void __init jbd2_create_debugfs_entry(void)
2519 {
2520 }
2521
2522 static void __exit jbd2_remove_debugfs_entry(void)
2523 {
2524 }
2525
2526 #endif
2527
2528 #ifdef CONFIG_PROC_FS
2529
2530 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2531
2532 static void __init jbd2_create_jbd_stats_proc_entry(void)
2533 {
2534         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2535 }
2536
2537 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2538 {
2539         if (proc_jbd2_stats)
2540                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2541 }
2542
2543 #else
2544
2545 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2546 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2547
2548 #endif
2549
2550 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2551
2552 static int __init jbd2_journal_init_handle_cache(void)
2553 {
2554         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2555         if (jbd2_handle_cache == NULL) {
2556                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2557                 return -ENOMEM;
2558         }
2559         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2560         if (jbd2_inode_cache == NULL) {
2561                 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2562                 kmem_cache_destroy(jbd2_handle_cache);
2563                 return -ENOMEM;
2564         }
2565         return 0;
2566 }
2567
2568 static void jbd2_journal_destroy_handle_cache(void)
2569 {
2570         if (jbd2_handle_cache)
2571                 kmem_cache_destroy(jbd2_handle_cache);
2572         if (jbd2_inode_cache)
2573                 kmem_cache_destroy(jbd2_inode_cache);
2574
2575 }
2576
2577 /*
2578  * Module startup and shutdown
2579  */
2580
2581 static int __init journal_init_caches(void)
2582 {
2583         int ret;
2584
2585         ret = jbd2_journal_init_revoke_caches();
2586         if (ret == 0)
2587                 ret = jbd2_journal_init_journal_head_cache();
2588         if (ret == 0)
2589                 ret = jbd2_journal_init_handle_cache();
2590         if (ret == 0)
2591                 ret = jbd2_journal_init_transaction_cache();
2592         return ret;
2593 }
2594
2595 static void jbd2_journal_destroy_caches(void)
2596 {
2597         jbd2_journal_destroy_revoke_caches();
2598         jbd2_journal_destroy_journal_head_cache();
2599         jbd2_journal_destroy_handle_cache();
2600         jbd2_journal_destroy_transaction_cache();
2601         jbd2_journal_destroy_slabs();
2602 }
2603
2604 static int __init journal_init(void)
2605 {
2606         int ret;
2607
2608         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2609
2610         ret = journal_init_caches();
2611         if (ret == 0) {
2612                 jbd2_create_debugfs_entry();
2613                 jbd2_create_jbd_stats_proc_entry();
2614         } else {
2615                 jbd2_journal_destroy_caches();
2616         }
2617         return ret;
2618 }
2619
2620 static void __exit journal_exit(void)
2621 {
2622 #ifdef CONFIG_JBD2_DEBUG
2623         int n = atomic_read(&nr_journal_heads);
2624         if (n)
2625                 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2626 #endif
2627         jbd2_remove_debugfs_entry();
2628         jbd2_remove_jbd_stats_proc_entry();
2629         jbd2_journal_destroy_caches();
2630 }
2631
2632 MODULE_LICENSE("GPL");
2633 module_init(journal_init);
2634 module_exit(journal_exit);
2635