Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[pandora-kernel.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include "internal.h"
30
31 /*
32  * Passed into wb_writeback(), essentially a subset of writeback_control
33  */
34 struct wb_writeback_work {
35         long nr_pages;
36         struct super_block *sb;
37         unsigned long *older_than_this;
38         enum writeback_sync_modes sync_mode;
39         unsigned int tagged_writepages:1;
40         unsigned int for_kupdate:1;
41         unsigned int range_cyclic:1;
42         unsigned int for_background:1;
43         enum wb_reason reason;          /* why was writeback initiated? */
44
45         struct list_head list;          /* pending work list */
46         struct completion *done;        /* set if the caller waits */
47 };
48
49 /*
50  * Include the creation of the trace points after defining the
51  * wb_writeback_work structure so that the definition remains local to this
52  * file.
53  */
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/writeback.h>
56
57 /*
58  * We don't actually have pdflush, but this one is exported though /proc...
59  */
60 int nr_pdflush_threads;
61
62 /**
63  * writeback_in_progress - determine whether there is writeback in progress
64  * @bdi: the device's backing_dev_info structure.
65  *
66  * Determine whether there is writeback waiting to be handled against a
67  * backing device.
68  */
69 int writeback_in_progress(struct backing_dev_info *bdi)
70 {
71         return test_bit(BDI_writeback_running, &bdi->state);
72 }
73
74 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
75 {
76         struct super_block *sb = inode->i_sb;
77
78         if (strcmp(sb->s_type->name, "bdev") == 0)
79                 return inode->i_mapping->backing_dev_info;
80
81         return sb->s_bdi;
82 }
83
84 static inline struct inode *wb_inode(struct list_head *head)
85 {
86         return list_entry(head, struct inode, i_wb_list);
87 }
88
89 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
90 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
91 {
92         if (bdi->wb.task) {
93                 wake_up_process(bdi->wb.task);
94         } else {
95                 /*
96                  * The bdi thread isn't there, wake up the forker thread which
97                  * will create and run it.
98                  */
99                 wake_up_process(default_backing_dev_info.wb.task);
100         }
101 }
102
103 static void bdi_queue_work(struct backing_dev_info *bdi,
104                            struct wb_writeback_work *work)
105 {
106         trace_writeback_queue(bdi, work);
107
108         spin_lock_bh(&bdi->wb_lock);
109         list_add_tail(&work->list, &bdi->work_list);
110         if (!bdi->wb.task)
111                 trace_writeback_nothread(bdi, work);
112         bdi_wakeup_flusher(bdi);
113         spin_unlock_bh(&bdi->wb_lock);
114 }
115
116 static void
117 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
118                       bool range_cyclic, enum wb_reason reason)
119 {
120         struct wb_writeback_work *work;
121
122         /*
123          * This is WB_SYNC_NONE writeback, so if allocation fails just
124          * wakeup the thread for old dirty data writeback
125          */
126         work = kzalloc(sizeof(*work), GFP_ATOMIC);
127         if (!work) {
128                 if (bdi->wb.task) {
129                         trace_writeback_nowork(bdi);
130                         wake_up_process(bdi->wb.task);
131                 }
132                 return;
133         }
134
135         work->sync_mode = WB_SYNC_NONE;
136         work->nr_pages  = nr_pages;
137         work->range_cyclic = range_cyclic;
138         work->reason    = reason;
139
140         bdi_queue_work(bdi, work);
141 }
142
143 /**
144  * bdi_start_writeback - start writeback
145  * @bdi: the backing device to write from
146  * @nr_pages: the number of pages to write
147  * @reason: reason why some writeback work was initiated
148  *
149  * Description:
150  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
151  *   started when this function returns, we make no guarantees on
152  *   completion. Caller need not hold sb s_umount semaphore.
153  *
154  */
155 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
156                         enum wb_reason reason)
157 {
158         __bdi_start_writeback(bdi, nr_pages, true, reason);
159 }
160
161 /**
162  * bdi_start_background_writeback - start background writeback
163  * @bdi: the backing device to write from
164  *
165  * Description:
166  *   This makes sure WB_SYNC_NONE background writeback happens. When
167  *   this function returns, it is only guaranteed that for given BDI
168  *   some IO is happening if we are over background dirty threshold.
169  *   Caller need not hold sb s_umount semaphore.
170  */
171 void bdi_start_background_writeback(struct backing_dev_info *bdi)
172 {
173         /*
174          * We just wake up the flusher thread. It will perform background
175          * writeback as soon as there is no other work to do.
176          */
177         trace_writeback_wake_background(bdi);
178         spin_lock_bh(&bdi->wb_lock);
179         bdi_wakeup_flusher(bdi);
180         spin_unlock_bh(&bdi->wb_lock);
181 }
182
183 /*
184  * Remove the inode from the writeback list it is on.
185  */
186 void inode_wb_list_del(struct inode *inode)
187 {
188         struct backing_dev_info *bdi = inode_to_bdi(inode);
189
190         spin_lock(&bdi->wb.list_lock);
191         list_del_init(&inode->i_wb_list);
192         spin_unlock(&bdi->wb.list_lock);
193 }
194
195 /*
196  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
197  * furthest end of its superblock's dirty-inode list.
198  *
199  * Before stamping the inode's ->dirtied_when, we check to see whether it is
200  * already the most-recently-dirtied inode on the b_dirty list.  If that is
201  * the case then the inode must have been redirtied while it was being written
202  * out and we don't reset its dirtied_when.
203  */
204 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
205 {
206         assert_spin_locked(&wb->list_lock);
207         if (!list_empty(&wb->b_dirty)) {
208                 struct inode *tail;
209
210                 tail = wb_inode(wb->b_dirty.next);
211                 if (time_before(inode->dirtied_when, tail->dirtied_when))
212                         inode->dirtied_when = jiffies;
213         }
214         list_move(&inode->i_wb_list, &wb->b_dirty);
215 }
216
217 /*
218  * requeue inode for re-scanning after bdi->b_io list is exhausted.
219  */
220 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
221 {
222         assert_spin_locked(&wb->list_lock);
223         list_move(&inode->i_wb_list, &wb->b_more_io);
224 }
225
226 static void inode_sync_complete(struct inode *inode)
227 {
228         /*
229          * Prevent speculative execution through
230          * spin_unlock(&wb->list_lock);
231          */
232
233         smp_mb();
234         wake_up_bit(&inode->i_state, __I_SYNC);
235 }
236
237 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
238 {
239         bool ret = time_after(inode->dirtied_when, t);
240 #ifndef CONFIG_64BIT
241         /*
242          * For inodes being constantly redirtied, dirtied_when can get stuck.
243          * It _appears_ to be in the future, but is actually in distant past.
244          * This test is necessary to prevent such wrapped-around relative times
245          * from permanently stopping the whole bdi writeback.
246          */
247         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
248 #endif
249         return ret;
250 }
251
252 /*
253  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
254  */
255 static int move_expired_inodes(struct list_head *delaying_queue,
256                                struct list_head *dispatch_queue,
257                                struct wb_writeback_work *work)
258 {
259         LIST_HEAD(tmp);
260         struct list_head *pos, *node;
261         struct super_block *sb = NULL;
262         struct inode *inode;
263         int do_sb_sort = 0;
264         int moved = 0;
265
266         while (!list_empty(delaying_queue)) {
267                 inode = wb_inode(delaying_queue->prev);
268                 if (work->older_than_this &&
269                     inode_dirtied_after(inode, *work->older_than_this))
270                         break;
271                 if (sb && sb != inode->i_sb)
272                         do_sb_sort = 1;
273                 sb = inode->i_sb;
274                 list_move(&inode->i_wb_list, &tmp);
275                 moved++;
276         }
277
278         /* just one sb in list, splice to dispatch_queue and we're done */
279         if (!do_sb_sort) {
280                 list_splice(&tmp, dispatch_queue);
281                 goto out;
282         }
283
284         /* Move inodes from one superblock together */
285         while (!list_empty(&tmp)) {
286                 sb = wb_inode(tmp.prev)->i_sb;
287                 list_for_each_prev_safe(pos, node, &tmp) {
288                         inode = wb_inode(pos);
289                         if (inode->i_sb == sb)
290                                 list_move(&inode->i_wb_list, dispatch_queue);
291                 }
292         }
293 out:
294         return moved;
295 }
296
297 /*
298  * Queue all expired dirty inodes for io, eldest first.
299  * Before
300  *         newly dirtied     b_dirty    b_io    b_more_io
301  *         =============>    gf         edc     BA
302  * After
303  *         newly dirtied     b_dirty    b_io    b_more_io
304  *         =============>    g          fBAedc
305  *                                           |
306  *                                           +--> dequeue for IO
307  */
308 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
309 {
310         int moved;
311         assert_spin_locked(&wb->list_lock);
312         list_splice_init(&wb->b_more_io, &wb->b_io);
313         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
314         trace_writeback_queue_io(wb, work, moved);
315 }
316
317 static int write_inode(struct inode *inode, struct writeback_control *wbc)
318 {
319         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
320                 return inode->i_sb->s_op->write_inode(inode, wbc);
321         return 0;
322 }
323
324 /*
325  * Wait for writeback on an inode to complete.
326  */
327 static void inode_wait_for_writeback(struct inode *inode,
328                                      struct bdi_writeback *wb)
329 {
330         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
331         wait_queue_head_t *wqh;
332
333         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
334         while (inode->i_state & I_SYNC) {
335                 spin_unlock(&inode->i_lock);
336                 spin_unlock(&wb->list_lock);
337                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
338                 spin_lock(&wb->list_lock);
339                 spin_lock(&inode->i_lock);
340         }
341 }
342
343 /*
344  * Write out an inode's dirty pages.  Called under wb->list_lock and
345  * inode->i_lock.  Either the caller has an active reference on the inode or
346  * the inode has I_WILL_FREE set.
347  *
348  * If `wait' is set, wait on the writeout.
349  *
350  * The whole writeout design is quite complex and fragile.  We want to avoid
351  * starvation of particular inodes when others are being redirtied, prevent
352  * livelocks, etc.
353  */
354 static int
355 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
356                        struct writeback_control *wbc)
357 {
358         struct address_space *mapping = inode->i_mapping;
359         long nr_to_write = wbc->nr_to_write;
360         unsigned dirty;
361         int ret;
362
363         assert_spin_locked(&wb->list_lock);
364         assert_spin_locked(&inode->i_lock);
365
366         if (!atomic_read(&inode->i_count))
367                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
368         else
369                 WARN_ON(inode->i_state & I_WILL_FREE);
370
371         if (inode->i_state & I_SYNC) {
372                 /*
373                  * If this inode is locked for writeback and we are not doing
374                  * writeback-for-data-integrity, move it to b_more_io so that
375                  * writeback can proceed with the other inodes on s_io.
376                  *
377                  * We'll have another go at writing back this inode when we
378                  * completed a full scan of b_io.
379                  */
380                 if (wbc->sync_mode != WB_SYNC_ALL) {
381                         requeue_io(inode, wb);
382                         trace_writeback_single_inode_requeue(inode, wbc,
383                                                              nr_to_write);
384                         return 0;
385                 }
386
387                 /*
388                  * It's a data-integrity sync.  We must wait.
389                  */
390                 inode_wait_for_writeback(inode, wb);
391         }
392
393         BUG_ON(inode->i_state & I_SYNC);
394
395         /* Set I_SYNC, reset I_DIRTY_PAGES */
396         inode->i_state |= I_SYNC;
397         inode->i_state &= ~I_DIRTY_PAGES;
398         spin_unlock(&inode->i_lock);
399         spin_unlock(&wb->list_lock);
400
401         ret = do_writepages(mapping, wbc);
402
403         /*
404          * Make sure to wait on the data before writing out the metadata.
405          * This is important for filesystems that modify metadata on data
406          * I/O completion.
407          */
408         if (wbc->sync_mode == WB_SYNC_ALL) {
409                 int err = filemap_fdatawait(mapping);
410                 if (ret == 0)
411                         ret = err;
412         }
413
414         /*
415          * Some filesystems may redirty the inode during the writeback
416          * due to delalloc, clear dirty metadata flags right before
417          * write_inode()
418          */
419         spin_lock(&inode->i_lock);
420         dirty = inode->i_state & I_DIRTY;
421         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
422         spin_unlock(&inode->i_lock);
423         /* Don't write the inode if only I_DIRTY_PAGES was set */
424         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
425                 int err = write_inode(inode, wbc);
426                 if (ret == 0)
427                         ret = err;
428         }
429
430         spin_lock(&wb->list_lock);
431         spin_lock(&inode->i_lock);
432         inode->i_state &= ~I_SYNC;
433         if (!(inode->i_state & I_FREEING)) {
434                 /*
435                  * Sync livelock prevention. Each inode is tagged and synced in
436                  * one shot. If still dirty, it will be redirty_tail()'ed below.
437                  * Update the dirty time to prevent enqueue and sync it again.
438                  */
439                 if ((inode->i_state & I_DIRTY) &&
440                     (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
441                         inode->dirtied_when = jiffies;
442
443                 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
444                         /*
445                          * We didn't write back all the pages.  nfs_writepages()
446                          * sometimes bales out without doing anything.
447                          */
448                         inode->i_state |= I_DIRTY_PAGES;
449                         if (wbc->nr_to_write <= 0) {
450                                 /*
451                                  * slice used up: queue for next turn
452                                  */
453                                 requeue_io(inode, wb);
454                         } else {
455                                 /*
456                                  * Writeback blocked by something other than
457                                  * congestion. Delay the inode for some time to
458                                  * avoid spinning on the CPU (100% iowait)
459                                  * retrying writeback of the dirty page/inode
460                                  * that cannot be performed immediately.
461                                  */
462                                 redirty_tail(inode, wb);
463                         }
464                 } else if (inode->i_state & I_DIRTY) {
465                         /*
466                          * Filesystems can dirty the inode during writeback
467                          * operations, such as delayed allocation during
468                          * submission or metadata updates after data IO
469                          * completion.
470                          */
471                         redirty_tail(inode, wb);
472                 } else {
473                         /*
474                          * The inode is clean.  At this point we either have
475                          * a reference to the inode or it's on it's way out.
476                          * No need to add it back to the LRU.
477                          */
478                         list_del_init(&inode->i_wb_list);
479                 }
480         }
481         inode_sync_complete(inode);
482         trace_writeback_single_inode(inode, wbc, nr_to_write);
483         return ret;
484 }
485
486 static long writeback_chunk_size(struct backing_dev_info *bdi,
487                                  struct wb_writeback_work *work)
488 {
489         long pages;
490
491         /*
492          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
493          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
494          * here avoids calling into writeback_inodes_wb() more than once.
495          *
496          * The intended call sequence for WB_SYNC_ALL writeback is:
497          *
498          *      wb_writeback()
499          *          writeback_sb_inodes()       <== called only once
500          *              write_cache_pages()     <== called once for each inode
501          *                   (quickly) tag currently dirty pages
502          *                   (maybe slowly) sync all tagged pages
503          */
504         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
505                 pages = LONG_MAX;
506         else {
507                 pages = min(bdi->avg_write_bandwidth / 2,
508                             global_dirty_limit / DIRTY_SCOPE);
509                 pages = min(pages, work->nr_pages);
510                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
511                                    MIN_WRITEBACK_PAGES);
512         }
513
514         return pages;
515 }
516
517 /*
518  * Write a portion of b_io inodes which belong to @sb.
519  *
520  * If @only_this_sb is true, then find and write all such
521  * inodes. Otherwise write only ones which go sequentially
522  * in reverse order.
523  *
524  * Return the number of pages and/or inodes written.
525  */
526 static long writeback_sb_inodes(struct super_block *sb,
527                                 struct bdi_writeback *wb,
528                                 struct wb_writeback_work *work)
529 {
530         struct writeback_control wbc = {
531                 .sync_mode              = work->sync_mode,
532                 .tagged_writepages      = work->tagged_writepages,
533                 .for_kupdate            = work->for_kupdate,
534                 .for_background         = work->for_background,
535                 .range_cyclic           = work->range_cyclic,
536                 .range_start            = 0,
537                 .range_end              = LLONG_MAX,
538         };
539         unsigned long start_time = jiffies;
540         long write_chunk;
541         long wrote = 0;  /* count both pages and inodes */
542
543         while (!list_empty(&wb->b_io)) {
544                 struct inode *inode = wb_inode(wb->b_io.prev);
545
546                 if (inode->i_sb != sb) {
547                         if (work->sb) {
548                                 /*
549                                  * We only want to write back data for this
550                                  * superblock, move all inodes not belonging
551                                  * to it back onto the dirty list.
552                                  */
553                                 redirty_tail(inode, wb);
554                                 continue;
555                         }
556
557                         /*
558                          * The inode belongs to a different superblock.
559                          * Bounce back to the caller to unpin this and
560                          * pin the next superblock.
561                          */
562                         break;
563                 }
564
565                 /*
566                  * Don't bother with new inodes or inodes beeing freed, first
567                  * kind does not need peridic writeout yet, and for the latter
568                  * kind writeout is handled by the freer.
569                  */
570                 spin_lock(&inode->i_lock);
571                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
572                         spin_unlock(&inode->i_lock);
573                         redirty_tail(inode, wb);
574                         continue;
575                 }
576                 __iget(inode);
577                 write_chunk = writeback_chunk_size(wb->bdi, work);
578                 wbc.nr_to_write = write_chunk;
579                 wbc.pages_skipped = 0;
580
581                 writeback_single_inode(inode, wb, &wbc);
582
583                 work->nr_pages -= write_chunk - wbc.nr_to_write;
584                 wrote += write_chunk - wbc.nr_to_write;
585                 if (!(inode->i_state & I_DIRTY))
586                         wrote++;
587                 if (wbc.pages_skipped) {
588                         /*
589                          * writeback is not making progress due to locked
590                          * buffers.  Skip this inode for now.
591                          */
592                         redirty_tail(inode, wb);
593                 }
594                 spin_unlock(&inode->i_lock);
595                 spin_unlock(&wb->list_lock);
596                 iput(inode);
597                 cond_resched();
598                 spin_lock(&wb->list_lock);
599                 /*
600                  * bail out to wb_writeback() often enough to check
601                  * background threshold and other termination conditions.
602                  */
603                 if (wrote) {
604                         if (time_is_before_jiffies(start_time + HZ / 10UL))
605                                 break;
606                         if (work->nr_pages <= 0)
607                                 break;
608                 }
609         }
610         return wrote;
611 }
612
613 static long __writeback_inodes_wb(struct bdi_writeback *wb,
614                                   struct wb_writeback_work *work)
615 {
616         unsigned long start_time = jiffies;
617         long wrote = 0;
618
619         while (!list_empty(&wb->b_io)) {
620                 struct inode *inode = wb_inode(wb->b_io.prev);
621                 struct super_block *sb = inode->i_sb;
622
623                 if (!grab_super_passive(sb)) {
624                         /*
625                          * grab_super_passive() may fail consistently due to
626                          * s_umount being grabbed by someone else. Don't use
627                          * requeue_io() to avoid busy retrying the inode/sb.
628                          */
629                         redirty_tail(inode, wb);
630                         continue;
631                 }
632                 wrote += writeback_sb_inodes(sb, wb, work);
633                 drop_super(sb);
634
635                 /* refer to the same tests at the end of writeback_sb_inodes */
636                 if (wrote) {
637                         if (time_is_before_jiffies(start_time + HZ / 10UL))
638                                 break;
639                         if (work->nr_pages <= 0)
640                                 break;
641                 }
642         }
643         /* Leave any unwritten inodes on b_io */
644         return wrote;
645 }
646
647 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
648                                 enum wb_reason reason)
649 {
650         struct wb_writeback_work work = {
651                 .nr_pages       = nr_pages,
652                 .sync_mode      = WB_SYNC_NONE,
653                 .range_cyclic   = 1,
654                 .reason         = reason,
655         };
656
657         spin_lock(&wb->list_lock);
658         if (list_empty(&wb->b_io))
659                 queue_io(wb, &work);
660         __writeback_inodes_wb(wb, &work);
661         spin_unlock(&wb->list_lock);
662
663         return nr_pages - work.nr_pages;
664 }
665
666 static bool over_bground_thresh(struct backing_dev_info *bdi)
667 {
668         unsigned long background_thresh, dirty_thresh;
669
670         global_dirty_limits(&background_thresh, &dirty_thresh);
671
672         if (global_page_state(NR_FILE_DIRTY) +
673             global_page_state(NR_UNSTABLE_NFS) > background_thresh)
674                 return true;
675
676         if (bdi_stat(bdi, BDI_RECLAIMABLE) >
677                                 bdi_dirty_limit(bdi, background_thresh))
678                 return true;
679
680         return false;
681 }
682
683 /*
684  * Called under wb->list_lock. If there are multiple wb per bdi,
685  * only the flusher working on the first wb should do it.
686  */
687 static void wb_update_bandwidth(struct bdi_writeback *wb,
688                                 unsigned long start_time)
689 {
690         __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
691 }
692
693 /*
694  * Explicit flushing or periodic writeback of "old" data.
695  *
696  * Define "old": the first time one of an inode's pages is dirtied, we mark the
697  * dirtying-time in the inode's address_space.  So this periodic writeback code
698  * just walks the superblock inode list, writing back any inodes which are
699  * older than a specific point in time.
700  *
701  * Try to run once per dirty_writeback_interval.  But if a writeback event
702  * takes longer than a dirty_writeback_interval interval, then leave a
703  * one-second gap.
704  *
705  * older_than_this takes precedence over nr_to_write.  So we'll only write back
706  * all dirty pages if they are all attached to "old" mappings.
707  */
708 static long wb_writeback(struct bdi_writeback *wb,
709                          struct wb_writeback_work *work)
710 {
711         unsigned long wb_start = jiffies;
712         long nr_pages = work->nr_pages;
713         unsigned long oldest_jif;
714         struct inode *inode;
715         long progress;
716
717         oldest_jif = jiffies;
718         work->older_than_this = &oldest_jif;
719
720         spin_lock(&wb->list_lock);
721         for (;;) {
722                 /*
723                  * Stop writeback when nr_pages has been consumed
724                  */
725                 if (work->nr_pages <= 0)
726                         break;
727
728                 /*
729                  * Background writeout and kupdate-style writeback may
730                  * run forever. Stop them if there is other work to do
731                  * so that e.g. sync can proceed. They'll be restarted
732                  * after the other works are all done.
733                  */
734                 if ((work->for_background || work->for_kupdate) &&
735                     !list_empty(&wb->bdi->work_list))
736                         break;
737
738                 /*
739                  * For background writeout, stop when we are below the
740                  * background dirty threshold
741                  */
742                 if (work->for_background && !over_bground_thresh(wb->bdi))
743                         break;
744
745                 if (work->for_kupdate) {
746                         oldest_jif = jiffies -
747                                 msecs_to_jiffies(dirty_expire_interval * 10);
748                         work->older_than_this = &oldest_jif;
749                 }
750
751                 trace_writeback_start(wb->bdi, work);
752                 if (list_empty(&wb->b_io))
753                         queue_io(wb, work);
754                 if (work->sb)
755                         progress = writeback_sb_inodes(work->sb, wb, work);
756                 else
757                         progress = __writeback_inodes_wb(wb, work);
758                 trace_writeback_written(wb->bdi, work);
759
760                 wb_update_bandwidth(wb, wb_start);
761
762                 /*
763                  * Did we write something? Try for more
764                  *
765                  * Dirty inodes are moved to b_io for writeback in batches.
766                  * The completion of the current batch does not necessarily
767                  * mean the overall work is done. So we keep looping as long
768                  * as made some progress on cleaning pages or inodes.
769                  */
770                 if (progress)
771                         continue;
772                 /*
773                  * No more inodes for IO, bail
774                  */
775                 if (list_empty(&wb->b_more_io))
776                         break;
777                 /*
778                  * Nothing written. Wait for some inode to
779                  * become available for writeback. Otherwise
780                  * we'll just busyloop.
781                  */
782                 if (!list_empty(&wb->b_more_io))  {
783                         trace_writeback_wait(wb->bdi, work);
784                         inode = wb_inode(wb->b_more_io.prev);
785                         spin_lock(&inode->i_lock);
786                         inode_wait_for_writeback(inode, wb);
787                         spin_unlock(&inode->i_lock);
788                 }
789         }
790         spin_unlock(&wb->list_lock);
791
792         return nr_pages - work->nr_pages;
793 }
794
795 /*
796  * Return the next wb_writeback_work struct that hasn't been processed yet.
797  */
798 static struct wb_writeback_work *
799 get_next_work_item(struct backing_dev_info *bdi)
800 {
801         struct wb_writeback_work *work = NULL;
802
803         spin_lock_bh(&bdi->wb_lock);
804         if (!list_empty(&bdi->work_list)) {
805                 work = list_entry(bdi->work_list.next,
806                                   struct wb_writeback_work, list);
807                 list_del_init(&work->list);
808         }
809         spin_unlock_bh(&bdi->wb_lock);
810         return work;
811 }
812
813 /*
814  * Add in the number of potentially dirty inodes, because each inode
815  * write can dirty pagecache in the underlying blockdev.
816  */
817 static unsigned long get_nr_dirty_pages(void)
818 {
819         return global_page_state(NR_FILE_DIRTY) +
820                 global_page_state(NR_UNSTABLE_NFS) +
821                 get_nr_dirty_inodes();
822 }
823
824 static long wb_check_background_flush(struct bdi_writeback *wb)
825 {
826         if (over_bground_thresh(wb->bdi)) {
827
828                 struct wb_writeback_work work = {
829                         .nr_pages       = LONG_MAX,
830                         .sync_mode      = WB_SYNC_NONE,
831                         .for_background = 1,
832                         .range_cyclic   = 1,
833                         .reason         = WB_REASON_BACKGROUND,
834                 };
835
836                 return wb_writeback(wb, &work);
837         }
838
839         return 0;
840 }
841
842 static long wb_check_old_data_flush(struct bdi_writeback *wb)
843 {
844         unsigned long expired;
845         long nr_pages;
846
847         /*
848          * When set to zero, disable periodic writeback
849          */
850         if (!dirty_writeback_interval)
851                 return 0;
852
853         expired = wb->last_old_flush +
854                         msecs_to_jiffies(dirty_writeback_interval * 10);
855         if (time_before(jiffies, expired))
856                 return 0;
857
858         wb->last_old_flush = jiffies;
859         nr_pages = get_nr_dirty_pages();
860
861         if (nr_pages) {
862                 struct wb_writeback_work work = {
863                         .nr_pages       = nr_pages,
864                         .sync_mode      = WB_SYNC_NONE,
865                         .for_kupdate    = 1,
866                         .range_cyclic   = 1,
867                         .reason         = WB_REASON_PERIODIC,
868                 };
869
870                 return wb_writeback(wb, &work);
871         }
872
873         return 0;
874 }
875
876 /*
877  * Retrieve work items and do the writeback they describe
878  */
879 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
880 {
881         struct backing_dev_info *bdi = wb->bdi;
882         struct wb_writeback_work *work;
883         long wrote = 0;
884
885         set_bit(BDI_writeback_running, &wb->bdi->state);
886         while ((work = get_next_work_item(bdi)) != NULL) {
887                 /*
888                  * Override sync mode, in case we must wait for completion
889                  * because this thread is exiting now.
890                  */
891                 if (force_wait)
892                         work->sync_mode = WB_SYNC_ALL;
893
894                 trace_writeback_exec(bdi, work);
895
896                 wrote += wb_writeback(wb, work);
897
898                 /*
899                  * Notify the caller of completion if this is a synchronous
900                  * work item, otherwise just free it.
901                  */
902                 if (work->done)
903                         complete(work->done);
904                 else
905                         kfree(work);
906         }
907
908         /*
909          * Check for periodic writeback, kupdated() style
910          */
911         wrote += wb_check_old_data_flush(wb);
912         wrote += wb_check_background_flush(wb);
913         clear_bit(BDI_writeback_running, &wb->bdi->state);
914
915         return wrote;
916 }
917
918 /*
919  * Handle writeback of dirty data for the device backed by this bdi. Also
920  * wakes up periodically and does kupdated style flushing.
921  */
922 int bdi_writeback_thread(void *data)
923 {
924         struct bdi_writeback *wb = data;
925         struct backing_dev_info *bdi = wb->bdi;
926         long pages_written;
927
928         current->flags |= PF_SWAPWRITE;
929         set_freezable();
930         wb->last_active = jiffies;
931
932         /*
933          * Our parent may run at a different priority, just set us to normal
934          */
935         set_user_nice(current, 0);
936
937         trace_writeback_thread_start(bdi);
938
939         while (!kthread_freezable_should_stop(NULL)) {
940                 /*
941                  * Remove own delayed wake-up timer, since we are already awake
942                  * and we'll take care of the preriodic write-back.
943                  */
944                 del_timer(&wb->wakeup_timer);
945
946                 pages_written = wb_do_writeback(wb, 0);
947
948                 trace_writeback_pages_written(pages_written);
949
950                 if (pages_written)
951                         wb->last_active = jiffies;
952
953                 set_current_state(TASK_INTERRUPTIBLE);
954                 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
955                         __set_current_state(TASK_RUNNING);
956                         continue;
957                 }
958
959                 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
960                         schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
961                 else {
962                         /*
963                          * We have nothing to do, so can go sleep without any
964                          * timeout and save power. When a work is queued or
965                          * something is made dirty - we will be woken up.
966                          */
967                         schedule();
968                 }
969         }
970
971         /* Flush any work that raced with us exiting */
972         if (!list_empty(&bdi->work_list))
973                 wb_do_writeback(wb, 1);
974
975         trace_writeback_thread_stop(bdi);
976         return 0;
977 }
978
979
980 /*
981  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
982  * the whole world.
983  */
984 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
985 {
986         struct backing_dev_info *bdi;
987
988         if (!nr_pages) {
989                 nr_pages = global_page_state(NR_FILE_DIRTY) +
990                                 global_page_state(NR_UNSTABLE_NFS);
991         }
992
993         rcu_read_lock();
994         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
995                 if (!bdi_has_dirty_io(bdi))
996                         continue;
997                 __bdi_start_writeback(bdi, nr_pages, false, reason);
998         }
999         rcu_read_unlock();
1000 }
1001
1002 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1003 {
1004         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1005                 struct dentry *dentry;
1006                 const char *name = "?";
1007
1008                 dentry = d_find_alias(inode);
1009                 if (dentry) {
1010                         spin_lock(&dentry->d_lock);
1011                         name = (const char *) dentry->d_name.name;
1012                 }
1013                 printk(KERN_DEBUG
1014                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1015                        current->comm, task_pid_nr(current), inode->i_ino,
1016                        name, inode->i_sb->s_id);
1017                 if (dentry) {
1018                         spin_unlock(&dentry->d_lock);
1019                         dput(dentry);
1020                 }
1021         }
1022 }
1023
1024 /**
1025  *      __mark_inode_dirty -    internal function
1026  *      @inode: inode to mark
1027  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1028  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1029  *      mark_inode_dirty_sync.
1030  *
1031  * Put the inode on the super block's dirty list.
1032  *
1033  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1034  * dirty list only if it is hashed or if it refers to a blockdev.
1035  * If it was not hashed, it will never be added to the dirty list
1036  * even if it is later hashed, as it will have been marked dirty already.
1037  *
1038  * In short, make sure you hash any inodes _before_ you start marking
1039  * them dirty.
1040  *
1041  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1042  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1043  * the kernel-internal blockdev inode represents the dirtying time of the
1044  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1045  * page->mapping->host, so the page-dirtying time is recorded in the internal
1046  * blockdev inode.
1047  */
1048 void __mark_inode_dirty(struct inode *inode, int flags)
1049 {
1050         struct super_block *sb = inode->i_sb;
1051         struct backing_dev_info *bdi = NULL;
1052
1053         /*
1054          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1055          * dirty the inode itself
1056          */
1057         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1058                 if (sb->s_op->dirty_inode)
1059                         sb->s_op->dirty_inode(inode, flags);
1060         }
1061
1062         /*
1063          * make sure that changes are seen by all cpus before we test i_state
1064          * -- mikulas
1065          */
1066         smp_mb();
1067
1068         /* avoid the locking if we can */
1069         if ((inode->i_state & flags) == flags)
1070                 return;
1071
1072         if (unlikely(block_dump))
1073                 block_dump___mark_inode_dirty(inode);
1074
1075         spin_lock(&inode->i_lock);
1076         if ((inode->i_state & flags) != flags) {
1077                 const int was_dirty = inode->i_state & I_DIRTY;
1078
1079                 inode->i_state |= flags;
1080
1081                 /*
1082                  * If the inode is being synced, just update its dirty state.
1083                  * The unlocker will place the inode on the appropriate
1084                  * superblock list, based upon its state.
1085                  */
1086                 if (inode->i_state & I_SYNC)
1087                         goto out_unlock_inode;
1088
1089                 /*
1090                  * Only add valid (hashed) inodes to the superblock's
1091                  * dirty list.  Add blockdev inodes as well.
1092                  */
1093                 if (!S_ISBLK(inode->i_mode)) {
1094                         if (inode_unhashed(inode))
1095                                 goto out_unlock_inode;
1096                 }
1097                 if (inode->i_state & I_FREEING)
1098                         goto out_unlock_inode;
1099
1100                 /*
1101                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1102                  * reposition it (that would break b_dirty time-ordering).
1103                  */
1104                 if (!was_dirty) {
1105                         bool wakeup_bdi = false;
1106                         bdi = inode_to_bdi(inode);
1107
1108                         if (bdi_cap_writeback_dirty(bdi)) {
1109                                 WARN(!test_bit(BDI_registered, &bdi->state),
1110                                      "bdi-%s not registered\n", bdi->name);
1111
1112                                 /*
1113                                  * If this is the first dirty inode for this
1114                                  * bdi, we have to wake-up the corresponding
1115                                  * bdi thread to make sure background
1116                                  * write-back happens later.
1117                                  */
1118                                 if (!wb_has_dirty_io(&bdi->wb))
1119                                         wakeup_bdi = true;
1120                         }
1121
1122                         spin_unlock(&inode->i_lock);
1123                         spin_lock(&bdi->wb.list_lock);
1124                         inode->dirtied_when = jiffies;
1125                         list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1126                         spin_unlock(&bdi->wb.list_lock);
1127
1128                         if (wakeup_bdi)
1129                                 bdi_wakeup_thread_delayed(bdi);
1130                         return;
1131                 }
1132         }
1133 out_unlock_inode:
1134         spin_unlock(&inode->i_lock);
1135
1136 }
1137 EXPORT_SYMBOL(__mark_inode_dirty);
1138
1139 /*
1140  * Write out a superblock's list of dirty inodes.  A wait will be performed
1141  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1142  *
1143  * If older_than_this is non-NULL, then only write out inodes which
1144  * had their first dirtying at a time earlier than *older_than_this.
1145  *
1146  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1147  * This function assumes that the blockdev superblock's inodes are backed by
1148  * a variety of queues, so all inodes are searched.  For other superblocks,
1149  * assume that all inodes are backed by the same queue.
1150  *
1151  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1152  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1153  * on the writer throttling path, and we get decent balancing between many
1154  * throttled threads: we don't want them all piling up on inode_sync_wait.
1155  */
1156 static void wait_sb_inodes(struct super_block *sb)
1157 {
1158         struct inode *inode, *old_inode = NULL;
1159
1160         /*
1161          * We need to be protected against the filesystem going from
1162          * r/o to r/w or vice versa.
1163          */
1164         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1165
1166         spin_lock(&inode_sb_list_lock);
1167
1168         /*
1169          * Data integrity sync. Must wait for all pages under writeback,
1170          * because there may have been pages dirtied before our sync
1171          * call, but which had writeout started before we write it out.
1172          * In which case, the inode may not be on the dirty list, but
1173          * we still have to wait for that writeout.
1174          */
1175         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1176                 struct address_space *mapping = inode->i_mapping;
1177
1178                 spin_lock(&inode->i_lock);
1179                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1180                     (mapping->nrpages == 0)) {
1181                         spin_unlock(&inode->i_lock);
1182                         continue;
1183                 }
1184                 __iget(inode);
1185                 spin_unlock(&inode->i_lock);
1186                 spin_unlock(&inode_sb_list_lock);
1187
1188                 /*
1189                  * We hold a reference to 'inode' so it couldn't have been
1190                  * removed from s_inodes list while we dropped the
1191                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1192                  * be holding the last reference and we cannot iput it under
1193                  * inode_sb_list_lock. So we keep the reference and iput it
1194                  * later.
1195                  */
1196                 iput(old_inode);
1197                 old_inode = inode;
1198
1199                 filemap_fdatawait(mapping);
1200
1201                 cond_resched();
1202
1203                 spin_lock(&inode_sb_list_lock);
1204         }
1205         spin_unlock(&inode_sb_list_lock);
1206         iput(old_inode);
1207 }
1208
1209 /**
1210  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1211  * @sb: the superblock
1212  * @nr: the number of pages to write
1213  * @reason: reason why some writeback work initiated
1214  *
1215  * Start writeback on some inodes on this super_block. No guarantees are made
1216  * on how many (if any) will be written, and this function does not wait
1217  * for IO completion of submitted IO.
1218  */
1219 void writeback_inodes_sb_nr(struct super_block *sb,
1220                             unsigned long nr,
1221                             enum wb_reason reason)
1222 {
1223         DECLARE_COMPLETION_ONSTACK(done);
1224         struct wb_writeback_work work = {
1225                 .sb                     = sb,
1226                 .sync_mode              = WB_SYNC_NONE,
1227                 .tagged_writepages      = 1,
1228                 .done                   = &done,
1229                 .nr_pages               = nr,
1230                 .reason                 = reason,
1231         };
1232
1233         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1234         bdi_queue_work(sb->s_bdi, &work);
1235         wait_for_completion(&done);
1236 }
1237 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1238
1239 /**
1240  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1241  * @sb: the superblock
1242  * @reason: reason why some writeback work was initiated
1243  *
1244  * Start writeback on some inodes on this super_block. No guarantees are made
1245  * on how many (if any) will be written, and this function does not wait
1246  * for IO completion of submitted IO.
1247  */
1248 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1249 {
1250         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1251 }
1252 EXPORT_SYMBOL(writeback_inodes_sb);
1253
1254 /**
1255  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1256  * @sb: the superblock
1257  * @reason: reason why some writeback work was initiated
1258  *
1259  * Invoke writeback_inodes_sb if no writeback is currently underway.
1260  * Returns 1 if writeback was started, 0 if not.
1261  */
1262 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1263 {
1264         if (!writeback_in_progress(sb->s_bdi)) {
1265                 down_read(&sb->s_umount);
1266                 writeback_inodes_sb(sb, reason);
1267                 up_read(&sb->s_umount);
1268                 return 1;
1269         } else
1270                 return 0;
1271 }
1272 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1273
1274 /**
1275  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1276  * @sb: the superblock
1277  * @nr: the number of pages to write
1278  * @reason: reason why some writeback work was initiated
1279  *
1280  * Invoke writeback_inodes_sb if no writeback is currently underway.
1281  * Returns 1 if writeback was started, 0 if not.
1282  */
1283 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1284                                    unsigned long nr,
1285                                    enum wb_reason reason)
1286 {
1287         if (!writeback_in_progress(sb->s_bdi)) {
1288                 down_read(&sb->s_umount);
1289                 writeback_inodes_sb_nr(sb, nr, reason);
1290                 up_read(&sb->s_umount);
1291                 return 1;
1292         } else
1293                 return 0;
1294 }
1295 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1296
1297 /**
1298  * sync_inodes_sb       -       sync sb inode pages
1299  * @sb: the superblock
1300  *
1301  * This function writes and waits on any dirty inode belonging to this
1302  * super_block.
1303  */
1304 void sync_inodes_sb(struct super_block *sb)
1305 {
1306         DECLARE_COMPLETION_ONSTACK(done);
1307         struct wb_writeback_work work = {
1308                 .sb             = sb,
1309                 .sync_mode      = WB_SYNC_ALL,
1310                 .nr_pages       = LONG_MAX,
1311                 .range_cyclic   = 0,
1312                 .done           = &done,
1313                 .reason         = WB_REASON_SYNC,
1314         };
1315
1316         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1317
1318         bdi_queue_work(sb->s_bdi, &work);
1319         wait_for_completion(&done);
1320
1321         wait_sb_inodes(sb);
1322 }
1323 EXPORT_SYMBOL(sync_inodes_sb);
1324
1325 /**
1326  * write_inode_now      -       write an inode to disk
1327  * @inode: inode to write to disk
1328  * @sync: whether the write should be synchronous or not
1329  *
1330  * This function commits an inode to disk immediately if it is dirty. This is
1331  * primarily needed by knfsd.
1332  *
1333  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1334  */
1335 int write_inode_now(struct inode *inode, int sync)
1336 {
1337         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1338         int ret;
1339         struct writeback_control wbc = {
1340                 .nr_to_write = LONG_MAX,
1341                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1342                 .range_start = 0,
1343                 .range_end = LLONG_MAX,
1344         };
1345
1346         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1347                 wbc.nr_to_write = 0;
1348
1349         might_sleep();
1350         spin_lock(&wb->list_lock);
1351         spin_lock(&inode->i_lock);
1352         ret = writeback_single_inode(inode, wb, &wbc);
1353         spin_unlock(&inode->i_lock);
1354         spin_unlock(&wb->list_lock);
1355         if (sync)
1356                 inode_sync_wait(inode);
1357         return ret;
1358 }
1359 EXPORT_SYMBOL(write_inode_now);
1360
1361 /**
1362  * sync_inode - write an inode and its pages to disk.
1363  * @inode: the inode to sync
1364  * @wbc: controls the writeback mode
1365  *
1366  * sync_inode() will write an inode and its pages to disk.  It will also
1367  * correctly update the inode on its superblock's dirty inode lists and will
1368  * update inode->i_state.
1369  *
1370  * The caller must have a ref on the inode.
1371  */
1372 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1373 {
1374         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1375         int ret;
1376
1377         spin_lock(&wb->list_lock);
1378         spin_lock(&inode->i_lock);
1379         ret = writeback_single_inode(inode, wb, wbc);
1380         spin_unlock(&inode->i_lock);
1381         spin_unlock(&wb->list_lock);
1382         return ret;
1383 }
1384 EXPORT_SYMBOL(sync_inode);
1385
1386 /**
1387  * sync_inode_metadata - write an inode to disk
1388  * @inode: the inode to sync
1389  * @wait: wait for I/O to complete.
1390  *
1391  * Write an inode to disk and adjust its dirty state after completion.
1392  *
1393  * Note: only writes the actual inode, no associated data or other metadata.
1394  */
1395 int sync_inode_metadata(struct inode *inode, int wait)
1396 {
1397         struct writeback_control wbc = {
1398                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1399                 .nr_to_write = 0, /* metadata-only */
1400         };
1401
1402         return sync_inode(inode, &wbc);
1403 }
1404 EXPORT_SYMBOL(sync_inode_metadata);