Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jgarzi...
[pandora-kernel.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36         long nr_pages;
37         struct super_block *sb;
38         enum writeback_sync_modes sync_mode;
39         unsigned int for_kupdate:1;
40         unsigned int range_cyclic:1;
41         unsigned int for_background:1;
42
43         struct list_head list;          /* pending work list */
44         struct completion *done;        /* set if the caller waits */
45 };
46
47 /*
48  * Include the creation of the trace points after defining the
49  * wb_writeback_work structure so that the definition remains local to this
50  * file.
51  */
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
54
55 /*
56  * We don't actually have pdflush, but this one is exported though /proc...
57  */
58 int nr_pdflush_threads;
59
60 /**
61  * writeback_in_progress - determine whether there is writeback in progress
62  * @bdi: the device's backing_dev_info structure.
63  *
64  * Determine whether there is writeback waiting to be handled against a
65  * backing device.
66  */
67 int writeback_in_progress(struct backing_dev_info *bdi)
68 {
69         return test_bit(BDI_writeback_running, &bdi->state);
70 }
71
72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
73 {
74         struct super_block *sb = inode->i_sb;
75
76         if (strcmp(sb->s_type->name, "bdev") == 0)
77                 return inode->i_mapping->backing_dev_info;
78
79         return sb->s_bdi;
80 }
81
82 static inline struct inode *wb_inode(struct list_head *head)
83 {
84         return list_entry(head, struct inode, i_wb_list);
85 }
86
87 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
88 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
89 {
90         if (bdi->wb.task) {
91                 wake_up_process(bdi->wb.task);
92         } else {
93                 /*
94                  * The bdi thread isn't there, wake up the forker thread which
95                  * will create and run it.
96                  */
97                 wake_up_process(default_backing_dev_info.wb.task);
98         }
99 }
100
101 static void bdi_queue_work(struct backing_dev_info *bdi,
102                            struct wb_writeback_work *work)
103 {
104         trace_writeback_queue(bdi, work);
105
106         spin_lock_bh(&bdi->wb_lock);
107         list_add_tail(&work->list, &bdi->work_list);
108         if (!bdi->wb.task)
109                 trace_writeback_nothread(bdi, work);
110         bdi_wakeup_flusher(bdi);
111         spin_unlock_bh(&bdi->wb_lock);
112 }
113
114 static void
115 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
116                       bool range_cyclic)
117 {
118         struct wb_writeback_work *work;
119
120         /*
121          * This is WB_SYNC_NONE writeback, so if allocation fails just
122          * wakeup the thread for old dirty data writeback
123          */
124         work = kzalloc(sizeof(*work), GFP_ATOMIC);
125         if (!work) {
126                 if (bdi->wb.task) {
127                         trace_writeback_nowork(bdi);
128                         wake_up_process(bdi->wb.task);
129                 }
130                 return;
131         }
132
133         work->sync_mode = WB_SYNC_NONE;
134         work->nr_pages  = nr_pages;
135         work->range_cyclic = range_cyclic;
136
137         bdi_queue_work(bdi, work);
138 }
139
140 /**
141  * bdi_start_writeback - start writeback
142  * @bdi: the backing device to write from
143  * @nr_pages: the number of pages to write
144  *
145  * Description:
146  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
147  *   started when this function returns, we make no guarantees on
148  *   completion. Caller need not hold sb s_umount semaphore.
149  *
150  */
151 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
152 {
153         __bdi_start_writeback(bdi, nr_pages, true);
154 }
155
156 /**
157  * bdi_start_background_writeback - start background writeback
158  * @bdi: the backing device to write from
159  *
160  * Description:
161  *   This makes sure WB_SYNC_NONE background writeback happens. When
162  *   this function returns, it is only guaranteed that for given BDI
163  *   some IO is happening if we are over background dirty threshold.
164  *   Caller need not hold sb s_umount semaphore.
165  */
166 void bdi_start_background_writeback(struct backing_dev_info *bdi)
167 {
168         /*
169          * We just wake up the flusher thread. It will perform background
170          * writeback as soon as there is no other work to do.
171          */
172         trace_writeback_wake_background(bdi);
173         spin_lock_bh(&bdi->wb_lock);
174         bdi_wakeup_flusher(bdi);
175         spin_unlock_bh(&bdi->wb_lock);
176 }
177
178 /*
179  * Remove the inode from the writeback list it is on.
180  */
181 void inode_wb_list_del(struct inode *inode)
182 {
183         spin_lock(&inode_wb_list_lock);
184         list_del_init(&inode->i_wb_list);
185         spin_unlock(&inode_wb_list_lock);
186 }
187
188
189 /*
190  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
191  * furthest end of its superblock's dirty-inode list.
192  *
193  * Before stamping the inode's ->dirtied_when, we check to see whether it is
194  * already the most-recently-dirtied inode on the b_dirty list.  If that is
195  * the case then the inode must have been redirtied while it was being written
196  * out and we don't reset its dirtied_when.
197  */
198 static void redirty_tail(struct inode *inode)
199 {
200         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
201
202         assert_spin_locked(&inode_wb_list_lock);
203         if (!list_empty(&wb->b_dirty)) {
204                 struct inode *tail;
205
206                 tail = wb_inode(wb->b_dirty.next);
207                 if (time_before(inode->dirtied_when, tail->dirtied_when))
208                         inode->dirtied_when = jiffies;
209         }
210         list_move(&inode->i_wb_list, &wb->b_dirty);
211 }
212
213 /*
214  * requeue inode for re-scanning after bdi->b_io list is exhausted.
215  */
216 static void requeue_io(struct inode *inode)
217 {
218         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
219
220         assert_spin_locked(&inode_wb_list_lock);
221         list_move(&inode->i_wb_list, &wb->b_more_io);
222 }
223
224 static void inode_sync_complete(struct inode *inode)
225 {
226         /*
227          * Prevent speculative execution through
228          * spin_unlock(&inode_wb_list_lock);
229          */
230
231         smp_mb();
232         wake_up_bit(&inode->i_state, __I_SYNC);
233 }
234
235 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
236 {
237         bool ret = time_after(inode->dirtied_when, t);
238 #ifndef CONFIG_64BIT
239         /*
240          * For inodes being constantly redirtied, dirtied_when can get stuck.
241          * It _appears_ to be in the future, but is actually in distant past.
242          * This test is necessary to prevent such wrapped-around relative times
243          * from permanently stopping the whole bdi writeback.
244          */
245         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
246 #endif
247         return ret;
248 }
249
250 /*
251  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
252  */
253 static void move_expired_inodes(struct list_head *delaying_queue,
254                                struct list_head *dispatch_queue,
255                                 unsigned long *older_than_this)
256 {
257         LIST_HEAD(tmp);
258         struct list_head *pos, *node;
259         struct super_block *sb = NULL;
260         struct inode *inode;
261         int do_sb_sort = 0;
262
263         while (!list_empty(delaying_queue)) {
264                 inode = wb_inode(delaying_queue->prev);
265                 if (older_than_this &&
266                     inode_dirtied_after(inode, *older_than_this))
267                         break;
268                 if (sb && sb != inode->i_sb)
269                         do_sb_sort = 1;
270                 sb = inode->i_sb;
271                 list_move(&inode->i_wb_list, &tmp);
272         }
273
274         /* just one sb in list, splice to dispatch_queue and we're done */
275         if (!do_sb_sort) {
276                 list_splice(&tmp, dispatch_queue);
277                 return;
278         }
279
280         /* Move inodes from one superblock together */
281         while (!list_empty(&tmp)) {
282                 sb = wb_inode(tmp.prev)->i_sb;
283                 list_for_each_prev_safe(pos, node, &tmp) {
284                         inode = wb_inode(pos);
285                         if (inode->i_sb == sb)
286                                 list_move(&inode->i_wb_list, dispatch_queue);
287                 }
288         }
289 }
290
291 /*
292  * Queue all expired dirty inodes for io, eldest first.
293  * Before
294  *         newly dirtied     b_dirty    b_io    b_more_io
295  *         =============>    gf         edc     BA
296  * After
297  *         newly dirtied     b_dirty    b_io    b_more_io
298  *         =============>    g          fBAedc
299  *                                           |
300  *                                           +--> dequeue for IO
301  */
302 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
303 {
304         assert_spin_locked(&inode_wb_list_lock);
305         list_splice_init(&wb->b_more_io, &wb->b_io);
306         move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
307 }
308
309 static int write_inode(struct inode *inode, struct writeback_control *wbc)
310 {
311         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
312                 return inode->i_sb->s_op->write_inode(inode, wbc);
313         return 0;
314 }
315
316 /*
317  * Wait for writeback on an inode to complete.
318  */
319 static void inode_wait_for_writeback(struct inode *inode)
320 {
321         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
322         wait_queue_head_t *wqh;
323
324         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
325         while (inode->i_state & I_SYNC) {
326                 spin_unlock(&inode->i_lock);
327                 spin_unlock(&inode_wb_list_lock);
328                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
329                 spin_lock(&inode_wb_list_lock);
330                 spin_lock(&inode->i_lock);
331         }
332 }
333
334 /*
335  * Write out an inode's dirty pages.  Called under inode_wb_list_lock and
336  * inode->i_lock.  Either the caller has an active reference on the inode or
337  * the inode has I_WILL_FREE set.
338  *
339  * If `wait' is set, wait on the writeout.
340  *
341  * The whole writeout design is quite complex and fragile.  We want to avoid
342  * starvation of particular inodes when others are being redirtied, prevent
343  * livelocks, etc.
344  */
345 static int
346 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
347 {
348         struct address_space *mapping = inode->i_mapping;
349         unsigned dirty;
350         int ret;
351
352         assert_spin_locked(&inode_wb_list_lock);
353         assert_spin_locked(&inode->i_lock);
354
355         if (!atomic_read(&inode->i_count))
356                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
357         else
358                 WARN_ON(inode->i_state & I_WILL_FREE);
359
360         if (inode->i_state & I_SYNC) {
361                 /*
362                  * If this inode is locked for writeback and we are not doing
363                  * writeback-for-data-integrity, move it to b_more_io so that
364                  * writeback can proceed with the other inodes on s_io.
365                  *
366                  * We'll have another go at writing back this inode when we
367                  * completed a full scan of b_io.
368                  */
369                 if (wbc->sync_mode != WB_SYNC_ALL) {
370                         requeue_io(inode);
371                         return 0;
372                 }
373
374                 /*
375                  * It's a data-integrity sync.  We must wait.
376                  */
377                 inode_wait_for_writeback(inode);
378         }
379
380         BUG_ON(inode->i_state & I_SYNC);
381
382         /* Set I_SYNC, reset I_DIRTY_PAGES */
383         inode->i_state |= I_SYNC;
384         inode->i_state &= ~I_DIRTY_PAGES;
385         spin_unlock(&inode->i_lock);
386         spin_unlock(&inode_wb_list_lock);
387
388         ret = do_writepages(mapping, wbc);
389
390         /*
391          * Make sure to wait on the data before writing out the metadata.
392          * This is important for filesystems that modify metadata on data
393          * I/O completion.
394          */
395         if (wbc->sync_mode == WB_SYNC_ALL) {
396                 int err = filemap_fdatawait(mapping);
397                 if (ret == 0)
398                         ret = err;
399         }
400
401         /*
402          * Some filesystems may redirty the inode during the writeback
403          * due to delalloc, clear dirty metadata flags right before
404          * write_inode()
405          */
406         spin_lock(&inode->i_lock);
407         dirty = inode->i_state & I_DIRTY;
408         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
409         spin_unlock(&inode->i_lock);
410         /* Don't write the inode if only I_DIRTY_PAGES was set */
411         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
412                 int err = write_inode(inode, wbc);
413                 if (ret == 0)
414                         ret = err;
415         }
416
417         spin_lock(&inode_wb_list_lock);
418         spin_lock(&inode->i_lock);
419         inode->i_state &= ~I_SYNC;
420         if (!(inode->i_state & I_FREEING)) {
421                 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
422                         /*
423                          * We didn't write back all the pages.  nfs_writepages()
424                          * sometimes bales out without doing anything.
425                          */
426                         inode->i_state |= I_DIRTY_PAGES;
427                         if (wbc->nr_to_write <= 0) {
428                                 /*
429                                  * slice used up: queue for next turn
430                                  */
431                                 requeue_io(inode);
432                         } else {
433                                 /*
434                                  * Writeback blocked by something other than
435                                  * congestion. Delay the inode for some time to
436                                  * avoid spinning on the CPU (100% iowait)
437                                  * retrying writeback of the dirty page/inode
438                                  * that cannot be performed immediately.
439                                  */
440                                 redirty_tail(inode);
441                         }
442                 } else if (inode->i_state & I_DIRTY) {
443                         /*
444                          * Filesystems can dirty the inode during writeback
445                          * operations, such as delayed allocation during
446                          * submission or metadata updates after data IO
447                          * completion.
448                          */
449                         redirty_tail(inode);
450                 } else {
451                         /*
452                          * The inode is clean.  At this point we either have
453                          * a reference to the inode or it's on it's way out.
454                          * No need to add it back to the LRU.
455                          */
456                         list_del_init(&inode->i_wb_list);
457                 }
458         }
459         inode_sync_complete(inode);
460         return ret;
461 }
462
463 /*
464  * Write a portion of b_io inodes which belong to @sb.
465  *
466  * If @only_this_sb is true, then find and write all such
467  * inodes. Otherwise write only ones which go sequentially
468  * in reverse order.
469  *
470  * Return 1, if the caller writeback routine should be
471  * interrupted. Otherwise return 0.
472  */
473 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
474                 struct writeback_control *wbc, bool only_this_sb)
475 {
476         while (!list_empty(&wb->b_io)) {
477                 long pages_skipped;
478                 struct inode *inode = wb_inode(wb->b_io.prev);
479
480                 if (inode->i_sb != sb) {
481                         if (only_this_sb) {
482                                 /*
483                                  * We only want to write back data for this
484                                  * superblock, move all inodes not belonging
485                                  * to it back onto the dirty list.
486                                  */
487                                 redirty_tail(inode);
488                                 continue;
489                         }
490
491                         /*
492                          * The inode belongs to a different superblock.
493                          * Bounce back to the caller to unpin this and
494                          * pin the next superblock.
495                          */
496                         return 0;
497                 }
498
499                 /*
500                  * Don't bother with new inodes or inodes beeing freed, first
501                  * kind does not need peridic writeout yet, and for the latter
502                  * kind writeout is handled by the freer.
503                  */
504                 spin_lock(&inode->i_lock);
505                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
506                         spin_unlock(&inode->i_lock);
507                         requeue_io(inode);
508                         continue;
509                 }
510
511                 /*
512                  * Was this inode dirtied after sync_sb_inodes was called?
513                  * This keeps sync from extra jobs and livelock.
514                  */
515                 if (inode_dirtied_after(inode, wbc->wb_start)) {
516                         spin_unlock(&inode->i_lock);
517                         return 1;
518                 }
519
520                 __iget(inode);
521
522                 pages_skipped = wbc->pages_skipped;
523                 writeback_single_inode(inode, wbc);
524                 if (wbc->pages_skipped != pages_skipped) {
525                         /*
526                          * writeback is not making progress due to locked
527                          * buffers.  Skip this inode for now.
528                          */
529                         redirty_tail(inode);
530                 }
531                 spin_unlock(&inode->i_lock);
532                 spin_unlock(&inode_wb_list_lock);
533                 iput(inode);
534                 cond_resched();
535                 spin_lock(&inode_wb_list_lock);
536                 if (wbc->nr_to_write <= 0) {
537                         wbc->more_io = 1;
538                         return 1;
539                 }
540                 if (!list_empty(&wb->b_more_io))
541                         wbc->more_io = 1;
542         }
543         /* b_io is empty */
544         return 1;
545 }
546
547 void writeback_inodes_wb(struct bdi_writeback *wb,
548                 struct writeback_control *wbc)
549 {
550         int ret = 0;
551
552         if (!wbc->wb_start)
553                 wbc->wb_start = jiffies; /* livelock avoidance */
554         spin_lock(&inode_wb_list_lock);
555         if (!wbc->for_kupdate || list_empty(&wb->b_io))
556                 queue_io(wb, wbc->older_than_this);
557
558         while (!list_empty(&wb->b_io)) {
559                 struct inode *inode = wb_inode(wb->b_io.prev);
560                 struct super_block *sb = inode->i_sb;
561
562                 if (!grab_super_passive(sb)) {
563                         requeue_io(inode);
564                         continue;
565                 }
566                 ret = writeback_sb_inodes(sb, wb, wbc, false);
567                 drop_super(sb);
568
569                 if (ret)
570                         break;
571         }
572         spin_unlock(&inode_wb_list_lock);
573         /* Leave any unwritten inodes on b_io */
574 }
575
576 static void __writeback_inodes_sb(struct super_block *sb,
577                 struct bdi_writeback *wb, struct writeback_control *wbc)
578 {
579         WARN_ON(!rwsem_is_locked(&sb->s_umount));
580
581         spin_lock(&inode_wb_list_lock);
582         if (!wbc->for_kupdate || list_empty(&wb->b_io))
583                 queue_io(wb, wbc->older_than_this);
584         writeback_sb_inodes(sb, wb, wbc, true);
585         spin_unlock(&inode_wb_list_lock);
586 }
587
588 /*
589  * The maximum number of pages to writeout in a single bdi flush/kupdate
590  * operation.  We do this so we don't hold I_SYNC against an inode for
591  * enormous amounts of time, which would block a userspace task which has
592  * been forced to throttle against that inode.  Also, the code reevaluates
593  * the dirty each time it has written this many pages.
594  */
595 #define MAX_WRITEBACK_PAGES     1024
596
597 static inline bool over_bground_thresh(void)
598 {
599         unsigned long background_thresh, dirty_thresh;
600
601         global_dirty_limits(&background_thresh, &dirty_thresh);
602
603         return (global_page_state(NR_FILE_DIRTY) +
604                 global_page_state(NR_UNSTABLE_NFS) > background_thresh);
605 }
606
607 /*
608  * Explicit flushing or periodic writeback of "old" data.
609  *
610  * Define "old": the first time one of an inode's pages is dirtied, we mark the
611  * dirtying-time in the inode's address_space.  So this periodic writeback code
612  * just walks the superblock inode list, writing back any inodes which are
613  * older than a specific point in time.
614  *
615  * Try to run once per dirty_writeback_interval.  But if a writeback event
616  * takes longer than a dirty_writeback_interval interval, then leave a
617  * one-second gap.
618  *
619  * older_than_this takes precedence over nr_to_write.  So we'll only write back
620  * all dirty pages if they are all attached to "old" mappings.
621  */
622 static long wb_writeback(struct bdi_writeback *wb,
623                          struct wb_writeback_work *work)
624 {
625         struct writeback_control wbc = {
626                 .sync_mode              = work->sync_mode,
627                 .older_than_this        = NULL,
628                 .for_kupdate            = work->for_kupdate,
629                 .for_background         = work->for_background,
630                 .range_cyclic           = work->range_cyclic,
631         };
632         unsigned long oldest_jif;
633         long wrote = 0;
634         long write_chunk;
635         struct inode *inode;
636
637         if (wbc.for_kupdate) {
638                 wbc.older_than_this = &oldest_jif;
639                 oldest_jif = jiffies -
640                                 msecs_to_jiffies(dirty_expire_interval * 10);
641         }
642         if (!wbc.range_cyclic) {
643                 wbc.range_start = 0;
644                 wbc.range_end = LLONG_MAX;
645         }
646
647         /*
648          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
649          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
650          * here avoids calling into writeback_inodes_wb() more than once.
651          *
652          * The intended call sequence for WB_SYNC_ALL writeback is:
653          *
654          *      wb_writeback()
655          *          __writeback_inodes_sb()     <== called only once
656          *              write_cache_pages()     <== called once for each inode
657          *                   (quickly) tag currently dirty pages
658          *                   (maybe slowly) sync all tagged pages
659          */
660         if (wbc.sync_mode == WB_SYNC_NONE)
661                 write_chunk = MAX_WRITEBACK_PAGES;
662         else
663                 write_chunk = LONG_MAX;
664
665         wbc.wb_start = jiffies; /* livelock avoidance */
666         for (;;) {
667                 /*
668                  * Stop writeback when nr_pages has been consumed
669                  */
670                 if (work->nr_pages <= 0)
671                         break;
672
673                 /*
674                  * Background writeout and kupdate-style writeback may
675                  * run forever. Stop them if there is other work to do
676                  * so that e.g. sync can proceed. They'll be restarted
677                  * after the other works are all done.
678                  */
679                 if ((work->for_background || work->for_kupdate) &&
680                     !list_empty(&wb->bdi->work_list))
681                         break;
682
683                 /*
684                  * For background writeout, stop when we are below the
685                  * background dirty threshold
686                  */
687                 if (work->for_background && !over_bground_thresh())
688                         break;
689
690                 wbc.more_io = 0;
691                 wbc.nr_to_write = write_chunk;
692                 wbc.pages_skipped = 0;
693
694                 trace_wbc_writeback_start(&wbc, wb->bdi);
695                 if (work->sb)
696                         __writeback_inodes_sb(work->sb, wb, &wbc);
697                 else
698                         writeback_inodes_wb(wb, &wbc);
699                 trace_wbc_writeback_written(&wbc, wb->bdi);
700
701                 work->nr_pages -= write_chunk - wbc.nr_to_write;
702                 wrote += write_chunk - wbc.nr_to_write;
703
704                 /*
705                  * If we consumed everything, see if we have more
706                  */
707                 if (wbc.nr_to_write <= 0)
708                         continue;
709                 /*
710                  * Didn't write everything and we don't have more IO, bail
711                  */
712                 if (!wbc.more_io)
713                         break;
714                 /*
715                  * Did we write something? Try for more
716                  */
717                 if (wbc.nr_to_write < write_chunk)
718                         continue;
719                 /*
720                  * Nothing written. Wait for some inode to
721                  * become available for writeback. Otherwise
722                  * we'll just busyloop.
723                  */
724                 spin_lock(&inode_wb_list_lock);
725                 if (!list_empty(&wb->b_more_io))  {
726                         inode = wb_inode(wb->b_more_io.prev);
727                         trace_wbc_writeback_wait(&wbc, wb->bdi);
728                         spin_lock(&inode->i_lock);
729                         inode_wait_for_writeback(inode);
730                         spin_unlock(&inode->i_lock);
731                 }
732                 spin_unlock(&inode_wb_list_lock);
733         }
734
735         return wrote;
736 }
737
738 /*
739  * Return the next wb_writeback_work struct that hasn't been processed yet.
740  */
741 static struct wb_writeback_work *
742 get_next_work_item(struct backing_dev_info *bdi)
743 {
744         struct wb_writeback_work *work = NULL;
745
746         spin_lock_bh(&bdi->wb_lock);
747         if (!list_empty(&bdi->work_list)) {
748                 work = list_entry(bdi->work_list.next,
749                                   struct wb_writeback_work, list);
750                 list_del_init(&work->list);
751         }
752         spin_unlock_bh(&bdi->wb_lock);
753         return work;
754 }
755
756 /*
757  * Add in the number of potentially dirty inodes, because each inode
758  * write can dirty pagecache in the underlying blockdev.
759  */
760 static unsigned long get_nr_dirty_pages(void)
761 {
762         return global_page_state(NR_FILE_DIRTY) +
763                 global_page_state(NR_UNSTABLE_NFS) +
764                 get_nr_dirty_inodes();
765 }
766
767 static long wb_check_background_flush(struct bdi_writeback *wb)
768 {
769         if (over_bground_thresh()) {
770
771                 struct wb_writeback_work work = {
772                         .nr_pages       = LONG_MAX,
773                         .sync_mode      = WB_SYNC_NONE,
774                         .for_background = 1,
775                         .range_cyclic   = 1,
776                 };
777
778                 return wb_writeback(wb, &work);
779         }
780
781         return 0;
782 }
783
784 static long wb_check_old_data_flush(struct bdi_writeback *wb)
785 {
786         unsigned long expired;
787         long nr_pages;
788
789         /*
790          * When set to zero, disable periodic writeback
791          */
792         if (!dirty_writeback_interval)
793                 return 0;
794
795         expired = wb->last_old_flush +
796                         msecs_to_jiffies(dirty_writeback_interval * 10);
797         if (time_before(jiffies, expired))
798                 return 0;
799
800         wb->last_old_flush = jiffies;
801         nr_pages = get_nr_dirty_pages();
802
803         if (nr_pages) {
804                 struct wb_writeback_work work = {
805                         .nr_pages       = nr_pages,
806                         .sync_mode      = WB_SYNC_NONE,
807                         .for_kupdate    = 1,
808                         .range_cyclic   = 1,
809                 };
810
811                 return wb_writeback(wb, &work);
812         }
813
814         return 0;
815 }
816
817 /*
818  * Retrieve work items and do the writeback they describe
819  */
820 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
821 {
822         struct backing_dev_info *bdi = wb->bdi;
823         struct wb_writeback_work *work;
824         long wrote = 0;
825
826         set_bit(BDI_writeback_running, &wb->bdi->state);
827         while ((work = get_next_work_item(bdi)) != NULL) {
828                 /*
829                  * Override sync mode, in case we must wait for completion
830                  * because this thread is exiting now.
831                  */
832                 if (force_wait)
833                         work->sync_mode = WB_SYNC_ALL;
834
835                 trace_writeback_exec(bdi, work);
836
837                 wrote += wb_writeback(wb, work);
838
839                 /*
840                  * Notify the caller of completion if this is a synchronous
841                  * work item, otherwise just free it.
842                  */
843                 if (work->done)
844                         complete(work->done);
845                 else
846                         kfree(work);
847         }
848
849         /*
850          * Check for periodic writeback, kupdated() style
851          */
852         wrote += wb_check_old_data_flush(wb);
853         wrote += wb_check_background_flush(wb);
854         clear_bit(BDI_writeback_running, &wb->bdi->state);
855
856         return wrote;
857 }
858
859 /*
860  * Handle writeback of dirty data for the device backed by this bdi. Also
861  * wakes up periodically and does kupdated style flushing.
862  */
863 int bdi_writeback_thread(void *data)
864 {
865         struct bdi_writeback *wb = data;
866         struct backing_dev_info *bdi = wb->bdi;
867         long pages_written;
868
869         current->flags |= PF_SWAPWRITE;
870         set_freezable();
871         wb->last_active = jiffies;
872
873         /*
874          * Our parent may run at a different priority, just set us to normal
875          */
876         set_user_nice(current, 0);
877
878         trace_writeback_thread_start(bdi);
879
880         while (!kthread_should_stop()) {
881                 /*
882                  * Remove own delayed wake-up timer, since we are already awake
883                  * and we'll take care of the preriodic write-back.
884                  */
885                 del_timer(&wb->wakeup_timer);
886
887                 pages_written = wb_do_writeback(wb, 0);
888
889                 trace_writeback_pages_written(pages_written);
890
891                 if (pages_written)
892                         wb->last_active = jiffies;
893
894                 set_current_state(TASK_INTERRUPTIBLE);
895                 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
896                         __set_current_state(TASK_RUNNING);
897                         continue;
898                 }
899
900                 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
901                         schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
902                 else {
903                         /*
904                          * We have nothing to do, so can go sleep without any
905                          * timeout and save power. When a work is queued or
906                          * something is made dirty - we will be woken up.
907                          */
908                         schedule();
909                 }
910
911                 try_to_freeze();
912         }
913
914         /* Flush any work that raced with us exiting */
915         if (!list_empty(&bdi->work_list))
916                 wb_do_writeback(wb, 1);
917
918         trace_writeback_thread_stop(bdi);
919         return 0;
920 }
921
922
923 /*
924  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
925  * the whole world.
926  */
927 void wakeup_flusher_threads(long nr_pages)
928 {
929         struct backing_dev_info *bdi;
930
931         if (!nr_pages) {
932                 nr_pages = global_page_state(NR_FILE_DIRTY) +
933                                 global_page_state(NR_UNSTABLE_NFS);
934         }
935
936         rcu_read_lock();
937         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
938                 if (!bdi_has_dirty_io(bdi))
939                         continue;
940                 __bdi_start_writeback(bdi, nr_pages, false);
941         }
942         rcu_read_unlock();
943 }
944
945 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
946 {
947         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
948                 struct dentry *dentry;
949                 const char *name = "?";
950
951                 dentry = d_find_alias(inode);
952                 if (dentry) {
953                         spin_lock(&dentry->d_lock);
954                         name = (const char *) dentry->d_name.name;
955                 }
956                 printk(KERN_DEBUG
957                        "%s(%d): dirtied inode %lu (%s) on %s\n",
958                        current->comm, task_pid_nr(current), inode->i_ino,
959                        name, inode->i_sb->s_id);
960                 if (dentry) {
961                         spin_unlock(&dentry->d_lock);
962                         dput(dentry);
963                 }
964         }
965 }
966
967 /**
968  *      __mark_inode_dirty -    internal function
969  *      @inode: inode to mark
970  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
971  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
972  *      mark_inode_dirty_sync.
973  *
974  * Put the inode on the super block's dirty list.
975  *
976  * CAREFUL! We mark it dirty unconditionally, but move it onto the
977  * dirty list only if it is hashed or if it refers to a blockdev.
978  * If it was not hashed, it will never be added to the dirty list
979  * even if it is later hashed, as it will have been marked dirty already.
980  *
981  * In short, make sure you hash any inodes _before_ you start marking
982  * them dirty.
983  *
984  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
985  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
986  * the kernel-internal blockdev inode represents the dirtying time of the
987  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
988  * page->mapping->host, so the page-dirtying time is recorded in the internal
989  * blockdev inode.
990  */
991 void __mark_inode_dirty(struct inode *inode, int flags)
992 {
993         struct super_block *sb = inode->i_sb;
994         struct backing_dev_info *bdi = NULL;
995
996         /*
997          * Don't do this for I_DIRTY_PAGES - that doesn't actually
998          * dirty the inode itself
999          */
1000         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1001                 if (sb->s_op->dirty_inode)
1002                         sb->s_op->dirty_inode(inode, flags);
1003         }
1004
1005         /*
1006          * make sure that changes are seen by all cpus before we test i_state
1007          * -- mikulas
1008          */
1009         smp_mb();
1010
1011         /* avoid the locking if we can */
1012         if ((inode->i_state & flags) == flags)
1013                 return;
1014
1015         if (unlikely(block_dump))
1016                 block_dump___mark_inode_dirty(inode);
1017
1018         spin_lock(&inode->i_lock);
1019         if ((inode->i_state & flags) != flags) {
1020                 const int was_dirty = inode->i_state & I_DIRTY;
1021
1022                 inode->i_state |= flags;
1023
1024                 /*
1025                  * If the inode is being synced, just update its dirty state.
1026                  * The unlocker will place the inode on the appropriate
1027                  * superblock list, based upon its state.
1028                  */
1029                 if (inode->i_state & I_SYNC)
1030                         goto out_unlock_inode;
1031
1032                 /*
1033                  * Only add valid (hashed) inodes to the superblock's
1034                  * dirty list.  Add blockdev inodes as well.
1035                  */
1036                 if (!S_ISBLK(inode->i_mode)) {
1037                         if (inode_unhashed(inode))
1038                                 goto out_unlock_inode;
1039                 }
1040                 if (inode->i_state & I_FREEING)
1041                         goto out_unlock_inode;
1042
1043                 /*
1044                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1045                  * reposition it (that would break b_dirty time-ordering).
1046                  */
1047                 if (!was_dirty) {
1048                         bool wakeup_bdi = false;
1049                         bdi = inode_to_bdi(inode);
1050
1051                         if (bdi_cap_writeback_dirty(bdi)) {
1052                                 WARN(!test_bit(BDI_registered, &bdi->state),
1053                                      "bdi-%s not registered\n", bdi->name);
1054
1055                                 /*
1056                                  * If this is the first dirty inode for this
1057                                  * bdi, we have to wake-up the corresponding
1058                                  * bdi thread to make sure background
1059                                  * write-back happens later.
1060                                  */
1061                                 if (!wb_has_dirty_io(&bdi->wb))
1062                                         wakeup_bdi = true;
1063                         }
1064
1065                         spin_unlock(&inode->i_lock);
1066                         spin_lock(&inode_wb_list_lock);
1067                         inode->dirtied_when = jiffies;
1068                         list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1069                         spin_unlock(&inode_wb_list_lock);
1070
1071                         if (wakeup_bdi)
1072                                 bdi_wakeup_thread_delayed(bdi);
1073                         return;
1074                 }
1075         }
1076 out_unlock_inode:
1077         spin_unlock(&inode->i_lock);
1078
1079 }
1080 EXPORT_SYMBOL(__mark_inode_dirty);
1081
1082 /*
1083  * Write out a superblock's list of dirty inodes.  A wait will be performed
1084  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1085  *
1086  * If older_than_this is non-NULL, then only write out inodes which
1087  * had their first dirtying at a time earlier than *older_than_this.
1088  *
1089  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1090  * This function assumes that the blockdev superblock's inodes are backed by
1091  * a variety of queues, so all inodes are searched.  For other superblocks,
1092  * assume that all inodes are backed by the same queue.
1093  *
1094  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1095  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1096  * on the writer throttling path, and we get decent balancing between many
1097  * throttled threads: we don't want them all piling up on inode_sync_wait.
1098  */
1099 static void wait_sb_inodes(struct super_block *sb)
1100 {
1101         struct inode *inode, *old_inode = NULL;
1102
1103         /*
1104          * We need to be protected against the filesystem going from
1105          * r/o to r/w or vice versa.
1106          */
1107         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1108
1109         spin_lock(&inode_sb_list_lock);
1110
1111         /*
1112          * Data integrity sync. Must wait for all pages under writeback,
1113          * because there may have been pages dirtied before our sync
1114          * call, but which had writeout started before we write it out.
1115          * In which case, the inode may not be on the dirty list, but
1116          * we still have to wait for that writeout.
1117          */
1118         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1119                 struct address_space *mapping = inode->i_mapping;
1120
1121                 spin_lock(&inode->i_lock);
1122                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1123                     (mapping->nrpages == 0)) {
1124                         spin_unlock(&inode->i_lock);
1125                         continue;
1126                 }
1127                 __iget(inode);
1128                 spin_unlock(&inode->i_lock);
1129                 spin_unlock(&inode_sb_list_lock);
1130
1131                 /*
1132                  * We hold a reference to 'inode' so it couldn't have been
1133                  * removed from s_inodes list while we dropped the
1134                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1135                  * be holding the last reference and we cannot iput it under
1136                  * inode_sb_list_lock. So we keep the reference and iput it
1137                  * later.
1138                  */
1139                 iput(old_inode);
1140                 old_inode = inode;
1141
1142                 filemap_fdatawait(mapping);
1143
1144                 cond_resched();
1145
1146                 spin_lock(&inode_sb_list_lock);
1147         }
1148         spin_unlock(&inode_sb_list_lock);
1149         iput(old_inode);
1150 }
1151
1152 /**
1153  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1154  * @sb: the superblock
1155  * @nr: the number of pages to write
1156  *
1157  * Start writeback on some inodes on this super_block. No guarantees are made
1158  * on how many (if any) will be written, and this function does not wait
1159  * for IO completion of submitted IO.
1160  */
1161 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr)
1162 {
1163         DECLARE_COMPLETION_ONSTACK(done);
1164         struct wb_writeback_work work = {
1165                 .sb             = sb,
1166                 .sync_mode      = WB_SYNC_NONE,
1167                 .done           = &done,
1168                 .nr_pages       = nr,
1169         };
1170
1171         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1172         bdi_queue_work(sb->s_bdi, &work);
1173         wait_for_completion(&done);
1174 }
1175 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1176
1177 /**
1178  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1179  * @sb: the superblock
1180  *
1181  * Start writeback on some inodes on this super_block. No guarantees are made
1182  * on how many (if any) will be written, and this function does not wait
1183  * for IO completion of submitted IO.
1184  */
1185 void writeback_inodes_sb(struct super_block *sb)
1186 {
1187         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages());
1188 }
1189 EXPORT_SYMBOL(writeback_inodes_sb);
1190
1191 /**
1192  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1193  * @sb: the superblock
1194  *
1195  * Invoke writeback_inodes_sb if no writeback is currently underway.
1196  * Returns 1 if writeback was started, 0 if not.
1197  */
1198 int writeback_inodes_sb_if_idle(struct super_block *sb)
1199 {
1200         if (!writeback_in_progress(sb->s_bdi)) {
1201                 down_read(&sb->s_umount);
1202                 writeback_inodes_sb(sb);
1203                 up_read(&sb->s_umount);
1204                 return 1;
1205         } else
1206                 return 0;
1207 }
1208 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1209
1210 /**
1211  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1212  * @sb: the superblock
1213  * @nr: the number of pages to write
1214  *
1215  * Invoke writeback_inodes_sb if no writeback is currently underway.
1216  * Returns 1 if writeback was started, 0 if not.
1217  */
1218 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1219                                    unsigned long nr)
1220 {
1221         if (!writeback_in_progress(sb->s_bdi)) {
1222                 down_read(&sb->s_umount);
1223                 writeback_inodes_sb_nr(sb, nr);
1224                 up_read(&sb->s_umount);
1225                 return 1;
1226         } else
1227                 return 0;
1228 }
1229 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1230
1231 /**
1232  * sync_inodes_sb       -       sync sb inode pages
1233  * @sb: the superblock
1234  *
1235  * This function writes and waits on any dirty inode belonging to this
1236  * super_block.
1237  */
1238 void sync_inodes_sb(struct super_block *sb)
1239 {
1240         DECLARE_COMPLETION_ONSTACK(done);
1241         struct wb_writeback_work work = {
1242                 .sb             = sb,
1243                 .sync_mode      = WB_SYNC_ALL,
1244                 .nr_pages       = LONG_MAX,
1245                 .range_cyclic   = 0,
1246                 .done           = &done,
1247         };
1248
1249         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1250
1251         bdi_queue_work(sb->s_bdi, &work);
1252         wait_for_completion(&done);
1253
1254         wait_sb_inodes(sb);
1255 }
1256 EXPORT_SYMBOL(sync_inodes_sb);
1257
1258 /**
1259  * write_inode_now      -       write an inode to disk
1260  * @inode: inode to write to disk
1261  * @sync: whether the write should be synchronous or not
1262  *
1263  * This function commits an inode to disk immediately if it is dirty. This is
1264  * primarily needed by knfsd.
1265  *
1266  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1267  */
1268 int write_inode_now(struct inode *inode, int sync)
1269 {
1270         int ret;
1271         struct writeback_control wbc = {
1272                 .nr_to_write = LONG_MAX,
1273                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1274                 .range_start = 0,
1275                 .range_end = LLONG_MAX,
1276         };
1277
1278         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1279                 wbc.nr_to_write = 0;
1280
1281         might_sleep();
1282         spin_lock(&inode_wb_list_lock);
1283         spin_lock(&inode->i_lock);
1284         ret = writeback_single_inode(inode, &wbc);
1285         spin_unlock(&inode->i_lock);
1286         spin_unlock(&inode_wb_list_lock);
1287         if (sync)
1288                 inode_sync_wait(inode);
1289         return ret;
1290 }
1291 EXPORT_SYMBOL(write_inode_now);
1292
1293 /**
1294  * sync_inode - write an inode and its pages to disk.
1295  * @inode: the inode to sync
1296  * @wbc: controls the writeback mode
1297  *
1298  * sync_inode() will write an inode and its pages to disk.  It will also
1299  * correctly update the inode on its superblock's dirty inode lists and will
1300  * update inode->i_state.
1301  *
1302  * The caller must have a ref on the inode.
1303  */
1304 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1305 {
1306         int ret;
1307
1308         spin_lock(&inode_wb_list_lock);
1309         spin_lock(&inode->i_lock);
1310         ret = writeback_single_inode(inode, wbc);
1311         spin_unlock(&inode->i_lock);
1312         spin_unlock(&inode_wb_list_lock);
1313         return ret;
1314 }
1315 EXPORT_SYMBOL(sync_inode);
1316
1317 /**
1318  * sync_inode_metadata - write an inode to disk
1319  * @inode: the inode to sync
1320  * @wait: wait for I/O to complete.
1321  *
1322  * Write an inode to disk and adjust its dirty state after completion.
1323  *
1324  * Note: only writes the actual inode, no associated data or other metadata.
1325  */
1326 int sync_inode_metadata(struct inode *inode, int wait)
1327 {
1328         struct writeback_control wbc = {
1329                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1330                 .nr_to_write = 0, /* metadata-only */
1331         };
1332
1333         return sync_inode(inode, &wbc);
1334 }
1335 EXPORT_SYMBOL(sync_inode_metadata);