fuse: update fuse_conn_init() and separate out fuse_conn_kill()
[pandora-kernel.git] / fs / fuse / dev.c
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8
9 #include "fuse_i.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/poll.h>
14 #include <linux/uio.h>
15 #include <linux/miscdevice.h>
16 #include <linux/pagemap.h>
17 #include <linux/file.h>
18 #include <linux/slab.h>
19
20 MODULE_ALIAS_MISCDEV(FUSE_MINOR);
21
22 static struct kmem_cache *fuse_req_cachep;
23
24 static struct fuse_conn *fuse_get_conn(struct file *file)
25 {
26         /*
27          * Lockless access is OK, because file->private data is set
28          * once during mount and is valid until the file is released.
29          */
30         return file->private_data;
31 }
32
33 static void fuse_request_init(struct fuse_req *req)
34 {
35         memset(req, 0, sizeof(*req));
36         INIT_LIST_HEAD(&req->list);
37         INIT_LIST_HEAD(&req->intr_entry);
38         init_waitqueue_head(&req->waitq);
39         atomic_set(&req->count, 1);
40 }
41
42 struct fuse_req *fuse_request_alloc(void)
43 {
44         struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_KERNEL);
45         if (req)
46                 fuse_request_init(req);
47         return req;
48 }
49
50 struct fuse_req *fuse_request_alloc_nofs(void)
51 {
52         struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_NOFS);
53         if (req)
54                 fuse_request_init(req);
55         return req;
56 }
57
58 void fuse_request_free(struct fuse_req *req)
59 {
60         kmem_cache_free(fuse_req_cachep, req);
61 }
62
63 static void block_sigs(sigset_t *oldset)
64 {
65         sigset_t mask;
66
67         siginitsetinv(&mask, sigmask(SIGKILL));
68         sigprocmask(SIG_BLOCK, &mask, oldset);
69 }
70
71 static void restore_sigs(sigset_t *oldset)
72 {
73         sigprocmask(SIG_SETMASK, oldset, NULL);
74 }
75
76 static void __fuse_get_request(struct fuse_req *req)
77 {
78         atomic_inc(&req->count);
79 }
80
81 /* Must be called with > 1 refcount */
82 static void __fuse_put_request(struct fuse_req *req)
83 {
84         BUG_ON(atomic_read(&req->count) < 2);
85         atomic_dec(&req->count);
86 }
87
88 static void fuse_req_init_context(struct fuse_req *req)
89 {
90         req->in.h.uid = current_fsuid();
91         req->in.h.gid = current_fsgid();
92         req->in.h.pid = current->pid;
93 }
94
95 struct fuse_req *fuse_get_req(struct fuse_conn *fc)
96 {
97         struct fuse_req *req;
98         sigset_t oldset;
99         int intr;
100         int err;
101
102         atomic_inc(&fc->num_waiting);
103         block_sigs(&oldset);
104         intr = wait_event_interruptible(fc->blocked_waitq, !fc->blocked);
105         restore_sigs(&oldset);
106         err = -EINTR;
107         if (intr)
108                 goto out;
109
110         err = -ENOTCONN;
111         if (!fc->connected)
112                 goto out;
113
114         req = fuse_request_alloc();
115         err = -ENOMEM;
116         if (!req)
117                 goto out;
118
119         fuse_req_init_context(req);
120         req->waiting = 1;
121         return req;
122
123  out:
124         atomic_dec(&fc->num_waiting);
125         return ERR_PTR(err);
126 }
127
128 /*
129  * Return request in fuse_file->reserved_req.  However that may
130  * currently be in use.  If that is the case, wait for it to become
131  * available.
132  */
133 static struct fuse_req *get_reserved_req(struct fuse_conn *fc,
134                                          struct file *file)
135 {
136         struct fuse_req *req = NULL;
137         struct fuse_file *ff = file->private_data;
138
139         do {
140                 wait_event(fc->reserved_req_waitq, ff->reserved_req);
141                 spin_lock(&fc->lock);
142                 if (ff->reserved_req) {
143                         req = ff->reserved_req;
144                         ff->reserved_req = NULL;
145                         get_file(file);
146                         req->stolen_file = file;
147                 }
148                 spin_unlock(&fc->lock);
149         } while (!req);
150
151         return req;
152 }
153
154 /*
155  * Put stolen request back into fuse_file->reserved_req
156  */
157 static void put_reserved_req(struct fuse_conn *fc, struct fuse_req *req)
158 {
159         struct file *file = req->stolen_file;
160         struct fuse_file *ff = file->private_data;
161
162         spin_lock(&fc->lock);
163         fuse_request_init(req);
164         BUG_ON(ff->reserved_req);
165         ff->reserved_req = req;
166         wake_up_all(&fc->reserved_req_waitq);
167         spin_unlock(&fc->lock);
168         fput(file);
169 }
170
171 /*
172  * Gets a requests for a file operation, always succeeds
173  *
174  * This is used for sending the FLUSH request, which must get to
175  * userspace, due to POSIX locks which may need to be unlocked.
176  *
177  * If allocation fails due to OOM, use the reserved request in
178  * fuse_file.
179  *
180  * This is very unlikely to deadlock accidentally, since the
181  * filesystem should not have it's own file open.  If deadlock is
182  * intentional, it can still be broken by "aborting" the filesystem.
183  */
184 struct fuse_req *fuse_get_req_nofail(struct fuse_conn *fc, struct file *file)
185 {
186         struct fuse_req *req;
187
188         atomic_inc(&fc->num_waiting);
189         wait_event(fc->blocked_waitq, !fc->blocked);
190         req = fuse_request_alloc();
191         if (!req)
192                 req = get_reserved_req(fc, file);
193
194         fuse_req_init_context(req);
195         req->waiting = 1;
196         return req;
197 }
198
199 void fuse_put_request(struct fuse_conn *fc, struct fuse_req *req)
200 {
201         if (atomic_dec_and_test(&req->count)) {
202                 if (req->waiting)
203                         atomic_dec(&fc->num_waiting);
204
205                 if (req->stolen_file)
206                         put_reserved_req(fc, req);
207                 else
208                         fuse_request_free(req);
209         }
210 }
211
212 static unsigned len_args(unsigned numargs, struct fuse_arg *args)
213 {
214         unsigned nbytes = 0;
215         unsigned i;
216
217         for (i = 0; i < numargs; i++)
218                 nbytes += args[i].size;
219
220         return nbytes;
221 }
222
223 static u64 fuse_get_unique(struct fuse_conn *fc)
224 {
225         fc->reqctr++;
226         /* zero is special */
227         if (fc->reqctr == 0)
228                 fc->reqctr = 1;
229
230         return fc->reqctr;
231 }
232
233 static void queue_request(struct fuse_conn *fc, struct fuse_req *req)
234 {
235         req->in.h.unique = fuse_get_unique(fc);
236         req->in.h.len = sizeof(struct fuse_in_header) +
237                 len_args(req->in.numargs, (struct fuse_arg *) req->in.args);
238         list_add_tail(&req->list, &fc->pending);
239         req->state = FUSE_REQ_PENDING;
240         if (!req->waiting) {
241                 req->waiting = 1;
242                 atomic_inc(&fc->num_waiting);
243         }
244         wake_up(&fc->waitq);
245         kill_fasync(&fc->fasync, SIGIO, POLL_IN);
246 }
247
248 static void flush_bg_queue(struct fuse_conn *fc)
249 {
250         while (fc->active_background < FUSE_MAX_BACKGROUND &&
251                !list_empty(&fc->bg_queue)) {
252                 struct fuse_req *req;
253
254                 req = list_entry(fc->bg_queue.next, struct fuse_req, list);
255                 list_del(&req->list);
256                 fc->active_background++;
257                 queue_request(fc, req);
258         }
259 }
260
261 /*
262  * This function is called when a request is finished.  Either a reply
263  * has arrived or it was aborted (and not yet sent) or some error
264  * occurred during communication with userspace, or the device file
265  * was closed.  The requester thread is woken up (if still waiting),
266  * the 'end' callback is called if given, else the reference to the
267  * request is released
268  *
269  * Called with fc->lock, unlocks it
270  */
271 static void request_end(struct fuse_conn *fc, struct fuse_req *req)
272 __releases(&fc->lock)
273 {
274         void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
275         req->end = NULL;
276         list_del(&req->list);
277         list_del(&req->intr_entry);
278         req->state = FUSE_REQ_FINISHED;
279         if (req->background) {
280                 if (fc->num_background == FUSE_MAX_BACKGROUND) {
281                         fc->blocked = 0;
282                         wake_up_all(&fc->blocked_waitq);
283                 }
284                 if (fc->num_background == FUSE_CONGESTION_THRESHOLD &&
285                     fc->connected && fc->bdi_initialized) {
286                         clear_bdi_congested(&fc->bdi, READ);
287                         clear_bdi_congested(&fc->bdi, WRITE);
288                 }
289                 fc->num_background--;
290                 fc->active_background--;
291                 flush_bg_queue(fc);
292         }
293         spin_unlock(&fc->lock);
294         wake_up(&req->waitq);
295         if (end)
296                 end(fc, req);
297         fuse_put_request(fc, req);
298 }
299
300 static void wait_answer_interruptible(struct fuse_conn *fc,
301                                       struct fuse_req *req)
302 __releases(&fc->lock)
303 __acquires(&fc->lock)
304 {
305         if (signal_pending(current))
306                 return;
307
308         spin_unlock(&fc->lock);
309         wait_event_interruptible(req->waitq, req->state == FUSE_REQ_FINISHED);
310         spin_lock(&fc->lock);
311 }
312
313 static void queue_interrupt(struct fuse_conn *fc, struct fuse_req *req)
314 {
315         list_add_tail(&req->intr_entry, &fc->interrupts);
316         wake_up(&fc->waitq);
317         kill_fasync(&fc->fasync, SIGIO, POLL_IN);
318 }
319
320 static void request_wait_answer(struct fuse_conn *fc, struct fuse_req *req)
321 __releases(&fc->lock)
322 __acquires(&fc->lock)
323 {
324         if (!fc->no_interrupt) {
325                 /* Any signal may interrupt this */
326                 wait_answer_interruptible(fc, req);
327
328                 if (req->aborted)
329                         goto aborted;
330                 if (req->state == FUSE_REQ_FINISHED)
331                         return;
332
333                 req->interrupted = 1;
334                 if (req->state == FUSE_REQ_SENT)
335                         queue_interrupt(fc, req);
336         }
337
338         if (!req->force) {
339                 sigset_t oldset;
340
341                 /* Only fatal signals may interrupt this */
342                 block_sigs(&oldset);
343                 wait_answer_interruptible(fc, req);
344                 restore_sigs(&oldset);
345
346                 if (req->aborted)
347                         goto aborted;
348                 if (req->state == FUSE_REQ_FINISHED)
349                         return;
350
351                 /* Request is not yet in userspace, bail out */
352                 if (req->state == FUSE_REQ_PENDING) {
353                         list_del(&req->list);
354                         __fuse_put_request(req);
355                         req->out.h.error = -EINTR;
356                         return;
357                 }
358         }
359
360         /*
361          * Either request is already in userspace, or it was forced.
362          * Wait it out.
363          */
364         spin_unlock(&fc->lock);
365         wait_event(req->waitq, req->state == FUSE_REQ_FINISHED);
366         spin_lock(&fc->lock);
367
368         if (!req->aborted)
369                 return;
370
371  aborted:
372         BUG_ON(req->state != FUSE_REQ_FINISHED);
373         if (req->locked) {
374                 /* This is uninterruptible sleep, because data is
375                    being copied to/from the buffers of req.  During
376                    locked state, there mustn't be any filesystem
377                    operation (e.g. page fault), since that could lead
378                    to deadlock */
379                 spin_unlock(&fc->lock);
380                 wait_event(req->waitq, !req->locked);
381                 spin_lock(&fc->lock);
382         }
383 }
384
385 void fuse_request_send(struct fuse_conn *fc, struct fuse_req *req)
386 {
387         req->isreply = 1;
388         spin_lock(&fc->lock);
389         if (!fc->connected)
390                 req->out.h.error = -ENOTCONN;
391         else if (fc->conn_error)
392                 req->out.h.error = -ECONNREFUSED;
393         else {
394                 queue_request(fc, req);
395                 /* acquire extra reference, since request is still needed
396                    after request_end() */
397                 __fuse_get_request(req);
398
399                 request_wait_answer(fc, req);
400         }
401         spin_unlock(&fc->lock);
402 }
403
404 static void fuse_request_send_nowait_locked(struct fuse_conn *fc,
405                                             struct fuse_req *req)
406 {
407         req->background = 1;
408         fc->num_background++;
409         if (fc->num_background == FUSE_MAX_BACKGROUND)
410                 fc->blocked = 1;
411         if (fc->num_background == FUSE_CONGESTION_THRESHOLD &&
412             fc->bdi_initialized) {
413                 set_bdi_congested(&fc->bdi, READ);
414                 set_bdi_congested(&fc->bdi, WRITE);
415         }
416         list_add_tail(&req->list, &fc->bg_queue);
417         flush_bg_queue(fc);
418 }
419
420 static void fuse_request_send_nowait(struct fuse_conn *fc, struct fuse_req *req)
421 {
422         spin_lock(&fc->lock);
423         if (fc->connected) {
424                 fuse_request_send_nowait_locked(fc, req);
425                 spin_unlock(&fc->lock);
426         } else {
427                 req->out.h.error = -ENOTCONN;
428                 request_end(fc, req);
429         }
430 }
431
432 void fuse_request_send_noreply(struct fuse_conn *fc, struct fuse_req *req)
433 {
434         req->isreply = 0;
435         fuse_request_send_nowait(fc, req);
436 }
437
438 void fuse_request_send_background(struct fuse_conn *fc, struct fuse_req *req)
439 {
440         req->isreply = 1;
441         fuse_request_send_nowait(fc, req);
442 }
443
444 /*
445  * Called under fc->lock
446  *
447  * fc->connected must have been checked previously
448  */
449 void fuse_request_send_background_locked(struct fuse_conn *fc,
450                                          struct fuse_req *req)
451 {
452         req->isreply = 1;
453         fuse_request_send_nowait_locked(fc, req);
454 }
455
456 /*
457  * Lock the request.  Up to the next unlock_request() there mustn't be
458  * anything that could cause a page-fault.  If the request was already
459  * aborted bail out.
460  */
461 static int lock_request(struct fuse_conn *fc, struct fuse_req *req)
462 {
463         int err = 0;
464         if (req) {
465                 spin_lock(&fc->lock);
466                 if (req->aborted)
467                         err = -ENOENT;
468                 else
469                         req->locked = 1;
470                 spin_unlock(&fc->lock);
471         }
472         return err;
473 }
474
475 /*
476  * Unlock request.  If it was aborted during being locked, the
477  * requester thread is currently waiting for it to be unlocked, so
478  * wake it up.
479  */
480 static void unlock_request(struct fuse_conn *fc, struct fuse_req *req)
481 {
482         if (req) {
483                 spin_lock(&fc->lock);
484                 req->locked = 0;
485                 if (req->aborted)
486                         wake_up(&req->waitq);
487                 spin_unlock(&fc->lock);
488         }
489 }
490
491 struct fuse_copy_state {
492         struct fuse_conn *fc;
493         int write;
494         struct fuse_req *req;
495         const struct iovec *iov;
496         unsigned long nr_segs;
497         unsigned long seglen;
498         unsigned long addr;
499         struct page *pg;
500         void *mapaddr;
501         void *buf;
502         unsigned len;
503 };
504
505 static void fuse_copy_init(struct fuse_copy_state *cs, struct fuse_conn *fc,
506                            int write, struct fuse_req *req,
507                            const struct iovec *iov, unsigned long nr_segs)
508 {
509         memset(cs, 0, sizeof(*cs));
510         cs->fc = fc;
511         cs->write = write;
512         cs->req = req;
513         cs->iov = iov;
514         cs->nr_segs = nr_segs;
515 }
516
517 /* Unmap and put previous page of userspace buffer */
518 static void fuse_copy_finish(struct fuse_copy_state *cs)
519 {
520         if (cs->mapaddr) {
521                 kunmap_atomic(cs->mapaddr, KM_USER0);
522                 if (cs->write) {
523                         flush_dcache_page(cs->pg);
524                         set_page_dirty_lock(cs->pg);
525                 }
526                 put_page(cs->pg);
527                 cs->mapaddr = NULL;
528         }
529 }
530
531 /*
532  * Get another pagefull of userspace buffer, and map it to kernel
533  * address space, and lock request
534  */
535 static int fuse_copy_fill(struct fuse_copy_state *cs)
536 {
537         unsigned long offset;
538         int err;
539
540         unlock_request(cs->fc, cs->req);
541         fuse_copy_finish(cs);
542         if (!cs->seglen) {
543                 BUG_ON(!cs->nr_segs);
544                 cs->seglen = cs->iov[0].iov_len;
545                 cs->addr = (unsigned long) cs->iov[0].iov_base;
546                 cs->iov++;
547                 cs->nr_segs--;
548         }
549         down_read(&current->mm->mmap_sem);
550         err = get_user_pages(current, current->mm, cs->addr, 1, cs->write, 0,
551                              &cs->pg, NULL);
552         up_read(&current->mm->mmap_sem);
553         if (err < 0)
554                 return err;
555         BUG_ON(err != 1);
556         offset = cs->addr % PAGE_SIZE;
557         cs->mapaddr = kmap_atomic(cs->pg, KM_USER0);
558         cs->buf = cs->mapaddr + offset;
559         cs->len = min(PAGE_SIZE - offset, cs->seglen);
560         cs->seglen -= cs->len;
561         cs->addr += cs->len;
562
563         return lock_request(cs->fc, cs->req);
564 }
565
566 /* Do as much copy to/from userspace buffer as we can */
567 static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size)
568 {
569         unsigned ncpy = min(*size, cs->len);
570         if (val) {
571                 if (cs->write)
572                         memcpy(cs->buf, *val, ncpy);
573                 else
574                         memcpy(*val, cs->buf, ncpy);
575                 *val += ncpy;
576         }
577         *size -= ncpy;
578         cs->len -= ncpy;
579         cs->buf += ncpy;
580         return ncpy;
581 }
582
583 /*
584  * Copy a page in the request to/from the userspace buffer.  Must be
585  * done atomically
586  */
587 static int fuse_copy_page(struct fuse_copy_state *cs, struct page *page,
588                           unsigned offset, unsigned count, int zeroing)
589 {
590         if (page && zeroing && count < PAGE_SIZE) {
591                 void *mapaddr = kmap_atomic(page, KM_USER1);
592                 memset(mapaddr, 0, PAGE_SIZE);
593                 kunmap_atomic(mapaddr, KM_USER1);
594         }
595         while (count) {
596                 if (!cs->len) {
597                         int err = fuse_copy_fill(cs);
598                         if (err)
599                                 return err;
600                 }
601                 if (page) {
602                         void *mapaddr = kmap_atomic(page, KM_USER1);
603                         void *buf = mapaddr + offset;
604                         offset += fuse_copy_do(cs, &buf, &count);
605                         kunmap_atomic(mapaddr, KM_USER1);
606                 } else
607                         offset += fuse_copy_do(cs, NULL, &count);
608         }
609         if (page && !cs->write)
610                 flush_dcache_page(page);
611         return 0;
612 }
613
614 /* Copy pages in the request to/from userspace buffer */
615 static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes,
616                            int zeroing)
617 {
618         unsigned i;
619         struct fuse_req *req = cs->req;
620         unsigned offset = req->page_offset;
621         unsigned count = min(nbytes, (unsigned) PAGE_SIZE - offset);
622
623         for (i = 0; i < req->num_pages && (nbytes || zeroing); i++) {
624                 struct page *page = req->pages[i];
625                 int err = fuse_copy_page(cs, page, offset, count, zeroing);
626                 if (err)
627                         return err;
628
629                 nbytes -= count;
630                 count = min(nbytes, (unsigned) PAGE_SIZE);
631                 offset = 0;
632         }
633         return 0;
634 }
635
636 /* Copy a single argument in the request to/from userspace buffer */
637 static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size)
638 {
639         while (size) {
640                 if (!cs->len) {
641                         int err = fuse_copy_fill(cs);
642                         if (err)
643                                 return err;
644                 }
645                 fuse_copy_do(cs, &val, &size);
646         }
647         return 0;
648 }
649
650 /* Copy request arguments to/from userspace buffer */
651 static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs,
652                           unsigned argpages, struct fuse_arg *args,
653                           int zeroing)
654 {
655         int err = 0;
656         unsigned i;
657
658         for (i = 0; !err && i < numargs; i++)  {
659                 struct fuse_arg *arg = &args[i];
660                 if (i == numargs - 1 && argpages)
661                         err = fuse_copy_pages(cs, arg->size, zeroing);
662                 else
663                         err = fuse_copy_one(cs, arg->value, arg->size);
664         }
665         return err;
666 }
667
668 static int request_pending(struct fuse_conn *fc)
669 {
670         return !list_empty(&fc->pending) || !list_empty(&fc->interrupts);
671 }
672
673 /* Wait until a request is available on the pending list */
674 static void request_wait(struct fuse_conn *fc)
675 __releases(&fc->lock)
676 __acquires(&fc->lock)
677 {
678         DECLARE_WAITQUEUE(wait, current);
679
680         add_wait_queue_exclusive(&fc->waitq, &wait);
681         while (fc->connected && !request_pending(fc)) {
682                 set_current_state(TASK_INTERRUPTIBLE);
683                 if (signal_pending(current))
684                         break;
685
686                 spin_unlock(&fc->lock);
687                 schedule();
688                 spin_lock(&fc->lock);
689         }
690         set_current_state(TASK_RUNNING);
691         remove_wait_queue(&fc->waitq, &wait);
692 }
693
694 /*
695  * Transfer an interrupt request to userspace
696  *
697  * Unlike other requests this is assembled on demand, without a need
698  * to allocate a separate fuse_req structure.
699  *
700  * Called with fc->lock held, releases it
701  */
702 static int fuse_read_interrupt(struct fuse_conn *fc, struct fuse_req *req,
703                                const struct iovec *iov, unsigned long nr_segs)
704 __releases(&fc->lock)
705 {
706         struct fuse_copy_state cs;
707         struct fuse_in_header ih;
708         struct fuse_interrupt_in arg;
709         unsigned reqsize = sizeof(ih) + sizeof(arg);
710         int err;
711
712         list_del_init(&req->intr_entry);
713         req->intr_unique = fuse_get_unique(fc);
714         memset(&ih, 0, sizeof(ih));
715         memset(&arg, 0, sizeof(arg));
716         ih.len = reqsize;
717         ih.opcode = FUSE_INTERRUPT;
718         ih.unique = req->intr_unique;
719         arg.unique = req->in.h.unique;
720
721         spin_unlock(&fc->lock);
722         if (iov_length(iov, nr_segs) < reqsize)
723                 return -EINVAL;
724
725         fuse_copy_init(&cs, fc, 1, NULL, iov, nr_segs);
726         err = fuse_copy_one(&cs, &ih, sizeof(ih));
727         if (!err)
728                 err = fuse_copy_one(&cs, &arg, sizeof(arg));
729         fuse_copy_finish(&cs);
730
731         return err ? err : reqsize;
732 }
733
734 /*
735  * Read a single request into the userspace filesystem's buffer.  This
736  * function waits until a request is available, then removes it from
737  * the pending list and copies request data to userspace buffer.  If
738  * no reply is needed (FORGET) or request has been aborted or there
739  * was an error during the copying then it's finished by calling
740  * request_end().  Otherwise add it to the processing list, and set
741  * the 'sent' flag.
742  */
743 static ssize_t fuse_dev_read(struct kiocb *iocb, const struct iovec *iov,
744                               unsigned long nr_segs, loff_t pos)
745 {
746         int err;
747         struct fuse_req *req;
748         struct fuse_in *in;
749         struct fuse_copy_state cs;
750         unsigned reqsize;
751         struct file *file = iocb->ki_filp;
752         struct fuse_conn *fc = fuse_get_conn(file);
753         if (!fc)
754                 return -EPERM;
755
756  restart:
757         spin_lock(&fc->lock);
758         err = -EAGAIN;
759         if ((file->f_flags & O_NONBLOCK) && fc->connected &&
760             !request_pending(fc))
761                 goto err_unlock;
762
763         request_wait(fc);
764         err = -ENODEV;
765         if (!fc->connected)
766                 goto err_unlock;
767         err = -ERESTARTSYS;
768         if (!request_pending(fc))
769                 goto err_unlock;
770
771         if (!list_empty(&fc->interrupts)) {
772                 req = list_entry(fc->interrupts.next, struct fuse_req,
773                                  intr_entry);
774                 return fuse_read_interrupt(fc, req, iov, nr_segs);
775         }
776
777         req = list_entry(fc->pending.next, struct fuse_req, list);
778         req->state = FUSE_REQ_READING;
779         list_move(&req->list, &fc->io);
780
781         in = &req->in;
782         reqsize = in->h.len;
783         /* If request is too large, reply with an error and restart the read */
784         if (iov_length(iov, nr_segs) < reqsize) {
785                 req->out.h.error = -EIO;
786                 /* SETXATTR is special, since it may contain too large data */
787                 if (in->h.opcode == FUSE_SETXATTR)
788                         req->out.h.error = -E2BIG;
789                 request_end(fc, req);
790                 goto restart;
791         }
792         spin_unlock(&fc->lock);
793         fuse_copy_init(&cs, fc, 1, req, iov, nr_segs);
794         err = fuse_copy_one(&cs, &in->h, sizeof(in->h));
795         if (!err)
796                 err = fuse_copy_args(&cs, in->numargs, in->argpages,
797                                      (struct fuse_arg *) in->args, 0);
798         fuse_copy_finish(&cs);
799         spin_lock(&fc->lock);
800         req->locked = 0;
801         if (req->aborted) {
802                 request_end(fc, req);
803                 return -ENODEV;
804         }
805         if (err) {
806                 req->out.h.error = -EIO;
807                 request_end(fc, req);
808                 return err;
809         }
810         if (!req->isreply)
811                 request_end(fc, req);
812         else {
813                 req->state = FUSE_REQ_SENT;
814                 list_move_tail(&req->list, &fc->processing);
815                 if (req->interrupted)
816                         queue_interrupt(fc, req);
817                 spin_unlock(&fc->lock);
818         }
819         return reqsize;
820
821  err_unlock:
822         spin_unlock(&fc->lock);
823         return err;
824 }
825
826 static int fuse_notify_poll(struct fuse_conn *fc, unsigned int size,
827                             struct fuse_copy_state *cs)
828 {
829         struct fuse_notify_poll_wakeup_out outarg;
830         int err = -EINVAL;
831
832         if (size != sizeof(outarg))
833                 goto err;
834
835         err = fuse_copy_one(cs, &outarg, sizeof(outarg));
836         if (err)
837                 goto err;
838
839         fuse_copy_finish(cs);
840         return fuse_notify_poll_wakeup(fc, &outarg);
841
842 err:
843         fuse_copy_finish(cs);
844         return err;
845 }
846
847 static int fuse_notify(struct fuse_conn *fc, enum fuse_notify_code code,
848                        unsigned int size, struct fuse_copy_state *cs)
849 {
850         switch (code) {
851         case FUSE_NOTIFY_POLL:
852                 return fuse_notify_poll(fc, size, cs);
853
854         default:
855                 fuse_copy_finish(cs);
856                 return -EINVAL;
857         }
858 }
859
860 /* Look up request on processing list by unique ID */
861 static struct fuse_req *request_find(struct fuse_conn *fc, u64 unique)
862 {
863         struct list_head *entry;
864
865         list_for_each(entry, &fc->processing) {
866                 struct fuse_req *req;
867                 req = list_entry(entry, struct fuse_req, list);
868                 if (req->in.h.unique == unique || req->intr_unique == unique)
869                         return req;
870         }
871         return NULL;
872 }
873
874 static int copy_out_args(struct fuse_copy_state *cs, struct fuse_out *out,
875                          unsigned nbytes)
876 {
877         unsigned reqsize = sizeof(struct fuse_out_header);
878
879         if (out->h.error)
880                 return nbytes != reqsize ? -EINVAL : 0;
881
882         reqsize += len_args(out->numargs, out->args);
883
884         if (reqsize < nbytes || (reqsize > nbytes && !out->argvar))
885                 return -EINVAL;
886         else if (reqsize > nbytes) {
887                 struct fuse_arg *lastarg = &out->args[out->numargs-1];
888                 unsigned diffsize = reqsize - nbytes;
889                 if (diffsize > lastarg->size)
890                         return -EINVAL;
891                 lastarg->size -= diffsize;
892         }
893         return fuse_copy_args(cs, out->numargs, out->argpages, out->args,
894                               out->page_zeroing);
895 }
896
897 /*
898  * Write a single reply to a request.  First the header is copied from
899  * the write buffer.  The request is then searched on the processing
900  * list by the unique ID found in the header.  If found, then remove
901  * it from the list and copy the rest of the buffer to the request.
902  * The request is finished by calling request_end()
903  */
904 static ssize_t fuse_dev_write(struct kiocb *iocb, const struct iovec *iov,
905                                unsigned long nr_segs, loff_t pos)
906 {
907         int err;
908         unsigned nbytes = iov_length(iov, nr_segs);
909         struct fuse_req *req;
910         struct fuse_out_header oh;
911         struct fuse_copy_state cs;
912         struct fuse_conn *fc = fuse_get_conn(iocb->ki_filp);
913         if (!fc)
914                 return -EPERM;
915
916         fuse_copy_init(&cs, fc, 0, NULL, iov, nr_segs);
917         if (nbytes < sizeof(struct fuse_out_header))
918                 return -EINVAL;
919
920         err = fuse_copy_one(&cs, &oh, sizeof(oh));
921         if (err)
922                 goto err_finish;
923
924         err = -EINVAL;
925         if (oh.len != nbytes)
926                 goto err_finish;
927
928         /*
929          * Zero oh.unique indicates unsolicited notification message
930          * and error contains notification code.
931          */
932         if (!oh.unique) {
933                 err = fuse_notify(fc, oh.error, nbytes - sizeof(oh), &cs);
934                 return err ? err : nbytes;
935         }
936
937         err = -EINVAL;
938         if (oh.error <= -1000 || oh.error > 0)
939                 goto err_finish;
940
941         spin_lock(&fc->lock);
942         err = -ENOENT;
943         if (!fc->connected)
944                 goto err_unlock;
945
946         req = request_find(fc, oh.unique);
947         if (!req)
948                 goto err_unlock;
949
950         if (req->aborted) {
951                 spin_unlock(&fc->lock);
952                 fuse_copy_finish(&cs);
953                 spin_lock(&fc->lock);
954                 request_end(fc, req);
955                 return -ENOENT;
956         }
957         /* Is it an interrupt reply? */
958         if (req->intr_unique == oh.unique) {
959                 err = -EINVAL;
960                 if (nbytes != sizeof(struct fuse_out_header))
961                         goto err_unlock;
962
963                 if (oh.error == -ENOSYS)
964                         fc->no_interrupt = 1;
965                 else if (oh.error == -EAGAIN)
966                         queue_interrupt(fc, req);
967
968                 spin_unlock(&fc->lock);
969                 fuse_copy_finish(&cs);
970                 return nbytes;
971         }
972
973         req->state = FUSE_REQ_WRITING;
974         list_move(&req->list, &fc->io);
975         req->out.h = oh;
976         req->locked = 1;
977         cs.req = req;
978         spin_unlock(&fc->lock);
979
980         err = copy_out_args(&cs, &req->out, nbytes);
981         fuse_copy_finish(&cs);
982
983         spin_lock(&fc->lock);
984         req->locked = 0;
985         if (!err) {
986                 if (req->aborted)
987                         err = -ENOENT;
988         } else if (!req->aborted)
989                 req->out.h.error = -EIO;
990         request_end(fc, req);
991
992         return err ? err : nbytes;
993
994  err_unlock:
995         spin_unlock(&fc->lock);
996  err_finish:
997         fuse_copy_finish(&cs);
998         return err;
999 }
1000
1001 static unsigned fuse_dev_poll(struct file *file, poll_table *wait)
1002 {
1003         unsigned mask = POLLOUT | POLLWRNORM;
1004         struct fuse_conn *fc = fuse_get_conn(file);
1005         if (!fc)
1006                 return POLLERR;
1007
1008         poll_wait(file, &fc->waitq, wait);
1009
1010         spin_lock(&fc->lock);
1011         if (!fc->connected)
1012                 mask = POLLERR;
1013         else if (request_pending(fc))
1014                 mask |= POLLIN | POLLRDNORM;
1015         spin_unlock(&fc->lock);
1016
1017         return mask;
1018 }
1019
1020 /*
1021  * Abort all requests on the given list (pending or processing)
1022  *
1023  * This function releases and reacquires fc->lock
1024  */
1025 static void end_requests(struct fuse_conn *fc, struct list_head *head)
1026 __releases(&fc->lock)
1027 __acquires(&fc->lock)
1028 {
1029         while (!list_empty(head)) {
1030                 struct fuse_req *req;
1031                 req = list_entry(head->next, struct fuse_req, list);
1032                 req->out.h.error = -ECONNABORTED;
1033                 request_end(fc, req);
1034                 spin_lock(&fc->lock);
1035         }
1036 }
1037
1038 /*
1039  * Abort requests under I/O
1040  *
1041  * The requests are set to aborted and finished, and the request
1042  * waiter is woken up.  This will make request_wait_answer() wait
1043  * until the request is unlocked and then return.
1044  *
1045  * If the request is asynchronous, then the end function needs to be
1046  * called after waiting for the request to be unlocked (if it was
1047  * locked).
1048  */
1049 static void end_io_requests(struct fuse_conn *fc)
1050 __releases(&fc->lock)
1051 __acquires(&fc->lock)
1052 {
1053         while (!list_empty(&fc->io)) {
1054                 struct fuse_req *req =
1055                         list_entry(fc->io.next, struct fuse_req, list);
1056                 void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
1057
1058                 req->aborted = 1;
1059                 req->out.h.error = -ECONNABORTED;
1060                 req->state = FUSE_REQ_FINISHED;
1061                 list_del_init(&req->list);
1062                 wake_up(&req->waitq);
1063                 if (end) {
1064                         req->end = NULL;
1065                         __fuse_get_request(req);
1066                         spin_unlock(&fc->lock);
1067                         wait_event(req->waitq, !req->locked);
1068                         end(fc, req);
1069                         fuse_put_request(fc, req);
1070                         spin_lock(&fc->lock);
1071                 }
1072         }
1073 }
1074
1075 /*
1076  * Abort all requests.
1077  *
1078  * Emergency exit in case of a malicious or accidental deadlock, or
1079  * just a hung filesystem.
1080  *
1081  * The same effect is usually achievable through killing the
1082  * filesystem daemon and all users of the filesystem.  The exception
1083  * is the combination of an asynchronous request and the tricky
1084  * deadlock (see Documentation/filesystems/fuse.txt).
1085  *
1086  * During the aborting, progression of requests from the pending and
1087  * processing lists onto the io list, and progression of new requests
1088  * onto the pending list is prevented by req->connected being false.
1089  *
1090  * Progression of requests under I/O to the processing list is
1091  * prevented by the req->aborted flag being true for these requests.
1092  * For this reason requests on the io list must be aborted first.
1093  */
1094 void fuse_abort_conn(struct fuse_conn *fc)
1095 {
1096         spin_lock(&fc->lock);
1097         if (fc->connected) {
1098                 fc->connected = 0;
1099                 fc->blocked = 0;
1100                 end_io_requests(fc);
1101                 end_requests(fc, &fc->pending);
1102                 end_requests(fc, &fc->processing);
1103                 wake_up_all(&fc->waitq);
1104                 wake_up_all(&fc->blocked_waitq);
1105                 kill_fasync(&fc->fasync, SIGIO, POLL_IN);
1106         }
1107         spin_unlock(&fc->lock);
1108 }
1109
1110 static int fuse_dev_release(struct inode *inode, struct file *file)
1111 {
1112         struct fuse_conn *fc = fuse_get_conn(file);
1113         if (fc) {
1114                 spin_lock(&fc->lock);
1115                 fc->connected = 0;
1116                 end_requests(fc, &fc->pending);
1117                 end_requests(fc, &fc->processing);
1118                 spin_unlock(&fc->lock);
1119                 fuse_conn_put(fc);
1120         }
1121
1122         return 0;
1123 }
1124
1125 static int fuse_dev_fasync(int fd, struct file *file, int on)
1126 {
1127         struct fuse_conn *fc = fuse_get_conn(file);
1128         if (!fc)
1129                 return -EPERM;
1130
1131         /* No locking - fasync_helper does its own locking */
1132         return fasync_helper(fd, file, on, &fc->fasync);
1133 }
1134
1135 const struct file_operations fuse_dev_operations = {
1136         .owner          = THIS_MODULE,
1137         .llseek         = no_llseek,
1138         .read           = do_sync_read,
1139         .aio_read       = fuse_dev_read,
1140         .write          = do_sync_write,
1141         .aio_write      = fuse_dev_write,
1142         .poll           = fuse_dev_poll,
1143         .release        = fuse_dev_release,
1144         .fasync         = fuse_dev_fasync,
1145 };
1146
1147 static struct miscdevice fuse_miscdevice = {
1148         .minor = FUSE_MINOR,
1149         .name  = "fuse",
1150         .fops = &fuse_dev_operations,
1151 };
1152
1153 int __init fuse_dev_init(void)
1154 {
1155         int err = -ENOMEM;
1156         fuse_req_cachep = kmem_cache_create("fuse_request",
1157                                             sizeof(struct fuse_req),
1158                                             0, 0, NULL);
1159         if (!fuse_req_cachep)
1160                 goto out;
1161
1162         err = misc_register(&fuse_miscdevice);
1163         if (err)
1164                 goto out_cache_clean;
1165
1166         return 0;
1167
1168  out_cache_clean:
1169         kmem_cache_destroy(fuse_req_cachep);
1170  out:
1171         return err;
1172 }
1173
1174 void fuse_dev_cleanup(void)
1175 {
1176         misc_deregister(&fuse_miscdevice);
1177         kmem_cache_destroy(fuse_req_cachep);
1178 }