Merge tag 'sound-3.15-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[pandora-kernel.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29  * We guarantee no failure on the returned page.
30  */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33         struct address_space *mapping = META_MAPPING(sbi);
34         struct page *page = NULL;
35 repeat:
36         page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
37         if (!page) {
38                 cond_resched();
39                 goto repeat;
40         }
41
42         SetPageUptodate(page);
43         return page;
44 }
45
46 /*
47  * We guarantee no failure on the returned page.
48  */
49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
50 {
51         struct address_space *mapping = META_MAPPING(sbi);
52         struct page *page;
53 repeat:
54         page = grab_cache_page(mapping, index);
55         if (!page) {
56                 cond_resched();
57                 goto repeat;
58         }
59         if (PageUptodate(page))
60                 goto out;
61
62         if (f2fs_submit_page_bio(sbi, page, index,
63                                 READ_SYNC | REQ_META | REQ_PRIO))
64                 goto repeat;
65
66         lock_page(page);
67         if (unlikely(page->mapping != mapping)) {
68                 f2fs_put_page(page, 1);
69                 goto repeat;
70         }
71 out:
72         mark_page_accessed(page);
73         return page;
74 }
75
76 inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
77 {
78         switch (type) {
79         case META_NAT:
80                 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
81         case META_SIT:
82                 return SIT_BLK_CNT(sbi);
83         case META_SSA:
84         case META_CP:
85                 return 0;
86         default:
87                 BUG();
88         }
89 }
90
91 /*
92  * Readahead CP/NAT/SIT/SSA pages
93  */
94 int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
95 {
96         block_t prev_blk_addr = 0;
97         struct page *page;
98         int blkno = start;
99         int max_blks = get_max_meta_blks(sbi, type);
100
101         struct f2fs_io_info fio = {
102                 .type = META,
103                 .rw = READ_SYNC | REQ_META | REQ_PRIO
104         };
105
106         for (; nrpages-- > 0; blkno++) {
107                 block_t blk_addr;
108
109                 switch (type) {
110                 case META_NAT:
111                         /* get nat block addr */
112                         if (unlikely(blkno >= max_blks))
113                                 blkno = 0;
114                         blk_addr = current_nat_addr(sbi,
115                                         blkno * NAT_ENTRY_PER_BLOCK);
116                         break;
117                 case META_SIT:
118                         /* get sit block addr */
119                         if (unlikely(blkno >= max_blks))
120                                 goto out;
121                         blk_addr = current_sit_addr(sbi,
122                                         blkno * SIT_ENTRY_PER_BLOCK);
123                         if (blkno != start && prev_blk_addr + 1 != blk_addr)
124                                 goto out;
125                         prev_blk_addr = blk_addr;
126                         break;
127                 case META_SSA:
128                 case META_CP:
129                         /* get ssa/cp block addr */
130                         blk_addr = blkno;
131                         break;
132                 default:
133                         BUG();
134                 }
135
136                 page = grab_cache_page(META_MAPPING(sbi), blk_addr);
137                 if (!page)
138                         continue;
139                 if (PageUptodate(page)) {
140                         mark_page_accessed(page);
141                         f2fs_put_page(page, 1);
142                         continue;
143                 }
144
145                 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
146                 mark_page_accessed(page);
147                 f2fs_put_page(page, 0);
148         }
149 out:
150         f2fs_submit_merged_bio(sbi, META, READ);
151         return blkno - start;
152 }
153
154 static int f2fs_write_meta_page(struct page *page,
155                                 struct writeback_control *wbc)
156 {
157         struct inode *inode = page->mapping->host;
158         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
159
160         if (unlikely(sbi->por_doing))
161                 goto redirty_out;
162         if (wbc->for_reclaim)
163                 goto redirty_out;
164
165         /* Should not write any meta pages, if any IO error was occurred */
166         if (unlikely(is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
167                 goto no_write;
168
169         f2fs_wait_on_page_writeback(page, META);
170         write_meta_page(sbi, page);
171 no_write:
172         dec_page_count(sbi, F2FS_DIRTY_META);
173         unlock_page(page);
174         return 0;
175
176 redirty_out:
177         dec_page_count(sbi, F2FS_DIRTY_META);
178         wbc->pages_skipped++;
179         account_page_redirty(page);
180         set_page_dirty(page);
181         return AOP_WRITEPAGE_ACTIVATE;
182 }
183
184 static int f2fs_write_meta_pages(struct address_space *mapping,
185                                 struct writeback_control *wbc)
186 {
187         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
188         long diff, written;
189
190         /* collect a number of dirty meta pages and write together */
191         if (wbc->for_kupdate ||
192                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
193                 goto skip_write;
194
195         /* if mounting is failed, skip writing node pages */
196         mutex_lock(&sbi->cp_mutex);
197         diff = nr_pages_to_write(sbi, META, wbc);
198         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
199         mutex_unlock(&sbi->cp_mutex);
200         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
201         return 0;
202
203 skip_write:
204         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
205         return 0;
206 }
207
208 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
209                                                 long nr_to_write)
210 {
211         struct address_space *mapping = META_MAPPING(sbi);
212         pgoff_t index = 0, end = LONG_MAX;
213         struct pagevec pvec;
214         long nwritten = 0;
215         struct writeback_control wbc = {
216                 .for_reclaim = 0,
217         };
218
219         pagevec_init(&pvec, 0);
220
221         while (index <= end) {
222                 int i, nr_pages;
223                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
224                                 PAGECACHE_TAG_DIRTY,
225                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
226                 if (unlikely(nr_pages == 0))
227                         break;
228
229                 for (i = 0; i < nr_pages; i++) {
230                         struct page *page = pvec.pages[i];
231
232                         lock_page(page);
233
234                         if (unlikely(page->mapping != mapping)) {
235 continue_unlock:
236                                 unlock_page(page);
237                                 continue;
238                         }
239                         if (!PageDirty(page)) {
240                                 /* someone wrote it for us */
241                                 goto continue_unlock;
242                         }
243
244                         if (!clear_page_dirty_for_io(page))
245                                 goto continue_unlock;
246
247                         if (f2fs_write_meta_page(page, &wbc)) {
248                                 unlock_page(page);
249                                 break;
250                         }
251                         nwritten++;
252                         if (unlikely(nwritten >= nr_to_write))
253                                 break;
254                 }
255                 pagevec_release(&pvec);
256                 cond_resched();
257         }
258
259         if (nwritten)
260                 f2fs_submit_merged_bio(sbi, type, WRITE);
261
262         return nwritten;
263 }
264
265 static int f2fs_set_meta_page_dirty(struct page *page)
266 {
267         struct address_space *mapping = page->mapping;
268         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
269
270         trace_f2fs_set_page_dirty(page, META);
271
272         SetPageUptodate(page);
273         if (!PageDirty(page)) {
274                 __set_page_dirty_nobuffers(page);
275                 inc_page_count(sbi, F2FS_DIRTY_META);
276                 return 1;
277         }
278         return 0;
279 }
280
281 const struct address_space_operations f2fs_meta_aops = {
282         .writepage      = f2fs_write_meta_page,
283         .writepages     = f2fs_write_meta_pages,
284         .set_page_dirty = f2fs_set_meta_page_dirty,
285 };
286
287 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
288 {
289         int err = 0;
290
291         spin_lock(&sbi->orphan_inode_lock);
292         if (unlikely(sbi->n_orphans >= sbi->max_orphans))
293                 err = -ENOSPC;
294         else
295                 sbi->n_orphans++;
296         spin_unlock(&sbi->orphan_inode_lock);
297
298         return err;
299 }
300
301 void release_orphan_inode(struct f2fs_sb_info *sbi)
302 {
303         spin_lock(&sbi->orphan_inode_lock);
304         f2fs_bug_on(sbi->n_orphans == 0);
305         sbi->n_orphans--;
306         spin_unlock(&sbi->orphan_inode_lock);
307 }
308
309 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
310 {
311         struct list_head *head;
312         struct orphan_inode_entry *new, *orphan;
313
314         new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
315         new->ino = ino;
316
317         spin_lock(&sbi->orphan_inode_lock);
318         head = &sbi->orphan_inode_list;
319         list_for_each_entry(orphan, head, list) {
320                 if (orphan->ino == ino) {
321                         spin_unlock(&sbi->orphan_inode_lock);
322                         kmem_cache_free(orphan_entry_slab, new);
323                         return;
324                 }
325
326                 if (orphan->ino > ino)
327                         break;
328         }
329
330         /* add new orphan entry into list which is sorted by inode number */
331         list_add_tail(&new->list, &orphan->list);
332         spin_unlock(&sbi->orphan_inode_lock);
333 }
334
335 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
336 {
337         struct list_head *head;
338         struct orphan_inode_entry *orphan;
339
340         spin_lock(&sbi->orphan_inode_lock);
341         head = &sbi->orphan_inode_list;
342         list_for_each_entry(orphan, head, list) {
343                 if (orphan->ino == ino) {
344                         list_del(&orphan->list);
345                         f2fs_bug_on(sbi->n_orphans == 0);
346                         sbi->n_orphans--;
347                         spin_unlock(&sbi->orphan_inode_lock);
348                         kmem_cache_free(orphan_entry_slab, orphan);
349                         return;
350                 }
351         }
352         spin_unlock(&sbi->orphan_inode_lock);
353 }
354
355 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
356 {
357         struct inode *inode = f2fs_iget(sbi->sb, ino);
358         f2fs_bug_on(IS_ERR(inode));
359         clear_nlink(inode);
360
361         /* truncate all the data during iput */
362         iput(inode);
363 }
364
365 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
366 {
367         block_t start_blk, orphan_blkaddr, i, j;
368
369         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
370                 return;
371
372         sbi->por_doing = true;
373         start_blk = __start_cp_addr(sbi) + 1;
374         orphan_blkaddr = __start_sum_addr(sbi) - 1;
375
376         ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
377
378         for (i = 0; i < orphan_blkaddr; i++) {
379                 struct page *page = get_meta_page(sbi, start_blk + i);
380                 struct f2fs_orphan_block *orphan_blk;
381
382                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
383                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
384                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
385                         recover_orphan_inode(sbi, ino);
386                 }
387                 f2fs_put_page(page, 1);
388         }
389         /* clear Orphan Flag */
390         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
391         sbi->por_doing = false;
392         return;
393 }
394
395 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
396 {
397         struct list_head *head;
398         struct f2fs_orphan_block *orphan_blk = NULL;
399         unsigned int nentries = 0;
400         unsigned short index;
401         unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
402                 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
403         struct page *page = NULL;
404         struct orphan_inode_entry *orphan = NULL;
405
406         for (index = 0; index < orphan_blocks; index++)
407                 grab_meta_page(sbi, start_blk + index);
408
409         index = 1;
410         spin_lock(&sbi->orphan_inode_lock);
411         head = &sbi->orphan_inode_list;
412
413         /* loop for each orphan inode entry and write them in Jornal block */
414         list_for_each_entry(orphan, head, list) {
415                 if (!page) {
416                         page = find_get_page(META_MAPPING(sbi), start_blk++);
417                         f2fs_bug_on(!page);
418                         orphan_blk =
419                                 (struct f2fs_orphan_block *)page_address(page);
420                         memset(orphan_blk, 0, sizeof(*orphan_blk));
421                         f2fs_put_page(page, 0);
422                 }
423
424                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
425
426                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
427                         /*
428                          * an orphan block is full of 1020 entries,
429                          * then we need to flush current orphan blocks
430                          * and bring another one in memory
431                          */
432                         orphan_blk->blk_addr = cpu_to_le16(index);
433                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
434                         orphan_blk->entry_count = cpu_to_le32(nentries);
435                         set_page_dirty(page);
436                         f2fs_put_page(page, 1);
437                         index++;
438                         nentries = 0;
439                         page = NULL;
440                 }
441         }
442
443         if (page) {
444                 orphan_blk->blk_addr = cpu_to_le16(index);
445                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
446                 orphan_blk->entry_count = cpu_to_le32(nentries);
447                 set_page_dirty(page);
448                 f2fs_put_page(page, 1);
449         }
450
451         spin_unlock(&sbi->orphan_inode_lock);
452 }
453
454 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
455                                 block_t cp_addr, unsigned long long *version)
456 {
457         struct page *cp_page_1, *cp_page_2 = NULL;
458         unsigned long blk_size = sbi->blocksize;
459         struct f2fs_checkpoint *cp_block;
460         unsigned long long cur_version = 0, pre_version = 0;
461         size_t crc_offset;
462         __u32 crc = 0;
463
464         /* Read the 1st cp block in this CP pack */
465         cp_page_1 = get_meta_page(sbi, cp_addr);
466
467         /* get the version number */
468         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
469         crc_offset = le32_to_cpu(cp_block->checksum_offset);
470         if (crc_offset >= blk_size)
471                 goto invalid_cp1;
472
473         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
474         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
475                 goto invalid_cp1;
476
477         pre_version = cur_cp_version(cp_block);
478
479         /* Read the 2nd cp block in this CP pack */
480         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
481         cp_page_2 = get_meta_page(sbi, cp_addr);
482
483         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
484         crc_offset = le32_to_cpu(cp_block->checksum_offset);
485         if (crc_offset >= blk_size)
486                 goto invalid_cp2;
487
488         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
489         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
490                 goto invalid_cp2;
491
492         cur_version = cur_cp_version(cp_block);
493
494         if (cur_version == pre_version) {
495                 *version = cur_version;
496                 f2fs_put_page(cp_page_2, 1);
497                 return cp_page_1;
498         }
499 invalid_cp2:
500         f2fs_put_page(cp_page_2, 1);
501 invalid_cp1:
502         f2fs_put_page(cp_page_1, 1);
503         return NULL;
504 }
505
506 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
507 {
508         struct f2fs_checkpoint *cp_block;
509         struct f2fs_super_block *fsb = sbi->raw_super;
510         struct page *cp1, *cp2, *cur_page;
511         unsigned long blk_size = sbi->blocksize;
512         unsigned long long cp1_version = 0, cp2_version = 0;
513         unsigned long long cp_start_blk_no;
514
515         sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
516         if (!sbi->ckpt)
517                 return -ENOMEM;
518         /*
519          * Finding out valid cp block involves read both
520          * sets( cp pack1 and cp pack 2)
521          */
522         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
523         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
524
525         /* The second checkpoint pack should start at the next segment */
526         cp_start_blk_no += ((unsigned long long)1) <<
527                                 le32_to_cpu(fsb->log_blocks_per_seg);
528         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
529
530         if (cp1 && cp2) {
531                 if (ver_after(cp2_version, cp1_version))
532                         cur_page = cp2;
533                 else
534                         cur_page = cp1;
535         } else if (cp1) {
536                 cur_page = cp1;
537         } else if (cp2) {
538                 cur_page = cp2;
539         } else {
540                 goto fail_no_cp;
541         }
542
543         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
544         memcpy(sbi->ckpt, cp_block, blk_size);
545
546         f2fs_put_page(cp1, 1);
547         f2fs_put_page(cp2, 1);
548         return 0;
549
550 fail_no_cp:
551         kfree(sbi->ckpt);
552         return -EINVAL;
553 }
554
555 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
556 {
557         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
558         struct list_head *head = &sbi->dir_inode_list;
559         struct dir_inode_entry *entry;
560
561         list_for_each_entry(entry, head, list)
562                 if (unlikely(entry->inode == inode))
563                         return -EEXIST;
564
565         list_add_tail(&new->list, head);
566         stat_inc_dirty_dir(sbi);
567         return 0;
568 }
569
570 void set_dirty_dir_page(struct inode *inode, struct page *page)
571 {
572         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
573         struct dir_inode_entry *new;
574         int ret = 0;
575
576         if (!S_ISDIR(inode->i_mode))
577                 return;
578
579         new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
580         new->inode = inode;
581         INIT_LIST_HEAD(&new->list);
582
583         spin_lock(&sbi->dir_inode_lock);
584         ret = __add_dirty_inode(inode, new);
585         inode_inc_dirty_dents(inode);
586         SetPagePrivate(page);
587         spin_unlock(&sbi->dir_inode_lock);
588
589         if (ret)
590                 kmem_cache_free(inode_entry_slab, new);
591 }
592
593 void add_dirty_dir_inode(struct inode *inode)
594 {
595         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
596         struct dir_inode_entry *new =
597                         f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
598         int ret = 0;
599
600         new->inode = inode;
601         INIT_LIST_HEAD(&new->list);
602
603         spin_lock(&sbi->dir_inode_lock);
604         ret = __add_dirty_inode(inode, new);
605         spin_unlock(&sbi->dir_inode_lock);
606
607         if (ret)
608                 kmem_cache_free(inode_entry_slab, new);
609 }
610
611 void remove_dirty_dir_inode(struct inode *inode)
612 {
613         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
614         struct list_head *head;
615         struct dir_inode_entry *entry;
616
617         if (!S_ISDIR(inode->i_mode))
618                 return;
619
620         spin_lock(&sbi->dir_inode_lock);
621         if (get_dirty_dents(inode)) {
622                 spin_unlock(&sbi->dir_inode_lock);
623                 return;
624         }
625
626         head = &sbi->dir_inode_list;
627         list_for_each_entry(entry, head, list) {
628                 if (entry->inode == inode) {
629                         list_del(&entry->list);
630                         stat_dec_dirty_dir(sbi);
631                         spin_unlock(&sbi->dir_inode_lock);
632                         kmem_cache_free(inode_entry_slab, entry);
633                         goto done;
634                 }
635         }
636         spin_unlock(&sbi->dir_inode_lock);
637
638 done:
639         /* Only from the recovery routine */
640         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
641                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
642                 iput(inode);
643         }
644 }
645
646 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
647 {
648
649         struct list_head *head;
650         struct inode *inode = NULL;
651         struct dir_inode_entry *entry;
652
653         spin_lock(&sbi->dir_inode_lock);
654
655         head = &sbi->dir_inode_list;
656         list_for_each_entry(entry, head, list) {
657                 if (entry->inode->i_ino == ino) {
658                         inode = entry->inode;
659                         break;
660                 }
661         }
662         spin_unlock(&sbi->dir_inode_lock);
663         return inode;
664 }
665
666 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
667 {
668         struct list_head *head;
669         struct dir_inode_entry *entry;
670         struct inode *inode;
671 retry:
672         spin_lock(&sbi->dir_inode_lock);
673
674         head = &sbi->dir_inode_list;
675         if (list_empty(head)) {
676                 spin_unlock(&sbi->dir_inode_lock);
677                 return;
678         }
679         entry = list_entry(head->next, struct dir_inode_entry, list);
680         inode = igrab(entry->inode);
681         spin_unlock(&sbi->dir_inode_lock);
682         if (inode) {
683                 filemap_fdatawrite(inode->i_mapping);
684                 iput(inode);
685         } else {
686                 /*
687                  * We should submit bio, since it exists several
688                  * wribacking dentry pages in the freeing inode.
689                  */
690                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
691         }
692         goto retry;
693 }
694
695 /*
696  * Freeze all the FS-operations for checkpoint.
697  */
698 static void block_operations(struct f2fs_sb_info *sbi)
699 {
700         struct writeback_control wbc = {
701                 .sync_mode = WB_SYNC_ALL,
702                 .nr_to_write = LONG_MAX,
703                 .for_reclaim = 0,
704         };
705         struct blk_plug plug;
706
707         blk_start_plug(&plug);
708
709 retry_flush_dents:
710         f2fs_lock_all(sbi);
711         /* write all the dirty dentry pages */
712         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
713                 f2fs_unlock_all(sbi);
714                 sync_dirty_dir_inodes(sbi);
715                 goto retry_flush_dents;
716         }
717
718         /*
719          * POR: we should ensure that there is no dirty node pages
720          * until finishing nat/sit flush.
721          */
722 retry_flush_nodes:
723         mutex_lock(&sbi->node_write);
724
725         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
726                 mutex_unlock(&sbi->node_write);
727                 sync_node_pages(sbi, 0, &wbc);
728                 goto retry_flush_nodes;
729         }
730         blk_finish_plug(&plug);
731 }
732
733 static void unblock_operations(struct f2fs_sb_info *sbi)
734 {
735         mutex_unlock(&sbi->node_write);
736         f2fs_unlock_all(sbi);
737 }
738
739 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
740 {
741         DEFINE_WAIT(wait);
742
743         for (;;) {
744                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
745
746                 if (!get_pages(sbi, F2FS_WRITEBACK))
747                         break;
748
749                 io_schedule();
750         }
751         finish_wait(&sbi->cp_wait, &wait);
752 }
753
754 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
755 {
756         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
757         nid_t last_nid = 0;
758         block_t start_blk;
759         struct page *cp_page;
760         unsigned int data_sum_blocks, orphan_blocks;
761         __u32 crc32 = 0;
762         void *kaddr;
763         int i;
764
765         /* Flush all the NAT/SIT pages */
766         while (get_pages(sbi, F2FS_DIRTY_META))
767                 sync_meta_pages(sbi, META, LONG_MAX);
768
769         next_free_nid(sbi, &last_nid);
770
771         /*
772          * modify checkpoint
773          * version number is already updated
774          */
775         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
776         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
777         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
778         for (i = 0; i < 3; i++) {
779                 ckpt->cur_node_segno[i] =
780                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
781                 ckpt->cur_node_blkoff[i] =
782                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
783                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
784                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
785         }
786         for (i = 0; i < 3; i++) {
787                 ckpt->cur_data_segno[i] =
788                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
789                 ckpt->cur_data_blkoff[i] =
790                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
791                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
792                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
793         }
794
795         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
796         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
797         ckpt->next_free_nid = cpu_to_le32(last_nid);
798
799         /* 2 cp  + n data seg summary + orphan inode blocks */
800         data_sum_blocks = npages_for_summary_flush(sbi);
801         if (data_sum_blocks < 3)
802                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
803         else
804                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
805
806         orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
807                                         / F2FS_ORPHANS_PER_BLOCK;
808         ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
809
810         if (is_umount) {
811                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
812                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
813                         data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
814         } else {
815                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
816                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
817                         data_sum_blocks + orphan_blocks);
818         }
819
820         if (sbi->n_orphans)
821                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
822         else
823                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
824
825         /* update SIT/NAT bitmap */
826         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
827         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
828
829         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
830         *((__le32 *)((unsigned char *)ckpt +
831                                 le32_to_cpu(ckpt->checksum_offset)))
832                                 = cpu_to_le32(crc32);
833
834         start_blk = __start_cp_addr(sbi);
835
836         /* write out checkpoint buffer at block 0 */
837         cp_page = grab_meta_page(sbi, start_blk++);
838         kaddr = page_address(cp_page);
839         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
840         set_page_dirty(cp_page);
841         f2fs_put_page(cp_page, 1);
842
843         if (sbi->n_orphans) {
844                 write_orphan_inodes(sbi, start_blk);
845                 start_blk += orphan_blocks;
846         }
847
848         write_data_summaries(sbi, start_blk);
849         start_blk += data_sum_blocks;
850         if (is_umount) {
851                 write_node_summaries(sbi, start_blk);
852                 start_blk += NR_CURSEG_NODE_TYPE;
853         }
854
855         /* writeout checkpoint block */
856         cp_page = grab_meta_page(sbi, start_blk);
857         kaddr = page_address(cp_page);
858         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
859         set_page_dirty(cp_page);
860         f2fs_put_page(cp_page, 1);
861
862         /* wait for previous submitted node/meta pages writeback */
863         wait_on_all_pages_writeback(sbi);
864
865         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
866         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
867
868         /* update user_block_counts */
869         sbi->last_valid_block_count = sbi->total_valid_block_count;
870         sbi->alloc_valid_block_count = 0;
871
872         /* Here, we only have one bio having CP pack */
873         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
874
875         if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
876                 clear_prefree_segments(sbi);
877                 F2FS_RESET_SB_DIRT(sbi);
878         }
879 }
880
881 /*
882  * We guarantee that this checkpoint procedure should not fail.
883  */
884 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
885 {
886         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
887         unsigned long long ckpt_ver;
888
889         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
890
891         mutex_lock(&sbi->cp_mutex);
892         block_operations(sbi);
893
894         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
895
896         f2fs_submit_merged_bio(sbi, DATA, WRITE);
897         f2fs_submit_merged_bio(sbi, NODE, WRITE);
898         f2fs_submit_merged_bio(sbi, META, WRITE);
899
900         /*
901          * update checkpoint pack index
902          * Increase the version number so that
903          * SIT entries and seg summaries are written at correct place
904          */
905         ckpt_ver = cur_cp_version(ckpt);
906         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
907
908         /* write cached NAT/SIT entries to NAT/SIT area */
909         flush_nat_entries(sbi);
910         flush_sit_entries(sbi);
911
912         /* unlock all the fs_lock[] in do_checkpoint() */
913         do_checkpoint(sbi, is_umount);
914
915         unblock_operations(sbi);
916         mutex_unlock(&sbi->cp_mutex);
917
918         stat_inc_cp_count(sbi->stat_info);
919         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
920 }
921
922 void init_orphan_info(struct f2fs_sb_info *sbi)
923 {
924         spin_lock_init(&sbi->orphan_inode_lock);
925         INIT_LIST_HEAD(&sbi->orphan_inode_list);
926         sbi->n_orphans = 0;
927         /*
928          * considering 512 blocks in a segment 8 blocks are needed for cp
929          * and log segment summaries. Remaining blocks are used to keep
930          * orphan entries with the limitation one reserved segment
931          * for cp pack we can have max 1020*504 orphan entries
932          */
933         sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
934                                 * F2FS_ORPHANS_PER_BLOCK;
935 }
936
937 int __init create_checkpoint_caches(void)
938 {
939         orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
940                         sizeof(struct orphan_inode_entry));
941         if (!orphan_entry_slab)
942                 return -ENOMEM;
943         inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
944                         sizeof(struct dir_inode_entry));
945         if (!inode_entry_slab) {
946                 kmem_cache_destroy(orphan_entry_slab);
947                 return -ENOMEM;
948         }
949         return 0;
950 }
951
952 void destroy_checkpoint_caches(void)
953 {
954         kmem_cache_destroy(orphan_entry_slab);
955         kmem_cache_destroy(inode_entry_slab);
956 }