writeback: merge for_kupdate and !for_kupdate cases
[pandora-kernel.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36         long nr_pages;
37         struct super_block *sb;
38         enum writeback_sync_modes sync_mode;
39         unsigned int for_kupdate:1;
40         unsigned int range_cyclic:1;
41         unsigned int for_background:1;
42
43         struct list_head list;          /* pending work list */
44         struct completion *done;        /* set if the caller waits */
45 };
46
47 /*
48  * Include the creation of the trace points after defining the
49  * wb_writeback_work structure so that the definition remains local to this
50  * file.
51  */
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
54
55 #define inode_to_bdi(inode)     ((inode)->i_mapping->backing_dev_info)
56
57 /*
58  * We don't actually have pdflush, but this one is exported though /proc...
59  */
60 int nr_pdflush_threads;
61
62 /**
63  * writeback_in_progress - determine whether there is writeback in progress
64  * @bdi: the device's backing_dev_info structure.
65  *
66  * Determine whether there is writeback waiting to be handled against a
67  * backing device.
68  */
69 int writeback_in_progress(struct backing_dev_info *bdi)
70 {
71         return !list_empty(&bdi->work_list);
72 }
73
74 static void bdi_queue_work(struct backing_dev_info *bdi,
75                 struct wb_writeback_work *work)
76 {
77         trace_writeback_queue(bdi, work);
78
79         spin_lock_bh(&bdi->wb_lock);
80         list_add_tail(&work->list, &bdi->work_list);
81         if (bdi->wb.task) {
82                 wake_up_process(bdi->wb.task);
83         } else {
84                 /*
85                  * The bdi thread isn't there, wake up the forker thread which
86                  * will create and run it.
87                  */
88                 trace_writeback_nothread(bdi, work);
89                 wake_up_process(default_backing_dev_info.wb.task);
90         }
91         spin_unlock_bh(&bdi->wb_lock);
92 }
93
94 static void
95 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
96                 bool range_cyclic, bool for_background)
97 {
98         struct wb_writeback_work *work;
99
100         /*
101          * This is WB_SYNC_NONE writeback, so if allocation fails just
102          * wakeup the thread for old dirty data writeback
103          */
104         work = kzalloc(sizeof(*work), GFP_ATOMIC);
105         if (!work) {
106                 if (bdi->wb.task) {
107                         trace_writeback_nowork(bdi);
108                         wake_up_process(bdi->wb.task);
109                 }
110                 return;
111         }
112
113         work->sync_mode = WB_SYNC_NONE;
114         work->nr_pages  = nr_pages;
115         work->range_cyclic = range_cyclic;
116         work->for_background = for_background;
117
118         bdi_queue_work(bdi, work);
119 }
120
121 /**
122  * bdi_start_writeback - start writeback
123  * @bdi: the backing device to write from
124  * @nr_pages: the number of pages to write
125  *
126  * Description:
127  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
128  *   started when this function returns, we make no guarentees on
129  *   completion. Caller need not hold sb s_umount semaphore.
130  *
131  */
132 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
133 {
134         __bdi_start_writeback(bdi, nr_pages, true, false);
135 }
136
137 /**
138  * bdi_start_background_writeback - start background writeback
139  * @bdi: the backing device to write from
140  *
141  * Description:
142  *   This does WB_SYNC_NONE background writeback. The IO is only
143  *   started when this function returns, we make no guarentees on
144  *   completion. Caller need not hold sb s_umount semaphore.
145  */
146 void bdi_start_background_writeback(struct backing_dev_info *bdi)
147 {
148         __bdi_start_writeback(bdi, LONG_MAX, true, true);
149 }
150
151 /*
152  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
153  * furthest end of its superblock's dirty-inode list.
154  *
155  * Before stamping the inode's ->dirtied_when, we check to see whether it is
156  * already the most-recently-dirtied inode on the b_dirty list.  If that is
157  * the case then the inode must have been redirtied while it was being written
158  * out and we don't reset its dirtied_when.
159  */
160 static void redirty_tail(struct inode *inode)
161 {
162         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
163
164         if (!list_empty(&wb->b_dirty)) {
165                 struct inode *tail;
166
167                 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
168                 if (time_before(inode->dirtied_when, tail->dirtied_when))
169                         inode->dirtied_when = jiffies;
170         }
171         list_move(&inode->i_list, &wb->b_dirty);
172 }
173
174 /*
175  * requeue inode for re-scanning after bdi->b_io list is exhausted.
176  */
177 static void requeue_io(struct inode *inode)
178 {
179         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
180
181         list_move(&inode->i_list, &wb->b_more_io);
182 }
183
184 static void inode_sync_complete(struct inode *inode)
185 {
186         /*
187          * Prevent speculative execution through spin_unlock(&inode_lock);
188          */
189         smp_mb();
190         wake_up_bit(&inode->i_state, __I_SYNC);
191 }
192
193 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
194 {
195         bool ret = time_after(inode->dirtied_when, t);
196 #ifndef CONFIG_64BIT
197         /*
198          * For inodes being constantly redirtied, dirtied_when can get stuck.
199          * It _appears_ to be in the future, but is actually in distant past.
200          * This test is necessary to prevent such wrapped-around relative times
201          * from permanently stopping the whole bdi writeback.
202          */
203         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
204 #endif
205         return ret;
206 }
207
208 /*
209  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
210  */
211 static void move_expired_inodes(struct list_head *delaying_queue,
212                                struct list_head *dispatch_queue,
213                                 unsigned long *older_than_this)
214 {
215         LIST_HEAD(tmp);
216         struct list_head *pos, *node;
217         struct super_block *sb = NULL;
218         struct inode *inode;
219         int do_sb_sort = 0;
220
221         while (!list_empty(delaying_queue)) {
222                 inode = list_entry(delaying_queue->prev, struct inode, i_list);
223                 if (older_than_this &&
224                     inode_dirtied_after(inode, *older_than_this))
225                         break;
226                 if (sb && sb != inode->i_sb)
227                         do_sb_sort = 1;
228                 sb = inode->i_sb;
229                 list_move(&inode->i_list, &tmp);
230         }
231
232         /* just one sb in list, splice to dispatch_queue and we're done */
233         if (!do_sb_sort) {
234                 list_splice(&tmp, dispatch_queue);
235                 return;
236         }
237
238         /* Move inodes from one superblock together */
239         while (!list_empty(&tmp)) {
240                 inode = list_entry(tmp.prev, struct inode, i_list);
241                 sb = inode->i_sb;
242                 list_for_each_prev_safe(pos, node, &tmp) {
243                         inode = list_entry(pos, struct inode, i_list);
244                         if (inode->i_sb == sb)
245                                 list_move(&inode->i_list, dispatch_queue);
246                 }
247         }
248 }
249
250 /*
251  * Queue all expired dirty inodes for io, eldest first.
252  * Before
253  *         newly dirtied     b_dirty    b_io    b_more_io
254  *         =============>    gf         edc     BA
255  * After
256  *         newly dirtied     b_dirty    b_io    b_more_io
257  *         =============>    g          fBAedc
258  *                                           |
259  *                                           +--> dequeue for IO
260  */
261 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
262 {
263         list_splice_init(&wb->b_more_io, &wb->b_io);
264         move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
265 }
266
267 static int write_inode(struct inode *inode, struct writeback_control *wbc)
268 {
269         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
270                 return inode->i_sb->s_op->write_inode(inode, wbc);
271         return 0;
272 }
273
274 /*
275  * Wait for writeback on an inode to complete.
276  */
277 static void inode_wait_for_writeback(struct inode *inode)
278 {
279         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
280         wait_queue_head_t *wqh;
281
282         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
283          while (inode->i_state & I_SYNC) {
284                 spin_unlock(&inode_lock);
285                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
286                 spin_lock(&inode_lock);
287         }
288 }
289
290 /*
291  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
292  * caller has ref on the inode (either via __iget or via syscall against an fd)
293  * or the inode has I_WILL_FREE set (via generic_forget_inode)
294  *
295  * If `wait' is set, wait on the writeout.
296  *
297  * The whole writeout design is quite complex and fragile.  We want to avoid
298  * starvation of particular inodes when others are being redirtied, prevent
299  * livelocks, etc.
300  *
301  * Called under inode_lock.
302  */
303 static int
304 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
305 {
306         struct address_space *mapping = inode->i_mapping;
307         unsigned dirty;
308         int ret;
309
310         if (!atomic_read(&inode->i_count))
311                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
312         else
313                 WARN_ON(inode->i_state & I_WILL_FREE);
314
315         if (inode->i_state & I_SYNC) {
316                 /*
317                  * If this inode is locked for writeback and we are not doing
318                  * writeback-for-data-integrity, move it to b_more_io so that
319                  * writeback can proceed with the other inodes on s_io.
320                  *
321                  * We'll have another go at writing back this inode when we
322                  * completed a full scan of b_io.
323                  */
324                 if (wbc->sync_mode != WB_SYNC_ALL) {
325                         requeue_io(inode);
326                         return 0;
327                 }
328
329                 /*
330                  * It's a data-integrity sync.  We must wait.
331                  */
332                 inode_wait_for_writeback(inode);
333         }
334
335         BUG_ON(inode->i_state & I_SYNC);
336
337         /* Set I_SYNC, reset I_DIRTY_PAGES */
338         inode->i_state |= I_SYNC;
339         inode->i_state &= ~I_DIRTY_PAGES;
340         spin_unlock(&inode_lock);
341
342         ret = do_writepages(mapping, wbc);
343
344         /*
345          * Make sure to wait on the data before writing out the metadata.
346          * This is important for filesystems that modify metadata on data
347          * I/O completion.
348          */
349         if (wbc->sync_mode == WB_SYNC_ALL) {
350                 int err = filemap_fdatawait(mapping);
351                 if (ret == 0)
352                         ret = err;
353         }
354
355         /*
356          * Some filesystems may redirty the inode during the writeback
357          * due to delalloc, clear dirty metadata flags right before
358          * write_inode()
359          */
360         spin_lock(&inode_lock);
361         dirty = inode->i_state & I_DIRTY;
362         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
363         spin_unlock(&inode_lock);
364         /* Don't write the inode if only I_DIRTY_PAGES was set */
365         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
366                 int err = write_inode(inode, wbc);
367                 if (ret == 0)
368                         ret = err;
369         }
370
371         spin_lock(&inode_lock);
372         inode->i_state &= ~I_SYNC;
373         if (!(inode->i_state & I_FREEING)) {
374                 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
375                         /*
376                          * We didn't write back all the pages.  nfs_writepages()
377                          * sometimes bales out without doing anything.
378                          */
379                         inode->i_state |= I_DIRTY_PAGES;
380                         if (wbc->nr_to_write <= 0) {
381                                 /*
382                                  * slice used up: queue for next turn
383                                  */
384                                 requeue_io(inode);
385                         } else {
386                                 /*
387                                  * Writeback blocked by something other than
388                                  * congestion. Delay the inode for some time to
389                                  * avoid spinning on the CPU (100% iowait)
390                                  * retrying writeback of the dirty page/inode
391                                  * that cannot be performed immediately.
392                                  */
393                                 redirty_tail(inode);
394                         }
395                 } else if (inode->i_state & I_DIRTY) {
396                         /*
397                          * Filesystems can dirty the inode during writeback
398                          * operations, such as delayed allocation during
399                          * submission or metadata updates after data IO
400                          * completion.
401                          */
402                         redirty_tail(inode);
403                 } else if (atomic_read(&inode->i_count)) {
404                         /*
405                          * The inode is clean, inuse
406                          */
407                         list_move(&inode->i_list, &inode_in_use);
408                 } else {
409                         /*
410                          * The inode is clean, unused
411                          */
412                         list_move(&inode->i_list, &inode_unused);
413                 }
414         }
415         inode_sync_complete(inode);
416         return ret;
417 }
418
419 /*
420  * For background writeback the caller does not have the sb pinned
421  * before calling writeback. So make sure that we do pin it, so it doesn't
422  * go away while we are writing inodes from it.
423  */
424 static bool pin_sb_for_writeback(struct super_block *sb)
425 {
426         spin_lock(&sb_lock);
427         if (list_empty(&sb->s_instances)) {
428                 spin_unlock(&sb_lock);
429                 return false;
430         }
431
432         sb->s_count++;
433         spin_unlock(&sb_lock);
434
435         if (down_read_trylock(&sb->s_umount)) {
436                 if (sb->s_root)
437                         return true;
438                 up_read(&sb->s_umount);
439         }
440
441         put_super(sb);
442         return false;
443 }
444
445 /*
446  * Write a portion of b_io inodes which belong to @sb.
447  *
448  * If @only_this_sb is true, then find and write all such
449  * inodes. Otherwise write only ones which go sequentially
450  * in reverse order.
451  *
452  * Return 1, if the caller writeback routine should be
453  * interrupted. Otherwise return 0.
454  */
455 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
456                 struct writeback_control *wbc, bool only_this_sb)
457 {
458         while (!list_empty(&wb->b_io)) {
459                 long pages_skipped;
460                 struct inode *inode = list_entry(wb->b_io.prev,
461                                                  struct inode, i_list);
462
463                 if (inode->i_sb != sb) {
464                         if (only_this_sb) {
465                                 /*
466                                  * We only want to write back data for this
467                                  * superblock, move all inodes not belonging
468                                  * to it back onto the dirty list.
469                                  */
470                                 redirty_tail(inode);
471                                 continue;
472                         }
473
474                         /*
475                          * The inode belongs to a different superblock.
476                          * Bounce back to the caller to unpin this and
477                          * pin the next superblock.
478                          */
479                         return 0;
480                 }
481
482                 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
483                         requeue_io(inode);
484                         continue;
485                 }
486                 /*
487                  * Was this inode dirtied after sync_sb_inodes was called?
488                  * This keeps sync from extra jobs and livelock.
489                  */
490                 if (inode_dirtied_after(inode, wbc->wb_start))
491                         return 1;
492
493                 BUG_ON(inode->i_state & I_FREEING);
494                 __iget(inode);
495                 pages_skipped = wbc->pages_skipped;
496                 writeback_single_inode(inode, wbc);
497                 if (wbc->pages_skipped != pages_skipped) {
498                         /*
499                          * writeback is not making progress due to locked
500                          * buffers.  Skip this inode for now.
501                          */
502                         redirty_tail(inode);
503                 }
504                 spin_unlock(&inode_lock);
505                 iput(inode);
506                 cond_resched();
507                 spin_lock(&inode_lock);
508                 if (wbc->nr_to_write <= 0) {
509                         wbc->more_io = 1;
510                         return 1;
511                 }
512                 if (!list_empty(&wb->b_more_io))
513                         wbc->more_io = 1;
514         }
515         /* b_io is empty */
516         return 1;
517 }
518
519 void writeback_inodes_wb(struct bdi_writeback *wb,
520                 struct writeback_control *wbc)
521 {
522         int ret = 0;
523
524         if (!wbc->wb_start)
525                 wbc->wb_start = jiffies; /* livelock avoidance */
526         spin_lock(&inode_lock);
527         if (!wbc->for_kupdate || list_empty(&wb->b_io))
528                 queue_io(wb, wbc->older_than_this);
529
530         while (!list_empty(&wb->b_io)) {
531                 struct inode *inode = list_entry(wb->b_io.prev,
532                                                  struct inode, i_list);
533                 struct super_block *sb = inode->i_sb;
534
535                 if (!pin_sb_for_writeback(sb)) {
536                         requeue_io(inode);
537                         continue;
538                 }
539                 ret = writeback_sb_inodes(sb, wb, wbc, false);
540                 drop_super(sb);
541
542                 if (ret)
543                         break;
544         }
545         spin_unlock(&inode_lock);
546         /* Leave any unwritten inodes on b_io */
547 }
548
549 static void __writeback_inodes_sb(struct super_block *sb,
550                 struct bdi_writeback *wb, struct writeback_control *wbc)
551 {
552         WARN_ON(!rwsem_is_locked(&sb->s_umount));
553
554         spin_lock(&inode_lock);
555         if (!wbc->for_kupdate || list_empty(&wb->b_io))
556                 queue_io(wb, wbc->older_than_this);
557         writeback_sb_inodes(sb, wb, wbc, true);
558         spin_unlock(&inode_lock);
559 }
560
561 /*
562  * The maximum number of pages to writeout in a single bdi flush/kupdate
563  * operation.  We do this so we don't hold I_SYNC against an inode for
564  * enormous amounts of time, which would block a userspace task which has
565  * been forced to throttle against that inode.  Also, the code reevaluates
566  * the dirty each time it has written this many pages.
567  */
568 #define MAX_WRITEBACK_PAGES     1024
569
570 static inline bool over_bground_thresh(void)
571 {
572         unsigned long background_thresh, dirty_thresh;
573
574         global_dirty_limits(&background_thresh, &dirty_thresh);
575
576         return (global_page_state(NR_FILE_DIRTY) +
577                 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
578 }
579
580 /*
581  * Explicit flushing or periodic writeback of "old" data.
582  *
583  * Define "old": the first time one of an inode's pages is dirtied, we mark the
584  * dirtying-time in the inode's address_space.  So this periodic writeback code
585  * just walks the superblock inode list, writing back any inodes which are
586  * older than a specific point in time.
587  *
588  * Try to run once per dirty_writeback_interval.  But if a writeback event
589  * takes longer than a dirty_writeback_interval interval, then leave a
590  * one-second gap.
591  *
592  * older_than_this takes precedence over nr_to_write.  So we'll only write back
593  * all dirty pages if they are all attached to "old" mappings.
594  */
595 static long wb_writeback(struct bdi_writeback *wb,
596                          struct wb_writeback_work *work)
597 {
598         struct writeback_control wbc = {
599                 .sync_mode              = work->sync_mode,
600                 .older_than_this        = NULL,
601                 .for_kupdate            = work->for_kupdate,
602                 .for_background         = work->for_background,
603                 .range_cyclic           = work->range_cyclic,
604         };
605         unsigned long oldest_jif;
606         long wrote = 0;
607         struct inode *inode;
608
609         if (wbc.for_kupdate) {
610                 wbc.older_than_this = &oldest_jif;
611                 oldest_jif = jiffies -
612                                 msecs_to_jiffies(dirty_expire_interval * 10);
613         }
614         if (!wbc.range_cyclic) {
615                 wbc.range_start = 0;
616                 wbc.range_end = LLONG_MAX;
617         }
618
619         wbc.wb_start = jiffies; /* livelock avoidance */
620         for (;;) {
621                 /*
622                  * Stop writeback when nr_pages has been consumed
623                  */
624                 if (work->nr_pages <= 0)
625                         break;
626
627                 /*
628                  * For background writeout, stop when we are below the
629                  * background dirty threshold
630                  */
631                 if (work->for_background && !over_bground_thresh())
632                         break;
633
634                 wbc.more_io = 0;
635                 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
636                 wbc.pages_skipped = 0;
637
638                 trace_wbc_writeback_start(&wbc, wb->bdi);
639                 if (work->sb)
640                         __writeback_inodes_sb(work->sb, wb, &wbc);
641                 else
642                         writeback_inodes_wb(wb, &wbc);
643                 trace_wbc_writeback_written(&wbc, wb->bdi);
644
645                 work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
646                 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
647
648                 /*
649                  * If we consumed everything, see if we have more
650                  */
651                 if (wbc.nr_to_write <= 0)
652                         continue;
653                 /*
654                  * Didn't write everything and we don't have more IO, bail
655                  */
656                 if (!wbc.more_io)
657                         break;
658                 /*
659                  * Did we write something? Try for more
660                  */
661                 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
662                         continue;
663                 /*
664                  * Nothing written. Wait for some inode to
665                  * become available for writeback. Otherwise
666                  * we'll just busyloop.
667                  */
668                 spin_lock(&inode_lock);
669                 if (!list_empty(&wb->b_more_io))  {
670                         inode = list_entry(wb->b_more_io.prev,
671                                                 struct inode, i_list);
672                         trace_wbc_writeback_wait(&wbc, wb->bdi);
673                         inode_wait_for_writeback(inode);
674                 }
675                 spin_unlock(&inode_lock);
676         }
677
678         return wrote;
679 }
680
681 /*
682  * Return the next wb_writeback_work struct that hasn't been processed yet.
683  */
684 static struct wb_writeback_work *
685 get_next_work_item(struct backing_dev_info *bdi)
686 {
687         struct wb_writeback_work *work = NULL;
688
689         spin_lock_bh(&bdi->wb_lock);
690         if (!list_empty(&bdi->work_list)) {
691                 work = list_entry(bdi->work_list.next,
692                                   struct wb_writeback_work, list);
693                 list_del_init(&work->list);
694         }
695         spin_unlock_bh(&bdi->wb_lock);
696         return work;
697 }
698
699 static long wb_check_old_data_flush(struct bdi_writeback *wb)
700 {
701         unsigned long expired;
702         long nr_pages;
703
704         /*
705          * When set to zero, disable periodic writeback
706          */
707         if (!dirty_writeback_interval)
708                 return 0;
709
710         expired = wb->last_old_flush +
711                         msecs_to_jiffies(dirty_writeback_interval * 10);
712         if (time_before(jiffies, expired))
713                 return 0;
714
715         wb->last_old_flush = jiffies;
716         nr_pages = global_page_state(NR_FILE_DIRTY) +
717                         global_page_state(NR_UNSTABLE_NFS) +
718                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
719
720         if (nr_pages) {
721                 struct wb_writeback_work work = {
722                         .nr_pages       = nr_pages,
723                         .sync_mode      = WB_SYNC_NONE,
724                         .for_kupdate    = 1,
725                         .range_cyclic   = 1,
726                 };
727
728                 return wb_writeback(wb, &work);
729         }
730
731         return 0;
732 }
733
734 /*
735  * Retrieve work items and do the writeback they describe
736  */
737 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
738 {
739         struct backing_dev_info *bdi = wb->bdi;
740         struct wb_writeback_work *work;
741         long wrote = 0;
742
743         while ((work = get_next_work_item(bdi)) != NULL) {
744                 /*
745                  * Override sync mode, in case we must wait for completion
746                  * because this thread is exiting now.
747                  */
748                 if (force_wait)
749                         work->sync_mode = WB_SYNC_ALL;
750
751                 trace_writeback_exec(bdi, work);
752
753                 wrote += wb_writeback(wb, work);
754
755                 /*
756                  * Notify the caller of completion if this is a synchronous
757                  * work item, otherwise just free it.
758                  */
759                 if (work->done)
760                         complete(work->done);
761                 else
762                         kfree(work);
763         }
764
765         /*
766          * Check for periodic writeback, kupdated() style
767          */
768         wrote += wb_check_old_data_flush(wb);
769
770         return wrote;
771 }
772
773 /*
774  * Handle writeback of dirty data for the device backed by this bdi. Also
775  * wakes up periodically and does kupdated style flushing.
776  */
777 int bdi_writeback_thread(void *data)
778 {
779         struct bdi_writeback *wb = data;
780         struct backing_dev_info *bdi = wb->bdi;
781         long pages_written;
782
783         current->flags |= PF_FLUSHER | PF_SWAPWRITE;
784         set_freezable();
785         wb->last_active = jiffies;
786
787         /*
788          * Our parent may run at a different priority, just set us to normal
789          */
790         set_user_nice(current, 0);
791
792         trace_writeback_thread_start(bdi);
793
794         while (!kthread_should_stop()) {
795                 /*
796                  * Remove own delayed wake-up timer, since we are already awake
797                  * and we'll take care of the preriodic write-back.
798                  */
799                 del_timer(&wb->wakeup_timer);
800
801                 pages_written = wb_do_writeback(wb, 0);
802
803                 trace_writeback_pages_written(pages_written);
804
805                 if (pages_written)
806                         wb->last_active = jiffies;
807
808                 set_current_state(TASK_INTERRUPTIBLE);
809                 if (!list_empty(&bdi->work_list)) {
810                         __set_current_state(TASK_RUNNING);
811                         continue;
812                 }
813
814                 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
815                         schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
816                 else {
817                         /*
818                          * We have nothing to do, so can go sleep without any
819                          * timeout and save power. When a work is queued or
820                          * something is made dirty - we will be woken up.
821                          */
822                         schedule();
823                 }
824
825                 try_to_freeze();
826         }
827
828         /* Flush any work that raced with us exiting */
829         if (!list_empty(&bdi->work_list))
830                 wb_do_writeback(wb, 1);
831
832         trace_writeback_thread_stop(bdi);
833         return 0;
834 }
835
836
837 /*
838  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
839  * the whole world.
840  */
841 void wakeup_flusher_threads(long nr_pages)
842 {
843         struct backing_dev_info *bdi;
844
845         if (!nr_pages) {
846                 nr_pages = global_page_state(NR_FILE_DIRTY) +
847                                 global_page_state(NR_UNSTABLE_NFS);
848         }
849
850         rcu_read_lock();
851         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
852                 if (!bdi_has_dirty_io(bdi))
853                         continue;
854                 __bdi_start_writeback(bdi, nr_pages, false, false);
855         }
856         rcu_read_unlock();
857 }
858
859 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
860 {
861         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
862                 struct dentry *dentry;
863                 const char *name = "?";
864
865                 dentry = d_find_alias(inode);
866                 if (dentry) {
867                         spin_lock(&dentry->d_lock);
868                         name = (const char *) dentry->d_name.name;
869                 }
870                 printk(KERN_DEBUG
871                        "%s(%d): dirtied inode %lu (%s) on %s\n",
872                        current->comm, task_pid_nr(current), inode->i_ino,
873                        name, inode->i_sb->s_id);
874                 if (dentry) {
875                         spin_unlock(&dentry->d_lock);
876                         dput(dentry);
877                 }
878         }
879 }
880
881 /**
882  *      __mark_inode_dirty -    internal function
883  *      @inode: inode to mark
884  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
885  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
886  *      mark_inode_dirty_sync.
887  *
888  * Put the inode on the super block's dirty list.
889  *
890  * CAREFUL! We mark it dirty unconditionally, but move it onto the
891  * dirty list only if it is hashed or if it refers to a blockdev.
892  * If it was not hashed, it will never be added to the dirty list
893  * even if it is later hashed, as it will have been marked dirty already.
894  *
895  * In short, make sure you hash any inodes _before_ you start marking
896  * them dirty.
897  *
898  * This function *must* be atomic for the I_DIRTY_PAGES case -
899  * set_page_dirty() is called under spinlock in several places.
900  *
901  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
902  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
903  * the kernel-internal blockdev inode represents the dirtying time of the
904  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
905  * page->mapping->host, so the page-dirtying time is recorded in the internal
906  * blockdev inode.
907  */
908 void __mark_inode_dirty(struct inode *inode, int flags)
909 {
910         struct super_block *sb = inode->i_sb;
911         struct backing_dev_info *bdi = NULL;
912         bool wakeup_bdi = false;
913
914         /*
915          * Don't do this for I_DIRTY_PAGES - that doesn't actually
916          * dirty the inode itself
917          */
918         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
919                 if (sb->s_op->dirty_inode)
920                         sb->s_op->dirty_inode(inode);
921         }
922
923         /*
924          * make sure that changes are seen by all cpus before we test i_state
925          * -- mikulas
926          */
927         smp_mb();
928
929         /* avoid the locking if we can */
930         if ((inode->i_state & flags) == flags)
931                 return;
932
933         if (unlikely(block_dump))
934                 block_dump___mark_inode_dirty(inode);
935
936         spin_lock(&inode_lock);
937         if ((inode->i_state & flags) != flags) {
938                 const int was_dirty = inode->i_state & I_DIRTY;
939
940                 inode->i_state |= flags;
941
942                 /*
943                  * If the inode is being synced, just update its dirty state.
944                  * The unlocker will place the inode on the appropriate
945                  * superblock list, based upon its state.
946                  */
947                 if (inode->i_state & I_SYNC)
948                         goto out;
949
950                 /*
951                  * Only add valid (hashed) inodes to the superblock's
952                  * dirty list.  Add blockdev inodes as well.
953                  */
954                 if (!S_ISBLK(inode->i_mode)) {
955                         if (hlist_unhashed(&inode->i_hash))
956                                 goto out;
957                 }
958                 if (inode->i_state & I_FREEING)
959                         goto out;
960
961                 /*
962                  * If the inode was already on b_dirty/b_io/b_more_io, don't
963                  * reposition it (that would break b_dirty time-ordering).
964                  */
965                 if (!was_dirty) {
966                         bdi = inode_to_bdi(inode);
967
968                         if (bdi_cap_writeback_dirty(bdi)) {
969                                 WARN(!test_bit(BDI_registered, &bdi->state),
970                                      "bdi-%s not registered\n", bdi->name);
971
972                                 /*
973                                  * If this is the first dirty inode for this
974                                  * bdi, we have to wake-up the corresponding
975                                  * bdi thread to make sure background
976                                  * write-back happens later.
977                                  */
978                                 if (!wb_has_dirty_io(&bdi->wb))
979                                         wakeup_bdi = true;
980                         }
981
982                         inode->dirtied_when = jiffies;
983                         list_move(&inode->i_list, &bdi->wb.b_dirty);
984                 }
985         }
986 out:
987         spin_unlock(&inode_lock);
988
989         if (wakeup_bdi)
990                 bdi_wakeup_thread_delayed(bdi);
991 }
992 EXPORT_SYMBOL(__mark_inode_dirty);
993
994 /*
995  * Write out a superblock's list of dirty inodes.  A wait will be performed
996  * upon no inodes, all inodes or the final one, depending upon sync_mode.
997  *
998  * If older_than_this is non-NULL, then only write out inodes which
999  * had their first dirtying at a time earlier than *older_than_this.
1000  *
1001  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1002  * This function assumes that the blockdev superblock's inodes are backed by
1003  * a variety of queues, so all inodes are searched.  For other superblocks,
1004  * assume that all inodes are backed by the same queue.
1005  *
1006  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1007  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1008  * on the writer throttling path, and we get decent balancing between many
1009  * throttled threads: we don't want them all piling up on inode_sync_wait.
1010  */
1011 static void wait_sb_inodes(struct super_block *sb)
1012 {
1013         struct inode *inode, *old_inode = NULL;
1014
1015         /*
1016          * We need to be protected against the filesystem going from
1017          * r/o to r/w or vice versa.
1018          */
1019         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1020
1021         spin_lock(&inode_lock);
1022
1023         /*
1024          * Data integrity sync. Must wait for all pages under writeback,
1025          * because there may have been pages dirtied before our sync
1026          * call, but which had writeout started before we write it out.
1027          * In which case, the inode may not be on the dirty list, but
1028          * we still have to wait for that writeout.
1029          */
1030         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1031                 struct address_space *mapping;
1032
1033                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW))
1034                         continue;
1035                 mapping = inode->i_mapping;
1036                 if (mapping->nrpages == 0)
1037                         continue;
1038                 __iget(inode);
1039                 spin_unlock(&inode_lock);
1040                 /*
1041                  * We hold a reference to 'inode' so it couldn't have
1042                  * been removed from s_inodes list while we dropped the
1043                  * inode_lock.  We cannot iput the inode now as we can
1044                  * be holding the last reference and we cannot iput it
1045                  * under inode_lock. So we keep the reference and iput
1046                  * it later.
1047                  */
1048                 iput(old_inode);
1049                 old_inode = inode;
1050
1051                 filemap_fdatawait(mapping);
1052
1053                 cond_resched();
1054
1055                 spin_lock(&inode_lock);
1056         }
1057         spin_unlock(&inode_lock);
1058         iput(old_inode);
1059 }
1060
1061 /**
1062  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1063  * @sb: the superblock
1064  *
1065  * Start writeback on some inodes on this super_block. No guarantees are made
1066  * on how many (if any) will be written, and this function does not wait
1067  * for IO completion of submitted IO. The number of pages submitted is
1068  * returned.
1069  */
1070 void writeback_inodes_sb(struct super_block *sb)
1071 {
1072         unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1073         unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1074         DECLARE_COMPLETION_ONSTACK(done);
1075         struct wb_writeback_work work = {
1076                 .sb             = sb,
1077                 .sync_mode      = WB_SYNC_NONE,
1078                 .done           = &done,
1079         };
1080
1081         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1082
1083         work.nr_pages = nr_dirty + nr_unstable +
1084                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1085
1086         bdi_queue_work(sb->s_bdi, &work);
1087         wait_for_completion(&done);
1088 }
1089 EXPORT_SYMBOL(writeback_inodes_sb);
1090
1091 /**
1092  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1093  * @sb: the superblock
1094  *
1095  * Invoke writeback_inodes_sb if no writeback is currently underway.
1096  * Returns 1 if writeback was started, 0 if not.
1097  */
1098 int writeback_inodes_sb_if_idle(struct super_block *sb)
1099 {
1100         if (!writeback_in_progress(sb->s_bdi)) {
1101                 down_read(&sb->s_umount);
1102                 writeback_inodes_sb(sb);
1103                 up_read(&sb->s_umount);
1104                 return 1;
1105         } else
1106                 return 0;
1107 }
1108 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1109
1110 /**
1111  * sync_inodes_sb       -       sync sb inode pages
1112  * @sb: the superblock
1113  *
1114  * This function writes and waits on any dirty inode belonging to this
1115  * super_block. The number of pages synced is returned.
1116  */
1117 void sync_inodes_sb(struct super_block *sb)
1118 {
1119         DECLARE_COMPLETION_ONSTACK(done);
1120         struct wb_writeback_work work = {
1121                 .sb             = sb,
1122                 .sync_mode      = WB_SYNC_ALL,
1123                 .nr_pages       = LONG_MAX,
1124                 .range_cyclic   = 0,
1125                 .done           = &done,
1126         };
1127
1128         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1129
1130         bdi_queue_work(sb->s_bdi, &work);
1131         wait_for_completion(&done);
1132
1133         wait_sb_inodes(sb);
1134 }
1135 EXPORT_SYMBOL(sync_inodes_sb);
1136
1137 /**
1138  * write_inode_now      -       write an inode to disk
1139  * @inode: inode to write to disk
1140  * @sync: whether the write should be synchronous or not
1141  *
1142  * This function commits an inode to disk immediately if it is dirty. This is
1143  * primarily needed by knfsd.
1144  *
1145  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1146  */
1147 int write_inode_now(struct inode *inode, int sync)
1148 {
1149         int ret;
1150         struct writeback_control wbc = {
1151                 .nr_to_write = LONG_MAX,
1152                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1153                 .range_start = 0,
1154                 .range_end = LLONG_MAX,
1155         };
1156
1157         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1158                 wbc.nr_to_write = 0;
1159
1160         might_sleep();
1161         spin_lock(&inode_lock);
1162         ret = writeback_single_inode(inode, &wbc);
1163         spin_unlock(&inode_lock);
1164         if (sync)
1165                 inode_sync_wait(inode);
1166         return ret;
1167 }
1168 EXPORT_SYMBOL(write_inode_now);
1169
1170 /**
1171  * sync_inode - write an inode and its pages to disk.
1172  * @inode: the inode to sync
1173  * @wbc: controls the writeback mode
1174  *
1175  * sync_inode() will write an inode and its pages to disk.  It will also
1176  * correctly update the inode on its superblock's dirty inode lists and will
1177  * update inode->i_state.
1178  *
1179  * The caller must have a ref on the inode.
1180  */
1181 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1182 {
1183         int ret;
1184
1185         spin_lock(&inode_lock);
1186         ret = writeback_single_inode(inode, wbc);
1187         spin_unlock(&inode_lock);
1188         return ret;
1189 }
1190 EXPORT_SYMBOL(sync_inode);