Merge tag 'sound-fix-3.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[pandora-kernel.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/f2fs.h>
36
37 static struct proc_dir_entry *f2fs_proc_root;
38 static struct kmem_cache *f2fs_inode_cachep;
39 static struct kset *f2fs_kset;
40
41 enum {
42         Opt_gc_background,
43         Opt_disable_roll_forward,
44         Opt_discard,
45         Opt_noheap,
46         Opt_user_xattr,
47         Opt_nouser_xattr,
48         Opt_acl,
49         Opt_noacl,
50         Opt_active_logs,
51         Opt_disable_ext_identify,
52         Opt_inline_xattr,
53         Opt_inline_data,
54         Opt_inline_dentry,
55         Opt_flush_merge,
56         Opt_nobarrier,
57         Opt_fastboot,
58         Opt_err,
59 };
60
61 static match_table_t f2fs_tokens = {
62         {Opt_gc_background, "background_gc=%s"},
63         {Opt_disable_roll_forward, "disable_roll_forward"},
64         {Opt_discard, "discard"},
65         {Opt_noheap, "no_heap"},
66         {Opt_user_xattr, "user_xattr"},
67         {Opt_nouser_xattr, "nouser_xattr"},
68         {Opt_acl, "acl"},
69         {Opt_noacl, "noacl"},
70         {Opt_active_logs, "active_logs=%u"},
71         {Opt_disable_ext_identify, "disable_ext_identify"},
72         {Opt_inline_xattr, "inline_xattr"},
73         {Opt_inline_data, "inline_data"},
74         {Opt_inline_dentry, "inline_dentry"},
75         {Opt_flush_merge, "flush_merge"},
76         {Opt_nobarrier, "nobarrier"},
77         {Opt_fastboot, "fastboot"},
78         {Opt_err, NULL},
79 };
80
81 /* Sysfs support for f2fs */
82 enum {
83         GC_THREAD,      /* struct f2fs_gc_thread */
84         SM_INFO,        /* struct f2fs_sm_info */
85         NM_INFO,        /* struct f2fs_nm_info */
86         F2FS_SBI,       /* struct f2fs_sb_info */
87 };
88
89 struct f2fs_attr {
90         struct attribute attr;
91         ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
92         ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
93                          const char *, size_t);
94         int struct_type;
95         int offset;
96 };
97
98 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
99 {
100         if (struct_type == GC_THREAD)
101                 return (unsigned char *)sbi->gc_thread;
102         else if (struct_type == SM_INFO)
103                 return (unsigned char *)SM_I(sbi);
104         else if (struct_type == NM_INFO)
105                 return (unsigned char *)NM_I(sbi);
106         else if (struct_type == F2FS_SBI)
107                 return (unsigned char *)sbi;
108         return NULL;
109 }
110
111 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
112                         struct f2fs_sb_info *sbi, char *buf)
113 {
114         unsigned char *ptr = NULL;
115         unsigned int *ui;
116
117         ptr = __struct_ptr(sbi, a->struct_type);
118         if (!ptr)
119                 return -EINVAL;
120
121         ui = (unsigned int *)(ptr + a->offset);
122
123         return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
124 }
125
126 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
127                         struct f2fs_sb_info *sbi,
128                         const char *buf, size_t count)
129 {
130         unsigned char *ptr;
131         unsigned long t;
132         unsigned int *ui;
133         ssize_t ret;
134
135         ptr = __struct_ptr(sbi, a->struct_type);
136         if (!ptr)
137                 return -EINVAL;
138
139         ui = (unsigned int *)(ptr + a->offset);
140
141         ret = kstrtoul(skip_spaces(buf), 0, &t);
142         if (ret < 0)
143                 return ret;
144         *ui = t;
145         return count;
146 }
147
148 static ssize_t f2fs_attr_show(struct kobject *kobj,
149                                 struct attribute *attr, char *buf)
150 {
151         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
152                                                                 s_kobj);
153         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
154
155         return a->show ? a->show(a, sbi, buf) : 0;
156 }
157
158 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
159                                                 const char *buf, size_t len)
160 {
161         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
162                                                                         s_kobj);
163         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
164
165         return a->store ? a->store(a, sbi, buf, len) : 0;
166 }
167
168 static void f2fs_sb_release(struct kobject *kobj)
169 {
170         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
171                                                                 s_kobj);
172         complete(&sbi->s_kobj_unregister);
173 }
174
175 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
176 static struct f2fs_attr f2fs_attr_##_name = {                   \
177         .attr = {.name = __stringify(_name), .mode = _mode },   \
178         .show   = _show,                                        \
179         .store  = _store,                                       \
180         .struct_type = _struct_type,                            \
181         .offset = _offset                                       \
182 }
183
184 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)    \
185         F2FS_ATTR_OFFSET(struct_type, name, 0644,               \
186                 f2fs_sbi_show, f2fs_sbi_store,                  \
187                 offsetof(struct struct_name, elname))
188
189 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
190 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
191 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
192 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
193 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
194 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
195 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
196 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
197 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
198 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
199 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
200 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
201
202 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
203 static struct attribute *f2fs_attrs[] = {
204         ATTR_LIST(gc_min_sleep_time),
205         ATTR_LIST(gc_max_sleep_time),
206         ATTR_LIST(gc_no_gc_sleep_time),
207         ATTR_LIST(gc_idle),
208         ATTR_LIST(reclaim_segments),
209         ATTR_LIST(max_small_discards),
210         ATTR_LIST(ipu_policy),
211         ATTR_LIST(min_ipu_util),
212         ATTR_LIST(min_fsync_blocks),
213         ATTR_LIST(max_victim_search),
214         ATTR_LIST(dir_level),
215         ATTR_LIST(ram_thresh),
216         NULL,
217 };
218
219 static const struct sysfs_ops f2fs_attr_ops = {
220         .show   = f2fs_attr_show,
221         .store  = f2fs_attr_store,
222 };
223
224 static struct kobj_type f2fs_ktype = {
225         .default_attrs  = f2fs_attrs,
226         .sysfs_ops      = &f2fs_attr_ops,
227         .release        = f2fs_sb_release,
228 };
229
230 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
231 {
232         struct va_format vaf;
233         va_list args;
234
235         va_start(args, fmt);
236         vaf.fmt = fmt;
237         vaf.va = &args;
238         printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
239         va_end(args);
240 }
241
242 static void init_once(void *foo)
243 {
244         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
245
246         inode_init_once(&fi->vfs_inode);
247 }
248
249 static int parse_options(struct super_block *sb, char *options)
250 {
251         struct f2fs_sb_info *sbi = F2FS_SB(sb);
252         substring_t args[MAX_OPT_ARGS];
253         char *p, *name;
254         int arg = 0;
255
256         if (!options)
257                 return 0;
258
259         while ((p = strsep(&options, ",")) != NULL) {
260                 int token;
261                 if (!*p)
262                         continue;
263                 /*
264                  * Initialize args struct so we know whether arg was
265                  * found; some options take optional arguments.
266                  */
267                 args[0].to = args[0].from = NULL;
268                 token = match_token(p, f2fs_tokens, args);
269
270                 switch (token) {
271                 case Opt_gc_background:
272                         name = match_strdup(&args[0]);
273
274                         if (!name)
275                                 return -ENOMEM;
276                         if (strlen(name) == 2 && !strncmp(name, "on", 2))
277                                 set_opt(sbi, BG_GC);
278                         else if (strlen(name) == 3 && !strncmp(name, "off", 3))
279                                 clear_opt(sbi, BG_GC);
280                         else {
281                                 kfree(name);
282                                 return -EINVAL;
283                         }
284                         kfree(name);
285                         break;
286                 case Opt_disable_roll_forward:
287                         set_opt(sbi, DISABLE_ROLL_FORWARD);
288                         break;
289                 case Opt_discard:
290                         set_opt(sbi, DISCARD);
291                         break;
292                 case Opt_noheap:
293                         set_opt(sbi, NOHEAP);
294                         break;
295 #ifdef CONFIG_F2FS_FS_XATTR
296                 case Opt_user_xattr:
297                         set_opt(sbi, XATTR_USER);
298                         break;
299                 case Opt_nouser_xattr:
300                         clear_opt(sbi, XATTR_USER);
301                         break;
302                 case Opt_inline_xattr:
303                         set_opt(sbi, INLINE_XATTR);
304                         break;
305 #else
306                 case Opt_user_xattr:
307                         f2fs_msg(sb, KERN_INFO,
308                                 "user_xattr options not supported");
309                         break;
310                 case Opt_nouser_xattr:
311                         f2fs_msg(sb, KERN_INFO,
312                                 "nouser_xattr options not supported");
313                         break;
314                 case Opt_inline_xattr:
315                         f2fs_msg(sb, KERN_INFO,
316                                 "inline_xattr options not supported");
317                         break;
318 #endif
319 #ifdef CONFIG_F2FS_FS_POSIX_ACL
320                 case Opt_acl:
321                         set_opt(sbi, POSIX_ACL);
322                         break;
323                 case Opt_noacl:
324                         clear_opt(sbi, POSIX_ACL);
325                         break;
326 #else
327                 case Opt_acl:
328                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
329                         break;
330                 case Opt_noacl:
331                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
332                         break;
333 #endif
334                 case Opt_active_logs:
335                         if (args->from && match_int(args, &arg))
336                                 return -EINVAL;
337                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
338                                 return -EINVAL;
339                         sbi->active_logs = arg;
340                         break;
341                 case Opt_disable_ext_identify:
342                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
343                         break;
344                 case Opt_inline_data:
345                         set_opt(sbi, INLINE_DATA);
346                         break;
347                 case Opt_inline_dentry:
348                         set_opt(sbi, INLINE_DENTRY);
349                         break;
350                 case Opt_flush_merge:
351                         set_opt(sbi, FLUSH_MERGE);
352                         break;
353                 case Opt_nobarrier:
354                         set_opt(sbi, NOBARRIER);
355                         break;
356                 case Opt_fastboot:
357                         set_opt(sbi, FASTBOOT);
358                         break;
359                 default:
360                         f2fs_msg(sb, KERN_ERR,
361                                 "Unrecognized mount option \"%s\" or missing value",
362                                 p);
363                         return -EINVAL;
364                 }
365         }
366         return 0;
367 }
368
369 static struct inode *f2fs_alloc_inode(struct super_block *sb)
370 {
371         struct f2fs_inode_info *fi;
372
373         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
374         if (!fi)
375                 return NULL;
376
377         init_once((void *) fi);
378
379         /* Initialize f2fs-specific inode info */
380         fi->vfs_inode.i_version = 1;
381         atomic_set(&fi->dirty_pages, 0);
382         fi->i_current_depth = 1;
383         fi->i_advise = 0;
384         rwlock_init(&fi->ext.ext_lock);
385         init_rwsem(&fi->i_sem);
386         INIT_RADIX_TREE(&fi->inmem_root, GFP_NOFS);
387         INIT_LIST_HEAD(&fi->inmem_pages);
388         mutex_init(&fi->inmem_lock);
389
390         set_inode_flag(fi, FI_NEW_INODE);
391
392         if (test_opt(F2FS_SB(sb), INLINE_XATTR))
393                 set_inode_flag(fi, FI_INLINE_XATTR);
394
395         /* Will be used by directory only */
396         fi->i_dir_level = F2FS_SB(sb)->dir_level;
397
398         return &fi->vfs_inode;
399 }
400
401 static int f2fs_drop_inode(struct inode *inode)
402 {
403         /*
404          * This is to avoid a deadlock condition like below.
405          * writeback_single_inode(inode)
406          *  - f2fs_write_data_page
407          *    - f2fs_gc -> iput -> evict
408          *       - inode_wait_for_writeback(inode)
409          */
410         if (!inode_unhashed(inode) && inode->i_state & I_SYNC)
411                 return 0;
412         return generic_drop_inode(inode);
413 }
414
415 /*
416  * f2fs_dirty_inode() is called from __mark_inode_dirty()
417  *
418  * We should call set_dirty_inode to write the dirty inode through write_inode.
419  */
420 static void f2fs_dirty_inode(struct inode *inode, int flags)
421 {
422         set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
423 }
424
425 static void f2fs_i_callback(struct rcu_head *head)
426 {
427         struct inode *inode = container_of(head, struct inode, i_rcu);
428         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
429 }
430
431 static void f2fs_destroy_inode(struct inode *inode)
432 {
433         call_rcu(&inode->i_rcu, f2fs_i_callback);
434 }
435
436 static void f2fs_put_super(struct super_block *sb)
437 {
438         struct f2fs_sb_info *sbi = F2FS_SB(sb);
439
440         if (sbi->s_proc) {
441                 remove_proc_entry("segment_info", sbi->s_proc);
442                 remove_proc_entry(sb->s_id, f2fs_proc_root);
443         }
444         kobject_del(&sbi->s_kobj);
445
446         f2fs_destroy_stats(sbi);
447         stop_gc_thread(sbi);
448
449         /* We don't need to do checkpoint when it's clean */
450         if (sbi->s_dirty) {
451                 struct cp_control cpc = {
452                         .reason = CP_UMOUNT,
453                 };
454                 write_checkpoint(sbi, &cpc);
455         }
456
457         /*
458          * normally superblock is clean, so we need to release this.
459          * In addition, EIO will skip do checkpoint, we need this as well.
460          */
461         release_dirty_inode(sbi);
462         release_discard_addrs(sbi);
463
464         iput(sbi->node_inode);
465         iput(sbi->meta_inode);
466
467         /* destroy f2fs internal modules */
468         destroy_node_manager(sbi);
469         destroy_segment_manager(sbi);
470
471         kfree(sbi->ckpt);
472         kobject_put(&sbi->s_kobj);
473         wait_for_completion(&sbi->s_kobj_unregister);
474
475         sb->s_fs_info = NULL;
476         brelse(sbi->raw_super_buf);
477         kfree(sbi);
478 }
479
480 int f2fs_sync_fs(struct super_block *sb, int sync)
481 {
482         struct f2fs_sb_info *sbi = F2FS_SB(sb);
483
484         trace_f2fs_sync_fs(sb, sync);
485
486         if (sync) {
487                 struct cp_control cpc;
488
489                 cpc.reason = test_opt(sbi, FASTBOOT) ? CP_UMOUNT : CP_SYNC;
490                 mutex_lock(&sbi->gc_mutex);
491                 write_checkpoint(sbi, &cpc);
492                 mutex_unlock(&sbi->gc_mutex);
493         } else {
494                 f2fs_balance_fs(sbi);
495         }
496
497         return 0;
498 }
499
500 static int f2fs_freeze(struct super_block *sb)
501 {
502         int err;
503
504         if (f2fs_readonly(sb))
505                 return 0;
506
507         err = f2fs_sync_fs(sb, 1);
508         return err;
509 }
510
511 static int f2fs_unfreeze(struct super_block *sb)
512 {
513         return 0;
514 }
515
516 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
517 {
518         struct super_block *sb = dentry->d_sb;
519         struct f2fs_sb_info *sbi = F2FS_SB(sb);
520         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
521         block_t total_count, user_block_count, start_count, ovp_count;
522
523         total_count = le64_to_cpu(sbi->raw_super->block_count);
524         user_block_count = sbi->user_block_count;
525         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
526         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
527         buf->f_type = F2FS_SUPER_MAGIC;
528         buf->f_bsize = sbi->blocksize;
529
530         buf->f_blocks = total_count - start_count;
531         buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
532         buf->f_bavail = user_block_count - valid_user_blocks(sbi);
533
534         buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
535         buf->f_ffree = buf->f_files - valid_inode_count(sbi);
536
537         buf->f_namelen = F2FS_NAME_LEN;
538         buf->f_fsid.val[0] = (u32)id;
539         buf->f_fsid.val[1] = (u32)(id >> 32);
540
541         return 0;
542 }
543
544 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
545 {
546         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
547
548         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC))
549                 seq_printf(seq, ",background_gc=%s", "on");
550         else
551                 seq_printf(seq, ",background_gc=%s", "off");
552         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
553                 seq_puts(seq, ",disable_roll_forward");
554         if (test_opt(sbi, DISCARD))
555                 seq_puts(seq, ",discard");
556         if (test_opt(sbi, NOHEAP))
557                 seq_puts(seq, ",no_heap_alloc");
558 #ifdef CONFIG_F2FS_FS_XATTR
559         if (test_opt(sbi, XATTR_USER))
560                 seq_puts(seq, ",user_xattr");
561         else
562                 seq_puts(seq, ",nouser_xattr");
563         if (test_opt(sbi, INLINE_XATTR))
564                 seq_puts(seq, ",inline_xattr");
565 #endif
566 #ifdef CONFIG_F2FS_FS_POSIX_ACL
567         if (test_opt(sbi, POSIX_ACL))
568                 seq_puts(seq, ",acl");
569         else
570                 seq_puts(seq, ",noacl");
571 #endif
572         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
573                 seq_puts(seq, ",disable_ext_identify");
574         if (test_opt(sbi, INLINE_DATA))
575                 seq_puts(seq, ",inline_data");
576         if (test_opt(sbi, INLINE_DENTRY))
577                 seq_puts(seq, ",inline_dentry");
578         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
579                 seq_puts(seq, ",flush_merge");
580         if (test_opt(sbi, NOBARRIER))
581                 seq_puts(seq, ",nobarrier");
582         if (test_opt(sbi, FASTBOOT))
583                 seq_puts(seq, ",fastboot");
584         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
585
586         return 0;
587 }
588
589 static int segment_info_seq_show(struct seq_file *seq, void *offset)
590 {
591         struct super_block *sb = seq->private;
592         struct f2fs_sb_info *sbi = F2FS_SB(sb);
593         unsigned int total_segs =
594                         le32_to_cpu(sbi->raw_super->segment_count_main);
595         int i;
596
597         seq_puts(seq, "format: segment_type|valid_blocks\n"
598                 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
599
600         for (i = 0; i < total_segs; i++) {
601                 struct seg_entry *se = get_seg_entry(sbi, i);
602
603                 if ((i % 10) == 0)
604                         seq_printf(seq, "%-5d", i);
605                 seq_printf(seq, "%d|%-3u", se->type,
606                                         get_valid_blocks(sbi, i, 1));
607                 if ((i % 10) == 9 || i == (total_segs - 1))
608                         seq_putc(seq, '\n');
609                 else
610                         seq_putc(seq, ' ');
611         }
612
613         return 0;
614 }
615
616 static int segment_info_open_fs(struct inode *inode, struct file *file)
617 {
618         return single_open(file, segment_info_seq_show, PDE_DATA(inode));
619 }
620
621 static const struct file_operations f2fs_seq_segment_info_fops = {
622         .owner = THIS_MODULE,
623         .open = segment_info_open_fs,
624         .read = seq_read,
625         .llseek = seq_lseek,
626         .release = single_release,
627 };
628
629 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
630 {
631         struct f2fs_sb_info *sbi = F2FS_SB(sb);
632         struct f2fs_mount_info org_mount_opt;
633         int err, active_logs;
634         bool need_restart_gc = false;
635         bool need_stop_gc = false;
636
637         sync_filesystem(sb);
638
639         /*
640          * Save the old mount options in case we
641          * need to restore them.
642          */
643         org_mount_opt = sbi->mount_opt;
644         active_logs = sbi->active_logs;
645
646         sbi->mount_opt.opt = 0;
647         sbi->active_logs = NR_CURSEG_TYPE;
648
649         /* parse mount options */
650         err = parse_options(sb, data);
651         if (err)
652                 goto restore_opts;
653
654         /*
655          * Previous and new state of filesystem is RO,
656          * so skip checking GC and FLUSH_MERGE conditions.
657          */
658         if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
659                 goto skip;
660
661         /*
662          * We stop the GC thread if FS is mounted as RO
663          * or if background_gc = off is passed in mount
664          * option. Also sync the filesystem.
665          */
666         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
667                 if (sbi->gc_thread) {
668                         stop_gc_thread(sbi);
669                         f2fs_sync_fs(sb, 1);
670                         need_restart_gc = true;
671                 }
672         } else if (!sbi->gc_thread) {
673                 err = start_gc_thread(sbi);
674                 if (err)
675                         goto restore_opts;
676                 need_stop_gc = true;
677         }
678
679         /*
680          * We stop issue flush thread if FS is mounted as RO
681          * or if flush_merge is not passed in mount option.
682          */
683         if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
684                 destroy_flush_cmd_control(sbi);
685         } else if (!SM_I(sbi)->cmd_control_info) {
686                 err = create_flush_cmd_control(sbi);
687                 if (err)
688                         goto restore_gc;
689         }
690 skip:
691         /* Update the POSIXACL Flag */
692          sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
693                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
694         return 0;
695 restore_gc:
696         if (need_restart_gc) {
697                 if (start_gc_thread(sbi))
698                         f2fs_msg(sbi->sb, KERN_WARNING,
699                                 "background gc thread has stopped");
700         } else if (need_stop_gc) {
701                 stop_gc_thread(sbi);
702         }
703 restore_opts:
704         sbi->mount_opt = org_mount_opt;
705         sbi->active_logs = active_logs;
706         return err;
707 }
708
709 static struct super_operations f2fs_sops = {
710         .alloc_inode    = f2fs_alloc_inode,
711         .drop_inode     = f2fs_drop_inode,
712         .destroy_inode  = f2fs_destroy_inode,
713         .write_inode    = f2fs_write_inode,
714         .dirty_inode    = f2fs_dirty_inode,
715         .show_options   = f2fs_show_options,
716         .evict_inode    = f2fs_evict_inode,
717         .put_super      = f2fs_put_super,
718         .sync_fs        = f2fs_sync_fs,
719         .freeze_fs      = f2fs_freeze,
720         .unfreeze_fs    = f2fs_unfreeze,
721         .statfs         = f2fs_statfs,
722         .remount_fs     = f2fs_remount,
723 };
724
725 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
726                 u64 ino, u32 generation)
727 {
728         struct f2fs_sb_info *sbi = F2FS_SB(sb);
729         struct inode *inode;
730
731         if (check_nid_range(sbi, ino))
732                 return ERR_PTR(-ESTALE);
733
734         /*
735          * f2fs_iget isn't quite right if the inode is currently unallocated!
736          * However f2fs_iget currently does appropriate checks to handle stale
737          * inodes so everything is OK.
738          */
739         inode = f2fs_iget(sb, ino);
740         if (IS_ERR(inode))
741                 return ERR_CAST(inode);
742         if (unlikely(generation && inode->i_generation != generation)) {
743                 /* we didn't find the right inode.. */
744                 iput(inode);
745                 return ERR_PTR(-ESTALE);
746         }
747         return inode;
748 }
749
750 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
751                 int fh_len, int fh_type)
752 {
753         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
754                                     f2fs_nfs_get_inode);
755 }
756
757 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
758                 int fh_len, int fh_type)
759 {
760         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
761                                     f2fs_nfs_get_inode);
762 }
763
764 static const struct export_operations f2fs_export_ops = {
765         .fh_to_dentry = f2fs_fh_to_dentry,
766         .fh_to_parent = f2fs_fh_to_parent,
767         .get_parent = f2fs_get_parent,
768 };
769
770 static loff_t max_file_size(unsigned bits)
771 {
772         loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
773         loff_t leaf_count = ADDRS_PER_BLOCK;
774
775         /* two direct node blocks */
776         result += (leaf_count * 2);
777
778         /* two indirect node blocks */
779         leaf_count *= NIDS_PER_BLOCK;
780         result += (leaf_count * 2);
781
782         /* one double indirect node block */
783         leaf_count *= NIDS_PER_BLOCK;
784         result += leaf_count;
785
786         result <<= bits;
787         return result;
788 }
789
790 static int sanity_check_raw_super(struct super_block *sb,
791                         struct f2fs_super_block *raw_super)
792 {
793         unsigned int blocksize;
794
795         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
796                 f2fs_msg(sb, KERN_INFO,
797                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
798                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
799                 return 1;
800         }
801
802         /* Currently, support only 4KB page cache size */
803         if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
804                 f2fs_msg(sb, KERN_INFO,
805                         "Invalid page_cache_size (%lu), supports only 4KB\n",
806                         PAGE_CACHE_SIZE);
807                 return 1;
808         }
809
810         /* Currently, support only 4KB block size */
811         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
812         if (blocksize != F2FS_BLKSIZE) {
813                 f2fs_msg(sb, KERN_INFO,
814                         "Invalid blocksize (%u), supports only 4KB\n",
815                         blocksize);
816                 return 1;
817         }
818
819         /* Currently, support 512/1024/2048/4096 bytes sector size */
820         if (le32_to_cpu(raw_super->log_sectorsize) >
821                                 F2FS_MAX_LOG_SECTOR_SIZE ||
822                 le32_to_cpu(raw_super->log_sectorsize) <
823                                 F2FS_MIN_LOG_SECTOR_SIZE) {
824                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
825                         le32_to_cpu(raw_super->log_sectorsize));
826                 return 1;
827         }
828         if (le32_to_cpu(raw_super->log_sectors_per_block) +
829                 le32_to_cpu(raw_super->log_sectorsize) !=
830                         F2FS_MAX_LOG_SECTOR_SIZE) {
831                 f2fs_msg(sb, KERN_INFO,
832                         "Invalid log sectors per block(%u) log sectorsize(%u)",
833                         le32_to_cpu(raw_super->log_sectors_per_block),
834                         le32_to_cpu(raw_super->log_sectorsize));
835                 return 1;
836         }
837         return 0;
838 }
839
840 static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
841 {
842         unsigned int total, fsmeta;
843         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
844         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
845
846         total = le32_to_cpu(raw_super->segment_count);
847         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
848         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
849         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
850         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
851         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
852
853         if (unlikely(fsmeta >= total))
854                 return 1;
855
856         if (unlikely(f2fs_cp_error(sbi))) {
857                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
858                 return 1;
859         }
860         return 0;
861 }
862
863 static void init_sb_info(struct f2fs_sb_info *sbi)
864 {
865         struct f2fs_super_block *raw_super = sbi->raw_super;
866         int i;
867
868         sbi->log_sectors_per_block =
869                 le32_to_cpu(raw_super->log_sectors_per_block);
870         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
871         sbi->blocksize = 1 << sbi->log_blocksize;
872         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
873         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
874         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
875         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
876         sbi->total_sections = le32_to_cpu(raw_super->section_count);
877         sbi->total_node_count =
878                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
879                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
880         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
881         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
882         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
883         sbi->cur_victim_sec = NULL_SECNO;
884         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
885
886         for (i = 0; i < NR_COUNT_TYPE; i++)
887                 atomic_set(&sbi->nr_pages[i], 0);
888
889         sbi->dir_level = DEF_DIR_LEVEL;
890         sbi->need_fsck = false;
891 }
892
893 /*
894  * Read f2fs raw super block.
895  * Because we have two copies of super block, so read the first one at first,
896  * if the first one is invalid, move to read the second one.
897  */
898 static int read_raw_super_block(struct super_block *sb,
899                         struct f2fs_super_block **raw_super,
900                         struct buffer_head **raw_super_buf)
901 {
902         int block = 0;
903
904 retry:
905         *raw_super_buf = sb_bread(sb, block);
906         if (!*raw_super_buf) {
907                 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
908                                 block + 1);
909                 if (block == 0) {
910                         block++;
911                         goto retry;
912                 } else {
913                         return -EIO;
914                 }
915         }
916
917         *raw_super = (struct f2fs_super_block *)
918                 ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);
919
920         /* sanity checking of raw super */
921         if (sanity_check_raw_super(sb, *raw_super)) {
922                 brelse(*raw_super_buf);
923                 f2fs_msg(sb, KERN_ERR,
924                         "Can't find valid F2FS filesystem in %dth superblock",
925                                                                 block + 1);
926                 if (block == 0) {
927                         block++;
928                         goto retry;
929                 } else {
930                         return -EINVAL;
931                 }
932         }
933
934         return 0;
935 }
936
937 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
938 {
939         struct f2fs_sb_info *sbi;
940         struct f2fs_super_block *raw_super = NULL;
941         struct buffer_head *raw_super_buf;
942         struct inode *root;
943         long err = -EINVAL;
944         bool retry = true;
945         int i;
946
947 try_onemore:
948         /* allocate memory for f2fs-specific super block info */
949         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
950         if (!sbi)
951                 return -ENOMEM;
952
953         /* set a block size */
954         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
955                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
956                 goto free_sbi;
957         }
958
959         err = read_raw_super_block(sb, &raw_super, &raw_super_buf);
960         if (err)
961                 goto free_sbi;
962
963         sb->s_fs_info = sbi;
964         /* init some FS parameters */
965         sbi->active_logs = NR_CURSEG_TYPE;
966
967         set_opt(sbi, BG_GC);
968
969 #ifdef CONFIG_F2FS_FS_XATTR
970         set_opt(sbi, XATTR_USER);
971 #endif
972 #ifdef CONFIG_F2FS_FS_POSIX_ACL
973         set_opt(sbi, POSIX_ACL);
974 #endif
975         /* parse mount options */
976         err = parse_options(sb, (char *)data);
977         if (err)
978                 goto free_sb_buf;
979
980         sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
981         sb->s_max_links = F2FS_LINK_MAX;
982         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
983
984         sb->s_op = &f2fs_sops;
985         sb->s_xattr = f2fs_xattr_handlers;
986         sb->s_export_op = &f2fs_export_ops;
987         sb->s_magic = F2FS_SUPER_MAGIC;
988         sb->s_time_gran = 1;
989         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
990                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
991         memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
992
993         /* init f2fs-specific super block info */
994         sbi->sb = sb;
995         sbi->raw_super = raw_super;
996         sbi->raw_super_buf = raw_super_buf;
997         mutex_init(&sbi->gc_mutex);
998         mutex_init(&sbi->writepages);
999         mutex_init(&sbi->cp_mutex);
1000         init_rwsem(&sbi->node_write);
1001         sbi->por_doing = false;
1002         spin_lock_init(&sbi->stat_lock);
1003
1004         init_rwsem(&sbi->read_io.io_rwsem);
1005         sbi->read_io.sbi = sbi;
1006         sbi->read_io.bio = NULL;
1007         for (i = 0; i < NR_PAGE_TYPE; i++) {
1008                 init_rwsem(&sbi->write_io[i].io_rwsem);
1009                 sbi->write_io[i].sbi = sbi;
1010                 sbi->write_io[i].bio = NULL;
1011         }
1012
1013         init_rwsem(&sbi->cp_rwsem);
1014         init_waitqueue_head(&sbi->cp_wait);
1015         init_sb_info(sbi);
1016
1017         /* get an inode for meta space */
1018         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1019         if (IS_ERR(sbi->meta_inode)) {
1020                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1021                 err = PTR_ERR(sbi->meta_inode);
1022                 goto free_sb_buf;
1023         }
1024
1025         err = get_valid_checkpoint(sbi);
1026         if (err) {
1027                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1028                 goto free_meta_inode;
1029         }
1030
1031         /* sanity checking of checkpoint */
1032         err = -EINVAL;
1033         if (sanity_check_ckpt(sbi)) {
1034                 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
1035                 goto free_cp;
1036         }
1037
1038         sbi->total_valid_node_count =
1039                                 le32_to_cpu(sbi->ckpt->valid_node_count);
1040         sbi->total_valid_inode_count =
1041                                 le32_to_cpu(sbi->ckpt->valid_inode_count);
1042         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1043         sbi->total_valid_block_count =
1044                                 le64_to_cpu(sbi->ckpt->valid_block_count);
1045         sbi->last_valid_block_count = sbi->total_valid_block_count;
1046         sbi->alloc_valid_block_count = 0;
1047         INIT_LIST_HEAD(&sbi->dir_inode_list);
1048         spin_lock_init(&sbi->dir_inode_lock);
1049
1050         init_ino_entry_info(sbi);
1051
1052         /* setup f2fs internal modules */
1053         err = build_segment_manager(sbi);
1054         if (err) {
1055                 f2fs_msg(sb, KERN_ERR,
1056                         "Failed to initialize F2FS segment manager");
1057                 goto free_sm;
1058         }
1059         err = build_node_manager(sbi);
1060         if (err) {
1061                 f2fs_msg(sb, KERN_ERR,
1062                         "Failed to initialize F2FS node manager");
1063                 goto free_nm;
1064         }
1065
1066         build_gc_manager(sbi);
1067
1068         /* get an inode for node space */
1069         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1070         if (IS_ERR(sbi->node_inode)) {
1071                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1072                 err = PTR_ERR(sbi->node_inode);
1073                 goto free_nm;
1074         }
1075
1076         /* if there are nt orphan nodes free them */
1077         recover_orphan_inodes(sbi);
1078
1079         /* read root inode and dentry */
1080         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1081         if (IS_ERR(root)) {
1082                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1083                 err = PTR_ERR(root);
1084                 goto free_node_inode;
1085         }
1086         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1087                 iput(root);
1088                 err = -EINVAL;
1089                 goto free_node_inode;
1090         }
1091
1092         sb->s_root = d_make_root(root); /* allocate root dentry */
1093         if (!sb->s_root) {
1094                 err = -ENOMEM;
1095                 goto free_root_inode;
1096         }
1097
1098         err = f2fs_build_stats(sbi);
1099         if (err)
1100                 goto free_root_inode;
1101
1102         if (f2fs_proc_root)
1103                 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1104
1105         if (sbi->s_proc)
1106                 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1107                                  &f2fs_seq_segment_info_fops, sb);
1108
1109         if (test_opt(sbi, DISCARD)) {
1110                 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1111                 if (!blk_queue_discard(q))
1112                         f2fs_msg(sb, KERN_WARNING,
1113                                         "mounting with \"discard\" option, but "
1114                                         "the device does not support discard");
1115         }
1116
1117         sbi->s_kobj.kset = f2fs_kset;
1118         init_completion(&sbi->s_kobj_unregister);
1119         err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1120                                                         "%s", sb->s_id);
1121         if (err)
1122                 goto free_proc;
1123
1124         if (!retry)
1125                 sbi->need_fsck = true;
1126
1127         /* recover fsynced data */
1128         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1129                 err = recover_fsync_data(sbi);
1130                 if (err) {
1131                         f2fs_msg(sb, KERN_ERR,
1132                                 "Cannot recover all fsync data errno=%ld", err);
1133                         goto free_kobj;
1134                 }
1135         }
1136
1137         /*
1138          * If filesystem is not mounted as read-only then
1139          * do start the gc_thread.
1140          */
1141         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1142                 /* After POR, we can run background GC thread.*/
1143                 err = start_gc_thread(sbi);
1144                 if (err)
1145                         goto free_kobj;
1146         }
1147         return 0;
1148
1149 free_kobj:
1150         kobject_del(&sbi->s_kobj);
1151 free_proc:
1152         if (sbi->s_proc) {
1153                 remove_proc_entry("segment_info", sbi->s_proc);
1154                 remove_proc_entry(sb->s_id, f2fs_proc_root);
1155         }
1156         f2fs_destroy_stats(sbi);
1157 free_root_inode:
1158         dput(sb->s_root);
1159         sb->s_root = NULL;
1160 free_node_inode:
1161         iput(sbi->node_inode);
1162 free_nm:
1163         destroy_node_manager(sbi);
1164 free_sm:
1165         destroy_segment_manager(sbi);
1166 free_cp:
1167         kfree(sbi->ckpt);
1168 free_meta_inode:
1169         make_bad_inode(sbi->meta_inode);
1170         iput(sbi->meta_inode);
1171 free_sb_buf:
1172         brelse(raw_super_buf);
1173 free_sbi:
1174         kfree(sbi);
1175
1176         /* give only one another chance */
1177         if (retry) {
1178                 retry = 0;
1179                 shrink_dcache_sb(sb);
1180                 goto try_onemore;
1181         }
1182         return err;
1183 }
1184
1185 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1186                         const char *dev_name, void *data)
1187 {
1188         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1189 }
1190
1191 static struct file_system_type f2fs_fs_type = {
1192         .owner          = THIS_MODULE,
1193         .name           = "f2fs",
1194         .mount          = f2fs_mount,
1195         .kill_sb        = kill_block_super,
1196         .fs_flags       = FS_REQUIRES_DEV,
1197 };
1198 MODULE_ALIAS_FS("f2fs");
1199
1200 static int __init init_inodecache(void)
1201 {
1202         f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
1203                         sizeof(struct f2fs_inode_info));
1204         if (!f2fs_inode_cachep)
1205                 return -ENOMEM;
1206         return 0;
1207 }
1208
1209 static void destroy_inodecache(void)
1210 {
1211         /*
1212          * Make sure all delayed rcu free inodes are flushed before we
1213          * destroy cache.
1214          */
1215         rcu_barrier();
1216         kmem_cache_destroy(f2fs_inode_cachep);
1217 }
1218
1219 static int __init init_f2fs_fs(void)
1220 {
1221         int err;
1222
1223         err = init_inodecache();
1224         if (err)
1225                 goto fail;
1226         err = create_node_manager_caches();
1227         if (err)
1228                 goto free_inodecache;
1229         err = create_segment_manager_caches();
1230         if (err)
1231                 goto free_node_manager_caches;
1232         err = create_gc_caches();
1233         if (err)
1234                 goto free_segment_manager_caches;
1235         err = create_checkpoint_caches();
1236         if (err)
1237                 goto free_gc_caches;
1238         f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1239         if (!f2fs_kset) {
1240                 err = -ENOMEM;
1241                 goto free_checkpoint_caches;
1242         }
1243         err = register_filesystem(&f2fs_fs_type);
1244         if (err)
1245                 goto free_kset;
1246         f2fs_create_root_stats();
1247         f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1248         return 0;
1249
1250 free_kset:
1251         kset_unregister(f2fs_kset);
1252 free_checkpoint_caches:
1253         destroy_checkpoint_caches();
1254 free_gc_caches:
1255         destroy_gc_caches();
1256 free_segment_manager_caches:
1257         destroy_segment_manager_caches();
1258 free_node_manager_caches:
1259         destroy_node_manager_caches();
1260 free_inodecache:
1261         destroy_inodecache();
1262 fail:
1263         return err;
1264 }
1265
1266 static void __exit exit_f2fs_fs(void)
1267 {
1268         remove_proc_entry("fs/f2fs", NULL);
1269         f2fs_destroy_root_stats();
1270         unregister_filesystem(&f2fs_fs_type);
1271         destroy_checkpoint_caches();
1272         destroy_gc_caches();
1273         destroy_segment_manager_caches();
1274         destroy_node_manager_caches();
1275         destroy_inodecache();
1276         kset_unregister(f2fs_kset);
1277 }
1278
1279 module_init(init_f2fs_fs)
1280 module_exit(exit_f2fs_fs)
1281
1282 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1283 MODULE_DESCRIPTION("Flash Friendly File System");
1284 MODULE_LICENSE("GPL");