writeback: don't redirty tail an inode with dirty pages
[pandora-kernel.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36         long nr_pages;
37         struct super_block *sb;
38         enum writeback_sync_modes sync_mode;
39         unsigned int for_kupdate:1;
40         unsigned int range_cyclic:1;
41         unsigned int for_background:1;
42
43         struct list_head list;          /* pending work list */
44         struct completion *done;        /* set if the caller waits */
45 };
46
47 /*
48  * Include the creation of the trace points after defining the
49  * wb_writeback_work structure so that the definition remains local to this
50  * file.
51  */
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
54
55 #define inode_to_bdi(inode)     ((inode)->i_mapping->backing_dev_info)
56
57 /*
58  * We don't actually have pdflush, but this one is exported though /proc...
59  */
60 int nr_pdflush_threads;
61
62 /**
63  * writeback_in_progress - determine whether there is writeback in progress
64  * @bdi: the device's backing_dev_info structure.
65  *
66  * Determine whether there is writeback waiting to be handled against a
67  * backing device.
68  */
69 int writeback_in_progress(struct backing_dev_info *bdi)
70 {
71         return !list_empty(&bdi->work_list);
72 }
73
74 static void bdi_queue_work(struct backing_dev_info *bdi,
75                 struct wb_writeback_work *work)
76 {
77         trace_writeback_queue(bdi, work);
78
79         spin_lock_bh(&bdi->wb_lock);
80         list_add_tail(&work->list, &bdi->work_list);
81         if (bdi->wb.task) {
82                 wake_up_process(bdi->wb.task);
83         } else {
84                 /*
85                  * The bdi thread isn't there, wake up the forker thread which
86                  * will create and run it.
87                  */
88                 trace_writeback_nothread(bdi, work);
89                 wake_up_process(default_backing_dev_info.wb.task);
90         }
91         spin_unlock_bh(&bdi->wb_lock);
92 }
93
94 static void
95 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
96                 bool range_cyclic, bool for_background)
97 {
98         struct wb_writeback_work *work;
99
100         /*
101          * This is WB_SYNC_NONE writeback, so if allocation fails just
102          * wakeup the thread for old dirty data writeback
103          */
104         work = kzalloc(sizeof(*work), GFP_ATOMIC);
105         if (!work) {
106                 if (bdi->wb.task) {
107                         trace_writeback_nowork(bdi);
108                         wake_up_process(bdi->wb.task);
109                 }
110                 return;
111         }
112
113         work->sync_mode = WB_SYNC_NONE;
114         work->nr_pages  = nr_pages;
115         work->range_cyclic = range_cyclic;
116         work->for_background = for_background;
117
118         bdi_queue_work(bdi, work);
119 }
120
121 /**
122  * bdi_start_writeback - start writeback
123  * @bdi: the backing device to write from
124  * @nr_pages: the number of pages to write
125  *
126  * Description:
127  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
128  *   started when this function returns, we make no guarentees on
129  *   completion. Caller need not hold sb s_umount semaphore.
130  *
131  */
132 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
133 {
134         __bdi_start_writeback(bdi, nr_pages, true, false);
135 }
136
137 /**
138  * bdi_start_background_writeback - start background writeback
139  * @bdi: the backing device to write from
140  *
141  * Description:
142  *   This does WB_SYNC_NONE background writeback. The IO is only
143  *   started when this function returns, we make no guarentees on
144  *   completion. Caller need not hold sb s_umount semaphore.
145  */
146 void bdi_start_background_writeback(struct backing_dev_info *bdi)
147 {
148         __bdi_start_writeback(bdi, LONG_MAX, true, true);
149 }
150
151 /*
152  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
153  * furthest end of its superblock's dirty-inode list.
154  *
155  * Before stamping the inode's ->dirtied_when, we check to see whether it is
156  * already the most-recently-dirtied inode on the b_dirty list.  If that is
157  * the case then the inode must have been redirtied while it was being written
158  * out and we don't reset its dirtied_when.
159  */
160 static void redirty_tail(struct inode *inode)
161 {
162         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
163
164         if (!list_empty(&wb->b_dirty)) {
165                 struct inode *tail;
166
167                 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
168                 if (time_before(inode->dirtied_when, tail->dirtied_when))
169                         inode->dirtied_when = jiffies;
170         }
171         list_move(&inode->i_list, &wb->b_dirty);
172 }
173
174 /*
175  * requeue inode for re-scanning after bdi->b_io list is exhausted.
176  */
177 static void requeue_io(struct inode *inode)
178 {
179         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
180
181         list_move(&inode->i_list, &wb->b_more_io);
182 }
183
184 static void inode_sync_complete(struct inode *inode)
185 {
186         /*
187          * Prevent speculative execution through spin_unlock(&inode_lock);
188          */
189         smp_mb();
190         wake_up_bit(&inode->i_state, __I_SYNC);
191 }
192
193 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
194 {
195         bool ret = time_after(inode->dirtied_when, t);
196 #ifndef CONFIG_64BIT
197         /*
198          * For inodes being constantly redirtied, dirtied_when can get stuck.
199          * It _appears_ to be in the future, but is actually in distant past.
200          * This test is necessary to prevent such wrapped-around relative times
201          * from permanently stopping the whole bdi writeback.
202          */
203         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
204 #endif
205         return ret;
206 }
207
208 /*
209  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
210  */
211 static void move_expired_inodes(struct list_head *delaying_queue,
212                                struct list_head *dispatch_queue,
213                                 unsigned long *older_than_this)
214 {
215         LIST_HEAD(tmp);
216         struct list_head *pos, *node;
217         struct super_block *sb = NULL;
218         struct inode *inode;
219         int do_sb_sort = 0;
220
221         while (!list_empty(delaying_queue)) {
222                 inode = list_entry(delaying_queue->prev, struct inode, i_list);
223                 if (older_than_this &&
224                     inode_dirtied_after(inode, *older_than_this))
225                         break;
226                 if (sb && sb != inode->i_sb)
227                         do_sb_sort = 1;
228                 sb = inode->i_sb;
229                 list_move(&inode->i_list, &tmp);
230         }
231
232         /* just one sb in list, splice to dispatch_queue and we're done */
233         if (!do_sb_sort) {
234                 list_splice(&tmp, dispatch_queue);
235                 return;
236         }
237
238         /* Move inodes from one superblock together */
239         while (!list_empty(&tmp)) {
240                 inode = list_entry(tmp.prev, struct inode, i_list);
241                 sb = inode->i_sb;
242                 list_for_each_prev_safe(pos, node, &tmp) {
243                         inode = list_entry(pos, struct inode, i_list);
244                         if (inode->i_sb == sb)
245                                 list_move(&inode->i_list, dispatch_queue);
246                 }
247         }
248 }
249
250 /*
251  * Queue all expired dirty inodes for io, eldest first.
252  */
253 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
254 {
255         list_splice_init(&wb->b_more_io, wb->b_io.prev);
256         move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
257 }
258
259 static int write_inode(struct inode *inode, struct writeback_control *wbc)
260 {
261         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
262                 return inode->i_sb->s_op->write_inode(inode, wbc);
263         return 0;
264 }
265
266 /*
267  * Wait for writeback on an inode to complete.
268  */
269 static void inode_wait_for_writeback(struct inode *inode)
270 {
271         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
272         wait_queue_head_t *wqh;
273
274         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
275          while (inode->i_state & I_SYNC) {
276                 spin_unlock(&inode_lock);
277                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
278                 spin_lock(&inode_lock);
279         }
280 }
281
282 /*
283  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
284  * caller has ref on the inode (either via __iget or via syscall against an fd)
285  * or the inode has I_WILL_FREE set (via generic_forget_inode)
286  *
287  * If `wait' is set, wait on the writeout.
288  *
289  * The whole writeout design is quite complex and fragile.  We want to avoid
290  * starvation of particular inodes when others are being redirtied, prevent
291  * livelocks, etc.
292  *
293  * Called under inode_lock.
294  */
295 static int
296 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
297 {
298         struct address_space *mapping = inode->i_mapping;
299         unsigned dirty;
300         int ret;
301
302         if (!atomic_read(&inode->i_count))
303                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
304         else
305                 WARN_ON(inode->i_state & I_WILL_FREE);
306
307         if (inode->i_state & I_SYNC) {
308                 /*
309                  * If this inode is locked for writeback and we are not doing
310                  * writeback-for-data-integrity, move it to b_more_io so that
311                  * writeback can proceed with the other inodes on s_io.
312                  *
313                  * We'll have another go at writing back this inode when we
314                  * completed a full scan of b_io.
315                  */
316                 if (wbc->sync_mode != WB_SYNC_ALL) {
317                         requeue_io(inode);
318                         return 0;
319                 }
320
321                 /*
322                  * It's a data-integrity sync.  We must wait.
323                  */
324                 inode_wait_for_writeback(inode);
325         }
326
327         BUG_ON(inode->i_state & I_SYNC);
328
329         /* Set I_SYNC, reset I_DIRTY_PAGES */
330         inode->i_state |= I_SYNC;
331         inode->i_state &= ~I_DIRTY_PAGES;
332         spin_unlock(&inode_lock);
333
334         ret = do_writepages(mapping, wbc);
335
336         /*
337          * Make sure to wait on the data before writing out the metadata.
338          * This is important for filesystems that modify metadata on data
339          * I/O completion.
340          */
341         if (wbc->sync_mode == WB_SYNC_ALL) {
342                 int err = filemap_fdatawait(mapping);
343                 if (ret == 0)
344                         ret = err;
345         }
346
347         /*
348          * Some filesystems may redirty the inode during the writeback
349          * due to delalloc, clear dirty metadata flags right before
350          * write_inode()
351          */
352         spin_lock(&inode_lock);
353         dirty = inode->i_state & I_DIRTY;
354         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
355         spin_unlock(&inode_lock);
356         /* Don't write the inode if only I_DIRTY_PAGES was set */
357         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
358                 int err = write_inode(inode, wbc);
359                 if (ret == 0)
360                         ret = err;
361         }
362
363         spin_lock(&inode_lock);
364         inode->i_state &= ~I_SYNC;
365         if (!(inode->i_state & I_FREEING)) {
366                 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
367                         /*
368                          * We didn't write back all the pages.  nfs_writepages()
369                          * sometimes bales out without doing anything. Redirty
370                          * the inode; Move it from b_io onto b_more_io/b_dirty.
371                          */
372                         /*
373                          * akpm: if the caller was the kupdate function we put
374                          * this inode at the head of b_dirty so it gets first
375                          * consideration.  Otherwise, move it to the tail, for
376                          * the reasons described there.  I'm not really sure
377                          * how much sense this makes.  Presumably I had a good
378                          * reasons for doing it this way, and I'd rather not
379                          * muck with it at present.
380                          */
381                         if (wbc->for_kupdate) {
382                                 /*
383                                  * For the kupdate function we move the inode
384                                  * to b_more_io so it will get more writeout as
385                                  * soon as the queue becomes uncongested.
386                                  */
387                                 inode->i_state |= I_DIRTY_PAGES;
388                                 if (wbc->nr_to_write <= 0) {
389                                         /*
390                                          * slice used up: queue for next turn
391                                          */
392                                         requeue_io(inode);
393                                 } else {
394                                         /*
395                                          * somehow blocked: retry later
396                                          */
397                                         redirty_tail(inode);
398                                 }
399                         } else {
400                                 /*
401                                  * Otherwise fully redirty the inode so that
402                                  * other inodes on this superblock will get some
403                                  * writeout.  Otherwise heavy writing to one
404                                  * file would indefinitely suspend writeout of
405                                  * all the other files.
406                                  */
407                                 inode->i_state |= I_DIRTY_PAGES;
408                                 redirty_tail(inode);
409                         }
410                 } else if (inode->i_state & I_DIRTY) {
411                         /*
412                          * Filesystems can dirty the inode during writeback
413                          * operations, such as delayed allocation during
414                          * submission or metadata updates after data IO
415                          * completion.
416                          */
417                         redirty_tail(inode);
418                 } else if (atomic_read(&inode->i_count)) {
419                         /*
420                          * The inode is clean, inuse
421                          */
422                         list_move(&inode->i_list, &inode_in_use);
423                 } else {
424                         /*
425                          * The inode is clean, unused
426                          */
427                         list_move(&inode->i_list, &inode_unused);
428                 }
429         }
430         inode_sync_complete(inode);
431         return ret;
432 }
433
434 /*
435  * For background writeback the caller does not have the sb pinned
436  * before calling writeback. So make sure that we do pin it, so it doesn't
437  * go away while we are writing inodes from it.
438  */
439 static bool pin_sb_for_writeback(struct super_block *sb)
440 {
441         spin_lock(&sb_lock);
442         if (list_empty(&sb->s_instances)) {
443                 spin_unlock(&sb_lock);
444                 return false;
445         }
446
447         sb->s_count++;
448         spin_unlock(&sb_lock);
449
450         if (down_read_trylock(&sb->s_umount)) {
451                 if (sb->s_root)
452                         return true;
453                 up_read(&sb->s_umount);
454         }
455
456         put_super(sb);
457         return false;
458 }
459
460 /*
461  * Write a portion of b_io inodes which belong to @sb.
462  *
463  * If @only_this_sb is true, then find and write all such
464  * inodes. Otherwise write only ones which go sequentially
465  * in reverse order.
466  *
467  * Return 1, if the caller writeback routine should be
468  * interrupted. Otherwise return 0.
469  */
470 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
471                 struct writeback_control *wbc, bool only_this_sb)
472 {
473         while (!list_empty(&wb->b_io)) {
474                 long pages_skipped;
475                 struct inode *inode = list_entry(wb->b_io.prev,
476                                                  struct inode, i_list);
477
478                 if (inode->i_sb != sb) {
479                         if (only_this_sb) {
480                                 /*
481                                  * We only want to write back data for this
482                                  * superblock, move all inodes not belonging
483                                  * to it back onto the dirty list.
484                                  */
485                                 redirty_tail(inode);
486                                 continue;
487                         }
488
489                         /*
490                          * The inode belongs to a different superblock.
491                          * Bounce back to the caller to unpin this and
492                          * pin the next superblock.
493                          */
494                         return 0;
495                 }
496
497                 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
498                         requeue_io(inode);
499                         continue;
500                 }
501                 /*
502                  * Was this inode dirtied after sync_sb_inodes was called?
503                  * This keeps sync from extra jobs and livelock.
504                  */
505                 if (inode_dirtied_after(inode, wbc->wb_start))
506                         return 1;
507
508                 BUG_ON(inode->i_state & I_FREEING);
509                 __iget(inode);
510                 pages_skipped = wbc->pages_skipped;
511                 writeback_single_inode(inode, wbc);
512                 if (wbc->pages_skipped != pages_skipped) {
513                         /*
514                          * writeback is not making progress due to locked
515                          * buffers.  Skip this inode for now.
516                          */
517                         redirty_tail(inode);
518                 }
519                 spin_unlock(&inode_lock);
520                 iput(inode);
521                 cond_resched();
522                 spin_lock(&inode_lock);
523                 if (wbc->nr_to_write <= 0) {
524                         wbc->more_io = 1;
525                         return 1;
526                 }
527                 if (!list_empty(&wb->b_more_io))
528                         wbc->more_io = 1;
529         }
530         /* b_io is empty */
531         return 1;
532 }
533
534 void writeback_inodes_wb(struct bdi_writeback *wb,
535                 struct writeback_control *wbc)
536 {
537         int ret = 0;
538
539         if (!wbc->wb_start)
540                 wbc->wb_start = jiffies; /* livelock avoidance */
541         spin_lock(&inode_lock);
542         if (!wbc->for_kupdate || list_empty(&wb->b_io))
543                 queue_io(wb, wbc->older_than_this);
544
545         while (!list_empty(&wb->b_io)) {
546                 struct inode *inode = list_entry(wb->b_io.prev,
547                                                  struct inode, i_list);
548                 struct super_block *sb = inode->i_sb;
549
550                 if (!pin_sb_for_writeback(sb)) {
551                         requeue_io(inode);
552                         continue;
553                 }
554                 ret = writeback_sb_inodes(sb, wb, wbc, false);
555                 drop_super(sb);
556
557                 if (ret)
558                         break;
559         }
560         spin_unlock(&inode_lock);
561         /* Leave any unwritten inodes on b_io */
562 }
563
564 static void __writeback_inodes_sb(struct super_block *sb,
565                 struct bdi_writeback *wb, struct writeback_control *wbc)
566 {
567         WARN_ON(!rwsem_is_locked(&sb->s_umount));
568
569         spin_lock(&inode_lock);
570         if (!wbc->for_kupdate || list_empty(&wb->b_io))
571                 queue_io(wb, wbc->older_than_this);
572         writeback_sb_inodes(sb, wb, wbc, true);
573         spin_unlock(&inode_lock);
574 }
575
576 /*
577  * The maximum number of pages to writeout in a single bdi flush/kupdate
578  * operation.  We do this so we don't hold I_SYNC against an inode for
579  * enormous amounts of time, which would block a userspace task which has
580  * been forced to throttle against that inode.  Also, the code reevaluates
581  * the dirty each time it has written this many pages.
582  */
583 #define MAX_WRITEBACK_PAGES     1024
584
585 static inline bool over_bground_thresh(void)
586 {
587         unsigned long background_thresh, dirty_thresh;
588
589         global_dirty_limits(&background_thresh, &dirty_thresh);
590
591         return (global_page_state(NR_FILE_DIRTY) +
592                 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
593 }
594
595 /*
596  * Explicit flushing or periodic writeback of "old" data.
597  *
598  * Define "old": the first time one of an inode's pages is dirtied, we mark the
599  * dirtying-time in the inode's address_space.  So this periodic writeback code
600  * just walks the superblock inode list, writing back any inodes which are
601  * older than a specific point in time.
602  *
603  * Try to run once per dirty_writeback_interval.  But if a writeback event
604  * takes longer than a dirty_writeback_interval interval, then leave a
605  * one-second gap.
606  *
607  * older_than_this takes precedence over nr_to_write.  So we'll only write back
608  * all dirty pages if they are all attached to "old" mappings.
609  */
610 static long wb_writeback(struct bdi_writeback *wb,
611                          struct wb_writeback_work *work)
612 {
613         struct writeback_control wbc = {
614                 .sync_mode              = work->sync_mode,
615                 .older_than_this        = NULL,
616                 .for_kupdate            = work->for_kupdate,
617                 .for_background         = work->for_background,
618                 .range_cyclic           = work->range_cyclic,
619         };
620         unsigned long oldest_jif;
621         long wrote = 0;
622         struct inode *inode;
623
624         if (wbc.for_kupdate) {
625                 wbc.older_than_this = &oldest_jif;
626                 oldest_jif = jiffies -
627                                 msecs_to_jiffies(dirty_expire_interval * 10);
628         }
629         if (!wbc.range_cyclic) {
630                 wbc.range_start = 0;
631                 wbc.range_end = LLONG_MAX;
632         }
633
634         wbc.wb_start = jiffies; /* livelock avoidance */
635         for (;;) {
636                 /*
637                  * Stop writeback when nr_pages has been consumed
638                  */
639                 if (work->nr_pages <= 0)
640                         break;
641
642                 /*
643                  * For background writeout, stop when we are below the
644                  * background dirty threshold
645                  */
646                 if (work->for_background && !over_bground_thresh())
647                         break;
648
649                 wbc.more_io = 0;
650                 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
651                 wbc.pages_skipped = 0;
652
653                 trace_wbc_writeback_start(&wbc, wb->bdi);
654                 if (work->sb)
655                         __writeback_inodes_sb(work->sb, wb, &wbc);
656                 else
657                         writeback_inodes_wb(wb, &wbc);
658                 trace_wbc_writeback_written(&wbc, wb->bdi);
659
660                 work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
661                 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
662
663                 /*
664                  * If we consumed everything, see if we have more
665                  */
666                 if (wbc.nr_to_write <= 0)
667                         continue;
668                 /*
669                  * Didn't write everything and we don't have more IO, bail
670                  */
671                 if (!wbc.more_io)
672                         break;
673                 /*
674                  * Did we write something? Try for more
675                  */
676                 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
677                         continue;
678                 /*
679                  * Nothing written. Wait for some inode to
680                  * become available for writeback. Otherwise
681                  * we'll just busyloop.
682                  */
683                 spin_lock(&inode_lock);
684                 if (!list_empty(&wb->b_more_io))  {
685                         inode = list_entry(wb->b_more_io.prev,
686                                                 struct inode, i_list);
687                         trace_wbc_writeback_wait(&wbc, wb->bdi);
688                         inode_wait_for_writeback(inode);
689                 }
690                 spin_unlock(&inode_lock);
691         }
692
693         return wrote;
694 }
695
696 /*
697  * Return the next wb_writeback_work struct that hasn't been processed yet.
698  */
699 static struct wb_writeback_work *
700 get_next_work_item(struct backing_dev_info *bdi)
701 {
702         struct wb_writeback_work *work = NULL;
703
704         spin_lock_bh(&bdi->wb_lock);
705         if (!list_empty(&bdi->work_list)) {
706                 work = list_entry(bdi->work_list.next,
707                                   struct wb_writeback_work, list);
708                 list_del_init(&work->list);
709         }
710         spin_unlock_bh(&bdi->wb_lock);
711         return work;
712 }
713
714 static long wb_check_old_data_flush(struct bdi_writeback *wb)
715 {
716         unsigned long expired;
717         long nr_pages;
718
719         /*
720          * When set to zero, disable periodic writeback
721          */
722         if (!dirty_writeback_interval)
723                 return 0;
724
725         expired = wb->last_old_flush +
726                         msecs_to_jiffies(dirty_writeback_interval * 10);
727         if (time_before(jiffies, expired))
728                 return 0;
729
730         wb->last_old_flush = jiffies;
731         nr_pages = global_page_state(NR_FILE_DIRTY) +
732                         global_page_state(NR_UNSTABLE_NFS) +
733                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
734
735         if (nr_pages) {
736                 struct wb_writeback_work work = {
737                         .nr_pages       = nr_pages,
738                         .sync_mode      = WB_SYNC_NONE,
739                         .for_kupdate    = 1,
740                         .range_cyclic   = 1,
741                 };
742
743                 return wb_writeback(wb, &work);
744         }
745
746         return 0;
747 }
748
749 /*
750  * Retrieve work items and do the writeback they describe
751  */
752 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
753 {
754         struct backing_dev_info *bdi = wb->bdi;
755         struct wb_writeback_work *work;
756         long wrote = 0;
757
758         while ((work = get_next_work_item(bdi)) != NULL) {
759                 /*
760                  * Override sync mode, in case we must wait for completion
761                  * because this thread is exiting now.
762                  */
763                 if (force_wait)
764                         work->sync_mode = WB_SYNC_ALL;
765
766                 trace_writeback_exec(bdi, work);
767
768                 wrote += wb_writeback(wb, work);
769
770                 /*
771                  * Notify the caller of completion if this is a synchronous
772                  * work item, otherwise just free it.
773                  */
774                 if (work->done)
775                         complete(work->done);
776                 else
777                         kfree(work);
778         }
779
780         /*
781          * Check for periodic writeback, kupdated() style
782          */
783         wrote += wb_check_old_data_flush(wb);
784
785         return wrote;
786 }
787
788 /*
789  * Handle writeback of dirty data for the device backed by this bdi. Also
790  * wakes up periodically and does kupdated style flushing.
791  */
792 int bdi_writeback_thread(void *data)
793 {
794         struct bdi_writeback *wb = data;
795         struct backing_dev_info *bdi = wb->bdi;
796         long pages_written;
797
798         current->flags |= PF_FLUSHER | PF_SWAPWRITE;
799         set_freezable();
800         wb->last_active = jiffies;
801
802         /*
803          * Our parent may run at a different priority, just set us to normal
804          */
805         set_user_nice(current, 0);
806
807         trace_writeback_thread_start(bdi);
808
809         while (!kthread_should_stop()) {
810                 /*
811                  * Remove own delayed wake-up timer, since we are already awake
812                  * and we'll take care of the preriodic write-back.
813                  */
814                 del_timer(&wb->wakeup_timer);
815
816                 pages_written = wb_do_writeback(wb, 0);
817
818                 trace_writeback_pages_written(pages_written);
819
820                 if (pages_written)
821                         wb->last_active = jiffies;
822
823                 set_current_state(TASK_INTERRUPTIBLE);
824                 if (!list_empty(&bdi->work_list)) {
825                         __set_current_state(TASK_RUNNING);
826                         continue;
827                 }
828
829                 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
830                         schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
831                 else {
832                         /*
833                          * We have nothing to do, so can go sleep without any
834                          * timeout and save power. When a work is queued or
835                          * something is made dirty - we will be woken up.
836                          */
837                         schedule();
838                 }
839
840                 try_to_freeze();
841         }
842
843         /* Flush any work that raced with us exiting */
844         if (!list_empty(&bdi->work_list))
845                 wb_do_writeback(wb, 1);
846
847         trace_writeback_thread_stop(bdi);
848         return 0;
849 }
850
851
852 /*
853  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
854  * the whole world.
855  */
856 void wakeup_flusher_threads(long nr_pages)
857 {
858         struct backing_dev_info *bdi;
859
860         if (!nr_pages) {
861                 nr_pages = global_page_state(NR_FILE_DIRTY) +
862                                 global_page_state(NR_UNSTABLE_NFS);
863         }
864
865         rcu_read_lock();
866         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
867                 if (!bdi_has_dirty_io(bdi))
868                         continue;
869                 __bdi_start_writeback(bdi, nr_pages, false, false);
870         }
871         rcu_read_unlock();
872 }
873
874 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
875 {
876         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
877                 struct dentry *dentry;
878                 const char *name = "?";
879
880                 dentry = d_find_alias(inode);
881                 if (dentry) {
882                         spin_lock(&dentry->d_lock);
883                         name = (const char *) dentry->d_name.name;
884                 }
885                 printk(KERN_DEBUG
886                        "%s(%d): dirtied inode %lu (%s) on %s\n",
887                        current->comm, task_pid_nr(current), inode->i_ino,
888                        name, inode->i_sb->s_id);
889                 if (dentry) {
890                         spin_unlock(&dentry->d_lock);
891                         dput(dentry);
892                 }
893         }
894 }
895
896 /**
897  *      __mark_inode_dirty -    internal function
898  *      @inode: inode to mark
899  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
900  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
901  *      mark_inode_dirty_sync.
902  *
903  * Put the inode on the super block's dirty list.
904  *
905  * CAREFUL! We mark it dirty unconditionally, but move it onto the
906  * dirty list only if it is hashed or if it refers to a blockdev.
907  * If it was not hashed, it will never be added to the dirty list
908  * even if it is later hashed, as it will have been marked dirty already.
909  *
910  * In short, make sure you hash any inodes _before_ you start marking
911  * them dirty.
912  *
913  * This function *must* be atomic for the I_DIRTY_PAGES case -
914  * set_page_dirty() is called under spinlock in several places.
915  *
916  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
917  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
918  * the kernel-internal blockdev inode represents the dirtying time of the
919  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
920  * page->mapping->host, so the page-dirtying time is recorded in the internal
921  * blockdev inode.
922  */
923 void __mark_inode_dirty(struct inode *inode, int flags)
924 {
925         struct super_block *sb = inode->i_sb;
926         struct backing_dev_info *bdi = NULL;
927         bool wakeup_bdi = false;
928
929         /*
930          * Don't do this for I_DIRTY_PAGES - that doesn't actually
931          * dirty the inode itself
932          */
933         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
934                 if (sb->s_op->dirty_inode)
935                         sb->s_op->dirty_inode(inode);
936         }
937
938         /*
939          * make sure that changes are seen by all cpus before we test i_state
940          * -- mikulas
941          */
942         smp_mb();
943
944         /* avoid the locking if we can */
945         if ((inode->i_state & flags) == flags)
946                 return;
947
948         if (unlikely(block_dump))
949                 block_dump___mark_inode_dirty(inode);
950
951         spin_lock(&inode_lock);
952         if ((inode->i_state & flags) != flags) {
953                 const int was_dirty = inode->i_state & I_DIRTY;
954
955                 inode->i_state |= flags;
956
957                 /*
958                  * If the inode is being synced, just update its dirty state.
959                  * The unlocker will place the inode on the appropriate
960                  * superblock list, based upon its state.
961                  */
962                 if (inode->i_state & I_SYNC)
963                         goto out;
964
965                 /*
966                  * Only add valid (hashed) inodes to the superblock's
967                  * dirty list.  Add blockdev inodes as well.
968                  */
969                 if (!S_ISBLK(inode->i_mode)) {
970                         if (hlist_unhashed(&inode->i_hash))
971                                 goto out;
972                 }
973                 if (inode->i_state & I_FREEING)
974                         goto out;
975
976                 /*
977                  * If the inode was already on b_dirty/b_io/b_more_io, don't
978                  * reposition it (that would break b_dirty time-ordering).
979                  */
980                 if (!was_dirty) {
981                         bdi = inode_to_bdi(inode);
982
983                         if (bdi_cap_writeback_dirty(bdi)) {
984                                 WARN(!test_bit(BDI_registered, &bdi->state),
985                                      "bdi-%s not registered\n", bdi->name);
986
987                                 /*
988                                  * If this is the first dirty inode for this
989                                  * bdi, we have to wake-up the corresponding
990                                  * bdi thread to make sure background
991                                  * write-back happens later.
992                                  */
993                                 if (!wb_has_dirty_io(&bdi->wb))
994                                         wakeup_bdi = true;
995                         }
996
997                         inode->dirtied_when = jiffies;
998                         list_move(&inode->i_list, &bdi->wb.b_dirty);
999                 }
1000         }
1001 out:
1002         spin_unlock(&inode_lock);
1003
1004         if (wakeup_bdi)
1005                 bdi_wakeup_thread_delayed(bdi);
1006 }
1007 EXPORT_SYMBOL(__mark_inode_dirty);
1008
1009 /*
1010  * Write out a superblock's list of dirty inodes.  A wait will be performed
1011  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1012  *
1013  * If older_than_this is non-NULL, then only write out inodes which
1014  * had their first dirtying at a time earlier than *older_than_this.
1015  *
1016  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1017  * This function assumes that the blockdev superblock's inodes are backed by
1018  * a variety of queues, so all inodes are searched.  For other superblocks,
1019  * assume that all inodes are backed by the same queue.
1020  *
1021  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1022  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1023  * on the writer throttling path, and we get decent balancing between many
1024  * throttled threads: we don't want them all piling up on inode_sync_wait.
1025  */
1026 static void wait_sb_inodes(struct super_block *sb)
1027 {
1028         struct inode *inode, *old_inode = NULL;
1029
1030         /*
1031          * We need to be protected against the filesystem going from
1032          * r/o to r/w or vice versa.
1033          */
1034         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1035
1036         spin_lock(&inode_lock);
1037
1038         /*
1039          * Data integrity sync. Must wait for all pages under writeback,
1040          * because there may have been pages dirtied before our sync
1041          * call, but which had writeout started before we write it out.
1042          * In which case, the inode may not be on the dirty list, but
1043          * we still have to wait for that writeout.
1044          */
1045         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1046                 struct address_space *mapping;
1047
1048                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW))
1049                         continue;
1050                 mapping = inode->i_mapping;
1051                 if (mapping->nrpages == 0)
1052                         continue;
1053                 __iget(inode);
1054                 spin_unlock(&inode_lock);
1055                 /*
1056                  * We hold a reference to 'inode' so it couldn't have
1057                  * been removed from s_inodes list while we dropped the
1058                  * inode_lock.  We cannot iput the inode now as we can
1059                  * be holding the last reference and we cannot iput it
1060                  * under inode_lock. So we keep the reference and iput
1061                  * it later.
1062                  */
1063                 iput(old_inode);
1064                 old_inode = inode;
1065
1066                 filemap_fdatawait(mapping);
1067
1068                 cond_resched();
1069
1070                 spin_lock(&inode_lock);
1071         }
1072         spin_unlock(&inode_lock);
1073         iput(old_inode);
1074 }
1075
1076 /**
1077  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1078  * @sb: the superblock
1079  *
1080  * Start writeback on some inodes on this super_block. No guarantees are made
1081  * on how many (if any) will be written, and this function does not wait
1082  * for IO completion of submitted IO. The number of pages submitted is
1083  * returned.
1084  */
1085 void writeback_inodes_sb(struct super_block *sb)
1086 {
1087         unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1088         unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1089         DECLARE_COMPLETION_ONSTACK(done);
1090         struct wb_writeback_work work = {
1091                 .sb             = sb,
1092                 .sync_mode      = WB_SYNC_NONE,
1093                 .done           = &done,
1094         };
1095
1096         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1097
1098         work.nr_pages = nr_dirty + nr_unstable +
1099                         (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1100
1101         bdi_queue_work(sb->s_bdi, &work);
1102         wait_for_completion(&done);
1103 }
1104 EXPORT_SYMBOL(writeback_inodes_sb);
1105
1106 /**
1107  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1108  * @sb: the superblock
1109  *
1110  * Invoke writeback_inodes_sb if no writeback is currently underway.
1111  * Returns 1 if writeback was started, 0 if not.
1112  */
1113 int writeback_inodes_sb_if_idle(struct super_block *sb)
1114 {
1115         if (!writeback_in_progress(sb->s_bdi)) {
1116                 down_read(&sb->s_umount);
1117                 writeback_inodes_sb(sb);
1118                 up_read(&sb->s_umount);
1119                 return 1;
1120         } else
1121                 return 0;
1122 }
1123 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1124
1125 /**
1126  * sync_inodes_sb       -       sync sb inode pages
1127  * @sb: the superblock
1128  *
1129  * This function writes and waits on any dirty inode belonging to this
1130  * super_block. The number of pages synced is returned.
1131  */
1132 void sync_inodes_sb(struct super_block *sb)
1133 {
1134         DECLARE_COMPLETION_ONSTACK(done);
1135         struct wb_writeback_work work = {
1136                 .sb             = sb,
1137                 .sync_mode      = WB_SYNC_ALL,
1138                 .nr_pages       = LONG_MAX,
1139                 .range_cyclic   = 0,
1140                 .done           = &done,
1141         };
1142
1143         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1144
1145         bdi_queue_work(sb->s_bdi, &work);
1146         wait_for_completion(&done);
1147
1148         wait_sb_inodes(sb);
1149 }
1150 EXPORT_SYMBOL(sync_inodes_sb);
1151
1152 /**
1153  * write_inode_now      -       write an inode to disk
1154  * @inode: inode to write to disk
1155  * @sync: whether the write should be synchronous or not
1156  *
1157  * This function commits an inode to disk immediately if it is dirty. This is
1158  * primarily needed by knfsd.
1159  *
1160  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1161  */
1162 int write_inode_now(struct inode *inode, int sync)
1163 {
1164         int ret;
1165         struct writeback_control wbc = {
1166                 .nr_to_write = LONG_MAX,
1167                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1168                 .range_start = 0,
1169                 .range_end = LLONG_MAX,
1170         };
1171
1172         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1173                 wbc.nr_to_write = 0;
1174
1175         might_sleep();
1176         spin_lock(&inode_lock);
1177         ret = writeback_single_inode(inode, &wbc);
1178         spin_unlock(&inode_lock);
1179         if (sync)
1180                 inode_sync_wait(inode);
1181         return ret;
1182 }
1183 EXPORT_SYMBOL(write_inode_now);
1184
1185 /**
1186  * sync_inode - write an inode and its pages to disk.
1187  * @inode: the inode to sync
1188  * @wbc: controls the writeback mode
1189  *
1190  * sync_inode() will write an inode and its pages to disk.  It will also
1191  * correctly update the inode on its superblock's dirty inode lists and will
1192  * update inode->i_state.
1193  *
1194  * The caller must have a ref on the inode.
1195  */
1196 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1197 {
1198         int ret;
1199
1200         spin_lock(&inode_lock);
1201         ret = writeback_single_inode(inode, wbc);
1202         spin_unlock(&inode_lock);
1203         return ret;
1204 }
1205 EXPORT_SYMBOL(sync_inode);