s390/pgtable: fix ipte notify bit
[pandora-kernel.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23
24 static struct kmem_cache *orphan_entry_slab;
25 static struct kmem_cache *inode_entry_slab;
26
27 /*
28  * We guarantee no failure on the returned page.
29  */
30 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
31 {
32         struct address_space *mapping = sbi->meta_inode->i_mapping;
33         struct page *page = NULL;
34 repeat:
35         page = grab_cache_page(mapping, index);
36         if (!page) {
37                 cond_resched();
38                 goto repeat;
39         }
40
41         /* We wait writeback only inside grab_meta_page() */
42         wait_on_page_writeback(page);
43         SetPageUptodate(page);
44         return page;
45 }
46
47 /*
48  * We guarantee no failure on the returned page.
49  */
50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
51 {
52         struct address_space *mapping = sbi->meta_inode->i_mapping;
53         struct page *page;
54 repeat:
55         page = grab_cache_page(mapping, index);
56         if (!page) {
57                 cond_resched();
58                 goto repeat;
59         }
60         if (f2fs_readpage(sbi, page, index, READ_SYNC)) {
61                 f2fs_put_page(page, 1);
62                 goto repeat;
63         }
64         mark_page_accessed(page);
65
66         /* We do not allow returning an errorneous page */
67         return page;
68 }
69
70 static int f2fs_write_meta_page(struct page *page,
71                                 struct writeback_control *wbc)
72 {
73         struct inode *inode = page->mapping->host;
74         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
75
76         /* Should not write any meta pages, if any IO error was occurred */
77         if (wbc->for_reclaim ||
78                         is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) {
79                 dec_page_count(sbi, F2FS_DIRTY_META);
80                 wbc->pages_skipped++;
81                 set_page_dirty(page);
82                 return AOP_WRITEPAGE_ACTIVATE;
83         }
84
85         wait_on_page_writeback(page);
86
87         write_meta_page(sbi, page);
88         dec_page_count(sbi, F2FS_DIRTY_META);
89         unlock_page(page);
90         return 0;
91 }
92
93 static int f2fs_write_meta_pages(struct address_space *mapping,
94                                 struct writeback_control *wbc)
95 {
96         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
97         struct block_device *bdev = sbi->sb->s_bdev;
98         long written;
99
100         if (wbc->for_kupdate)
101                 return 0;
102
103         if (get_pages(sbi, F2FS_DIRTY_META) == 0)
104                 return 0;
105
106         /* if mounting is failed, skip writing node pages */
107         mutex_lock(&sbi->cp_mutex);
108         written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
109         mutex_unlock(&sbi->cp_mutex);
110         wbc->nr_to_write -= written;
111         return 0;
112 }
113
114 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
115                                                 long nr_to_write)
116 {
117         struct address_space *mapping = sbi->meta_inode->i_mapping;
118         pgoff_t index = 0, end = LONG_MAX;
119         struct pagevec pvec;
120         long nwritten = 0;
121         struct writeback_control wbc = {
122                 .for_reclaim = 0,
123         };
124
125         pagevec_init(&pvec, 0);
126
127         while (index <= end) {
128                 int i, nr_pages;
129                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
130                                 PAGECACHE_TAG_DIRTY,
131                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
132                 if (nr_pages == 0)
133                         break;
134
135                 for (i = 0; i < nr_pages; i++) {
136                         struct page *page = pvec.pages[i];
137                         lock_page(page);
138                         BUG_ON(page->mapping != mapping);
139                         BUG_ON(!PageDirty(page));
140                         clear_page_dirty_for_io(page);
141                         if (f2fs_write_meta_page(page, &wbc)) {
142                                 unlock_page(page);
143                                 break;
144                         }
145                         if (nwritten++ >= nr_to_write)
146                                 break;
147                 }
148                 pagevec_release(&pvec);
149                 cond_resched();
150         }
151
152         if (nwritten)
153                 f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
154
155         return nwritten;
156 }
157
158 static int f2fs_set_meta_page_dirty(struct page *page)
159 {
160         struct address_space *mapping = page->mapping;
161         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
162
163         SetPageUptodate(page);
164         if (!PageDirty(page)) {
165                 __set_page_dirty_nobuffers(page);
166                 inc_page_count(sbi, F2FS_DIRTY_META);
167                 return 1;
168         }
169         return 0;
170 }
171
172 const struct address_space_operations f2fs_meta_aops = {
173         .writepage      = f2fs_write_meta_page,
174         .writepages     = f2fs_write_meta_pages,
175         .set_page_dirty = f2fs_set_meta_page_dirty,
176 };
177
178 int check_orphan_space(struct f2fs_sb_info *sbi)
179 {
180         unsigned int max_orphans;
181         int err = 0;
182
183         /*
184          * considering 512 blocks in a segment 5 blocks are needed for cp
185          * and log segment summaries. Remaining blocks are used to keep
186          * orphan entries with the limitation one reserved segment
187          * for cp pack we can have max 1020*507 orphan entries
188          */
189         max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
190         mutex_lock(&sbi->orphan_inode_mutex);
191         if (sbi->n_orphans >= max_orphans)
192                 err = -ENOSPC;
193         mutex_unlock(&sbi->orphan_inode_mutex);
194         return err;
195 }
196
197 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
198 {
199         struct list_head *head, *this;
200         struct orphan_inode_entry *new = NULL, *orphan = NULL;
201
202         mutex_lock(&sbi->orphan_inode_mutex);
203         head = &sbi->orphan_inode_list;
204         list_for_each(this, head) {
205                 orphan = list_entry(this, struct orphan_inode_entry, list);
206                 if (orphan->ino == ino)
207                         goto out;
208                 if (orphan->ino > ino)
209                         break;
210                 orphan = NULL;
211         }
212 retry:
213         new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
214         if (!new) {
215                 cond_resched();
216                 goto retry;
217         }
218         new->ino = ino;
219
220         /* add new_oentry into list which is sorted by inode number */
221         if (orphan)
222                 list_add(&new->list, this->prev);
223         else
224                 list_add_tail(&new->list, head);
225
226         sbi->n_orphans++;
227 out:
228         mutex_unlock(&sbi->orphan_inode_mutex);
229 }
230
231 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
232 {
233         struct list_head *this, *next, *head;
234         struct orphan_inode_entry *orphan;
235
236         mutex_lock(&sbi->orphan_inode_mutex);
237         head = &sbi->orphan_inode_list;
238         list_for_each_safe(this, next, head) {
239                 orphan = list_entry(this, struct orphan_inode_entry, list);
240                 if (orphan->ino == ino) {
241                         list_del(&orphan->list);
242                         kmem_cache_free(orphan_entry_slab, orphan);
243                         sbi->n_orphans--;
244                         break;
245                 }
246         }
247         mutex_unlock(&sbi->orphan_inode_mutex);
248 }
249
250 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
251 {
252         struct inode *inode = f2fs_iget(sbi->sb, ino);
253         BUG_ON(IS_ERR(inode));
254         clear_nlink(inode);
255
256         /* truncate all the data during iput */
257         iput(inode);
258 }
259
260 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
261 {
262         block_t start_blk, orphan_blkaddr, i, j;
263
264         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
265                 return 0;
266
267         sbi->por_doing = 1;
268         start_blk = __start_cp_addr(sbi) + 1;
269         orphan_blkaddr = __start_sum_addr(sbi) - 1;
270
271         for (i = 0; i < orphan_blkaddr; i++) {
272                 struct page *page = get_meta_page(sbi, start_blk + i);
273                 struct f2fs_orphan_block *orphan_blk;
274
275                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
276                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
277                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
278                         recover_orphan_inode(sbi, ino);
279                 }
280                 f2fs_put_page(page, 1);
281         }
282         /* clear Orphan Flag */
283         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
284         sbi->por_doing = 0;
285         return 0;
286 }
287
288 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
289 {
290         struct list_head *head, *this, *next;
291         struct f2fs_orphan_block *orphan_blk = NULL;
292         struct page *page = NULL;
293         unsigned int nentries = 0;
294         unsigned short index = 1;
295         unsigned short orphan_blocks;
296
297         orphan_blocks = (unsigned short)((sbi->n_orphans +
298                 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
299
300         mutex_lock(&sbi->orphan_inode_mutex);
301         head = &sbi->orphan_inode_list;
302
303         /* loop for each orphan inode entry and write them in Jornal block */
304         list_for_each_safe(this, next, head) {
305                 struct orphan_inode_entry *orphan;
306
307                 orphan = list_entry(this, struct orphan_inode_entry, list);
308
309                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
310                         /*
311                          * an orphan block is full of 1020 entries,
312                          * then we need to flush current orphan blocks
313                          * and bring another one in memory
314                          */
315                         orphan_blk->blk_addr = cpu_to_le16(index);
316                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
317                         orphan_blk->entry_count = cpu_to_le32(nentries);
318                         set_page_dirty(page);
319                         f2fs_put_page(page, 1);
320                         index++;
321                         start_blk++;
322                         nentries = 0;
323                         page = NULL;
324                 }
325                 if (page)
326                         goto page_exist;
327
328                 page = grab_meta_page(sbi, start_blk);
329                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
330                 memset(orphan_blk, 0, sizeof(*orphan_blk));
331 page_exist:
332                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
333         }
334         if (!page)
335                 goto end;
336
337         orphan_blk->blk_addr = cpu_to_le16(index);
338         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
339         orphan_blk->entry_count = cpu_to_le32(nentries);
340         set_page_dirty(page);
341         f2fs_put_page(page, 1);
342 end:
343         mutex_unlock(&sbi->orphan_inode_mutex);
344 }
345
346 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
347                                 block_t cp_addr, unsigned long long *version)
348 {
349         struct page *cp_page_1, *cp_page_2 = NULL;
350         unsigned long blk_size = sbi->blocksize;
351         struct f2fs_checkpoint *cp_block;
352         unsigned long long cur_version = 0, pre_version = 0;
353         unsigned int crc = 0;
354         size_t crc_offset;
355
356         /* Read the 1st cp block in this CP pack */
357         cp_page_1 = get_meta_page(sbi, cp_addr);
358
359         /* get the version number */
360         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
361         crc_offset = le32_to_cpu(cp_block->checksum_offset);
362         if (crc_offset >= blk_size)
363                 goto invalid_cp1;
364
365         crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
366         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
367                 goto invalid_cp1;
368
369         pre_version = le64_to_cpu(cp_block->checkpoint_ver);
370
371         /* Read the 2nd cp block in this CP pack */
372         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
373         cp_page_2 = get_meta_page(sbi, cp_addr);
374
375         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
376         crc_offset = le32_to_cpu(cp_block->checksum_offset);
377         if (crc_offset >= blk_size)
378                 goto invalid_cp2;
379
380         crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
381         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
382                 goto invalid_cp2;
383
384         cur_version = le64_to_cpu(cp_block->checkpoint_ver);
385
386         if (cur_version == pre_version) {
387                 *version = cur_version;
388                 f2fs_put_page(cp_page_2, 1);
389                 return cp_page_1;
390         }
391 invalid_cp2:
392         f2fs_put_page(cp_page_2, 1);
393 invalid_cp1:
394         f2fs_put_page(cp_page_1, 1);
395         return NULL;
396 }
397
398 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
399 {
400         struct f2fs_checkpoint *cp_block;
401         struct f2fs_super_block *fsb = sbi->raw_super;
402         struct page *cp1, *cp2, *cur_page;
403         unsigned long blk_size = sbi->blocksize;
404         unsigned long long cp1_version = 0, cp2_version = 0;
405         unsigned long long cp_start_blk_no;
406
407         sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
408         if (!sbi->ckpt)
409                 return -ENOMEM;
410         /*
411          * Finding out valid cp block involves read both
412          * sets( cp pack1 and cp pack 2)
413          */
414         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
415         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
416
417         /* The second checkpoint pack should start at the next segment */
418         cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
419         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
420
421         if (cp1 && cp2) {
422                 if (ver_after(cp2_version, cp1_version))
423                         cur_page = cp2;
424                 else
425                         cur_page = cp1;
426         } else if (cp1) {
427                 cur_page = cp1;
428         } else if (cp2) {
429                 cur_page = cp2;
430         } else {
431                 goto fail_no_cp;
432         }
433
434         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
435         memcpy(sbi->ckpt, cp_block, blk_size);
436
437         f2fs_put_page(cp1, 1);
438         f2fs_put_page(cp2, 1);
439         return 0;
440
441 fail_no_cp:
442         kfree(sbi->ckpt);
443         return -EINVAL;
444 }
445
446 void set_dirty_dir_page(struct inode *inode, struct page *page)
447 {
448         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
449         struct list_head *head = &sbi->dir_inode_list;
450         struct dir_inode_entry *new;
451         struct list_head *this;
452
453         if (!S_ISDIR(inode->i_mode))
454                 return;
455 retry:
456         new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
457         if (!new) {
458                 cond_resched();
459                 goto retry;
460         }
461         new->inode = inode;
462         INIT_LIST_HEAD(&new->list);
463
464         spin_lock(&sbi->dir_inode_lock);
465         list_for_each(this, head) {
466                 struct dir_inode_entry *entry;
467                 entry = list_entry(this, struct dir_inode_entry, list);
468                 if (entry->inode == inode) {
469                         kmem_cache_free(inode_entry_slab, new);
470                         goto out;
471                 }
472         }
473         list_add_tail(&new->list, head);
474         sbi->n_dirty_dirs++;
475
476         BUG_ON(!S_ISDIR(inode->i_mode));
477 out:
478         inc_page_count(sbi, F2FS_DIRTY_DENTS);
479         inode_inc_dirty_dents(inode);
480         SetPagePrivate(page);
481
482         spin_unlock(&sbi->dir_inode_lock);
483 }
484
485 void remove_dirty_dir_inode(struct inode *inode)
486 {
487         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
488         struct list_head *head = &sbi->dir_inode_list;
489         struct list_head *this;
490
491         if (!S_ISDIR(inode->i_mode))
492                 return;
493
494         spin_lock(&sbi->dir_inode_lock);
495         if (atomic_read(&F2FS_I(inode)->dirty_dents))
496                 goto out;
497
498         list_for_each(this, head) {
499                 struct dir_inode_entry *entry;
500                 entry = list_entry(this, struct dir_inode_entry, list);
501                 if (entry->inode == inode) {
502                         list_del(&entry->list);
503                         kmem_cache_free(inode_entry_slab, entry);
504                         sbi->n_dirty_dirs--;
505                         break;
506                 }
507         }
508 out:
509         spin_unlock(&sbi->dir_inode_lock);
510 }
511
512 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
513 {
514         struct list_head *head = &sbi->dir_inode_list;
515         struct dir_inode_entry *entry;
516         struct inode *inode;
517 retry:
518         spin_lock(&sbi->dir_inode_lock);
519         if (list_empty(head)) {
520                 spin_unlock(&sbi->dir_inode_lock);
521                 return;
522         }
523         entry = list_entry(head->next, struct dir_inode_entry, list);
524         inode = igrab(entry->inode);
525         spin_unlock(&sbi->dir_inode_lock);
526         if (inode) {
527                 filemap_flush(inode->i_mapping);
528                 iput(inode);
529         } else {
530                 /*
531                  * We should submit bio, since it exists several
532                  * wribacking dentry pages in the freeing inode.
533                  */
534                 f2fs_submit_bio(sbi, DATA, true);
535         }
536         goto retry;
537 }
538
539 /*
540  * Freeze all the FS-operations for checkpoint.
541  */
542 static void block_operations(struct f2fs_sb_info *sbi)
543 {
544         int t;
545         struct writeback_control wbc = {
546                 .sync_mode = WB_SYNC_ALL,
547                 .nr_to_write = LONG_MAX,
548                 .for_reclaim = 0,
549         };
550
551         /* Stop renaming operation */
552         mutex_lock_op(sbi, RENAME);
553         mutex_lock_op(sbi, DENTRY_OPS);
554
555 retry_dents:
556         /* write all the dirty dentry pages */
557         sync_dirty_dir_inodes(sbi);
558
559         mutex_lock_op(sbi, DATA_WRITE);
560         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
561                 mutex_unlock_op(sbi, DATA_WRITE);
562                 goto retry_dents;
563         }
564
565         /* block all the operations */
566         for (t = DATA_NEW; t <= NODE_TRUNC; t++)
567                 mutex_lock_op(sbi, t);
568
569         mutex_lock(&sbi->write_inode);
570
571         /*
572          * POR: we should ensure that there is no dirty node pages
573          * until finishing nat/sit flush.
574          */
575 retry:
576         sync_node_pages(sbi, 0, &wbc);
577
578         mutex_lock_op(sbi, NODE_WRITE);
579
580         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
581                 mutex_unlock_op(sbi, NODE_WRITE);
582                 goto retry;
583         }
584         mutex_unlock(&sbi->write_inode);
585 }
586
587 static void unblock_operations(struct f2fs_sb_info *sbi)
588 {
589         int t;
590         for (t = NODE_WRITE; t >= RENAME; t--)
591                 mutex_unlock_op(sbi, t);
592 }
593
594 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
595 {
596         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
597         nid_t last_nid = 0;
598         block_t start_blk;
599         struct page *cp_page;
600         unsigned int data_sum_blocks, orphan_blocks;
601         unsigned int crc32 = 0;
602         void *kaddr;
603         int i;
604
605         /* Flush all the NAT/SIT pages */
606         while (get_pages(sbi, F2FS_DIRTY_META))
607                 sync_meta_pages(sbi, META, LONG_MAX);
608
609         next_free_nid(sbi, &last_nid);
610
611         /*
612          * modify checkpoint
613          * version number is already updated
614          */
615         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
616         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
617         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
618         for (i = 0; i < 3; i++) {
619                 ckpt->cur_node_segno[i] =
620                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
621                 ckpt->cur_node_blkoff[i] =
622                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
623                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
624                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
625         }
626         for (i = 0; i < 3; i++) {
627                 ckpt->cur_data_segno[i] =
628                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
629                 ckpt->cur_data_blkoff[i] =
630                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
631                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
632                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
633         }
634
635         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
636         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
637         ckpt->next_free_nid = cpu_to_le32(last_nid);
638
639         /* 2 cp  + n data seg summary + orphan inode blocks */
640         data_sum_blocks = npages_for_summary_flush(sbi);
641         if (data_sum_blocks < 3)
642                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
643         else
644                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
645
646         orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
647                                         / F2FS_ORPHANS_PER_BLOCK;
648         ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
649
650         if (is_umount) {
651                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
652                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
653                         data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
654         } else {
655                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
656                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
657                         data_sum_blocks + orphan_blocks);
658         }
659
660         if (sbi->n_orphans)
661                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
662         else
663                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
664
665         /* update SIT/NAT bitmap */
666         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
667         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
668
669         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
670         *(__le32 *)((unsigned char *)ckpt +
671                                 le32_to_cpu(ckpt->checksum_offset))
672                                 = cpu_to_le32(crc32);
673
674         start_blk = __start_cp_addr(sbi);
675
676         /* write out checkpoint buffer at block 0 */
677         cp_page = grab_meta_page(sbi, start_blk++);
678         kaddr = page_address(cp_page);
679         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
680         set_page_dirty(cp_page);
681         f2fs_put_page(cp_page, 1);
682
683         if (sbi->n_orphans) {
684                 write_orphan_inodes(sbi, start_blk);
685                 start_blk += orphan_blocks;
686         }
687
688         write_data_summaries(sbi, start_blk);
689         start_blk += data_sum_blocks;
690         if (is_umount) {
691                 write_node_summaries(sbi, start_blk);
692                 start_blk += NR_CURSEG_NODE_TYPE;
693         }
694
695         /* writeout checkpoint block */
696         cp_page = grab_meta_page(sbi, start_blk);
697         kaddr = page_address(cp_page);
698         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
699         set_page_dirty(cp_page);
700         f2fs_put_page(cp_page, 1);
701
702         /* wait for previous submitted node/meta pages writeback */
703         while (get_pages(sbi, F2FS_WRITEBACK))
704                 congestion_wait(BLK_RW_ASYNC, HZ / 50);
705
706         filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
707         filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
708
709         /* update user_block_counts */
710         sbi->last_valid_block_count = sbi->total_valid_block_count;
711         sbi->alloc_valid_block_count = 0;
712
713         /* Here, we only have one bio having CP pack */
714         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
715
716         if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
717                 clear_prefree_segments(sbi);
718                 F2FS_RESET_SB_DIRT(sbi);
719         }
720 }
721
722 /*
723  * We guarantee that this checkpoint procedure should not fail.
724  */
725 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
726 {
727         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
728         unsigned long long ckpt_ver;
729
730         mutex_lock(&sbi->cp_mutex);
731         block_operations(sbi);
732
733         f2fs_submit_bio(sbi, DATA, true);
734         f2fs_submit_bio(sbi, NODE, true);
735         f2fs_submit_bio(sbi, META, true);
736
737         /*
738          * update checkpoint pack index
739          * Increase the version number so that
740          * SIT entries and seg summaries are written at correct place
741          */
742         ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver);
743         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
744
745         /* write cached NAT/SIT entries to NAT/SIT area */
746         flush_nat_entries(sbi);
747         flush_sit_entries(sbi);
748
749         reset_victim_segmap(sbi);
750
751         /* unlock all the fs_lock[] in do_checkpoint() */
752         do_checkpoint(sbi, is_umount);
753
754         unblock_operations(sbi);
755         mutex_unlock(&sbi->cp_mutex);
756 }
757
758 void init_orphan_info(struct f2fs_sb_info *sbi)
759 {
760         mutex_init(&sbi->orphan_inode_mutex);
761         INIT_LIST_HEAD(&sbi->orphan_inode_list);
762         sbi->n_orphans = 0;
763 }
764
765 int __init create_checkpoint_caches(void)
766 {
767         orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
768                         sizeof(struct orphan_inode_entry), NULL);
769         if (unlikely(!orphan_entry_slab))
770                 return -ENOMEM;
771         inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
772                         sizeof(struct dir_inode_entry), NULL);
773         if (unlikely(!inode_entry_slab)) {
774                 kmem_cache_destroy(orphan_entry_slab);
775                 return -ENOMEM;
776         }
777         return 0;
778 }
779
780 void destroy_checkpoint_caches(void)
781 {
782         kmem_cache_destroy(orphan_entry_slab);
783         kmem_cache_destroy(inode_entry_slab);
784 }