writeback: simplify wakeup_flusher_threads
[pandora-kernel.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include "internal.h"
30
31 #define inode_to_bdi(inode)     ((inode)->i_mapping->backing_dev_info)
32
33 /*
34  * We don't actually have pdflush, but this one is exported though /proc...
35  */
36 int nr_pdflush_threads;
37
38 /*
39  * Passed into wb_writeback(), essentially a subset of writeback_control
40  */
41 struct wb_writeback_args {
42         long nr_pages;
43         struct super_block *sb;
44         enum writeback_sync_modes sync_mode;
45         unsigned int for_kupdate:1;
46         unsigned int range_cyclic:1;
47         unsigned int for_background:1;
48 };
49
50 /*
51  * Work items for the bdi_writeback threads
52  */
53 struct bdi_work {
54         struct list_head list;          /* pending work list */
55         struct rcu_head rcu_head;       /* for RCU free/clear of work */
56
57         unsigned long seen;             /* threads that have seen this work */
58         atomic_t pending;               /* number of threads still to do work */
59
60         struct wb_writeback_args args;  /* writeback arguments */
61
62         unsigned long state;            /* flag bits, see WS_* */
63 };
64
65 enum {
66         WS_INPROGRESS = 0,
67         WS_ONSTACK,
68 };
69
70 static inline void bdi_work_init(struct bdi_work *work,
71                                  struct wb_writeback_args *args)
72 {
73         INIT_RCU_HEAD(&work->rcu_head);
74         work->args = *args;
75         __set_bit(WS_INPROGRESS, &work->state);
76 }
77
78 /**
79  * writeback_in_progress - determine whether there is writeback in progress
80  * @bdi: the device's backing_dev_info structure.
81  *
82  * Determine whether there is writeback waiting to be handled against a
83  * backing device.
84  */
85 int writeback_in_progress(struct backing_dev_info *bdi)
86 {
87         return !list_empty(&bdi->work_list);
88 }
89
90 static void bdi_work_free(struct rcu_head *head)
91 {
92         struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
93
94         clear_bit(WS_INPROGRESS, &work->state);
95         smp_mb__after_clear_bit();
96         wake_up_bit(&work->state, WS_INPROGRESS);
97
98         if (!test_bit(WS_ONSTACK, &work->state))
99                 kfree(work);
100 }
101
102 static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
103 {
104         /*
105          * The caller has retrieved the work arguments from this work,
106          * drop our reference. If this is the last ref, delete and free it
107          */
108         if (atomic_dec_and_test(&work->pending)) {
109                 struct backing_dev_info *bdi = wb->bdi;
110
111                 spin_lock(&bdi->wb_lock);
112                 list_del_rcu(&work->list);
113                 spin_unlock(&bdi->wb_lock);
114
115                 call_rcu(&work->rcu_head, bdi_work_free);
116         }
117 }
118
119 static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
120 {
121         work->seen = bdi->wb_mask;
122         BUG_ON(!work->seen);
123         atomic_set(&work->pending, bdi->wb_cnt);
124         BUG_ON(!bdi->wb_cnt);
125
126         /*
127          * list_add_tail_rcu() contains the necessary barriers to
128          * make sure the above stores are seen before the item is
129          * noticed on the list
130          */
131         spin_lock(&bdi->wb_lock);
132         list_add_tail_rcu(&work->list, &bdi->work_list);
133         spin_unlock(&bdi->wb_lock);
134
135         /*
136          * If the default thread isn't there, make sure we add it. When
137          * it gets created and wakes up, we'll run this work.
138          */
139         if (unlikely(list_empty_careful(&bdi->wb_list)))
140                 wake_up_process(default_backing_dev_info.wb.task);
141         else {
142                 struct bdi_writeback *wb = &bdi->wb;
143
144                 if (wb->task)
145                         wake_up_process(wb->task);
146         }
147 }
148
149 /*
150  * Used for on-stack allocated work items. The caller needs to wait until
151  * the wb threads have acked the work before it's safe to continue.
152  */
153 static void bdi_wait_on_work_done(struct bdi_work *work)
154 {
155         wait_on_bit(&work->state, WS_INPROGRESS, bdi_sched_wait,
156                     TASK_UNINTERRUPTIBLE);
157 }
158
159 static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
160                                  struct wb_writeback_args *args)
161 {
162         struct bdi_work *work;
163
164         /*
165          * This is WB_SYNC_NONE writeback, so if allocation fails just
166          * wakeup the thread for old dirty data writeback
167          */
168         work = kmalloc(sizeof(*work), GFP_ATOMIC);
169         if (work) {
170                 bdi_work_init(work, args);
171                 bdi_queue_work(bdi, work);
172         } else {
173                 struct bdi_writeback *wb = &bdi->wb;
174
175                 if (wb->task)
176                         wake_up_process(wb->task);
177         }
178 }
179
180 /**
181  * bdi_queue_work_onstack - start and wait for writeback
182  * @sb: write inodes from this super_block
183  *
184  * Description:
185  *   This function initiates writeback and waits for the operation to
186  *   complete. Callers must hold the sb s_umount semaphore for
187  *   reading, to avoid having the super disappear before we are done.
188  */
189 static void bdi_queue_work_onstack(struct wb_writeback_args *args)
190 {
191         struct bdi_work work;
192
193         bdi_work_init(&work, args);
194         __set_bit(WS_ONSTACK, &work.state);
195
196         bdi_queue_work(args->sb->s_bdi, &work);
197         bdi_wait_on_work_done(&work);
198 }
199
200 /**
201  * bdi_start_writeback - start writeback
202  * @bdi: the backing device to write from
203  * @sb: write inodes from this super_block
204  * @nr_pages: the number of pages to write
205  *
206  * Description:
207  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
208  *   started when this function returns, we make no guarentees on
209  *   completion. Caller need not hold sb s_umount semaphore.
210  *
211  */
212 void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb,
213                          long nr_pages)
214 {
215         struct wb_writeback_args args = {
216                 .sb             = sb,
217                 .sync_mode      = WB_SYNC_NONE,
218                 .nr_pages       = nr_pages,
219                 .range_cyclic   = 1,
220         };
221
222         /*
223          * We treat @nr_pages=0 as the special case to do background writeback,
224          * ie. to sync pages until the background dirty threshold is reached.
225          */
226         if (!nr_pages) {
227                 args.nr_pages = LONG_MAX;
228                 args.for_background = 1;
229         }
230
231         bdi_alloc_queue_work(bdi, &args);
232 }
233
234 /*
235  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
236  * furthest end of its superblock's dirty-inode list.
237  *
238  * Before stamping the inode's ->dirtied_when, we check to see whether it is
239  * already the most-recently-dirtied inode on the b_dirty list.  If that is
240  * the case then the inode must have been redirtied while it was being written
241  * out and we don't reset its dirtied_when.
242  */
243 static void redirty_tail(struct inode *inode)
244 {
245         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
246
247         if (!list_empty(&wb->b_dirty)) {
248                 struct inode *tail;
249
250                 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
251                 if (time_before(inode->dirtied_when, tail->dirtied_when))
252                         inode->dirtied_when = jiffies;
253         }
254         list_move(&inode->i_list, &wb->b_dirty);
255 }
256
257 /*
258  * requeue inode for re-scanning after bdi->b_io list is exhausted.
259  */
260 static void requeue_io(struct inode *inode)
261 {
262         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
263
264         list_move(&inode->i_list, &wb->b_more_io);
265 }
266
267 static void inode_sync_complete(struct inode *inode)
268 {
269         /*
270          * Prevent speculative execution through spin_unlock(&inode_lock);
271          */
272         smp_mb();
273         wake_up_bit(&inode->i_state, __I_SYNC);
274 }
275
276 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
277 {
278         bool ret = time_after(inode->dirtied_when, t);
279 #ifndef CONFIG_64BIT
280         /*
281          * For inodes being constantly redirtied, dirtied_when can get stuck.
282          * It _appears_ to be in the future, but is actually in distant past.
283          * This test is necessary to prevent such wrapped-around relative times
284          * from permanently stopping the whole bdi writeback.
285          */
286         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
287 #endif
288         return ret;
289 }
290
291 /*
292  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
293  */
294 static void move_expired_inodes(struct list_head *delaying_queue,
295                                struct list_head *dispatch_queue,
296                                 unsigned long *older_than_this)
297 {
298         LIST_HEAD(tmp);
299         struct list_head *pos, *node;
300         struct super_block *sb = NULL;
301         struct inode *inode;
302         int do_sb_sort = 0;
303
304         while (!list_empty(delaying_queue)) {
305                 inode = list_entry(delaying_queue->prev, struct inode, i_list);
306                 if (older_than_this &&
307                     inode_dirtied_after(inode, *older_than_this))
308                         break;
309                 if (sb && sb != inode->i_sb)
310                         do_sb_sort = 1;
311                 sb = inode->i_sb;
312                 list_move(&inode->i_list, &tmp);
313         }
314
315         /* just one sb in list, splice to dispatch_queue and we're done */
316         if (!do_sb_sort) {
317                 list_splice(&tmp, dispatch_queue);
318                 return;
319         }
320
321         /* Move inodes from one superblock together */
322         while (!list_empty(&tmp)) {
323                 inode = list_entry(tmp.prev, struct inode, i_list);
324                 sb = inode->i_sb;
325                 list_for_each_prev_safe(pos, node, &tmp) {
326                         inode = list_entry(pos, struct inode, i_list);
327                         if (inode->i_sb == sb)
328                                 list_move(&inode->i_list, dispatch_queue);
329                 }
330         }
331 }
332
333 /*
334  * Queue all expired dirty inodes for io, eldest first.
335  */
336 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
337 {
338         list_splice_init(&wb->b_more_io, wb->b_io.prev);
339         move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
340 }
341
342 static int write_inode(struct inode *inode, struct writeback_control *wbc)
343 {
344         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
345                 return inode->i_sb->s_op->write_inode(inode, wbc);
346         return 0;
347 }
348
349 /*
350  * Wait for writeback on an inode to complete.
351  */
352 static void inode_wait_for_writeback(struct inode *inode)
353 {
354         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
355         wait_queue_head_t *wqh;
356
357         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
358          while (inode->i_state & I_SYNC) {
359                 spin_unlock(&inode_lock);
360                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
361                 spin_lock(&inode_lock);
362         }
363 }
364
365 /*
366  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
367  * caller has ref on the inode (either via __iget or via syscall against an fd)
368  * or the inode has I_WILL_FREE set (via generic_forget_inode)
369  *
370  * If `wait' is set, wait on the writeout.
371  *
372  * The whole writeout design is quite complex and fragile.  We want to avoid
373  * starvation of particular inodes when others are being redirtied, prevent
374  * livelocks, etc.
375  *
376  * Called under inode_lock.
377  */
378 static int
379 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
380 {
381         struct address_space *mapping = inode->i_mapping;
382         unsigned dirty;
383         int ret;
384
385         if (!atomic_read(&inode->i_count))
386                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
387         else
388                 WARN_ON(inode->i_state & I_WILL_FREE);
389
390         if (inode->i_state & I_SYNC) {
391                 /*
392                  * If this inode is locked for writeback and we are not doing
393                  * writeback-for-data-integrity, move it to b_more_io so that
394                  * writeback can proceed with the other inodes on s_io.
395                  *
396                  * We'll have another go at writing back this inode when we
397                  * completed a full scan of b_io.
398                  */
399                 if (wbc->sync_mode != WB_SYNC_ALL) {
400                         requeue_io(inode);
401                         return 0;
402                 }
403
404                 /*
405                  * It's a data-integrity sync.  We must wait.
406                  */
407                 inode_wait_for_writeback(inode);
408         }
409
410         BUG_ON(inode->i_state & I_SYNC);
411
412         /* Set I_SYNC, reset I_DIRTY_PAGES */
413         inode->i_state |= I_SYNC;
414         inode->i_state &= ~I_DIRTY_PAGES;
415         spin_unlock(&inode_lock);
416
417         ret = do_writepages(mapping, wbc);
418
419         /*
420          * Make sure to wait on the data before writing out the metadata.
421          * This is important for filesystems that modify metadata on data
422          * I/O completion.
423          */
424         if (wbc->sync_mode == WB_SYNC_ALL) {
425                 int err = filemap_fdatawait(mapping);
426                 if (ret == 0)
427                         ret = err;
428         }
429
430         /*
431          * Some filesystems may redirty the inode during the writeback
432          * due to delalloc, clear dirty metadata flags right before
433          * write_inode()
434          */
435         spin_lock(&inode_lock);
436         dirty = inode->i_state & I_DIRTY;
437         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
438         spin_unlock(&inode_lock);
439         /* Don't write the inode if only I_DIRTY_PAGES was set */
440         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
441                 int err = write_inode(inode, wbc);
442                 if (ret == 0)
443                         ret = err;
444         }
445
446         spin_lock(&inode_lock);
447         inode->i_state &= ~I_SYNC;
448         if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
449                 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
450                         /*
451                          * More pages get dirtied by a fast dirtier.
452                          */
453                         goto select_queue;
454                 } else if (inode->i_state & I_DIRTY) {
455                         /*
456                          * At least XFS will redirty the inode during the
457                          * writeback (delalloc) and on io completion (isize).
458                          */
459                         redirty_tail(inode);
460                 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
461                         /*
462                          * We didn't write back all the pages.  nfs_writepages()
463                          * sometimes bales out without doing anything. Redirty
464                          * the inode; Move it from b_io onto b_more_io/b_dirty.
465                          */
466                         /*
467                          * akpm: if the caller was the kupdate function we put
468                          * this inode at the head of b_dirty so it gets first
469                          * consideration.  Otherwise, move it to the tail, for
470                          * the reasons described there.  I'm not really sure
471                          * how much sense this makes.  Presumably I had a good
472                          * reasons for doing it this way, and I'd rather not
473                          * muck with it at present.
474                          */
475                         if (wbc->for_kupdate) {
476                                 /*
477                                  * For the kupdate function we move the inode
478                                  * to b_more_io so it will get more writeout as
479                                  * soon as the queue becomes uncongested.
480                                  */
481                                 inode->i_state |= I_DIRTY_PAGES;
482 select_queue:
483                                 if (wbc->nr_to_write <= 0) {
484                                         /*
485                                          * slice used up: queue for next turn
486                                          */
487                                         requeue_io(inode);
488                                 } else {
489                                         /*
490                                          * somehow blocked: retry later
491                                          */
492                                         redirty_tail(inode);
493                                 }
494                         } else {
495                                 /*
496                                  * Otherwise fully redirty the inode so that
497                                  * other inodes on this superblock will get some
498                                  * writeout.  Otherwise heavy writing to one
499                                  * file would indefinitely suspend writeout of
500                                  * all the other files.
501                                  */
502                                 inode->i_state |= I_DIRTY_PAGES;
503                                 redirty_tail(inode);
504                         }
505                 } else if (atomic_read(&inode->i_count)) {
506                         /*
507                          * The inode is clean, inuse
508                          */
509                         list_move(&inode->i_list, &inode_in_use);
510                 } else {
511                         /*
512                          * The inode is clean, unused
513                          */
514                         list_move(&inode->i_list, &inode_unused);
515                 }
516         }
517         inode_sync_complete(inode);
518         return ret;
519 }
520
521 /*
522  * For background writeback the caller does not have the sb pinned
523  * before calling writeback. So make sure that we do pin it, so it doesn't
524  * go away while we are writing inodes from it.
525  */
526 static bool pin_sb_for_writeback(struct super_block *sb)
527 {
528         spin_lock(&sb_lock);
529         sb->s_count++;
530         if (down_read_trylock(&sb->s_umount)) {
531                 if (sb->s_root) {
532                         spin_unlock(&sb_lock);
533                         return true;
534                 }
535                 /*
536                  * umounted, drop rwsem again and fall through to failure
537                  */
538                 up_read(&sb->s_umount);
539         }
540         sb->s_count--;
541         spin_unlock(&sb_lock);
542         return false;
543 }
544
545 /*
546  * Write a portion of b_io inodes which belong to @sb.
547  * If @wbc->sb != NULL, then find and write all such
548  * inodes. Otherwise write only ones which go sequentially
549  * in reverse order.
550  * Return 1, if the caller writeback routine should be
551  * interrupted. Otherwise return 0.
552  */
553 static int writeback_sb_inodes(struct super_block *sb,
554                                struct bdi_writeback *wb,
555                                struct writeback_control *wbc)
556 {
557         while (!list_empty(&wb->b_io)) {
558                 long pages_skipped;
559                 struct inode *inode = list_entry(wb->b_io.prev,
560                                                  struct inode, i_list);
561                 if (wbc->sb && sb != inode->i_sb) {
562                         /* super block given and doesn't
563                            match, skip this inode */
564                         redirty_tail(inode);
565                         continue;
566                 }
567                 if (sb != inode->i_sb)
568                         /* finish with this superblock */
569                         return 0;
570                 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
571                         requeue_io(inode);
572                         continue;
573                 }
574                 /*
575                  * Was this inode dirtied after sync_sb_inodes was called?
576                  * This keeps sync from extra jobs and livelock.
577                  */
578                 if (inode_dirtied_after(inode, wbc->wb_start))
579                         return 1;
580
581                 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
582                 __iget(inode);
583                 pages_skipped = wbc->pages_skipped;
584                 writeback_single_inode(inode, wbc);
585                 if (wbc->pages_skipped != pages_skipped) {
586                         /*
587                          * writeback is not making progress due to locked
588                          * buffers.  Skip this inode for now.
589                          */
590                         redirty_tail(inode);
591                 }
592                 spin_unlock(&inode_lock);
593                 iput(inode);
594                 cond_resched();
595                 spin_lock(&inode_lock);
596                 if (wbc->nr_to_write <= 0) {
597                         wbc->more_io = 1;
598                         return 1;
599                 }
600                 if (!list_empty(&wb->b_more_io))
601                         wbc->more_io = 1;
602         }
603         /* b_io is empty */
604         return 1;
605 }
606
607 static void writeback_inodes_wb(struct bdi_writeback *wb,
608                                 struct writeback_control *wbc)
609 {
610         int ret = 0;
611
612         wbc->wb_start = jiffies; /* livelock avoidance */
613         spin_lock(&inode_lock);
614         if (!wbc->for_kupdate || list_empty(&wb->b_io))
615                 queue_io(wb, wbc->older_than_this);
616
617         while (!list_empty(&wb->b_io)) {
618                 struct inode *inode = list_entry(wb->b_io.prev,
619                                                  struct inode, i_list);
620                 struct super_block *sb = inode->i_sb;
621
622                 if (wbc->sb) {
623                         /*
624                          * We are requested to write out inodes for a specific
625                          * superblock.  This means we already have s_umount
626                          * taken by the caller which also waits for us to
627                          * complete the writeout.
628                          */
629                         if (sb != wbc->sb) {
630                                 redirty_tail(inode);
631                                 continue;
632                         }
633
634                         WARN_ON(!rwsem_is_locked(&sb->s_umount));
635
636                         ret = writeback_sb_inodes(sb, wb, wbc);
637                 } else {
638                         if (!pin_sb_for_writeback(sb))
639                                 continue;
640                         ret = writeback_sb_inodes(sb, wb, wbc);
641                         drop_super(sb);
642                 }
643
644                 if (ret)
645                         break;
646         }
647         spin_unlock(&inode_lock);
648         /* Leave any unwritten inodes on b_io */
649 }
650
651 void writeback_inodes_wbc(struct writeback_control *wbc)
652 {
653         struct backing_dev_info *bdi = wbc->bdi;
654
655         writeback_inodes_wb(&bdi->wb, wbc);
656 }
657
658 /*
659  * The maximum number of pages to writeout in a single bdi flush/kupdate
660  * operation.  We do this so we don't hold I_SYNC against an inode for
661  * enormous amounts of time, which would block a userspace task which has
662  * been forced to throttle against that inode.  Also, the code reevaluates
663  * the dirty each time it has written this many pages.
664  */
665 #define MAX_WRITEBACK_PAGES     1024
666
667 static inline bool over_bground_thresh(void)
668 {
669         unsigned long background_thresh, dirty_thresh;
670
671         get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
672
673         return (global_page_state(NR_FILE_DIRTY) +
674                 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
675 }
676
677 /*
678  * Explicit flushing or periodic writeback of "old" data.
679  *
680  * Define "old": the first time one of an inode's pages is dirtied, we mark the
681  * dirtying-time in the inode's address_space.  So this periodic writeback code
682  * just walks the superblock inode list, writing back any inodes which are
683  * older than a specific point in time.
684  *
685  * Try to run once per dirty_writeback_interval.  But if a writeback event
686  * takes longer than a dirty_writeback_interval interval, then leave a
687  * one-second gap.
688  *
689  * older_than_this takes precedence over nr_to_write.  So we'll only write back
690  * all dirty pages if they are all attached to "old" mappings.
691  */
692 static long wb_writeback(struct bdi_writeback *wb,
693                          struct wb_writeback_args *args)
694 {
695         struct writeback_control wbc = {
696                 .bdi                    = wb->bdi,
697                 .sb                     = args->sb,
698                 .sync_mode              = args->sync_mode,
699                 .older_than_this        = NULL,
700                 .for_kupdate            = args->for_kupdate,
701                 .for_background         = args->for_background,
702                 .range_cyclic           = args->range_cyclic,
703         };
704         unsigned long oldest_jif;
705         long wrote = 0;
706         struct inode *inode;
707
708         if (wbc.for_kupdate) {
709                 wbc.older_than_this = &oldest_jif;
710                 oldest_jif = jiffies -
711                                 msecs_to_jiffies(dirty_expire_interval * 10);
712         }
713         if (!wbc.range_cyclic) {
714                 wbc.range_start = 0;
715                 wbc.range_end = LLONG_MAX;
716         }
717
718         for (;;) {
719                 /*
720                  * Stop writeback when nr_pages has been consumed
721                  */
722                 if (args->nr_pages <= 0)
723                         break;
724
725                 /*
726                  * For background writeout, stop when we are below the
727                  * background dirty threshold
728                  */
729                 if (args->for_background && !over_bground_thresh())
730                         break;
731
732                 wbc.more_io = 0;
733                 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
734                 wbc.pages_skipped = 0;
735                 writeback_inodes_wb(wb, &wbc);
736                 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
737                 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
738
739                 /*
740                  * If we consumed everything, see if we have more
741                  */
742                 if (wbc.nr_to_write <= 0)
743                         continue;
744                 /*
745                  * Didn't write everything and we don't have more IO, bail
746                  */
747                 if (!wbc.more_io)
748                         break;
749                 /*
750                  * Did we write something? Try for more
751                  */
752                 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
753                         continue;
754                 /*
755                  * Nothing written. Wait for some inode to
756                  * become available for writeback. Otherwise
757                  * we'll just busyloop.
758                  */
759                 spin_lock(&inode_lock);
760                 if (!list_empty(&wb->b_more_io))  {
761                         inode = list_entry(wb->b_more_io.prev,
762                                                 struct inode, i_list);
763                         inode_wait_for_writeback(inode);
764                 }
765                 spin_unlock(&inode_lock);
766         }
767
768         return wrote;
769 }
770
771 /*
772  * Return the next bdi_work struct that hasn't been processed by this
773  * wb thread yet. ->seen is initially set for each thread that exists
774  * for this device, when a thread first notices a piece of work it
775  * clears its bit. Depending on writeback type, the thread will notify
776  * completion on either receiving the work (WB_SYNC_NONE) or after
777  * it is done (WB_SYNC_ALL).
778  */
779 static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
780                                            struct bdi_writeback *wb)
781 {
782         struct bdi_work *work, *ret = NULL;
783
784         rcu_read_lock();
785
786         list_for_each_entry_rcu(work, &bdi->work_list, list) {
787                 if (!test_bit(wb->nr, &work->seen))
788                         continue;
789                 clear_bit(wb->nr, &work->seen);
790
791                 ret = work;
792                 break;
793         }
794
795         rcu_read_unlock();
796         return ret;
797 }
798
799 static long wb_check_old_data_flush(struct bdi_writeback *wb)
800 {
801         unsigned long expired;
802         long nr_pages;
803
804         /*
805          * When set to zero, disable periodic writeback
806          */
807         if (!dirty_writeback_interval)
808                 return 0;
809
810         expired = wb->last_old_flush +
811                         msecs_to_jiffies(dirty_writeback_interval * 10);
812         if (time_before(jiffies, expired))
813                 return 0;
814
815         wb->last_old_flush = jiffies;
816         nr_pages = global_page_state(NR_FILE_DIRTY) +
817                         global_page_state(NR_UNSTABLE_NFS) +
818                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
819
820         if (nr_pages) {
821                 struct wb_writeback_args args = {
822                         .nr_pages       = nr_pages,
823                         .sync_mode      = WB_SYNC_NONE,
824                         .for_kupdate    = 1,
825                         .range_cyclic   = 1,
826                 };
827
828                 return wb_writeback(wb, &args);
829         }
830
831         return 0;
832 }
833
834 /*
835  * Retrieve work items and do the writeback they describe
836  */
837 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
838 {
839         struct backing_dev_info *bdi = wb->bdi;
840         struct bdi_work *work;
841         long wrote = 0;
842
843         while ((work = get_next_work_item(bdi, wb)) != NULL) {
844                 struct wb_writeback_args args = work->args;
845
846                 /*
847                  * Override sync mode, in case we must wait for completion
848                  */
849                 if (force_wait)
850                         work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
851
852                 /*
853                  * If this isn't a data integrity operation, just notify
854                  * that we have seen this work and we are now starting it.
855                  */
856                 if (!test_bit(WS_ONSTACK, &work->state))
857                         wb_clear_pending(wb, work);
858
859                 wrote += wb_writeback(wb, &args);
860
861                 /*
862                  * This is a data integrity writeback, so only do the
863                  * notification when we have completed the work.
864                  */
865                 if (test_bit(WS_ONSTACK, &work->state))
866                         wb_clear_pending(wb, work);
867         }
868
869         /*
870          * Check for periodic writeback, kupdated() style
871          */
872         wrote += wb_check_old_data_flush(wb);
873
874         return wrote;
875 }
876
877 /*
878  * Handle writeback of dirty data for the device backed by this bdi. Also
879  * wakes up periodically and does kupdated style flushing.
880  */
881 int bdi_writeback_task(struct bdi_writeback *wb)
882 {
883         unsigned long last_active = jiffies;
884         unsigned long wait_jiffies = -1UL;
885         long pages_written;
886
887         while (!kthread_should_stop()) {
888                 pages_written = wb_do_writeback(wb, 0);
889
890                 if (pages_written)
891                         last_active = jiffies;
892                 else if (wait_jiffies != -1UL) {
893                         unsigned long max_idle;
894
895                         /*
896                          * Longest period of inactivity that we tolerate. If we
897                          * see dirty data again later, the task will get
898                          * recreated automatically.
899                          */
900                         max_idle = max(5UL * 60 * HZ, wait_jiffies);
901                         if (time_after(jiffies, max_idle + last_active))
902                                 break;
903                 }
904
905                 if (dirty_writeback_interval) {
906                         wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
907                         schedule_timeout_interruptible(wait_jiffies);
908                 } else {
909                         set_current_state(TASK_INTERRUPTIBLE);
910                         if (list_empty_careful(&wb->bdi->work_list) &&
911                             !kthread_should_stop())
912                                 schedule();
913                         __set_current_state(TASK_RUNNING);
914                 }
915
916                 try_to_freeze();
917         }
918
919         return 0;
920 }
921
922 /*
923  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
924  * the whole world.
925  */
926 void wakeup_flusher_threads(long nr_pages)
927 {
928         struct backing_dev_info *bdi;
929         struct wb_writeback_args args = {
930                 .sync_mode      = WB_SYNC_NONE,
931         };
932
933         if (nr_pages) {
934                 args.nr_pages = nr_pages;
935         } else {
936                 args.nr_pages = global_page_state(NR_FILE_DIRTY) +
937                                 global_page_state(NR_UNSTABLE_NFS);
938         }
939
940         rcu_read_lock();
941         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
942                 if (!bdi_has_dirty_io(bdi))
943                         continue;
944                 bdi_alloc_queue_work(bdi, &args);
945         }
946         rcu_read_unlock();
947 }
948
949 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
950 {
951         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
952                 struct dentry *dentry;
953                 const char *name = "?";
954
955                 dentry = d_find_alias(inode);
956                 if (dentry) {
957                         spin_lock(&dentry->d_lock);
958                         name = (const char *) dentry->d_name.name;
959                 }
960                 printk(KERN_DEBUG
961                        "%s(%d): dirtied inode %lu (%s) on %s\n",
962                        current->comm, task_pid_nr(current), inode->i_ino,
963                        name, inode->i_sb->s_id);
964                 if (dentry) {
965                         spin_unlock(&dentry->d_lock);
966                         dput(dentry);
967                 }
968         }
969 }
970
971 /**
972  *      __mark_inode_dirty -    internal function
973  *      @inode: inode to mark
974  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
975  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
976  *      mark_inode_dirty_sync.
977  *
978  * Put the inode on the super block's dirty list.
979  *
980  * CAREFUL! We mark it dirty unconditionally, but move it onto the
981  * dirty list only if it is hashed or if it refers to a blockdev.
982  * If it was not hashed, it will never be added to the dirty list
983  * even if it is later hashed, as it will have been marked dirty already.
984  *
985  * In short, make sure you hash any inodes _before_ you start marking
986  * them dirty.
987  *
988  * This function *must* be atomic for the I_DIRTY_PAGES case -
989  * set_page_dirty() is called under spinlock in several places.
990  *
991  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
992  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
993  * the kernel-internal blockdev inode represents the dirtying time of the
994  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
995  * page->mapping->host, so the page-dirtying time is recorded in the internal
996  * blockdev inode.
997  */
998 void __mark_inode_dirty(struct inode *inode, int flags)
999 {
1000         struct super_block *sb = inode->i_sb;
1001
1002         /*
1003          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1004          * dirty the inode itself
1005          */
1006         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1007                 if (sb->s_op->dirty_inode)
1008                         sb->s_op->dirty_inode(inode);
1009         }
1010
1011         /*
1012          * make sure that changes are seen by all cpus before we test i_state
1013          * -- mikulas
1014          */
1015         smp_mb();
1016
1017         /* avoid the locking if we can */
1018         if ((inode->i_state & flags) == flags)
1019                 return;
1020
1021         if (unlikely(block_dump))
1022                 block_dump___mark_inode_dirty(inode);
1023
1024         spin_lock(&inode_lock);
1025         if ((inode->i_state & flags) != flags) {
1026                 const int was_dirty = inode->i_state & I_DIRTY;
1027
1028                 inode->i_state |= flags;
1029
1030                 /*
1031                  * If the inode is being synced, just update its dirty state.
1032                  * The unlocker will place the inode on the appropriate
1033                  * superblock list, based upon its state.
1034                  */
1035                 if (inode->i_state & I_SYNC)
1036                         goto out;
1037
1038                 /*
1039                  * Only add valid (hashed) inodes to the superblock's
1040                  * dirty list.  Add blockdev inodes as well.
1041                  */
1042                 if (!S_ISBLK(inode->i_mode)) {
1043                         if (hlist_unhashed(&inode->i_hash))
1044                                 goto out;
1045                 }
1046                 if (inode->i_state & (I_FREEING|I_CLEAR))
1047                         goto out;
1048
1049                 /*
1050                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1051                  * reposition it (that would break b_dirty time-ordering).
1052                  */
1053                 if (!was_dirty) {
1054                         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1055                         struct backing_dev_info *bdi = wb->bdi;
1056
1057                         if (bdi_cap_writeback_dirty(bdi) &&
1058                             !test_bit(BDI_registered, &bdi->state)) {
1059                                 WARN_ON(1);
1060                                 printk(KERN_ERR "bdi-%s not registered\n",
1061                                                                 bdi->name);
1062                         }
1063
1064                         inode->dirtied_when = jiffies;
1065                         list_move(&inode->i_list, &wb->b_dirty);
1066                 }
1067         }
1068 out:
1069         spin_unlock(&inode_lock);
1070 }
1071 EXPORT_SYMBOL(__mark_inode_dirty);
1072
1073 /*
1074  * Write out a superblock's list of dirty inodes.  A wait will be performed
1075  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1076  *
1077  * If older_than_this is non-NULL, then only write out inodes which
1078  * had their first dirtying at a time earlier than *older_than_this.
1079  *
1080  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1081  * This function assumes that the blockdev superblock's inodes are backed by
1082  * a variety of queues, so all inodes are searched.  For other superblocks,
1083  * assume that all inodes are backed by the same queue.
1084  *
1085  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1086  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1087  * on the writer throttling path, and we get decent balancing between many
1088  * throttled threads: we don't want them all piling up on inode_sync_wait.
1089  */
1090 static void wait_sb_inodes(struct super_block *sb)
1091 {
1092         struct inode *inode, *old_inode = NULL;
1093
1094         /*
1095          * We need to be protected against the filesystem going from
1096          * r/o to r/w or vice versa.
1097          */
1098         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1099
1100         spin_lock(&inode_lock);
1101
1102         /*
1103          * Data integrity sync. Must wait for all pages under writeback,
1104          * because there may have been pages dirtied before our sync
1105          * call, but which had writeout started before we write it out.
1106          * In which case, the inode may not be on the dirty list, but
1107          * we still have to wait for that writeout.
1108          */
1109         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1110                 struct address_space *mapping;
1111
1112                 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1113                         continue;
1114                 mapping = inode->i_mapping;
1115                 if (mapping->nrpages == 0)
1116                         continue;
1117                 __iget(inode);
1118                 spin_unlock(&inode_lock);
1119                 /*
1120                  * We hold a reference to 'inode' so it couldn't have
1121                  * been removed from s_inodes list while we dropped the
1122                  * inode_lock.  We cannot iput the inode now as we can
1123                  * be holding the last reference and we cannot iput it
1124                  * under inode_lock. So we keep the reference and iput
1125                  * it later.
1126                  */
1127                 iput(old_inode);
1128                 old_inode = inode;
1129
1130                 filemap_fdatawait(mapping);
1131
1132                 cond_resched();
1133
1134                 spin_lock(&inode_lock);
1135         }
1136         spin_unlock(&inode_lock);
1137         iput(old_inode);
1138 }
1139
1140 /**
1141  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1142  * @sb: the superblock
1143  *
1144  * Start writeback on some inodes on this super_block. No guarantees are made
1145  * on how many (if any) will be written, and this function does not wait
1146  * for IO completion of submitted IO. The number of pages submitted is
1147  * returned.
1148  */
1149 void writeback_inodes_sb(struct super_block *sb)
1150 {
1151         unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1152         unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1153         struct wb_writeback_args args = {
1154                 .sb             = sb,
1155                 .sync_mode      = WB_SYNC_NONE,
1156         };
1157
1158         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1159
1160         args.nr_pages = nr_dirty + nr_unstable +
1161                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1162
1163         bdi_queue_work_onstack(&args);
1164 }
1165 EXPORT_SYMBOL(writeback_inodes_sb);
1166
1167 /**
1168  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1169  * @sb: the superblock
1170  *
1171  * Invoke writeback_inodes_sb if no writeback is currently underway.
1172  * Returns 1 if writeback was started, 0 if not.
1173  */
1174 int writeback_inodes_sb_if_idle(struct super_block *sb)
1175 {
1176         if (!writeback_in_progress(sb->s_bdi)) {
1177                 down_read(&sb->s_umount);
1178                 writeback_inodes_sb(sb);
1179                 up_read(&sb->s_umount);
1180                 return 1;
1181         } else
1182                 return 0;
1183 }
1184 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1185
1186 /**
1187  * sync_inodes_sb       -       sync sb inode pages
1188  * @sb: the superblock
1189  *
1190  * This function writes and waits on any dirty inode belonging to this
1191  * super_block. The number of pages synced is returned.
1192  */
1193 void sync_inodes_sb(struct super_block *sb)
1194 {
1195         struct wb_writeback_args args = {
1196                 .sb             = sb,
1197                 .sync_mode      = WB_SYNC_ALL,
1198                 .nr_pages       = LONG_MAX,
1199                 .range_cyclic   = 0,
1200         };
1201
1202         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1203
1204         bdi_queue_work_onstack(&args);
1205         wait_sb_inodes(sb);
1206 }
1207 EXPORT_SYMBOL(sync_inodes_sb);
1208
1209 /**
1210  * write_inode_now      -       write an inode to disk
1211  * @inode: inode to write to disk
1212  * @sync: whether the write should be synchronous or not
1213  *
1214  * This function commits an inode to disk immediately if it is dirty. This is
1215  * primarily needed by knfsd.
1216  *
1217  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1218  */
1219 int write_inode_now(struct inode *inode, int sync)
1220 {
1221         int ret;
1222         struct writeback_control wbc = {
1223                 .nr_to_write = LONG_MAX,
1224                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1225                 .range_start = 0,
1226                 .range_end = LLONG_MAX,
1227         };
1228
1229         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1230                 wbc.nr_to_write = 0;
1231
1232         might_sleep();
1233         spin_lock(&inode_lock);
1234         ret = writeback_single_inode(inode, &wbc);
1235         spin_unlock(&inode_lock);
1236         if (sync)
1237                 inode_sync_wait(inode);
1238         return ret;
1239 }
1240 EXPORT_SYMBOL(write_inode_now);
1241
1242 /**
1243  * sync_inode - write an inode and its pages to disk.
1244  * @inode: the inode to sync
1245  * @wbc: controls the writeback mode
1246  *
1247  * sync_inode() will write an inode and its pages to disk.  It will also
1248  * correctly update the inode on its superblock's dirty inode lists and will
1249  * update inode->i_state.
1250  *
1251  * The caller must have a ref on the inode.
1252  */
1253 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1254 {
1255         int ret;
1256
1257         spin_lock(&inode_lock);
1258         ret = writeback_single_inode(inode, wbc);
1259         spin_unlock(&inode_lock);
1260         return ret;
1261 }
1262 EXPORT_SYMBOL(sync_inode);