ext4: cleanup mballoc header files
[pandora-kernel.git] / fs / ext4 / mballoc.c
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18
19
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23
24 #include "mballoc.h"
25 /*
26  * MUSTDO:
27  *   - test ext4_ext_search_left() and ext4_ext_search_right()
28  *   - search for metadata in few groups
29  *
30  * TODO v4:
31  *   - normalization should take into account whether file is still open
32  *   - discard preallocations if no free space left (policy?)
33  *   - don't normalize tails
34  *   - quota
35  *   - reservation for superuser
36  *
37  * TODO v3:
38  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
39  *   - track min/max extents in each group for better group selection
40  *   - mb_mark_used() may allocate chunk right after splitting buddy
41  *   - tree of groups sorted by number of free blocks
42  *   - error handling
43  */
44
45 /*
46  * The allocation request involve request for multiple number of blocks
47  * near to the goal(block) value specified.
48  *
49  * During initialization phase of the allocator we decide to use the group
50  * preallocation or inode preallocation depending on the size file. The
51  * size of the file could be the resulting file size we would have after
52  * allocation or the current file size which ever is larger. If the size is
53  * less that sbi->s_mb_stream_request we select the group
54  * preallocation. The default value of s_mb_stream_request is 16
55  * blocks. This can also be tuned via
56  * /proc/fs/ext4/<partition>/stream_req. The value is represented in terms
57  * of number of blocks.
58  *
59  * The main motivation for having small file use group preallocation is to
60  * ensure that we have small file closer in the disk.
61  *
62  * First stage the allocator looks at the inode prealloc list
63  * ext4_inode_info->i_prealloc_list contain list of prealloc spaces for
64  * this particular inode. The inode prealloc space is represented as:
65  *
66  * pa_lstart -> the logical start block for this prealloc space
67  * pa_pstart -> the physical start block for this prealloc space
68  * pa_len    -> lenght for this prealloc space
69  * pa_free   ->  free space available in this prealloc space
70  *
71  * The inode preallocation space is used looking at the _logical_ start
72  * block. If only the logical file block falls within the range of prealloc
73  * space we will consume the particular prealloc space. This make sure that
74  * that the we have contiguous physical blocks representing the file blocks
75  *
76  * The important thing to be noted in case of inode prealloc space is that
77  * we don't modify the values associated to inode prealloc space except
78  * pa_free.
79  *
80  * If we are not able to find blocks in the inode prealloc space and if we
81  * have the group allocation flag set then we look at the locality group
82  * prealloc space. These are per CPU prealloc list repreasented as
83  *
84  * ext4_sb_info.s_locality_groups[smp_processor_id()]
85  *
86  * The reason for having a per cpu locality group is to reduce the contention
87  * between CPUs. It is possible to get scheduled at this point.
88  *
89  * The locality group prealloc space is used looking at whether we have
90  * enough free space (pa_free) withing the prealloc space.
91  *
92  * If we can't allocate blocks via inode prealloc or/and locality group
93  * prealloc then we look at the buddy cache. The buddy cache is represented
94  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
95  * mapped to the buddy and bitmap information regarding different
96  * groups. The buddy information is attached to buddy cache inode so that
97  * we can access them through the page cache. The information regarding
98  * each group is loaded via ext4_mb_load_buddy.  The information involve
99  * block bitmap and buddy information. The information are stored in the
100  * inode as:
101  *
102  *  {                        page                        }
103  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
104  *
105  *
106  * one block each for bitmap and buddy information.  So for each group we
107  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
108  * blocksize) blocks.  So it can have information regarding groups_per_page
109  * which is blocks_per_page/2
110  *
111  * The buddy cache inode is not stored on disk. The inode is thrown
112  * away when the filesystem is unmounted.
113  *
114  * We look for count number of blocks in the buddy cache. If we were able
115  * to locate that many free blocks we return with additional information
116  * regarding rest of the contiguous physical block available
117  *
118  * Before allocating blocks via buddy cache we normalize the request
119  * blocks. This ensure we ask for more blocks that we needed. The extra
120  * blocks that we get after allocation is added to the respective prealloc
121  * list. In case of inode preallocation we follow a list of heuristics
122  * based on file size. This can be found in ext4_mb_normalize_request. If
123  * we are doing a group prealloc we try to normalize the request to
124  * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is set to
125  * 512 blocks. This can be tuned via
126  * /proc/fs/ext4/<partition/group_prealloc. The value is represented in
127  * terms of number of blocks. If we have mounted the file system with -O
128  * stripe=<value> option the group prealloc request is normalized to the
129  * stripe value (sbi->s_stripe)
130  *
131  * The regular allocator(using the buddy cache) support few tunables.
132  *
133  * /proc/fs/ext4/<partition>/min_to_scan
134  * /proc/fs/ext4/<partition>/max_to_scan
135  * /proc/fs/ext4/<partition>/order2_req
136  *
137  * The regular allocator use buddy scan only if the request len is power of
138  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
139  * value of s_mb_order2_reqs can be tuned via
140  * /proc/fs/ext4/<partition>/order2_req.  If the request len is equal to
141  * stripe size (sbi->s_stripe), we try to search for contigous block in
142  * stripe size. This should result in better allocation on RAID setup. If
143  * not we search in the specific group using bitmap for best extents. The
144  * tunable min_to_scan and max_to_scan controll the behaviour here.
145  * min_to_scan indicate how long the mballoc __must__ look for a best
146  * extent and max_to_scanindicate how long the mballoc __can__ look for a
147  * best extent in the found extents. Searching for the blocks starts with
148  * the group specified as the goal value in allocation context via
149  * ac_g_ex. Each group is first checked based on the criteria whether it
150  * can used for allocation. ext4_mb_good_group explains how the groups are
151  * checked.
152  *
153  * Both the prealloc space are getting populated as above. So for the first
154  * request we will hit the buddy cache which will result in this prealloc
155  * space getting filled. The prealloc space is then later used for the
156  * subsequent request.
157  */
158
159 /*
160  * mballoc operates on the following data:
161  *  - on-disk bitmap
162  *  - in-core buddy (actually includes buddy and bitmap)
163  *  - preallocation descriptors (PAs)
164  *
165  * there are two types of preallocations:
166  *  - inode
167  *    assiged to specific inode and can be used for this inode only.
168  *    it describes part of inode's space preallocated to specific
169  *    physical blocks. any block from that preallocated can be used
170  *    independent. the descriptor just tracks number of blocks left
171  *    unused. so, before taking some block from descriptor, one must
172  *    make sure corresponded logical block isn't allocated yet. this
173  *    also means that freeing any block within descriptor's range
174  *    must discard all preallocated blocks.
175  *  - locality group
176  *    assigned to specific locality group which does not translate to
177  *    permanent set of inodes: inode can join and leave group. space
178  *    from this type of preallocation can be used for any inode. thus
179  *    it's consumed from the beginning to the end.
180  *
181  * relation between them can be expressed as:
182  *    in-core buddy = on-disk bitmap + preallocation descriptors
183  *
184  * this mean blocks mballoc considers used are:
185  *  - allocated blocks (persistent)
186  *  - preallocated blocks (non-persistent)
187  *
188  * consistency in mballoc world means that at any time a block is either
189  * free or used in ALL structures. notice: "any time" should not be read
190  * literally -- time is discrete and delimited by locks.
191  *
192  *  to keep it simple, we don't use block numbers, instead we count number of
193  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
194  *
195  * all operations can be expressed as:
196  *  - init buddy:                       buddy = on-disk + PAs
197  *  - new PA:                           buddy += N; PA = N
198  *  - use inode PA:                     on-disk += N; PA -= N
199  *  - discard inode PA                  buddy -= on-disk - PA; PA = 0
200  *  - use locality group PA             on-disk += N; PA -= N
201  *  - discard locality group PA         buddy -= PA; PA = 0
202  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
203  *        is used in real operation because we can't know actual used
204  *        bits from PA, only from on-disk bitmap
205  *
206  * if we follow this strict logic, then all operations above should be atomic.
207  * given some of them can block, we'd have to use something like semaphores
208  * killing performance on high-end SMP hardware. let's try to relax it using
209  * the following knowledge:
210  *  1) if buddy is referenced, it's already initialized
211  *  2) while block is used in buddy and the buddy is referenced,
212  *     nobody can re-allocate that block
213  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
214  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
215  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
216  *     block
217  *
218  * so, now we're building a concurrency table:
219  *  - init buddy vs.
220  *    - new PA
221  *      blocks for PA are allocated in the buddy, buddy must be referenced
222  *      until PA is linked to allocation group to avoid concurrent buddy init
223  *    - use inode PA
224  *      we need to make sure that either on-disk bitmap or PA has uptodate data
225  *      given (3) we care that PA-=N operation doesn't interfere with init
226  *    - discard inode PA
227  *      the simplest way would be to have buddy initialized by the discard
228  *    - use locality group PA
229  *      again PA-=N must be serialized with init
230  *    - discard locality group PA
231  *      the simplest way would be to have buddy initialized by the discard
232  *  - new PA vs.
233  *    - use inode PA
234  *      i_data_sem serializes them
235  *    - discard inode PA
236  *      discard process must wait until PA isn't used by another process
237  *    - use locality group PA
238  *      some mutex should serialize them
239  *    - discard locality group PA
240  *      discard process must wait until PA isn't used by another process
241  *  - use inode PA
242  *    - use inode PA
243  *      i_data_sem or another mutex should serializes them
244  *    - discard inode PA
245  *      discard process must wait until PA isn't used by another process
246  *    - use locality group PA
247  *      nothing wrong here -- they're different PAs covering different blocks
248  *    - discard locality group PA
249  *      discard process must wait until PA isn't used by another process
250  *
251  * now we're ready to make few consequences:
252  *  - PA is referenced and while it is no discard is possible
253  *  - PA is referenced until block isn't marked in on-disk bitmap
254  *  - PA changes only after on-disk bitmap
255  *  - discard must not compete with init. either init is done before
256  *    any discard or they're serialized somehow
257  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
258  *
259  * a special case when we've used PA to emptiness. no need to modify buddy
260  * in this case, but we should care about concurrent init
261  *
262  */
263
264  /*
265  * Logic in few words:
266  *
267  *  - allocation:
268  *    load group
269  *    find blocks
270  *    mark bits in on-disk bitmap
271  *    release group
272  *
273  *  - use preallocation:
274  *    find proper PA (per-inode or group)
275  *    load group
276  *    mark bits in on-disk bitmap
277  *    release group
278  *    release PA
279  *
280  *  - free:
281  *    load group
282  *    mark bits in on-disk bitmap
283  *    release group
284  *
285  *  - discard preallocations in group:
286  *    mark PAs deleted
287  *    move them onto local list
288  *    load on-disk bitmap
289  *    load group
290  *    remove PA from object (inode or locality group)
291  *    mark free blocks in-core
292  *
293  *  - discard inode's preallocations:
294  */
295
296 /*
297  * Locking rules
298  *
299  * Locks:
300  *  - bitlock on a group        (group)
301  *  - object (inode/locality)   (object)
302  *  - per-pa lock               (pa)
303  *
304  * Paths:
305  *  - new pa
306  *    object
307  *    group
308  *
309  *  - find and use pa:
310  *    pa
311  *
312  *  - release consumed pa:
313  *    pa
314  *    group
315  *    object
316  *
317  *  - generate in-core bitmap:
318  *    group
319  *        pa
320  *
321  *  - discard all for given object (inode, locality group):
322  *    object
323  *        pa
324  *    group
325  *
326  *  - discard all for given group:
327  *    group
328  *        pa
329  *    group
330  *        object
331  *
332  */
333 static struct kmem_cache *ext4_pspace_cachep;
334 static struct kmem_cache *ext4_ac_cachep;
335 static struct kmem_cache *ext4_free_ext_cachep;
336 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
337                                         ext4_group_t group);
338 static int ext4_mb_init_per_dev_proc(struct super_block *sb);
339 static int ext4_mb_destroy_per_dev_proc(struct super_block *sb);
340 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
341
342
343
344 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
345 {
346 #if BITS_PER_LONG == 64
347         *bit += ((unsigned long) addr & 7UL) << 3;
348         addr = (void *) ((unsigned long) addr & ~7UL);
349 #elif BITS_PER_LONG == 32
350         *bit += ((unsigned long) addr & 3UL) << 3;
351         addr = (void *) ((unsigned long) addr & ~3UL);
352 #else
353 #error "how many bits you are?!"
354 #endif
355         return addr;
356 }
357
358 static inline int mb_test_bit(int bit, void *addr)
359 {
360         /*
361          * ext4_test_bit on architecture like powerpc
362          * needs unsigned long aligned address
363          */
364         addr = mb_correct_addr_and_bit(&bit, addr);
365         return ext4_test_bit(bit, addr);
366 }
367
368 static inline void mb_set_bit(int bit, void *addr)
369 {
370         addr = mb_correct_addr_and_bit(&bit, addr);
371         ext4_set_bit(bit, addr);
372 }
373
374 static inline void mb_set_bit_atomic(spinlock_t *lock, int bit, void *addr)
375 {
376         addr = mb_correct_addr_and_bit(&bit, addr);
377         ext4_set_bit_atomic(lock, bit, addr);
378 }
379
380 static inline void mb_clear_bit(int bit, void *addr)
381 {
382         addr = mb_correct_addr_and_bit(&bit, addr);
383         ext4_clear_bit(bit, addr);
384 }
385
386 static inline void mb_clear_bit_atomic(spinlock_t *lock, int bit, void *addr)
387 {
388         addr = mb_correct_addr_and_bit(&bit, addr);
389         ext4_clear_bit_atomic(lock, bit, addr);
390 }
391
392 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
393 {
394         int fix = 0, ret, tmpmax;
395         addr = mb_correct_addr_and_bit(&fix, addr);
396         tmpmax = max + fix;
397         start += fix;
398
399         ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
400         if (ret > max)
401                 return max;
402         return ret;
403 }
404
405 static inline int mb_find_next_bit(void *addr, int max, int start)
406 {
407         int fix = 0, ret, tmpmax;
408         addr = mb_correct_addr_and_bit(&fix, addr);
409         tmpmax = max + fix;
410         start += fix;
411
412         ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
413         if (ret > max)
414                 return max;
415         return ret;
416 }
417
418 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
419 {
420         char *bb;
421
422         BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
423         BUG_ON(max == NULL);
424
425         if (order > e4b->bd_blkbits + 1) {
426                 *max = 0;
427                 return NULL;
428         }
429
430         /* at order 0 we see each particular block */
431         *max = 1 << (e4b->bd_blkbits + 3);
432         if (order == 0)
433                 return EXT4_MB_BITMAP(e4b);
434
435         bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
436         *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
437
438         return bb;
439 }
440
441 #ifdef DOUBLE_CHECK
442 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
443                            int first, int count)
444 {
445         int i;
446         struct super_block *sb = e4b->bd_sb;
447
448         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
449                 return;
450         BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
451         for (i = 0; i < count; i++) {
452                 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
453                         ext4_fsblk_t blocknr;
454                         blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
455                         blocknr += first + i;
456                         blocknr +=
457                             le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
458
459                         ext4_error(sb, __func__, "double-free of inode"
460                                    " %lu's block %llu(bit %u in group %u)",
461                                    inode ? inode->i_ino : 0, blocknr,
462                                    first + i, e4b->bd_group);
463                 }
464                 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
465         }
466 }
467
468 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
469 {
470         int i;
471
472         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
473                 return;
474         BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
475         for (i = 0; i < count; i++) {
476                 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
477                 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
478         }
479 }
480
481 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
482 {
483         if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
484                 unsigned char *b1, *b2;
485                 int i;
486                 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
487                 b2 = (unsigned char *) bitmap;
488                 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
489                         if (b1[i] != b2[i]) {
490                                 printk(KERN_ERR "corruption in group %u "
491                                        "at byte %u(%u): %x in copy != %x "
492                                        "on disk/prealloc\n",
493                                        e4b->bd_group, i, i * 8, b1[i], b2[i]);
494                                 BUG();
495                         }
496                 }
497         }
498 }
499
500 #else
501 static inline void mb_free_blocks_double(struct inode *inode,
502                                 struct ext4_buddy *e4b, int first, int count)
503 {
504         return;
505 }
506 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
507                                                 int first, int count)
508 {
509         return;
510 }
511 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
512 {
513         return;
514 }
515 #endif
516
517 #ifdef AGGRESSIVE_CHECK
518
519 #define MB_CHECK_ASSERT(assert)                                         \
520 do {                                                                    \
521         if (!(assert)) {                                                \
522                 printk(KERN_EMERG                                       \
523                         "Assertion failure in %s() at %s:%d: \"%s\"\n", \
524                         function, file, line, # assert);                \
525                 BUG();                                                  \
526         }                                                               \
527 } while (0)
528
529 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
530                                 const char *function, int line)
531 {
532         struct super_block *sb = e4b->bd_sb;
533         int order = e4b->bd_blkbits + 1;
534         int max;
535         int max2;
536         int i;
537         int j;
538         int k;
539         int count;
540         struct ext4_group_info *grp;
541         int fragments = 0;
542         int fstart;
543         struct list_head *cur;
544         void *buddy;
545         void *buddy2;
546
547         {
548                 static int mb_check_counter;
549                 if (mb_check_counter++ % 100 != 0)
550                         return 0;
551         }
552
553         while (order > 1) {
554                 buddy = mb_find_buddy(e4b, order, &max);
555                 MB_CHECK_ASSERT(buddy);
556                 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
557                 MB_CHECK_ASSERT(buddy2);
558                 MB_CHECK_ASSERT(buddy != buddy2);
559                 MB_CHECK_ASSERT(max * 2 == max2);
560
561                 count = 0;
562                 for (i = 0; i < max; i++) {
563
564                         if (mb_test_bit(i, buddy)) {
565                                 /* only single bit in buddy2 may be 1 */
566                                 if (!mb_test_bit(i << 1, buddy2)) {
567                                         MB_CHECK_ASSERT(
568                                                 mb_test_bit((i<<1)+1, buddy2));
569                                 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
570                                         MB_CHECK_ASSERT(
571                                                 mb_test_bit(i << 1, buddy2));
572                                 }
573                                 continue;
574                         }
575
576                         /* both bits in buddy2 must be 0 */
577                         MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
578                         MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
579
580                         for (j = 0; j < (1 << order); j++) {
581                                 k = (i * (1 << order)) + j;
582                                 MB_CHECK_ASSERT(
583                                         !mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
584                         }
585                         count++;
586                 }
587                 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
588                 order--;
589         }
590
591         fstart = -1;
592         buddy = mb_find_buddy(e4b, 0, &max);
593         for (i = 0; i < max; i++) {
594                 if (!mb_test_bit(i, buddy)) {
595                         MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
596                         if (fstart == -1) {
597                                 fragments++;
598                                 fstart = i;
599                         }
600                         continue;
601                 }
602                 fstart = -1;
603                 /* check used bits only */
604                 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
605                         buddy2 = mb_find_buddy(e4b, j, &max2);
606                         k = i >> j;
607                         MB_CHECK_ASSERT(k < max2);
608                         MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
609                 }
610         }
611         MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
612         MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
613
614         grp = ext4_get_group_info(sb, e4b->bd_group);
615         buddy = mb_find_buddy(e4b, 0, &max);
616         list_for_each(cur, &grp->bb_prealloc_list) {
617                 ext4_group_t groupnr;
618                 struct ext4_prealloc_space *pa;
619                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
620                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
621                 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
622                 for (i = 0; i < pa->pa_len; i++)
623                         MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
624         }
625         return 0;
626 }
627 #undef MB_CHECK_ASSERT
628 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,       \
629                                         __FILE__, __func__, __LINE__)
630 #else
631 #define mb_check_buddy(e4b)
632 #endif
633
634 /* FIXME!! need more doc */
635 static void ext4_mb_mark_free_simple(struct super_block *sb,
636                                 void *buddy, unsigned first, int len,
637                                         struct ext4_group_info *grp)
638 {
639         struct ext4_sb_info *sbi = EXT4_SB(sb);
640         unsigned short min;
641         unsigned short max;
642         unsigned short chunk;
643         unsigned short border;
644
645         BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
646
647         border = 2 << sb->s_blocksize_bits;
648
649         while (len > 0) {
650                 /* find how many blocks can be covered since this position */
651                 max = ffs(first | border) - 1;
652
653                 /* find how many blocks of power 2 we need to mark */
654                 min = fls(len) - 1;
655
656                 if (max < min)
657                         min = max;
658                 chunk = 1 << min;
659
660                 /* mark multiblock chunks only */
661                 grp->bb_counters[min]++;
662                 if (min > 0)
663                         mb_clear_bit(first >> min,
664                                      buddy + sbi->s_mb_offsets[min]);
665
666                 len -= chunk;
667                 first += chunk;
668         }
669 }
670
671 static void ext4_mb_generate_buddy(struct super_block *sb,
672                                 void *buddy, void *bitmap, ext4_group_t group)
673 {
674         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
675         unsigned short max = EXT4_BLOCKS_PER_GROUP(sb);
676         unsigned short i = 0;
677         unsigned short first;
678         unsigned short len;
679         unsigned free = 0;
680         unsigned fragments = 0;
681         unsigned long long period = get_cycles();
682
683         /* initialize buddy from bitmap which is aggregation
684          * of on-disk bitmap and preallocations */
685         i = mb_find_next_zero_bit(bitmap, max, 0);
686         grp->bb_first_free = i;
687         while (i < max) {
688                 fragments++;
689                 first = i;
690                 i = mb_find_next_bit(bitmap, max, i);
691                 len = i - first;
692                 free += len;
693                 if (len > 1)
694                         ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
695                 else
696                         grp->bb_counters[0]++;
697                 if (i < max)
698                         i = mb_find_next_zero_bit(bitmap, max, i);
699         }
700         grp->bb_fragments = fragments;
701
702         if (free != grp->bb_free) {
703                 ext4_error(sb, __func__,
704                         "EXT4-fs: group %u: %u blocks in bitmap, %u in gd",
705                         group, free, grp->bb_free);
706                 /*
707                  * If we intent to continue, we consider group descritor
708                  * corrupt and update bb_free using bitmap value
709                  */
710                 grp->bb_free = free;
711         }
712
713         clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
714
715         period = get_cycles() - period;
716         spin_lock(&EXT4_SB(sb)->s_bal_lock);
717         EXT4_SB(sb)->s_mb_buddies_generated++;
718         EXT4_SB(sb)->s_mb_generation_time += period;
719         spin_unlock(&EXT4_SB(sb)->s_bal_lock);
720 }
721
722 /* The buddy information is attached the buddy cache inode
723  * for convenience. The information regarding each group
724  * is loaded via ext4_mb_load_buddy. The information involve
725  * block bitmap and buddy information. The information are
726  * stored in the inode as
727  *
728  * {                        page                        }
729  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
730  *
731  *
732  * one block each for bitmap and buddy information.
733  * So for each group we take up 2 blocks. A page can
734  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
735  * So it can have information regarding groups_per_page which
736  * is blocks_per_page/2
737  */
738
739 static int ext4_mb_init_cache(struct page *page, char *incore)
740 {
741         int blocksize;
742         int blocks_per_page;
743         int groups_per_page;
744         int err = 0;
745         int i;
746         ext4_group_t first_group;
747         int first_block;
748         struct super_block *sb;
749         struct buffer_head *bhs;
750         struct buffer_head **bh;
751         struct inode *inode;
752         char *data;
753         char *bitmap;
754
755         mb_debug("init page %lu\n", page->index);
756
757         inode = page->mapping->host;
758         sb = inode->i_sb;
759         blocksize = 1 << inode->i_blkbits;
760         blocks_per_page = PAGE_CACHE_SIZE / blocksize;
761
762         groups_per_page = blocks_per_page >> 1;
763         if (groups_per_page == 0)
764                 groups_per_page = 1;
765
766         /* allocate buffer_heads to read bitmaps */
767         if (groups_per_page > 1) {
768                 err = -ENOMEM;
769                 i = sizeof(struct buffer_head *) * groups_per_page;
770                 bh = kzalloc(i, GFP_NOFS);
771                 if (bh == NULL)
772                         goto out;
773         } else
774                 bh = &bhs;
775
776         first_group = page->index * blocks_per_page / 2;
777
778         /* read all groups the page covers into the cache */
779         for (i = 0; i < groups_per_page; i++) {
780                 struct ext4_group_desc *desc;
781
782                 if (first_group + i >= EXT4_SB(sb)->s_groups_count)
783                         break;
784
785                 err = -EIO;
786                 desc = ext4_get_group_desc(sb, first_group + i, NULL);
787                 if (desc == NULL)
788                         goto out;
789
790                 err = -ENOMEM;
791                 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
792                 if (bh[i] == NULL)
793                         goto out;
794
795                 if (buffer_uptodate(bh[i]) &&
796                     !(desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))
797                         continue;
798
799                 lock_buffer(bh[i]);
800                 spin_lock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
801                 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
802                         ext4_init_block_bitmap(sb, bh[i],
803                                                 first_group + i, desc);
804                         set_buffer_uptodate(bh[i]);
805                         unlock_buffer(bh[i]);
806                         spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
807                         continue;
808                 }
809                 spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
810                 get_bh(bh[i]);
811                 bh[i]->b_end_io = end_buffer_read_sync;
812                 submit_bh(READ, bh[i]);
813                 mb_debug("read bitmap for group %u\n", first_group + i);
814         }
815
816         /* wait for I/O completion */
817         for (i = 0; i < groups_per_page && bh[i]; i++)
818                 wait_on_buffer(bh[i]);
819
820         err = -EIO;
821         for (i = 0; i < groups_per_page && bh[i]; i++)
822                 if (!buffer_uptodate(bh[i]))
823                         goto out;
824
825         err = 0;
826         first_block = page->index * blocks_per_page;
827         for (i = 0; i < blocks_per_page; i++) {
828                 int group;
829                 struct ext4_group_info *grinfo;
830
831                 group = (first_block + i) >> 1;
832                 if (group >= EXT4_SB(sb)->s_groups_count)
833                         break;
834
835                 /*
836                  * data carry information regarding this
837                  * particular group in the format specified
838                  * above
839                  *
840                  */
841                 data = page_address(page) + (i * blocksize);
842                 bitmap = bh[group - first_group]->b_data;
843
844                 /*
845                  * We place the buddy block and bitmap block
846                  * close together
847                  */
848                 if ((first_block + i) & 1) {
849                         /* this is block of buddy */
850                         BUG_ON(incore == NULL);
851                         mb_debug("put buddy for group %u in page %lu/%x\n",
852                                 group, page->index, i * blocksize);
853                         memset(data, 0xff, blocksize);
854                         grinfo = ext4_get_group_info(sb, group);
855                         grinfo->bb_fragments = 0;
856                         memset(grinfo->bb_counters, 0,
857                                sizeof(unsigned short)*(sb->s_blocksize_bits+2));
858                         /*
859                          * incore got set to the group block bitmap below
860                          */
861                         ext4_mb_generate_buddy(sb, data, incore, group);
862                         incore = NULL;
863                 } else {
864                         /* this is block of bitmap */
865                         BUG_ON(incore != NULL);
866                         mb_debug("put bitmap for group %u in page %lu/%x\n",
867                                 group, page->index, i * blocksize);
868
869                         /* see comments in ext4_mb_put_pa() */
870                         ext4_lock_group(sb, group);
871                         memcpy(data, bitmap, blocksize);
872
873                         /* mark all preallocated blks used in in-core bitmap */
874                         ext4_mb_generate_from_pa(sb, data, group);
875                         ext4_unlock_group(sb, group);
876
877                         /* set incore so that the buddy information can be
878                          * generated using this
879                          */
880                         incore = data;
881                 }
882         }
883         SetPageUptodate(page);
884
885 out:
886         if (bh) {
887                 for (i = 0; i < groups_per_page && bh[i]; i++)
888                         brelse(bh[i]);
889                 if (bh != &bhs)
890                         kfree(bh);
891         }
892         return err;
893 }
894
895 static noinline_for_stack int
896 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
897                                         struct ext4_buddy *e4b)
898 {
899         int blocks_per_page;
900         int block;
901         int pnum;
902         int poff;
903         struct page *page;
904         int ret;
905         struct ext4_group_info *grp;
906         struct ext4_sb_info *sbi = EXT4_SB(sb);
907         struct inode *inode = sbi->s_buddy_cache;
908
909         mb_debug("load group %u\n", group);
910
911         blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
912         grp = ext4_get_group_info(sb, group);
913
914         e4b->bd_blkbits = sb->s_blocksize_bits;
915         e4b->bd_info = ext4_get_group_info(sb, group);
916         e4b->bd_sb = sb;
917         e4b->bd_group = group;
918         e4b->bd_buddy_page = NULL;
919         e4b->bd_bitmap_page = NULL;
920         e4b->alloc_semp = &grp->alloc_sem;
921
922         /* Take the read lock on the group alloc
923          * sem. This would make sure a parallel
924          * ext4_mb_init_group happening on other
925          * groups mapped by the page is blocked
926          * till we are done with allocation
927          */
928         down_read(e4b->alloc_semp);
929
930         /*
931          * the buddy cache inode stores the block bitmap
932          * and buddy information in consecutive blocks.
933          * So for each group we need two blocks.
934          */
935         block = group * 2;
936         pnum = block / blocks_per_page;
937         poff = block % blocks_per_page;
938
939         /* we could use find_or_create_page(), but it locks page
940          * what we'd like to avoid in fast path ... */
941         page = find_get_page(inode->i_mapping, pnum);
942         if (page == NULL || !PageUptodate(page)) {
943                 if (page)
944                         /*
945                          * drop the page reference and try
946                          * to get the page with lock. If we
947                          * are not uptodate that implies
948                          * somebody just created the page but
949                          * is yet to initialize the same. So
950                          * wait for it to initialize.
951                          */
952                         page_cache_release(page);
953                 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
954                 if (page) {
955                         BUG_ON(page->mapping != inode->i_mapping);
956                         if (!PageUptodate(page)) {
957                                 ret = ext4_mb_init_cache(page, NULL);
958                                 if (ret) {
959                                         unlock_page(page);
960                                         goto err;
961                                 }
962                                 mb_cmp_bitmaps(e4b, page_address(page) +
963                                                (poff * sb->s_blocksize));
964                         }
965                         unlock_page(page);
966                 }
967         }
968         if (page == NULL || !PageUptodate(page)) {
969                 ret = -EIO;
970                 goto err;
971         }
972         e4b->bd_bitmap_page = page;
973         e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
974         mark_page_accessed(page);
975
976         block++;
977         pnum = block / blocks_per_page;
978         poff = block % blocks_per_page;
979
980         page = find_get_page(inode->i_mapping, pnum);
981         if (page == NULL || !PageUptodate(page)) {
982                 if (page)
983                         page_cache_release(page);
984                 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
985                 if (page) {
986                         BUG_ON(page->mapping != inode->i_mapping);
987                         if (!PageUptodate(page)) {
988                                 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
989                                 if (ret) {
990                                         unlock_page(page);
991                                         goto err;
992                                 }
993                         }
994                         unlock_page(page);
995                 }
996         }
997         if (page == NULL || !PageUptodate(page)) {
998                 ret = -EIO;
999                 goto err;
1000         }
1001         e4b->bd_buddy_page = page;
1002         e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1003         mark_page_accessed(page);
1004
1005         BUG_ON(e4b->bd_bitmap_page == NULL);
1006         BUG_ON(e4b->bd_buddy_page == NULL);
1007
1008         return 0;
1009
1010 err:
1011         if (e4b->bd_bitmap_page)
1012                 page_cache_release(e4b->bd_bitmap_page);
1013         if (e4b->bd_buddy_page)
1014                 page_cache_release(e4b->bd_buddy_page);
1015         e4b->bd_buddy = NULL;
1016         e4b->bd_bitmap = NULL;
1017
1018         /* Done with the buddy cache */
1019         up_read(e4b->alloc_semp);
1020         return ret;
1021 }
1022
1023 static void ext4_mb_release_desc(struct ext4_buddy *e4b)
1024 {
1025         if (e4b->bd_bitmap_page)
1026                 page_cache_release(e4b->bd_bitmap_page);
1027         if (e4b->bd_buddy_page)
1028                 page_cache_release(e4b->bd_buddy_page);
1029         /* Done with the buddy cache */
1030         up_read(e4b->alloc_semp);
1031 }
1032
1033
1034 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1035 {
1036         int order = 1;
1037         void *bb;
1038
1039         BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1040         BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1041
1042         bb = EXT4_MB_BUDDY(e4b);
1043         while (order <= e4b->bd_blkbits + 1) {
1044                 block = block >> 1;
1045                 if (!mb_test_bit(block, bb)) {
1046                         /* this block is part of buddy of order 'order' */
1047                         return order;
1048                 }
1049                 bb += 1 << (e4b->bd_blkbits - order);
1050                 order++;
1051         }
1052         return 0;
1053 }
1054
1055 static void mb_clear_bits(spinlock_t *lock, void *bm, int cur, int len)
1056 {
1057         __u32 *addr;
1058
1059         len = cur + len;
1060         while (cur < len) {
1061                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1062                         /* fast path: clear whole word at once */
1063                         addr = bm + (cur >> 3);
1064                         *addr = 0;
1065                         cur += 32;
1066                         continue;
1067                 }
1068                 mb_clear_bit_atomic(lock, cur, bm);
1069                 cur++;
1070         }
1071 }
1072
1073 static void mb_set_bits(spinlock_t *lock, void *bm, int cur, int len)
1074 {
1075         __u32 *addr;
1076
1077         len = cur + len;
1078         while (cur < len) {
1079                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1080                         /* fast path: set whole word at once */
1081                         addr = bm + (cur >> 3);
1082                         *addr = 0xffffffff;
1083                         cur += 32;
1084                         continue;
1085                 }
1086                 mb_set_bit_atomic(lock, cur, bm);
1087                 cur++;
1088         }
1089 }
1090
1091 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1092                           int first, int count)
1093 __releases(bitlock)
1094 __acquires(bitlock)
1095 {
1096         int block = 0;
1097         int max = 0;
1098         int order;
1099         void *buddy;
1100         void *buddy2;
1101         struct super_block *sb = e4b->bd_sb;
1102
1103         BUG_ON(first + count > (sb->s_blocksize << 3));
1104         BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
1105         mb_check_buddy(e4b);
1106         mb_free_blocks_double(inode, e4b, first, count);
1107
1108         e4b->bd_info->bb_free += count;
1109         if (first < e4b->bd_info->bb_first_free)
1110                 e4b->bd_info->bb_first_free = first;
1111
1112         /* let's maintain fragments counter */
1113         if (first != 0)
1114                 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1115         if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1116                 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1117         if (block && max)
1118                 e4b->bd_info->bb_fragments--;
1119         else if (!block && !max)
1120                 e4b->bd_info->bb_fragments++;
1121
1122         /* let's maintain buddy itself */
1123         while (count-- > 0) {
1124                 block = first++;
1125                 order = 0;
1126
1127                 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1128                         ext4_fsblk_t blocknr;
1129                         blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
1130                         blocknr += block;
1131                         blocknr +=
1132                             le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
1133                         ext4_unlock_group(sb, e4b->bd_group);
1134                         ext4_error(sb, __func__, "double-free of inode"
1135                                    " %lu's block %llu(bit %u in group %u)",
1136                                    inode ? inode->i_ino : 0, blocknr, block,
1137                                    e4b->bd_group);
1138                         ext4_lock_group(sb, e4b->bd_group);
1139                 }
1140                 mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1141                 e4b->bd_info->bb_counters[order]++;
1142
1143                 /* start of the buddy */
1144                 buddy = mb_find_buddy(e4b, order, &max);
1145
1146                 do {
1147                         block &= ~1UL;
1148                         if (mb_test_bit(block, buddy) ||
1149                                         mb_test_bit(block + 1, buddy))
1150                                 break;
1151
1152                         /* both the buddies are free, try to coalesce them */
1153                         buddy2 = mb_find_buddy(e4b, order + 1, &max);
1154
1155                         if (!buddy2)
1156                                 break;
1157
1158                         if (order > 0) {
1159                                 /* for special purposes, we don't set
1160                                  * free bits in bitmap */
1161                                 mb_set_bit(block, buddy);
1162                                 mb_set_bit(block + 1, buddy);
1163                         }
1164                         e4b->bd_info->bb_counters[order]--;
1165                         e4b->bd_info->bb_counters[order]--;
1166
1167                         block = block >> 1;
1168                         order++;
1169                         e4b->bd_info->bb_counters[order]++;
1170
1171                         mb_clear_bit(block, buddy2);
1172                         buddy = buddy2;
1173                 } while (1);
1174         }
1175         mb_check_buddy(e4b);
1176 }
1177
1178 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1179                                 int needed, struct ext4_free_extent *ex)
1180 {
1181         int next = block;
1182         int max;
1183         int ord;
1184         void *buddy;
1185
1186         BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1187         BUG_ON(ex == NULL);
1188
1189         buddy = mb_find_buddy(e4b, order, &max);
1190         BUG_ON(buddy == NULL);
1191         BUG_ON(block >= max);
1192         if (mb_test_bit(block, buddy)) {
1193                 ex->fe_len = 0;
1194                 ex->fe_start = 0;
1195                 ex->fe_group = 0;
1196                 return 0;
1197         }
1198
1199         /* FIXME dorp order completely ? */
1200         if (likely(order == 0)) {
1201                 /* find actual order */
1202                 order = mb_find_order_for_block(e4b, block);
1203                 block = block >> order;
1204         }
1205
1206         ex->fe_len = 1 << order;
1207         ex->fe_start = block << order;
1208         ex->fe_group = e4b->bd_group;
1209
1210         /* calc difference from given start */
1211         next = next - ex->fe_start;
1212         ex->fe_len -= next;
1213         ex->fe_start += next;
1214
1215         while (needed > ex->fe_len &&
1216                (buddy = mb_find_buddy(e4b, order, &max))) {
1217
1218                 if (block + 1 >= max)
1219                         break;
1220
1221                 next = (block + 1) * (1 << order);
1222                 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1223                         break;
1224
1225                 ord = mb_find_order_for_block(e4b, next);
1226
1227                 order = ord;
1228                 block = next >> order;
1229                 ex->fe_len += 1 << order;
1230         }
1231
1232         BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1233         return ex->fe_len;
1234 }
1235
1236 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1237 {
1238         int ord;
1239         int mlen = 0;
1240         int max = 0;
1241         int cur;
1242         int start = ex->fe_start;
1243         int len = ex->fe_len;
1244         unsigned ret = 0;
1245         int len0 = len;
1246         void *buddy;
1247
1248         BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1249         BUG_ON(e4b->bd_group != ex->fe_group);
1250         BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1251         mb_check_buddy(e4b);
1252         mb_mark_used_double(e4b, start, len);
1253
1254         e4b->bd_info->bb_free -= len;
1255         if (e4b->bd_info->bb_first_free == start)
1256                 e4b->bd_info->bb_first_free += len;
1257
1258         /* let's maintain fragments counter */
1259         if (start != 0)
1260                 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1261         if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1262                 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1263         if (mlen && max)
1264                 e4b->bd_info->bb_fragments++;
1265         else if (!mlen && !max)
1266                 e4b->bd_info->bb_fragments--;
1267
1268         /* let's maintain buddy itself */
1269         while (len) {
1270                 ord = mb_find_order_for_block(e4b, start);
1271
1272                 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1273                         /* the whole chunk may be allocated at once! */
1274                         mlen = 1 << ord;
1275                         buddy = mb_find_buddy(e4b, ord, &max);
1276                         BUG_ON((start >> ord) >= max);
1277                         mb_set_bit(start >> ord, buddy);
1278                         e4b->bd_info->bb_counters[ord]--;
1279                         start += mlen;
1280                         len -= mlen;
1281                         BUG_ON(len < 0);
1282                         continue;
1283                 }
1284
1285                 /* store for history */
1286                 if (ret == 0)
1287                         ret = len | (ord << 16);
1288
1289                 /* we have to split large buddy */
1290                 BUG_ON(ord <= 0);
1291                 buddy = mb_find_buddy(e4b, ord, &max);
1292                 mb_set_bit(start >> ord, buddy);
1293                 e4b->bd_info->bb_counters[ord]--;
1294
1295                 ord--;
1296                 cur = (start >> ord) & ~1U;
1297                 buddy = mb_find_buddy(e4b, ord, &max);
1298                 mb_clear_bit(cur, buddy);
1299                 mb_clear_bit(cur + 1, buddy);
1300                 e4b->bd_info->bb_counters[ord]++;
1301                 e4b->bd_info->bb_counters[ord]++;
1302         }
1303
1304         mb_set_bits(sb_bgl_lock(EXT4_SB(e4b->bd_sb), ex->fe_group),
1305                         EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1306         mb_check_buddy(e4b);
1307
1308         return ret;
1309 }
1310
1311 /*
1312  * Must be called under group lock!
1313  */
1314 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1315                                         struct ext4_buddy *e4b)
1316 {
1317         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1318         int ret;
1319
1320         BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1321         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1322
1323         ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1324         ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1325         ret = mb_mark_used(e4b, &ac->ac_b_ex);
1326
1327         /* preallocation can change ac_b_ex, thus we store actually
1328          * allocated blocks for history */
1329         ac->ac_f_ex = ac->ac_b_ex;
1330
1331         ac->ac_status = AC_STATUS_FOUND;
1332         ac->ac_tail = ret & 0xffff;
1333         ac->ac_buddy = ret >> 16;
1334
1335         /*
1336          * take the page reference. We want the page to be pinned
1337          * so that we don't get a ext4_mb_init_cache_call for this
1338          * group until we update the bitmap. That would mean we
1339          * double allocate blocks. The reference is dropped
1340          * in ext4_mb_release_context
1341          */
1342         ac->ac_bitmap_page = e4b->bd_bitmap_page;
1343         get_page(ac->ac_bitmap_page);
1344         ac->ac_buddy_page = e4b->bd_buddy_page;
1345         get_page(ac->ac_buddy_page);
1346
1347         /* store last allocated for subsequent stream allocation */
1348         if ((ac->ac_flags & EXT4_MB_HINT_DATA)) {
1349                 spin_lock(&sbi->s_md_lock);
1350                 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1351                 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1352                 spin_unlock(&sbi->s_md_lock);
1353         }
1354 }
1355
1356 /*
1357  * regular allocator, for general purposes allocation
1358  */
1359
1360 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1361                                         struct ext4_buddy *e4b,
1362                                         int finish_group)
1363 {
1364         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1365         struct ext4_free_extent *bex = &ac->ac_b_ex;
1366         struct ext4_free_extent *gex = &ac->ac_g_ex;
1367         struct ext4_free_extent ex;
1368         int max;
1369
1370         if (ac->ac_status == AC_STATUS_FOUND)
1371                 return;
1372         /*
1373          * We don't want to scan for a whole year
1374          */
1375         if (ac->ac_found > sbi->s_mb_max_to_scan &&
1376                         !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1377                 ac->ac_status = AC_STATUS_BREAK;
1378                 return;
1379         }
1380
1381         /*
1382          * Haven't found good chunk so far, let's continue
1383          */
1384         if (bex->fe_len < gex->fe_len)
1385                 return;
1386
1387         if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1388                         && bex->fe_group == e4b->bd_group) {
1389                 /* recheck chunk's availability - we don't know
1390                  * when it was found (within this lock-unlock
1391                  * period or not) */
1392                 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1393                 if (max >= gex->fe_len) {
1394                         ext4_mb_use_best_found(ac, e4b);
1395                         return;
1396                 }
1397         }
1398 }
1399
1400 /*
1401  * The routine checks whether found extent is good enough. If it is,
1402  * then the extent gets marked used and flag is set to the context
1403  * to stop scanning. Otherwise, the extent is compared with the
1404  * previous found extent and if new one is better, then it's stored
1405  * in the context. Later, the best found extent will be used, if
1406  * mballoc can't find good enough extent.
1407  *
1408  * FIXME: real allocation policy is to be designed yet!
1409  */
1410 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1411                                         struct ext4_free_extent *ex,
1412                                         struct ext4_buddy *e4b)
1413 {
1414         struct ext4_free_extent *bex = &ac->ac_b_ex;
1415         struct ext4_free_extent *gex = &ac->ac_g_ex;
1416
1417         BUG_ON(ex->fe_len <= 0);
1418         BUG_ON(ex->fe_len >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1419         BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1420         BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1421
1422         ac->ac_found++;
1423
1424         /*
1425          * The special case - take what you catch first
1426          */
1427         if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1428                 *bex = *ex;
1429                 ext4_mb_use_best_found(ac, e4b);
1430                 return;
1431         }
1432
1433         /*
1434          * Let's check whether the chuck is good enough
1435          */
1436         if (ex->fe_len == gex->fe_len) {
1437                 *bex = *ex;
1438                 ext4_mb_use_best_found(ac, e4b);
1439                 return;
1440         }
1441
1442         /*
1443          * If this is first found extent, just store it in the context
1444          */
1445         if (bex->fe_len == 0) {
1446                 *bex = *ex;
1447                 return;
1448         }
1449
1450         /*
1451          * If new found extent is better, store it in the context
1452          */
1453         if (bex->fe_len < gex->fe_len) {
1454                 /* if the request isn't satisfied, any found extent
1455                  * larger than previous best one is better */
1456                 if (ex->fe_len > bex->fe_len)
1457                         *bex = *ex;
1458         } else if (ex->fe_len > gex->fe_len) {
1459                 /* if the request is satisfied, then we try to find
1460                  * an extent that still satisfy the request, but is
1461                  * smaller than previous one */
1462                 if (ex->fe_len < bex->fe_len)
1463                         *bex = *ex;
1464         }
1465
1466         ext4_mb_check_limits(ac, e4b, 0);
1467 }
1468
1469 static int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1470                                         struct ext4_buddy *e4b)
1471 {
1472         struct ext4_free_extent ex = ac->ac_b_ex;
1473         ext4_group_t group = ex.fe_group;
1474         int max;
1475         int err;
1476
1477         BUG_ON(ex.fe_len <= 0);
1478         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1479         if (err)
1480                 return err;
1481
1482         ext4_lock_group(ac->ac_sb, group);
1483         max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1484
1485         if (max > 0) {
1486                 ac->ac_b_ex = ex;
1487                 ext4_mb_use_best_found(ac, e4b);
1488         }
1489
1490         ext4_unlock_group(ac->ac_sb, group);
1491         ext4_mb_release_desc(e4b);
1492
1493         return 0;
1494 }
1495
1496 static int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1497                                 struct ext4_buddy *e4b)
1498 {
1499         ext4_group_t group = ac->ac_g_ex.fe_group;
1500         int max;
1501         int err;
1502         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1503         struct ext4_super_block *es = sbi->s_es;
1504         struct ext4_free_extent ex;
1505
1506         if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1507                 return 0;
1508
1509         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1510         if (err)
1511                 return err;
1512
1513         ext4_lock_group(ac->ac_sb, group);
1514         max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1515                              ac->ac_g_ex.fe_len, &ex);
1516
1517         if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1518                 ext4_fsblk_t start;
1519
1520                 start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
1521                         ex.fe_start + le32_to_cpu(es->s_first_data_block);
1522                 /* use do_div to get remainder (would be 64-bit modulo) */
1523                 if (do_div(start, sbi->s_stripe) == 0) {
1524                         ac->ac_found++;
1525                         ac->ac_b_ex = ex;
1526                         ext4_mb_use_best_found(ac, e4b);
1527                 }
1528         } else if (max >= ac->ac_g_ex.fe_len) {
1529                 BUG_ON(ex.fe_len <= 0);
1530                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1531                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1532                 ac->ac_found++;
1533                 ac->ac_b_ex = ex;
1534                 ext4_mb_use_best_found(ac, e4b);
1535         } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1536                 /* Sometimes, caller may want to merge even small
1537                  * number of blocks to an existing extent */
1538                 BUG_ON(ex.fe_len <= 0);
1539                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1540                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1541                 ac->ac_found++;
1542                 ac->ac_b_ex = ex;
1543                 ext4_mb_use_best_found(ac, e4b);
1544         }
1545         ext4_unlock_group(ac->ac_sb, group);
1546         ext4_mb_release_desc(e4b);
1547
1548         return 0;
1549 }
1550
1551 /*
1552  * The routine scans buddy structures (not bitmap!) from given order
1553  * to max order and tries to find big enough chunk to satisfy the req
1554  */
1555 static void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1556                                         struct ext4_buddy *e4b)
1557 {
1558         struct super_block *sb = ac->ac_sb;
1559         struct ext4_group_info *grp = e4b->bd_info;
1560         void *buddy;
1561         int i;
1562         int k;
1563         int max;
1564
1565         BUG_ON(ac->ac_2order <= 0);
1566         for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1567                 if (grp->bb_counters[i] == 0)
1568                         continue;
1569
1570                 buddy = mb_find_buddy(e4b, i, &max);
1571                 BUG_ON(buddy == NULL);
1572
1573                 k = mb_find_next_zero_bit(buddy, max, 0);
1574                 BUG_ON(k >= max);
1575
1576                 ac->ac_found++;
1577
1578                 ac->ac_b_ex.fe_len = 1 << i;
1579                 ac->ac_b_ex.fe_start = k << i;
1580                 ac->ac_b_ex.fe_group = e4b->bd_group;
1581
1582                 ext4_mb_use_best_found(ac, e4b);
1583
1584                 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1585
1586                 if (EXT4_SB(sb)->s_mb_stats)
1587                         atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1588
1589                 break;
1590         }
1591 }
1592
1593 /*
1594  * The routine scans the group and measures all found extents.
1595  * In order to optimize scanning, caller must pass number of
1596  * free blocks in the group, so the routine can know upper limit.
1597  */
1598 static void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1599                                         struct ext4_buddy *e4b)
1600 {
1601         struct super_block *sb = ac->ac_sb;
1602         void *bitmap = EXT4_MB_BITMAP(e4b);
1603         struct ext4_free_extent ex;
1604         int i;
1605         int free;
1606
1607         free = e4b->bd_info->bb_free;
1608         BUG_ON(free <= 0);
1609
1610         i = e4b->bd_info->bb_first_free;
1611
1612         while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1613                 i = mb_find_next_zero_bit(bitmap,
1614                                                 EXT4_BLOCKS_PER_GROUP(sb), i);
1615                 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1616                         /*
1617                          * IF we have corrupt bitmap, we won't find any
1618                          * free blocks even though group info says we
1619                          * we have free blocks
1620                          */
1621                         ext4_error(sb, __func__, "%d free blocks as per "
1622                                         "group info. But bitmap says 0",
1623                                         free);
1624                         break;
1625                 }
1626
1627                 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1628                 BUG_ON(ex.fe_len <= 0);
1629                 if (free < ex.fe_len) {
1630                         ext4_error(sb, __func__, "%d free blocks as per "
1631                                         "group info. But got %d blocks",
1632                                         free, ex.fe_len);
1633                         /*
1634                          * The number of free blocks differs. This mostly
1635                          * indicate that the bitmap is corrupt. So exit
1636                          * without claiming the space.
1637                          */
1638                         break;
1639                 }
1640
1641                 ext4_mb_measure_extent(ac, &ex, e4b);
1642
1643                 i += ex.fe_len;
1644                 free -= ex.fe_len;
1645         }
1646
1647         ext4_mb_check_limits(ac, e4b, 1);
1648 }
1649
1650 /*
1651  * This is a special case for storages like raid5
1652  * we try to find stripe-aligned chunks for stripe-size requests
1653  * XXX should do so at least for multiples of stripe size as well
1654  */
1655 static void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1656                                  struct ext4_buddy *e4b)
1657 {
1658         struct super_block *sb = ac->ac_sb;
1659         struct ext4_sb_info *sbi = EXT4_SB(sb);
1660         void *bitmap = EXT4_MB_BITMAP(e4b);
1661         struct ext4_free_extent ex;
1662         ext4_fsblk_t first_group_block;
1663         ext4_fsblk_t a;
1664         ext4_grpblk_t i;
1665         int max;
1666
1667         BUG_ON(sbi->s_stripe == 0);
1668
1669         /* find first stripe-aligned block in group */
1670         first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
1671                 + le32_to_cpu(sbi->s_es->s_first_data_block);
1672         a = first_group_block + sbi->s_stripe - 1;
1673         do_div(a, sbi->s_stripe);
1674         i = (a * sbi->s_stripe) - first_group_block;
1675
1676         while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1677                 if (!mb_test_bit(i, bitmap)) {
1678                         max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1679                         if (max >= sbi->s_stripe) {
1680                                 ac->ac_found++;
1681                                 ac->ac_b_ex = ex;
1682                                 ext4_mb_use_best_found(ac, e4b);
1683                                 break;
1684                         }
1685                 }
1686                 i += sbi->s_stripe;
1687         }
1688 }
1689
1690 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1691                                 ext4_group_t group, int cr)
1692 {
1693         unsigned free, fragments;
1694         unsigned i, bits;
1695         struct ext4_group_desc *desc;
1696         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1697
1698         BUG_ON(cr < 0 || cr >= 4);
1699         BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
1700
1701         free = grp->bb_free;
1702         fragments = grp->bb_fragments;
1703         if (free == 0)
1704                 return 0;
1705         if (fragments == 0)
1706                 return 0;
1707
1708         switch (cr) {
1709         case 0:
1710                 BUG_ON(ac->ac_2order == 0);
1711                 /* If this group is uninitialized, skip it initially */
1712                 desc = ext4_get_group_desc(ac->ac_sb, group, NULL);
1713                 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1714                         return 0;
1715
1716                 bits = ac->ac_sb->s_blocksize_bits + 1;
1717                 for (i = ac->ac_2order; i <= bits; i++)
1718                         if (grp->bb_counters[i] > 0)
1719                                 return 1;
1720                 break;
1721         case 1:
1722                 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1723                         return 1;
1724                 break;
1725         case 2:
1726                 if (free >= ac->ac_g_ex.fe_len)
1727                         return 1;
1728                 break;
1729         case 3:
1730                 return 1;
1731         default:
1732                 BUG();
1733         }
1734
1735         return 0;
1736 }
1737
1738 /*
1739  * lock the group_info alloc_sem of all the groups
1740  * belonging to the same buddy cache page. This
1741  * make sure other parallel operation on the buddy
1742  * cache doesn't happen  whild holding the buddy cache
1743  * lock
1744  */
1745 int ext4_mb_get_buddy_cache_lock(struct super_block *sb, ext4_group_t group)
1746 {
1747         int i;
1748         int block, pnum;
1749         int blocks_per_page;
1750         int groups_per_page;
1751         ext4_group_t first_group;
1752         struct ext4_group_info *grp;
1753
1754         blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1755         /*
1756          * the buddy cache inode stores the block bitmap
1757          * and buddy information in consecutive blocks.
1758          * So for each group we need two blocks.
1759          */
1760         block = group * 2;
1761         pnum = block / blocks_per_page;
1762         first_group = pnum * blocks_per_page / 2;
1763
1764         groups_per_page = blocks_per_page >> 1;
1765         if (groups_per_page == 0)
1766                 groups_per_page = 1;
1767         /* read all groups the page covers into the cache */
1768         for (i = 0; i < groups_per_page; i++) {
1769
1770                 if ((first_group + i) >= EXT4_SB(sb)->s_groups_count)
1771                         break;
1772                 grp = ext4_get_group_info(sb, first_group + i);
1773                 /* take all groups write allocation
1774                  * semaphore. This make sure there is
1775                  * no block allocation going on in any
1776                  * of that groups
1777                  */
1778                 down_write(&grp->alloc_sem);
1779         }
1780         return i;
1781 }
1782
1783 void ext4_mb_put_buddy_cache_lock(struct super_block *sb,
1784                                         ext4_group_t group, int locked_group)
1785 {
1786         int i;
1787         int block, pnum;
1788         int blocks_per_page;
1789         ext4_group_t first_group;
1790         struct ext4_group_info *grp;
1791
1792         blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1793         /*
1794          * the buddy cache inode stores the block bitmap
1795          * and buddy information in consecutive blocks.
1796          * So for each group we need two blocks.
1797          */
1798         block = group * 2;
1799         pnum = block / blocks_per_page;
1800         first_group = pnum * blocks_per_page / 2;
1801         /* release locks on all the groups */
1802         for (i = 0; i < locked_group; i++) {
1803
1804                 grp = ext4_get_group_info(sb, first_group + i);
1805                 /* take all groups write allocation
1806                  * semaphore. This make sure there is
1807                  * no block allocation going on in any
1808                  * of that groups
1809                  */
1810                 up_write(&grp->alloc_sem);
1811         }
1812
1813 }
1814
1815 static int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1816 {
1817
1818         int ret;
1819         void *bitmap;
1820         int blocks_per_page;
1821         int block, pnum, poff;
1822         int num_grp_locked = 0;
1823         struct ext4_group_info *this_grp;
1824         struct ext4_sb_info *sbi = EXT4_SB(sb);
1825         struct inode *inode = sbi->s_buddy_cache;
1826         struct page *page = NULL, *bitmap_page = NULL;
1827
1828         mb_debug("init group %lu\n", group);
1829         blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1830         this_grp = ext4_get_group_info(sb, group);
1831         /*
1832          * This ensures we don't add group
1833          * to this buddy cache via resize
1834          */
1835         num_grp_locked =  ext4_mb_get_buddy_cache_lock(sb, group);
1836         if (!EXT4_MB_GRP_NEED_INIT(this_grp)) {
1837                 /*
1838                  * somebody initialized the group
1839                  * return without doing anything
1840                  */
1841                 ret = 0;
1842                 goto err;
1843         }
1844         /*
1845          * the buddy cache inode stores the block bitmap
1846          * and buddy information in consecutive blocks.
1847          * So for each group we need two blocks.
1848          */
1849         block = group * 2;
1850         pnum = block / blocks_per_page;
1851         poff = block % blocks_per_page;
1852         page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1853         if (page) {
1854                 BUG_ON(page->mapping != inode->i_mapping);
1855                 ret = ext4_mb_init_cache(page, NULL);
1856                 if (ret) {
1857                         unlock_page(page);
1858                         goto err;
1859                 }
1860                 unlock_page(page);
1861         }
1862         if (page == NULL || !PageUptodate(page)) {
1863                 ret = -EIO;
1864                 goto err;
1865         }
1866         mark_page_accessed(page);
1867         bitmap_page = page;
1868         bitmap = page_address(page) + (poff * sb->s_blocksize);
1869
1870         /* init buddy cache */
1871         block++;
1872         pnum = block / blocks_per_page;
1873         poff = block % blocks_per_page;
1874         page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1875         if (page == bitmap_page) {
1876                 /*
1877                  * If both the bitmap and buddy are in
1878                  * the same page we don't need to force
1879                  * init the buddy
1880                  */
1881                 unlock_page(page);
1882         } else if (page) {
1883                 BUG_ON(page->mapping != inode->i_mapping);
1884                 ret = ext4_mb_init_cache(page, bitmap);
1885                 if (ret) {
1886                         unlock_page(page);
1887                         goto err;
1888                 }
1889                 unlock_page(page);
1890         }
1891         if (page == NULL || !PageUptodate(page)) {
1892                 ret = -EIO;
1893                 goto err;
1894         }
1895         mark_page_accessed(page);
1896 err:
1897         ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked);
1898         if (bitmap_page)
1899                 page_cache_release(bitmap_page);
1900         if (page)
1901                 page_cache_release(page);
1902         return ret;
1903 }
1904
1905 static noinline_for_stack int
1906 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1907 {
1908         ext4_group_t group;
1909         ext4_group_t i;
1910         int cr;
1911         int err = 0;
1912         int bsbits;
1913         struct ext4_sb_info *sbi;
1914         struct super_block *sb;
1915         struct ext4_buddy e4b;
1916         loff_t size, isize;
1917
1918         sb = ac->ac_sb;
1919         sbi = EXT4_SB(sb);
1920         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1921
1922         /* first, try the goal */
1923         err = ext4_mb_find_by_goal(ac, &e4b);
1924         if (err || ac->ac_status == AC_STATUS_FOUND)
1925                 goto out;
1926
1927         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1928                 goto out;
1929
1930         /*
1931          * ac->ac2_order is set only if the fe_len is a power of 2
1932          * if ac2_order is set we also set criteria to 0 so that we
1933          * try exact allocation using buddy.
1934          */
1935         i = fls(ac->ac_g_ex.fe_len);
1936         ac->ac_2order = 0;
1937         /*
1938          * We search using buddy data only if the order of the request
1939          * is greater than equal to the sbi_s_mb_order2_reqs
1940          * You can tune it via /proc/fs/ext4/<partition>/order2_req
1941          */
1942         if (i >= sbi->s_mb_order2_reqs) {
1943                 /*
1944                  * This should tell if fe_len is exactly power of 2
1945                  */
1946                 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1947                         ac->ac_2order = i - 1;
1948         }
1949
1950         bsbits = ac->ac_sb->s_blocksize_bits;
1951         /* if stream allocation is enabled, use global goal */
1952         size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
1953         isize = i_size_read(ac->ac_inode) >> bsbits;
1954         if (size < isize)
1955                 size = isize;
1956
1957         if (size < sbi->s_mb_stream_request &&
1958                         (ac->ac_flags & EXT4_MB_HINT_DATA)) {
1959                 /* TBD: may be hot point */
1960                 spin_lock(&sbi->s_md_lock);
1961                 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1962                 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1963                 spin_unlock(&sbi->s_md_lock);
1964         }
1965         /* Let's just scan groups to find more-less suitable blocks */
1966         cr = ac->ac_2order ? 0 : 1;
1967         /*
1968          * cr == 0 try to get exact allocation,
1969          * cr == 3  try to get anything
1970          */
1971 repeat:
1972         for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
1973                 ac->ac_criteria = cr;
1974                 /*
1975                  * searching for the right group start
1976                  * from the goal value specified
1977                  */
1978                 group = ac->ac_g_ex.fe_group;
1979
1980                 for (i = 0; i < EXT4_SB(sb)->s_groups_count; group++, i++) {
1981                         struct ext4_group_info *grp;
1982                         struct ext4_group_desc *desc;
1983
1984                         if (group == EXT4_SB(sb)->s_groups_count)
1985                                 group = 0;
1986
1987                         /* quick check to skip empty groups */
1988                         grp = ext4_get_group_info(sb, group);
1989                         if (grp->bb_free == 0)
1990                                 continue;
1991
1992                         /*
1993                          * if the group is already init we check whether it is
1994                          * a good group and if not we don't load the buddy
1995                          */
1996                         if (EXT4_MB_GRP_NEED_INIT(grp)) {
1997                                 /*
1998                                  * we need full data about the group
1999                                  * to make a good selection
2000                                  */
2001                                 err = ext4_mb_init_group(sb, group);
2002                                 if (err)
2003                                         goto out;
2004                         }
2005
2006                         /*
2007                          * If the particular group doesn't satisfy our
2008                          * criteria we continue with the next group
2009                          */
2010                         if (!ext4_mb_good_group(ac, group, cr))
2011                                 continue;
2012
2013                         err = ext4_mb_load_buddy(sb, group, &e4b);
2014                         if (err)
2015                                 goto out;
2016
2017                         ext4_lock_group(sb, group);
2018                         if (!ext4_mb_good_group(ac, group, cr)) {
2019                                 /* someone did allocation from this group */
2020                                 ext4_unlock_group(sb, group);
2021                                 ext4_mb_release_desc(&e4b);
2022                                 continue;
2023                         }
2024
2025                         ac->ac_groups_scanned++;
2026                         desc = ext4_get_group_desc(sb, group, NULL);
2027                         if (cr == 0 || (desc->bg_flags &
2028                                         cpu_to_le16(EXT4_BG_BLOCK_UNINIT) &&
2029                                         ac->ac_2order != 0))
2030                                 ext4_mb_simple_scan_group(ac, &e4b);
2031                         else if (cr == 1 &&
2032                                         ac->ac_g_ex.fe_len == sbi->s_stripe)
2033                                 ext4_mb_scan_aligned(ac, &e4b);
2034                         else
2035                                 ext4_mb_complex_scan_group(ac, &e4b);
2036
2037                         ext4_unlock_group(sb, group);
2038                         ext4_mb_release_desc(&e4b);
2039
2040                         if (ac->ac_status != AC_STATUS_CONTINUE)
2041                                 break;
2042                 }
2043         }
2044
2045         if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2046             !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2047                 /*
2048                  * We've been searching too long. Let's try to allocate
2049                  * the best chunk we've found so far
2050                  */
2051
2052                 ext4_mb_try_best_found(ac, &e4b);
2053                 if (ac->ac_status != AC_STATUS_FOUND) {
2054                         /*
2055                          * Someone more lucky has already allocated it.
2056                          * The only thing we can do is just take first
2057                          * found block(s)
2058                         printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2059                          */
2060                         ac->ac_b_ex.fe_group = 0;
2061                         ac->ac_b_ex.fe_start = 0;
2062                         ac->ac_b_ex.fe_len = 0;
2063                         ac->ac_status = AC_STATUS_CONTINUE;
2064                         ac->ac_flags |= EXT4_MB_HINT_FIRST;
2065                         cr = 3;
2066                         atomic_inc(&sbi->s_mb_lost_chunks);
2067                         goto repeat;
2068                 }
2069         }
2070 out:
2071         return err;
2072 }
2073
2074 #ifdef EXT4_MB_HISTORY
2075 struct ext4_mb_proc_session {
2076         struct ext4_mb_history *history;
2077         struct super_block *sb;
2078         int start;
2079         int max;
2080 };
2081
2082 static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s,
2083                                         struct ext4_mb_history *hs,
2084                                         int first)
2085 {
2086         if (hs == s->history + s->max)
2087                 hs = s->history;
2088         if (!first && hs == s->history + s->start)
2089                 return NULL;
2090         while (hs->orig.fe_len == 0) {
2091                 hs++;
2092                 if (hs == s->history + s->max)
2093                         hs = s->history;
2094                 if (hs == s->history + s->start)
2095                         return NULL;
2096         }
2097         return hs;
2098 }
2099
2100 static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos)
2101 {
2102         struct ext4_mb_proc_session *s = seq->private;
2103         struct ext4_mb_history *hs;
2104         int l = *pos;
2105
2106         if (l == 0)
2107                 return SEQ_START_TOKEN;
2108         hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2109         if (!hs)
2110                 return NULL;
2111         while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL);
2112         return hs;
2113 }
2114
2115 static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v,
2116                                       loff_t *pos)
2117 {
2118         struct ext4_mb_proc_session *s = seq->private;
2119         struct ext4_mb_history *hs = v;
2120
2121         ++*pos;
2122         if (v == SEQ_START_TOKEN)
2123                 return ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2124         else
2125                 return ext4_mb_history_skip_empty(s, ++hs, 0);
2126 }
2127
2128 static int ext4_mb_seq_history_show(struct seq_file *seq, void *v)
2129 {
2130         char buf[25], buf2[25], buf3[25], *fmt;
2131         struct ext4_mb_history *hs = v;
2132
2133         if (v == SEQ_START_TOKEN) {
2134                 seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s "
2135                                 "%-5s %-2s %-5s %-5s %-5s %-6s\n",
2136                           "pid", "inode", "original", "goal", "result", "found",
2137                            "grps", "cr", "flags", "merge", "tail", "broken");
2138                 return 0;
2139         }
2140
2141         if (hs->op == EXT4_MB_HISTORY_ALLOC) {
2142                 fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u "
2143                         "%-5u %-5s %-5u %-6u\n";
2144                 sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2145                         hs->result.fe_start, hs->result.fe_len,
2146                         hs->result.fe_logical);
2147                 sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2148                         hs->orig.fe_start, hs->orig.fe_len,
2149                         hs->orig.fe_logical);
2150                 sprintf(buf3, "%u/%d/%u@%u", hs->goal.fe_group,
2151                         hs->goal.fe_start, hs->goal.fe_len,
2152                         hs->goal.fe_logical);
2153                 seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2,
2154                                 hs->found, hs->groups, hs->cr, hs->flags,
2155                                 hs->merged ? "M" : "", hs->tail,
2156                                 hs->buddy ? 1 << hs->buddy : 0);
2157         } else if (hs->op == EXT4_MB_HISTORY_PREALLOC) {
2158                 fmt = "%-5u %-8u %-23s %-23s %-23s\n";
2159                 sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2160                         hs->result.fe_start, hs->result.fe_len,
2161                         hs->result.fe_logical);
2162                 sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2163                         hs->orig.fe_start, hs->orig.fe_len,
2164                         hs->orig.fe_logical);
2165                 seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2);
2166         } else if (hs->op == EXT4_MB_HISTORY_DISCARD) {
2167                 sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2168                         hs->result.fe_start, hs->result.fe_len);
2169                 seq_printf(seq, "%-5u %-8u %-23s discard\n",
2170                                 hs->pid, hs->ino, buf2);
2171         } else if (hs->op == EXT4_MB_HISTORY_FREE) {
2172                 sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2173                         hs->result.fe_start, hs->result.fe_len);
2174                 seq_printf(seq, "%-5u %-8u %-23s free\n",
2175                                 hs->pid, hs->ino, buf2);
2176         }
2177         return 0;
2178 }
2179
2180 static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v)
2181 {
2182 }
2183
2184 static struct seq_operations ext4_mb_seq_history_ops = {
2185         .start  = ext4_mb_seq_history_start,
2186         .next   = ext4_mb_seq_history_next,
2187         .stop   = ext4_mb_seq_history_stop,
2188         .show   = ext4_mb_seq_history_show,
2189 };
2190
2191 static int ext4_mb_seq_history_open(struct inode *inode, struct file *file)
2192 {
2193         struct super_block *sb = PDE(inode)->data;
2194         struct ext4_sb_info *sbi = EXT4_SB(sb);
2195         struct ext4_mb_proc_session *s;
2196         int rc;
2197         int size;
2198
2199         if (unlikely(sbi->s_mb_history == NULL))
2200                 return -ENOMEM;
2201         s = kmalloc(sizeof(*s), GFP_KERNEL);
2202         if (s == NULL)
2203                 return -ENOMEM;
2204         s->sb = sb;
2205         size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max;
2206         s->history = kmalloc(size, GFP_KERNEL);
2207         if (s->history == NULL) {
2208                 kfree(s);
2209                 return -ENOMEM;
2210         }
2211
2212         spin_lock(&sbi->s_mb_history_lock);
2213         memcpy(s->history, sbi->s_mb_history, size);
2214         s->max = sbi->s_mb_history_max;
2215         s->start = sbi->s_mb_history_cur % s->max;
2216         spin_unlock(&sbi->s_mb_history_lock);
2217
2218         rc = seq_open(file, &ext4_mb_seq_history_ops);
2219         if (rc == 0) {
2220                 struct seq_file *m = (struct seq_file *)file->private_data;
2221                 m->private = s;
2222         } else {
2223                 kfree(s->history);
2224                 kfree(s);
2225         }
2226         return rc;
2227
2228 }
2229
2230 static int ext4_mb_seq_history_release(struct inode *inode, struct file *file)
2231 {
2232         struct seq_file *seq = (struct seq_file *)file->private_data;
2233         struct ext4_mb_proc_session *s = seq->private;
2234         kfree(s->history);
2235         kfree(s);
2236         return seq_release(inode, file);
2237 }
2238
2239 static ssize_t ext4_mb_seq_history_write(struct file *file,
2240                                 const char __user *buffer,
2241                                 size_t count, loff_t *ppos)
2242 {
2243         struct seq_file *seq = (struct seq_file *)file->private_data;
2244         struct ext4_mb_proc_session *s = seq->private;
2245         struct super_block *sb = s->sb;
2246         char str[32];
2247         int value;
2248
2249         if (count >= sizeof(str)) {
2250                 printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n",
2251                                 "mb_history", (int)sizeof(str));
2252                 return -EOVERFLOW;
2253         }
2254
2255         if (copy_from_user(str, buffer, count))
2256                 return -EFAULT;
2257
2258         value = simple_strtol(str, NULL, 0);
2259         if (value < 0)
2260                 return -ERANGE;
2261         EXT4_SB(sb)->s_mb_history_filter = value;
2262
2263         return count;
2264 }
2265
2266 static struct file_operations ext4_mb_seq_history_fops = {
2267         .owner          = THIS_MODULE,
2268         .open           = ext4_mb_seq_history_open,
2269         .read           = seq_read,
2270         .write          = ext4_mb_seq_history_write,
2271         .llseek         = seq_lseek,
2272         .release        = ext4_mb_seq_history_release,
2273 };
2274
2275 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2276 {
2277         struct super_block *sb = seq->private;
2278         struct ext4_sb_info *sbi = EXT4_SB(sb);
2279         ext4_group_t group;
2280
2281         if (*pos < 0 || *pos >= sbi->s_groups_count)
2282                 return NULL;
2283
2284         group = *pos + 1;
2285         return (void *) ((unsigned long) group);
2286 }
2287
2288 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2289 {
2290         struct super_block *sb = seq->private;
2291         struct ext4_sb_info *sbi = EXT4_SB(sb);
2292         ext4_group_t group;
2293
2294         ++*pos;
2295         if (*pos < 0 || *pos >= sbi->s_groups_count)
2296                 return NULL;
2297         group = *pos + 1;
2298         return (void *) ((unsigned long) group);
2299 }
2300
2301 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2302 {
2303         struct super_block *sb = seq->private;
2304         ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2305         int i;
2306         int err;
2307         struct ext4_buddy e4b;
2308         struct sg {
2309                 struct ext4_group_info info;
2310                 unsigned short counters[16];
2311         } sg;
2312
2313         group--;
2314         if (group == 0)
2315                 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2316                                 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2317                                   "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2318                            "group", "free", "frags", "first",
2319                            "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2320                            "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2321
2322         i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2323                 sizeof(struct ext4_group_info);
2324         err = ext4_mb_load_buddy(sb, group, &e4b);
2325         if (err) {
2326                 seq_printf(seq, "#%-5u: I/O error\n", group);
2327                 return 0;
2328         }
2329         ext4_lock_group(sb, group);
2330         memcpy(&sg, ext4_get_group_info(sb, group), i);
2331         ext4_unlock_group(sb, group);
2332         ext4_mb_release_desc(&e4b);
2333
2334         seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2335                         sg.info.bb_fragments, sg.info.bb_first_free);
2336         for (i = 0; i <= 13; i++)
2337                 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2338                                 sg.info.bb_counters[i] : 0);
2339         seq_printf(seq, " ]\n");
2340
2341         return 0;
2342 }
2343
2344 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2345 {
2346 }
2347
2348 static struct seq_operations ext4_mb_seq_groups_ops = {
2349         .start  = ext4_mb_seq_groups_start,
2350         .next   = ext4_mb_seq_groups_next,
2351         .stop   = ext4_mb_seq_groups_stop,
2352         .show   = ext4_mb_seq_groups_show,
2353 };
2354
2355 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2356 {
2357         struct super_block *sb = PDE(inode)->data;
2358         int rc;
2359
2360         rc = seq_open(file, &ext4_mb_seq_groups_ops);
2361         if (rc == 0) {
2362                 struct seq_file *m = (struct seq_file *)file->private_data;
2363                 m->private = sb;
2364         }
2365         return rc;
2366
2367 }
2368
2369 static struct file_operations ext4_mb_seq_groups_fops = {
2370         .owner          = THIS_MODULE,
2371         .open           = ext4_mb_seq_groups_open,
2372         .read           = seq_read,
2373         .llseek         = seq_lseek,
2374         .release        = seq_release,
2375 };
2376
2377 static void ext4_mb_history_release(struct super_block *sb)
2378 {
2379         struct ext4_sb_info *sbi = EXT4_SB(sb);
2380
2381         if (sbi->s_proc != NULL) {
2382                 remove_proc_entry("mb_groups", sbi->s_proc);
2383                 remove_proc_entry("mb_history", sbi->s_proc);
2384         }
2385         kfree(sbi->s_mb_history);
2386 }
2387
2388 static void ext4_mb_history_init(struct super_block *sb)
2389 {
2390         struct ext4_sb_info *sbi = EXT4_SB(sb);
2391         int i;
2392
2393         if (sbi->s_proc != NULL) {
2394                 proc_create_data("mb_history", S_IRUGO, sbi->s_proc,
2395                                  &ext4_mb_seq_history_fops, sb);
2396                 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2397                                  &ext4_mb_seq_groups_fops, sb);
2398         }
2399
2400         sbi->s_mb_history_max = 1000;
2401         sbi->s_mb_history_cur = 0;
2402         spin_lock_init(&sbi->s_mb_history_lock);
2403         i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history);
2404         sbi->s_mb_history = kzalloc(i, GFP_KERNEL);
2405         /* if we can't allocate history, then we simple won't use it */
2406 }
2407
2408 static noinline_for_stack void
2409 ext4_mb_store_history(struct ext4_allocation_context *ac)
2410 {
2411         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2412         struct ext4_mb_history h;
2413
2414         if (unlikely(sbi->s_mb_history == NULL))
2415                 return;
2416
2417         if (!(ac->ac_op & sbi->s_mb_history_filter))
2418                 return;
2419
2420         h.op = ac->ac_op;
2421         h.pid = current->pid;
2422         h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0;
2423         h.orig = ac->ac_o_ex;
2424         h.result = ac->ac_b_ex;
2425         h.flags = ac->ac_flags;
2426         h.found = ac->ac_found;
2427         h.groups = ac->ac_groups_scanned;
2428         h.cr = ac->ac_criteria;
2429         h.tail = ac->ac_tail;
2430         h.buddy = ac->ac_buddy;
2431         h.merged = 0;
2432         if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) {
2433                 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
2434                                 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
2435                         h.merged = 1;
2436                 h.goal = ac->ac_g_ex;
2437                 h.result = ac->ac_f_ex;
2438         }
2439
2440         spin_lock(&sbi->s_mb_history_lock);
2441         memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h));
2442         if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max)
2443                 sbi->s_mb_history_cur = 0;
2444         spin_unlock(&sbi->s_mb_history_lock);
2445 }
2446
2447 #else
2448 #define ext4_mb_history_release(sb)
2449 #define ext4_mb_history_init(sb)
2450 #endif
2451
2452
2453 /* Create and initialize ext4_group_info data for the given group. */
2454 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2455                           struct ext4_group_desc *desc)
2456 {
2457         int i, len;
2458         int metalen = 0;
2459         struct ext4_sb_info *sbi = EXT4_SB(sb);
2460         struct ext4_group_info **meta_group_info;
2461
2462         /*
2463          * First check if this group is the first of a reserved block.
2464          * If it's true, we have to allocate a new table of pointers
2465          * to ext4_group_info structures
2466          */
2467         if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2468                 metalen = sizeof(*meta_group_info) <<
2469                         EXT4_DESC_PER_BLOCK_BITS(sb);
2470                 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2471                 if (meta_group_info == NULL) {
2472                         printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2473                                "buddy group\n");
2474                         goto exit_meta_group_info;
2475                 }
2476                 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2477                         meta_group_info;
2478         }
2479
2480         /*
2481          * calculate needed size. if change bb_counters size,
2482          * don't forget about ext4_mb_generate_buddy()
2483          */
2484         len = offsetof(typeof(**meta_group_info),
2485                        bb_counters[sb->s_blocksize_bits + 2]);
2486
2487         meta_group_info =
2488                 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2489         i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2490
2491         meta_group_info[i] = kzalloc(len, GFP_KERNEL);
2492         if (meta_group_info[i] == NULL) {
2493                 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2494                 goto exit_group_info;
2495         }
2496         set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2497                 &(meta_group_info[i]->bb_state));
2498
2499         /*
2500          * initialize bb_free to be able to skip
2501          * empty groups without initialization
2502          */
2503         if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2504                 meta_group_info[i]->bb_free =
2505                         ext4_free_blocks_after_init(sb, group, desc);
2506         } else {
2507                 meta_group_info[i]->bb_free =
2508                         le16_to_cpu(desc->bg_free_blocks_count);
2509         }
2510
2511         INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2512         init_rwsem(&meta_group_info[i]->alloc_sem);
2513         meta_group_info[i]->bb_free_root.rb_node = NULL;;
2514
2515 #ifdef DOUBLE_CHECK
2516         {
2517                 struct buffer_head *bh;
2518                 meta_group_info[i]->bb_bitmap =
2519                         kmalloc(sb->s_blocksize, GFP_KERNEL);
2520                 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2521                 bh = ext4_read_block_bitmap(sb, group);
2522                 BUG_ON(bh == NULL);
2523                 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2524                         sb->s_blocksize);
2525                 put_bh(bh);
2526         }
2527 #endif
2528
2529         return 0;
2530
2531 exit_group_info:
2532         /* If a meta_group_info table has been allocated, release it now */
2533         if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2534                 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2535 exit_meta_group_info:
2536         return -ENOMEM;
2537 } /* ext4_mb_add_groupinfo */
2538
2539 /*
2540  * Update an existing group.
2541  * This function is used for online resize
2542  */
2543 void ext4_mb_update_group_info(struct ext4_group_info *grp, ext4_grpblk_t add)
2544 {
2545         grp->bb_free += add;
2546 }
2547
2548 static int ext4_mb_init_backend(struct super_block *sb)
2549 {
2550         ext4_group_t i;
2551         int metalen;
2552         struct ext4_sb_info *sbi = EXT4_SB(sb);
2553         struct ext4_super_block *es = sbi->s_es;
2554         int num_meta_group_infos;
2555         int num_meta_group_infos_max;
2556         int array_size;
2557         struct ext4_group_info **meta_group_info;
2558         struct ext4_group_desc *desc;
2559
2560         /* This is the number of blocks used by GDT */
2561         num_meta_group_infos = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) -
2562                                 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2563
2564         /*
2565          * This is the total number of blocks used by GDT including
2566          * the number of reserved blocks for GDT.
2567          * The s_group_info array is allocated with this value
2568          * to allow a clean online resize without a complex
2569          * manipulation of pointer.
2570          * The drawback is the unused memory when no resize
2571          * occurs but it's very low in terms of pages
2572          * (see comments below)
2573          * Need to handle this properly when META_BG resizing is allowed
2574          */
2575         num_meta_group_infos_max = num_meta_group_infos +
2576                                 le16_to_cpu(es->s_reserved_gdt_blocks);
2577
2578         /*
2579          * array_size is the size of s_group_info array. We round it
2580          * to the next power of two because this approximation is done
2581          * internally by kmalloc so we can have some more memory
2582          * for free here (e.g. may be used for META_BG resize).
2583          */
2584         array_size = 1;
2585         while (array_size < sizeof(*sbi->s_group_info) *
2586                num_meta_group_infos_max)
2587                 array_size = array_size << 1;
2588         /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2589          * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2590          * So a two level scheme suffices for now. */
2591         sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2592         if (sbi->s_group_info == NULL) {
2593                 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2594                 return -ENOMEM;
2595         }
2596         sbi->s_buddy_cache = new_inode(sb);
2597         if (sbi->s_buddy_cache == NULL) {
2598                 printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2599                 goto err_freesgi;
2600         }
2601         EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2602
2603         metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb);
2604         for (i = 0; i < num_meta_group_infos; i++) {
2605                 if ((i + 1) == num_meta_group_infos)
2606                         metalen = sizeof(*meta_group_info) *
2607                                 (sbi->s_groups_count -
2608                                         (i << EXT4_DESC_PER_BLOCK_BITS(sb)));
2609                 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2610                 if (meta_group_info == NULL) {
2611                         printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2612                                "buddy group\n");
2613                         goto err_freemeta;
2614                 }
2615                 sbi->s_group_info[i] = meta_group_info;
2616         }
2617
2618         for (i = 0; i < sbi->s_groups_count; i++) {
2619                 desc = ext4_get_group_desc(sb, i, NULL);
2620                 if (desc == NULL) {
2621                         printk(KERN_ERR
2622                                 "EXT4-fs: can't read descriptor %u\n", i);
2623                         goto err_freebuddy;
2624                 }
2625                 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2626                         goto err_freebuddy;
2627         }
2628
2629         return 0;
2630
2631 err_freebuddy:
2632         while (i-- > 0)
2633                 kfree(ext4_get_group_info(sb, i));
2634         i = num_meta_group_infos;
2635 err_freemeta:
2636         while (i-- > 0)
2637                 kfree(sbi->s_group_info[i]);
2638         iput(sbi->s_buddy_cache);
2639 err_freesgi:
2640         kfree(sbi->s_group_info);
2641         return -ENOMEM;
2642 }
2643
2644 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2645 {
2646         struct ext4_sb_info *sbi = EXT4_SB(sb);
2647         unsigned i, j;
2648         unsigned offset;
2649         unsigned max;
2650         int ret;
2651
2652         i = (sb->s_blocksize_bits + 2) * sizeof(unsigned short);
2653
2654         sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2655         if (sbi->s_mb_offsets == NULL) {
2656                 return -ENOMEM;
2657         }
2658
2659         i = (sb->s_blocksize_bits + 2) * sizeof(unsigned int);
2660         sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2661         if (sbi->s_mb_maxs == NULL) {
2662                 kfree(sbi->s_mb_maxs);
2663                 return -ENOMEM;
2664         }
2665
2666         /* order 0 is regular bitmap */
2667         sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2668         sbi->s_mb_offsets[0] = 0;
2669
2670         i = 1;
2671         offset = 0;
2672         max = sb->s_blocksize << 2;
2673         do {
2674                 sbi->s_mb_offsets[i] = offset;
2675                 sbi->s_mb_maxs[i] = max;
2676                 offset += 1 << (sb->s_blocksize_bits - i);
2677                 max = max >> 1;
2678                 i++;
2679         } while (i <= sb->s_blocksize_bits + 1);
2680
2681         /* init file for buddy data */
2682         ret = ext4_mb_init_backend(sb);
2683         if (ret != 0) {
2684                 kfree(sbi->s_mb_offsets);
2685                 kfree(sbi->s_mb_maxs);
2686                 return ret;
2687         }
2688
2689         spin_lock_init(&sbi->s_md_lock);
2690         spin_lock_init(&sbi->s_bal_lock);
2691
2692         sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2693         sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2694         sbi->s_mb_stats = MB_DEFAULT_STATS;
2695         sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2696         sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2697         sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT;
2698         sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2699
2700         sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2701         if (sbi->s_locality_groups == NULL) {
2702                 kfree(sbi->s_mb_offsets);
2703                 kfree(sbi->s_mb_maxs);
2704                 return -ENOMEM;
2705         }
2706         for_each_possible_cpu(i) {
2707                 struct ext4_locality_group *lg;
2708                 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2709                 mutex_init(&lg->lg_mutex);
2710                 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2711                         INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2712                 spin_lock_init(&lg->lg_prealloc_lock);
2713         }
2714
2715         ext4_mb_init_per_dev_proc(sb);
2716         ext4_mb_history_init(sb);
2717
2718         if (sbi->s_journal)
2719                 sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2720
2721         printk(KERN_INFO "EXT4-fs: mballoc enabled\n");
2722         return 0;
2723 }
2724
2725 /* need to called with ext4 group lock (ext4_lock_group) */
2726 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2727 {
2728         struct ext4_prealloc_space *pa;
2729         struct list_head *cur, *tmp;
2730         int count = 0;
2731
2732         list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2733                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2734                 list_del(&pa->pa_group_list);
2735                 count++;
2736                 kmem_cache_free(ext4_pspace_cachep, pa);
2737         }
2738         if (count)
2739                 mb_debug("mballoc: %u PAs left\n", count);
2740
2741 }
2742
2743 int ext4_mb_release(struct super_block *sb)
2744 {
2745         ext4_group_t i;
2746         int num_meta_group_infos;
2747         struct ext4_group_info *grinfo;
2748         struct ext4_sb_info *sbi = EXT4_SB(sb);
2749
2750         if (sbi->s_group_info) {
2751                 for (i = 0; i < sbi->s_groups_count; i++) {
2752                         grinfo = ext4_get_group_info(sb, i);
2753 #ifdef DOUBLE_CHECK
2754                         kfree(grinfo->bb_bitmap);
2755 #endif
2756                         ext4_lock_group(sb, i);
2757                         ext4_mb_cleanup_pa(grinfo);
2758                         ext4_unlock_group(sb, i);
2759                         kfree(grinfo);
2760                 }
2761                 num_meta_group_infos = (sbi->s_groups_count +
2762                                 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2763                         EXT4_DESC_PER_BLOCK_BITS(sb);
2764                 for (i = 0; i < num_meta_group_infos; i++)
2765                         kfree(sbi->s_group_info[i]);
2766                 kfree(sbi->s_group_info);
2767         }
2768         kfree(sbi->s_mb_offsets);
2769         kfree(sbi->s_mb_maxs);
2770         if (sbi->s_buddy_cache)
2771                 iput(sbi->s_buddy_cache);
2772         if (sbi->s_mb_stats) {
2773                 printk(KERN_INFO
2774                        "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2775                                 atomic_read(&sbi->s_bal_allocated),
2776                                 atomic_read(&sbi->s_bal_reqs),
2777                                 atomic_read(&sbi->s_bal_success));
2778                 printk(KERN_INFO
2779                       "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2780                                 "%u 2^N hits, %u breaks, %u lost\n",
2781                                 atomic_read(&sbi->s_bal_ex_scanned),
2782                                 atomic_read(&sbi->s_bal_goals),
2783                                 atomic_read(&sbi->s_bal_2orders),
2784                                 atomic_read(&sbi->s_bal_breaks),
2785                                 atomic_read(&sbi->s_mb_lost_chunks));
2786                 printk(KERN_INFO
2787                        "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2788                                 sbi->s_mb_buddies_generated++,
2789                                 sbi->s_mb_generation_time);
2790                 printk(KERN_INFO
2791                        "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2792                                 atomic_read(&sbi->s_mb_preallocated),
2793                                 atomic_read(&sbi->s_mb_discarded));
2794         }
2795
2796         free_percpu(sbi->s_locality_groups);
2797         ext4_mb_history_release(sb);
2798         ext4_mb_destroy_per_dev_proc(sb);
2799
2800         return 0;
2801 }
2802
2803 /*
2804  * This function is called by the jbd2 layer once the commit has finished,
2805  * so we know we can free the blocks that were released with that commit.
2806  */
2807 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2808 {
2809         struct super_block *sb = journal->j_private;
2810         struct ext4_buddy e4b;
2811         struct ext4_group_info *db;
2812         int err, count = 0, count2 = 0;
2813         struct ext4_free_data *entry;
2814         ext4_fsblk_t discard_block;
2815         struct list_head *l, *ltmp;
2816
2817         list_for_each_safe(l, ltmp, &txn->t_private_list) {
2818                 entry = list_entry(l, struct ext4_free_data, list);
2819
2820                 mb_debug("gonna free %u blocks in group %u (0x%p):",
2821                          entry->count, entry->group, entry);
2822
2823                 err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2824                 /* we expect to find existing buddy because it's pinned */
2825                 BUG_ON(err != 0);
2826
2827                 db = e4b.bd_info;
2828                 /* there are blocks to put in buddy to make them really free */
2829                 count += entry->count;
2830                 count2++;
2831                 ext4_lock_group(sb, entry->group);
2832                 /* Take it out of per group rb tree */
2833                 rb_erase(&entry->node, &(db->bb_free_root));
2834                 mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2835
2836                 if (!db->bb_free_root.rb_node) {
2837                         /* No more items in the per group rb tree
2838                          * balance refcounts from ext4_mb_free_metadata()
2839                          */
2840                         page_cache_release(e4b.bd_buddy_page);
2841                         page_cache_release(e4b.bd_bitmap_page);
2842                 }
2843                 ext4_unlock_group(sb, entry->group);
2844                 discard_block = (ext4_fsblk_t) entry->group * EXT4_BLOCKS_PER_GROUP(sb)
2845                         + entry->start_blk
2846                         + le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
2847                 trace_mark(ext4_discard_blocks, "dev %s blk %llu count %u", sb->s_id,
2848                            (unsigned long long) discard_block, entry->count);
2849                 sb_issue_discard(sb, discard_block, entry->count);
2850
2851                 kmem_cache_free(ext4_free_ext_cachep, entry);
2852                 ext4_mb_release_desc(&e4b);
2853         }
2854
2855         mb_debug("freed %u blocks in %u structures\n", count, count2);
2856 }
2857
2858 #define EXT4_MB_STATS_NAME              "stats"
2859 #define EXT4_MB_MAX_TO_SCAN_NAME        "max_to_scan"
2860 #define EXT4_MB_MIN_TO_SCAN_NAME        "min_to_scan"
2861 #define EXT4_MB_ORDER2_REQ              "order2_req"
2862 #define EXT4_MB_STREAM_REQ              "stream_req"
2863 #define EXT4_MB_GROUP_PREALLOC          "group_prealloc"
2864
2865 static int ext4_mb_init_per_dev_proc(struct super_block *sb)
2866 {
2867 #ifdef CONFIG_PROC_FS
2868         mode_t mode = S_IFREG | S_IRUGO | S_IWUSR;
2869         struct ext4_sb_info *sbi = EXT4_SB(sb);
2870         struct proc_dir_entry *proc;
2871
2872         if (sbi->s_proc == NULL)
2873                 return -EINVAL;
2874
2875         EXT4_PROC_HANDLER(EXT4_MB_STATS_NAME, mb_stats);
2876         EXT4_PROC_HANDLER(EXT4_MB_MAX_TO_SCAN_NAME, mb_max_to_scan);
2877         EXT4_PROC_HANDLER(EXT4_MB_MIN_TO_SCAN_NAME, mb_min_to_scan);
2878         EXT4_PROC_HANDLER(EXT4_MB_ORDER2_REQ, mb_order2_reqs);
2879         EXT4_PROC_HANDLER(EXT4_MB_STREAM_REQ, mb_stream_request);
2880         EXT4_PROC_HANDLER(EXT4_MB_GROUP_PREALLOC, mb_group_prealloc);
2881         return 0;
2882
2883 err_out:
2884         remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_proc);
2885         remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_proc);
2886         remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_proc);
2887         remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_proc);
2888         remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_proc);
2889         remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_proc);
2890         return -ENOMEM;
2891 #else
2892         return 0;
2893 #endif
2894 }
2895
2896 static int ext4_mb_destroy_per_dev_proc(struct super_block *sb)
2897 {
2898 #ifdef CONFIG_PROC_FS
2899         struct ext4_sb_info *sbi = EXT4_SB(sb);
2900
2901         if (sbi->s_proc == NULL)
2902                 return -EINVAL;
2903
2904         remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_proc);
2905         remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_proc);
2906         remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_proc);
2907         remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_proc);
2908         remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_proc);
2909         remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_proc);
2910 #endif
2911         return 0;
2912 }
2913
2914 int __init init_ext4_mballoc(void)
2915 {
2916         ext4_pspace_cachep =
2917                 kmem_cache_create("ext4_prealloc_space",
2918                                      sizeof(struct ext4_prealloc_space),
2919                                      0, SLAB_RECLAIM_ACCOUNT, NULL);
2920         if (ext4_pspace_cachep == NULL)
2921                 return -ENOMEM;
2922
2923         ext4_ac_cachep =
2924                 kmem_cache_create("ext4_alloc_context",
2925                                      sizeof(struct ext4_allocation_context),
2926                                      0, SLAB_RECLAIM_ACCOUNT, NULL);
2927         if (ext4_ac_cachep == NULL) {
2928                 kmem_cache_destroy(ext4_pspace_cachep);
2929                 return -ENOMEM;
2930         }
2931
2932         ext4_free_ext_cachep =
2933                 kmem_cache_create("ext4_free_block_extents",
2934                                      sizeof(struct ext4_free_data),
2935                                      0, SLAB_RECLAIM_ACCOUNT, NULL);
2936         if (ext4_free_ext_cachep == NULL) {
2937                 kmem_cache_destroy(ext4_pspace_cachep);
2938                 kmem_cache_destroy(ext4_ac_cachep);
2939                 return -ENOMEM;
2940         }
2941         return 0;
2942 }
2943
2944 void exit_ext4_mballoc(void)
2945 {
2946         /* XXX: synchronize_rcu(); */
2947         kmem_cache_destroy(ext4_pspace_cachep);
2948         kmem_cache_destroy(ext4_ac_cachep);
2949         kmem_cache_destroy(ext4_free_ext_cachep);
2950 }
2951
2952
2953 /*
2954  * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2955  * Returns 0 if success or error code
2956  */
2957 static noinline_for_stack int
2958 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2959                                 handle_t *handle, unsigned int reserv_blks)
2960 {
2961         struct buffer_head *bitmap_bh = NULL;
2962         struct ext4_super_block *es;
2963         struct ext4_group_desc *gdp;
2964         struct buffer_head *gdp_bh;
2965         struct ext4_sb_info *sbi;
2966         struct super_block *sb;
2967         ext4_fsblk_t block;
2968         int err, len;
2969
2970         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2971         BUG_ON(ac->ac_b_ex.fe_len <= 0);
2972
2973         sb = ac->ac_sb;
2974         sbi = EXT4_SB(sb);
2975         es = sbi->s_es;
2976
2977
2978         err = -EIO;
2979         bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2980         if (!bitmap_bh)
2981                 goto out_err;
2982
2983         err = ext4_journal_get_write_access(handle, bitmap_bh);
2984         if (err)
2985                 goto out_err;
2986
2987         err = -EIO;
2988         gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2989         if (!gdp)
2990                 goto out_err;
2991
2992         ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2993                         gdp->bg_free_blocks_count);
2994
2995         err = ext4_journal_get_write_access(handle, gdp_bh);
2996         if (err)
2997                 goto out_err;
2998
2999         block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
3000                 + ac->ac_b_ex.fe_start
3001                 + le32_to_cpu(es->s_first_data_block);
3002
3003         len = ac->ac_b_ex.fe_len;
3004         if (in_range(ext4_block_bitmap(sb, gdp), block, len) ||
3005             in_range(ext4_inode_bitmap(sb, gdp), block, len) ||
3006             in_range(block, ext4_inode_table(sb, gdp),
3007                      EXT4_SB(sb)->s_itb_per_group) ||
3008             in_range(block + len - 1, ext4_inode_table(sb, gdp),
3009                      EXT4_SB(sb)->s_itb_per_group)) {
3010                 ext4_error(sb, __func__,
3011                            "Allocating block in system zone - block = %llu",
3012                            block);
3013                 /* File system mounted not to panic on error
3014                  * Fix the bitmap and repeat the block allocation
3015                  * We leak some of the blocks here.
3016                  */
3017                 mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group),
3018                                 bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3019                                 ac->ac_b_ex.fe_len);
3020                 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3021                 if (!err)
3022                         err = -EAGAIN;
3023                 goto out_err;
3024         }
3025 #ifdef AGGRESSIVE_CHECK
3026         {
3027                 int i;
3028                 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3029                         BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3030                                                 bitmap_bh->b_data));
3031                 }
3032         }
3033 #endif
3034         mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group), bitmap_bh->b_data,
3035                                 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len);
3036
3037         spin_lock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
3038         if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
3039                 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3040                 gdp->bg_free_blocks_count =
3041                         cpu_to_le16(ext4_free_blocks_after_init(sb,
3042                                                 ac->ac_b_ex.fe_group,
3043                                                 gdp));
3044         }
3045         le16_add_cpu(&gdp->bg_free_blocks_count, -ac->ac_b_ex.fe_len);
3046         gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
3047         spin_unlock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
3048         percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
3049         /*
3050          * Now reduce the dirty block count also. Should not go negative
3051          */
3052         if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3053                 /* release all the reserved blocks if non delalloc */
3054                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
3055         else
3056                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
3057                                                 ac->ac_b_ex.fe_len);
3058
3059         if (sbi->s_log_groups_per_flex) {
3060                 ext4_group_t flex_group = ext4_flex_group(sbi,
3061                                                           ac->ac_b_ex.fe_group);
3062                 spin_lock(sb_bgl_lock(sbi, flex_group));
3063                 sbi->s_flex_groups[flex_group].free_blocks -= ac->ac_b_ex.fe_len;
3064                 spin_unlock(sb_bgl_lock(sbi, flex_group));
3065         }
3066
3067         err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3068         if (err)
3069                 goto out_err;
3070         err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3071
3072 out_err:
3073         sb->s_dirt = 1;
3074         brelse(bitmap_bh);
3075         return err;
3076 }
3077
3078 /*
3079  * here we normalize request for locality group
3080  * Group request are normalized to s_strip size if we set the same via mount
3081  * option. If not we set it to s_mb_group_prealloc which can be configured via
3082  * /proc/fs/ext4/<partition>/group_prealloc
3083  *
3084  * XXX: should we try to preallocate more than the group has now?
3085  */
3086 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3087 {
3088         struct super_block *sb = ac->ac_sb;
3089         struct ext4_locality_group *lg = ac->ac_lg;
3090
3091         BUG_ON(lg == NULL);
3092         if (EXT4_SB(sb)->s_stripe)
3093                 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
3094         else
3095                 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3096         mb_debug("#%u: goal %u blocks for locality group\n",
3097                 current->pid, ac->ac_g_ex.fe_len);
3098 }
3099
3100 /*
3101  * Normalization means making request better in terms of
3102  * size and alignment
3103  */
3104 static noinline_for_stack void
3105 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3106                                 struct ext4_allocation_request *ar)
3107 {
3108         int bsbits, max;
3109         ext4_lblk_t end;
3110         loff_t size, orig_size, start_off;
3111         ext4_lblk_t start, orig_start;
3112         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3113         struct ext4_prealloc_space *pa;
3114
3115         /* do normalize only data requests, metadata requests
3116            do not need preallocation */
3117         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3118                 return;
3119
3120         /* sometime caller may want exact blocks */
3121         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3122                 return;
3123
3124         /* caller may indicate that preallocation isn't
3125          * required (it's a tail, for example) */
3126         if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3127                 return;
3128
3129         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3130                 ext4_mb_normalize_group_request(ac);
3131                 return ;
3132         }
3133
3134         bsbits = ac->ac_sb->s_blocksize_bits;
3135
3136         /* first, let's learn actual file size
3137          * given current request is allocated */
3138         size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3139         size = size << bsbits;
3140         if (size < i_size_read(ac->ac_inode))
3141                 size = i_size_read(ac->ac_inode);
3142
3143         /* max size of free chunks */
3144         max = 2 << bsbits;
3145
3146 #define NRL_CHECK_SIZE(req, size, max, chunk_size)      \
3147                 (req <= (size) || max <= (chunk_size))
3148
3149         /* first, try to predict filesize */
3150         /* XXX: should this table be tunable? */
3151         start_off = 0;
3152         if (size <= 16 * 1024) {
3153                 size = 16 * 1024;
3154         } else if (size <= 32 * 1024) {
3155                 size = 32 * 1024;
3156         } else if (size <= 64 * 1024) {
3157                 size = 64 * 1024;
3158         } else if (size <= 128 * 1024) {
3159                 size = 128 * 1024;
3160         } else if (size <= 256 * 1024) {
3161                 size = 256 * 1024;
3162         } else if (size <= 512 * 1024) {
3163                 size = 512 * 1024;
3164         } else if (size <= 1024 * 1024) {
3165                 size = 1024 * 1024;
3166         } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3167                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3168                                                 (21 - bsbits)) << 21;
3169                 size = 2 * 1024 * 1024;
3170         } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3171                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3172                                                         (22 - bsbits)) << 22;
3173                 size = 4 * 1024 * 1024;
3174         } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3175                                         (8<<20)>>bsbits, max, 8 * 1024)) {
3176                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3177                                                         (23 - bsbits)) << 23;
3178                 size = 8 * 1024 * 1024;
3179         } else {
3180                 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3181                 size      = ac->ac_o_ex.fe_len << bsbits;
3182         }
3183         orig_size = size = size >> bsbits;
3184         orig_start = start = start_off >> bsbits;
3185
3186         /* don't cover already allocated blocks in selected range */
3187         if (ar->pleft && start <= ar->lleft) {
3188                 size -= ar->lleft + 1 - start;
3189                 start = ar->lleft + 1;
3190         }
3191         if (ar->pright && start + size - 1 >= ar->lright)
3192                 size -= start + size - ar->lright;
3193
3194         end = start + size;
3195
3196         /* check we don't cross already preallocated blocks */
3197         rcu_read_lock();
3198         list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3199                 ext4_lblk_t pa_end;
3200
3201                 if (pa->pa_deleted)
3202                         continue;
3203                 spin_lock(&pa->pa_lock);
3204                 if (pa->pa_deleted) {
3205                         spin_unlock(&pa->pa_lock);
3206                         continue;
3207                 }
3208
3209                 pa_end = pa->pa_lstart + pa->pa_len;
3210
3211                 /* PA must not overlap original request */
3212                 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3213                         ac->ac_o_ex.fe_logical < pa->pa_lstart));
3214
3215                 /* skip PA normalized request doesn't overlap with */
3216                 if (pa->pa_lstart >= end) {
3217                         spin_unlock(&pa->pa_lock);
3218                         continue;
3219                 }
3220                 if (pa_end <= start) {
3221                         spin_unlock(&pa->pa_lock);
3222                         continue;
3223                 }
3224                 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3225
3226                 if (pa_end <= ac->ac_o_ex.fe_logical) {
3227                         BUG_ON(pa_end < start);
3228                         start = pa_end;
3229                 }
3230
3231                 if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3232                         BUG_ON(pa->pa_lstart > end);
3233                         end = pa->pa_lstart;
3234                 }
3235                 spin_unlock(&pa->pa_lock);
3236         }
3237         rcu_read_unlock();
3238         size = end - start;
3239
3240         /* XXX: extra loop to check we really don't overlap preallocations */
3241         rcu_read_lock();
3242         list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3243                 ext4_lblk_t pa_end;
3244                 spin_lock(&pa->pa_lock);
3245                 if (pa->pa_deleted == 0) {
3246                         pa_end = pa->pa_lstart + pa->pa_len;
3247                         BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3248                 }
3249                 spin_unlock(&pa->pa_lock);
3250         }
3251         rcu_read_unlock();
3252
3253         if (start + size <= ac->ac_o_ex.fe_logical &&
3254                         start > ac->ac_o_ex.fe_logical) {
3255                 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3256                         (unsigned long) start, (unsigned long) size,
3257                         (unsigned long) ac->ac_o_ex.fe_logical);
3258         }
3259         BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3260                         start > ac->ac_o_ex.fe_logical);
3261         BUG_ON(size <= 0 || size >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3262
3263         /* now prepare goal request */
3264
3265         /* XXX: is it better to align blocks WRT to logical
3266          * placement or satisfy big request as is */
3267         ac->ac_g_ex.fe_logical = start;
3268         ac->ac_g_ex.fe_len = size;
3269
3270         /* define goal start in order to merge */
3271         if (ar->pright && (ar->lright == (start + size))) {
3272                 /* merge to the right */
3273                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3274                                                 &ac->ac_f_ex.fe_group,
3275                                                 &ac->ac_f_ex.fe_start);
3276                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3277         }
3278         if (ar->pleft && (ar->lleft + 1 == start)) {
3279                 /* merge to the left */
3280                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3281                                                 &ac->ac_f_ex.fe_group,
3282                                                 &ac->ac_f_ex.fe_start);
3283                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3284         }
3285
3286         mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size,
3287                 (unsigned) orig_size, (unsigned) start);
3288 }
3289
3290 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3291 {
3292         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3293
3294         if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3295                 atomic_inc(&sbi->s_bal_reqs);
3296                 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3297                 if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
3298                         atomic_inc(&sbi->s_bal_success);
3299                 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3300                 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3301                                 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3302                         atomic_inc(&sbi->s_bal_goals);
3303                 if (ac->ac_found > sbi->s_mb_max_to_scan)
3304                         atomic_inc(&sbi->s_bal_breaks);
3305         }
3306
3307         ext4_mb_store_history(ac);
3308 }
3309
3310 /*
3311  * use blocks preallocated to inode
3312  */
3313 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3314                                 struct ext4_prealloc_space *pa)
3315 {
3316         ext4_fsblk_t start;
3317         ext4_fsblk_t end;
3318         int len;
3319
3320         /* found preallocated blocks, use them */
3321         start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3322         end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3323         len = end - start;
3324         ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3325                                         &ac->ac_b_ex.fe_start);
3326         ac->ac_b_ex.fe_len = len;
3327         ac->ac_status = AC_STATUS_FOUND;
3328         ac->ac_pa = pa;
3329
3330         BUG_ON(start < pa->pa_pstart);
3331         BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3332         BUG_ON(pa->pa_free < len);
3333         pa->pa_free -= len;
3334
3335         mb_debug("use %llu/%u from inode pa %p\n", start, len, pa);
3336 }
3337
3338 /*
3339  * use blocks preallocated to locality group
3340  */
3341 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3342                                 struct ext4_prealloc_space *pa)
3343 {
3344         unsigned int len = ac->ac_o_ex.fe_len;
3345
3346         ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3347                                         &ac->ac_b_ex.fe_group,
3348                                         &ac->ac_b_ex.fe_start);
3349         ac->ac_b_ex.fe_len = len;
3350         ac->ac_status = AC_STATUS_FOUND;
3351         ac->ac_pa = pa;
3352
3353         /* we don't correct pa_pstart or pa_plen here to avoid
3354          * possible race when the group is being loaded concurrently
3355          * instead we correct pa later, after blocks are marked
3356          * in on-disk bitmap -- see ext4_mb_release_context()
3357          * Other CPUs are prevented from allocating from this pa by lg_mutex
3358          */
3359         mb_debug("use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3360 }
3361
3362 /*
3363  * Return the prealloc space that have minimal distance
3364  * from the goal block. @cpa is the prealloc
3365  * space that is having currently known minimal distance
3366  * from the goal block.
3367  */
3368 static struct ext4_prealloc_space *
3369 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3370                         struct ext4_prealloc_space *pa,
3371                         struct ext4_prealloc_space *cpa)
3372 {
3373         ext4_fsblk_t cur_distance, new_distance;
3374
3375         if (cpa == NULL) {
3376                 atomic_inc(&pa->pa_count);
3377                 return pa;
3378         }
3379         cur_distance = abs(goal_block - cpa->pa_pstart);
3380         new_distance = abs(goal_block - pa->pa_pstart);
3381
3382         if (cur_distance < new_distance)
3383                 return cpa;
3384
3385         /* drop the previous reference */
3386         atomic_dec(&cpa->pa_count);
3387         atomic_inc(&pa->pa_count);
3388         return pa;
3389 }
3390
3391 /*
3392  * search goal blocks in preallocated space
3393  */
3394 static noinline_for_stack int
3395 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3396 {
3397         int order, i;
3398         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3399         struct ext4_locality_group *lg;
3400         struct ext4_prealloc_space *pa, *cpa = NULL;
3401         ext4_fsblk_t goal_block;
3402
3403         /* only data can be preallocated */
3404         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3405                 return 0;
3406
3407         /* first, try per-file preallocation */
3408         rcu_read_lock();
3409         list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3410
3411                 /* all fields in this condition don't change,
3412                  * so we can skip locking for them */
3413                 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3414                         ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3415                         continue;
3416
3417                 /* found preallocated blocks, use them */
3418                 spin_lock(&pa->pa_lock);
3419                 if (pa->pa_deleted == 0 && pa->pa_free) {
3420                         atomic_inc(&pa->pa_count);
3421                         ext4_mb_use_inode_pa(ac, pa);
3422                         spin_unlock(&pa->pa_lock);
3423                         ac->ac_criteria = 10;
3424                         rcu_read_unlock();
3425                         return 1;
3426                 }
3427                 spin_unlock(&pa->pa_lock);
3428         }
3429         rcu_read_unlock();
3430
3431         /* can we use group allocation? */
3432         if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3433                 return 0;
3434
3435         /* inode may have no locality group for some reason */
3436         lg = ac->ac_lg;
3437         if (lg == NULL)
3438                 return 0;
3439         order  = fls(ac->ac_o_ex.fe_len) - 1;
3440         if (order > PREALLOC_TB_SIZE - 1)
3441                 /* The max size of hash table is PREALLOC_TB_SIZE */
3442                 order = PREALLOC_TB_SIZE - 1;
3443
3444         goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) +
3445                      ac->ac_g_ex.fe_start +
3446                      le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block);
3447         /*
3448          * search for the prealloc space that is having
3449          * minimal distance from the goal block.
3450          */
3451         for (i = order; i < PREALLOC_TB_SIZE; i++) {
3452                 rcu_read_lock();
3453                 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3454                                         pa_inode_list) {
3455                         spin_lock(&pa->pa_lock);
3456                         if (pa->pa_deleted == 0 &&
3457                                         pa->pa_free >= ac->ac_o_ex.fe_len) {
3458
3459                                 cpa = ext4_mb_check_group_pa(goal_block,
3460                                                                 pa, cpa);
3461                         }
3462                         spin_unlock(&pa->pa_lock);
3463                 }
3464                 rcu_read_unlock();
3465         }
3466         if (cpa) {
3467                 ext4_mb_use_group_pa(ac, cpa);
3468                 ac->ac_criteria = 20;
3469                 return 1;
3470         }
3471         return 0;
3472 }
3473
3474 /*
3475  * the function goes through all preallocation in this group and marks them
3476  * used in in-core bitmap. buddy must be generated from this bitmap
3477  * Need to be called with ext4 group lock (ext4_lock_group)
3478  */
3479 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3480                                         ext4_group_t group)
3481 {
3482         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3483         struct ext4_prealloc_space *pa;
3484         struct list_head *cur;
3485         ext4_group_t groupnr;
3486         ext4_grpblk_t start;
3487         int preallocated = 0;
3488         int count = 0;
3489         int len;
3490
3491         /* all form of preallocation discards first load group,
3492          * so the only competing code is preallocation use.
3493          * we don't need any locking here
3494          * notice we do NOT ignore preallocations with pa_deleted
3495          * otherwise we could leave used blocks available for
3496          * allocation in buddy when concurrent ext4_mb_put_pa()
3497          * is dropping preallocation
3498          */
3499         list_for_each(cur, &grp->bb_prealloc_list) {
3500                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3501                 spin_lock(&pa->pa_lock);
3502                 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3503                                              &groupnr, &start);
3504                 len = pa->pa_len;
3505                 spin_unlock(&pa->pa_lock);
3506                 if (unlikely(len == 0))
3507                         continue;
3508                 BUG_ON(groupnr != group);
3509                 mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group),
3510                                                 bitmap, start, len);
3511                 preallocated += len;
3512                 count++;
3513         }
3514         mb_debug("prellocated %u for group %u\n", preallocated, group);
3515 }
3516
3517 static void ext4_mb_pa_callback(struct rcu_head *head)
3518 {
3519         struct ext4_prealloc_space *pa;
3520         pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3521         kmem_cache_free(ext4_pspace_cachep, pa);
3522 }
3523
3524 /*
3525  * drops a reference to preallocated space descriptor
3526  * if this was the last reference and the space is consumed
3527  */
3528 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3529                         struct super_block *sb, struct ext4_prealloc_space *pa)
3530 {
3531         ext4_group_t grp;
3532
3533         if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3534                 return;
3535
3536         /* in this short window concurrent discard can set pa_deleted */
3537         spin_lock(&pa->pa_lock);
3538         if (pa->pa_deleted == 1) {
3539                 spin_unlock(&pa->pa_lock);
3540                 return;
3541         }
3542
3543         pa->pa_deleted = 1;
3544         spin_unlock(&pa->pa_lock);
3545
3546         /* -1 is to protect from crossing allocation group */
3547         ext4_get_group_no_and_offset(sb, pa->pa_pstart - 1, &grp, NULL);
3548
3549         /*
3550          * possible race:
3551          *
3552          *  P1 (buddy init)                     P2 (regular allocation)
3553          *                                      find block B in PA
3554          *  copy on-disk bitmap to buddy
3555          *                                      mark B in on-disk bitmap
3556          *                                      drop PA from group
3557          *  mark all PAs in buddy
3558          *
3559          * thus, P1 initializes buddy with B available. to prevent this
3560          * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3561          * against that pair
3562          */
3563         ext4_lock_group(sb, grp);
3564         list_del(&pa->pa_group_list);
3565         ext4_unlock_group(sb, grp);
3566
3567         spin_lock(pa->pa_obj_lock);
3568         list_del_rcu(&pa->pa_inode_list);
3569         spin_unlock(pa->pa_obj_lock);
3570
3571         call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3572 }
3573
3574 /*
3575  * creates new preallocated space for given inode
3576  */
3577 static noinline_for_stack int
3578 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3579 {
3580         struct super_block *sb = ac->ac_sb;
3581         struct ext4_prealloc_space *pa;
3582         struct ext4_group_info *grp;
3583         struct ext4_inode_info *ei;
3584
3585         /* preallocate only when found space is larger then requested */
3586         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3587         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3588         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3589
3590         pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3591         if (pa == NULL)
3592                 return -ENOMEM;
3593
3594         if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3595                 int winl;
3596                 int wins;
3597                 int win;
3598                 int offs;
3599
3600                 /* we can't allocate as much as normalizer wants.
3601                  * so, found space must get proper lstart
3602                  * to cover original request */
3603                 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3604                 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3605
3606                 /* we're limited by original request in that
3607                  * logical block must be covered any way
3608                  * winl is window we can move our chunk within */
3609                 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3610
3611                 /* also, we should cover whole original request */
3612                 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3613
3614                 /* the smallest one defines real window */
3615                 win = min(winl, wins);
3616
3617                 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3618                 if (offs && offs < win)
3619                         win = offs;
3620
3621                 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3622                 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3623                 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3624         }
3625
3626         /* preallocation can change ac_b_ex, thus we store actually
3627          * allocated blocks for history */
3628         ac->ac_f_ex = ac->ac_b_ex;
3629
3630         pa->pa_lstart = ac->ac_b_ex.fe_logical;
3631         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3632         pa->pa_len = ac->ac_b_ex.fe_len;
3633         pa->pa_free = pa->pa_len;
3634         atomic_set(&pa->pa_count, 1);
3635         spin_lock_init(&pa->pa_lock);
3636         pa->pa_deleted = 0;
3637         pa->pa_linear = 0;
3638
3639         mb_debug("new inode pa %p: %llu/%u for %u\n", pa,
3640                         pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3641
3642         ext4_mb_use_inode_pa(ac, pa);
3643         atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3644
3645         ei = EXT4_I(ac->ac_inode);
3646         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3647
3648         pa->pa_obj_lock = &ei->i_prealloc_lock;
3649         pa->pa_inode = ac->ac_inode;
3650
3651         ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3652         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3653         ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3654
3655         spin_lock(pa->pa_obj_lock);
3656         list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3657         spin_unlock(pa->pa_obj_lock);
3658
3659         return 0;
3660 }
3661
3662 /*
3663  * creates new preallocated space for locality group inodes belongs to
3664  */
3665 static noinline_for_stack int
3666 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3667 {
3668         struct super_block *sb = ac->ac_sb;
3669         struct ext4_locality_group *lg;
3670         struct ext4_prealloc_space *pa;
3671         struct ext4_group_info *grp;
3672
3673         /* preallocate only when found space is larger then requested */
3674         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3675         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3676         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3677
3678         BUG_ON(ext4_pspace_cachep == NULL);
3679         pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3680         if (pa == NULL)
3681                 return -ENOMEM;
3682
3683         /* preallocation can change ac_b_ex, thus we store actually
3684          * allocated blocks for history */
3685         ac->ac_f_ex = ac->ac_b_ex;
3686
3687         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3688         pa->pa_lstart = pa->pa_pstart;
3689         pa->pa_len = ac->ac_b_ex.fe_len;
3690         pa->pa_free = pa->pa_len;
3691         atomic_set(&pa->pa_count, 1);
3692         spin_lock_init(&pa->pa_lock);
3693         INIT_LIST_HEAD(&pa->pa_inode_list);
3694         pa->pa_deleted = 0;
3695         pa->pa_linear = 1;
3696
3697         mb_debug("new group pa %p: %llu/%u for %u\n", pa,
3698                         pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3699
3700         ext4_mb_use_group_pa(ac, pa);
3701         atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3702
3703         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3704         lg = ac->ac_lg;
3705         BUG_ON(lg == NULL);
3706
3707         pa->pa_obj_lock = &lg->lg_prealloc_lock;
3708         pa->pa_inode = NULL;
3709
3710         ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3711         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3712         ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3713
3714         /*
3715          * We will later add the new pa to the right bucket
3716          * after updating the pa_free in ext4_mb_release_context
3717          */
3718         return 0;
3719 }
3720
3721 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3722 {
3723         int err;
3724
3725         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3726                 err = ext4_mb_new_group_pa(ac);
3727         else
3728                 err = ext4_mb_new_inode_pa(ac);
3729         return err;
3730 }
3731
3732 /*
3733  * finds all unused blocks in on-disk bitmap, frees them in
3734  * in-core bitmap and buddy.
3735  * @pa must be unlinked from inode and group lists, so that
3736  * nobody else can find/use it.
3737  * the caller MUST hold group/inode locks.
3738  * TODO: optimize the case when there are no in-core structures yet
3739  */
3740 static noinline_for_stack int
3741 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3742                         struct ext4_prealloc_space *pa,
3743                         struct ext4_allocation_context *ac)
3744 {
3745         struct super_block *sb = e4b->bd_sb;
3746         struct ext4_sb_info *sbi = EXT4_SB(sb);
3747         unsigned int end;
3748         unsigned int next;
3749         ext4_group_t group;
3750         ext4_grpblk_t bit;
3751         sector_t start;
3752         int err = 0;
3753         int free = 0;
3754
3755         BUG_ON(pa->pa_deleted == 0);
3756         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3757         BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3758         end = bit + pa->pa_len;
3759
3760         if (ac) {
3761                 ac->ac_sb = sb;
3762                 ac->ac_inode = pa->pa_inode;
3763                 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3764         }
3765
3766         while (bit < end) {
3767                 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3768                 if (bit >= end)
3769                         break;
3770                 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3771                 start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
3772                                 le32_to_cpu(sbi->s_es->s_first_data_block);
3773                 mb_debug("    free preallocated %u/%u in group %u\n",
3774                                 (unsigned) start, (unsigned) next - bit,
3775                                 (unsigned) group);
3776                 free += next - bit;
3777
3778                 if (ac) {
3779                         ac->ac_b_ex.fe_group = group;
3780                         ac->ac_b_ex.fe_start = bit;
3781                         ac->ac_b_ex.fe_len = next - bit;
3782                         ac->ac_b_ex.fe_logical = 0;
3783                         ext4_mb_store_history(ac);
3784                 }
3785
3786                 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3787                 bit = next + 1;
3788         }
3789         if (free != pa->pa_free) {
3790                 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3791                         pa, (unsigned long) pa->pa_lstart,
3792                         (unsigned long) pa->pa_pstart,
3793                         (unsigned long) pa->pa_len);
3794                 ext4_error(sb, __func__, "free %u, pa_free %u",
3795                                                 free, pa->pa_free);
3796                 /*
3797                  * pa is already deleted so we use the value obtained
3798                  * from the bitmap and continue.
3799                  */
3800         }
3801         atomic_add(free, &sbi->s_mb_discarded);
3802
3803         return err;
3804 }
3805
3806 static noinline_for_stack int
3807 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3808                                 struct ext4_prealloc_space *pa,
3809                                 struct ext4_allocation_context *ac)
3810 {
3811         struct super_block *sb = e4b->bd_sb;
3812         ext4_group_t group;
3813         ext4_grpblk_t bit;
3814
3815         if (ac)
3816                 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3817
3818         BUG_ON(pa->pa_deleted == 0);
3819         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3820         BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3821         mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3822         atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3823
3824         if (ac) {
3825                 ac->ac_sb = sb;
3826                 ac->ac_inode = NULL;
3827                 ac->ac_b_ex.fe_group = group;
3828                 ac->ac_b_ex.fe_start = bit;
3829                 ac->ac_b_ex.fe_len = pa->pa_len;
3830                 ac->ac_b_ex.fe_logical = 0;
3831                 ext4_mb_store_history(ac);
3832         }
3833
3834         return 0;
3835 }
3836
3837 /*
3838  * releases all preallocations in given group
3839  *
3840  * first, we need to decide discard policy:
3841  * - when do we discard
3842  *   1) ENOSPC
3843  * - how many do we discard
3844  *   1) how many requested
3845  */
3846 static noinline_for_stack int
3847 ext4_mb_discard_group_preallocations(struct super_block *sb,
3848                                         ext4_group_t group, int needed)
3849 {
3850         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3851         struct buffer_head *bitmap_bh = NULL;
3852         struct ext4_prealloc_space *pa, *tmp;
3853         struct ext4_allocation_context *ac;
3854         struct list_head list;
3855         struct ext4_buddy e4b;
3856         int err;
3857         int busy = 0;
3858         int free = 0;
3859
3860         mb_debug("discard preallocation for group %u\n", group);
3861
3862         if (list_empty(&grp->bb_prealloc_list))
3863                 return 0;
3864
3865         bitmap_bh = ext4_read_block_bitmap(sb, group);
3866         if (bitmap_bh == NULL) {
3867                 ext4_error(sb, __func__, "Error in reading block "
3868                                 "bitmap for %u", group);
3869                 return 0;
3870         }
3871
3872         err = ext4_mb_load_buddy(sb, group, &e4b);
3873         if (err) {
3874                 ext4_error(sb, __func__, "Error in loading buddy "
3875                                 "information for %u", group);
3876                 put_bh(bitmap_bh);
3877                 return 0;
3878         }
3879
3880         if (needed == 0)
3881                 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3882
3883         INIT_LIST_HEAD(&list);
3884         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3885 repeat:
3886         ext4_lock_group(sb, group);
3887         list_for_each_entry_safe(pa, tmp,
3888                                 &grp->bb_prealloc_list, pa_group_list) {
3889                 spin_lock(&pa->pa_lock);
3890                 if (atomic_read(&pa->pa_count)) {
3891                         spin_unlock(&pa->pa_lock);
3892                         busy = 1;
3893                         continue;
3894                 }
3895                 if (pa->pa_deleted) {
3896                         spin_unlock(&pa->pa_lock);
3897                         continue;
3898                 }
3899
3900                 /* seems this one can be freed ... */
3901                 pa->pa_deleted = 1;
3902
3903                 /* we can trust pa_free ... */
3904                 free += pa->pa_free;
3905
3906                 spin_unlock(&pa->pa_lock);
3907
3908                 list_del(&pa->pa_group_list);
3909                 list_add(&pa->u.pa_tmp_list, &list);
3910         }
3911
3912         /* if we still need more blocks and some PAs were used, try again */
3913         if (free < needed && busy) {
3914                 busy = 0;
3915                 ext4_unlock_group(sb, group);
3916                 /*
3917                  * Yield the CPU here so that we don't get soft lockup
3918                  * in non preempt case.
3919                  */
3920                 yield();
3921                 goto repeat;
3922         }
3923
3924         /* found anything to free? */
3925         if (list_empty(&list)) {
3926                 BUG_ON(free != 0);
3927                 goto out;
3928         }
3929
3930         /* now free all selected PAs */
3931         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3932
3933                 /* remove from object (inode or locality group) */
3934                 spin_lock(pa->pa_obj_lock);
3935                 list_del_rcu(&pa->pa_inode_list);
3936                 spin_unlock(pa->pa_obj_lock);
3937
3938                 if (pa->pa_linear)
3939                         ext4_mb_release_group_pa(&e4b, pa, ac);
3940                 else
3941                         ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3942
3943                 list_del(&pa->u.pa_tmp_list);
3944                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3945         }
3946
3947 out:
3948         ext4_unlock_group(sb, group);
3949         if (ac)
3950                 kmem_cache_free(ext4_ac_cachep, ac);
3951         ext4_mb_release_desc(&e4b);
3952         put_bh(bitmap_bh);
3953         return free;
3954 }
3955
3956 /*
3957  * releases all non-used preallocated blocks for given inode
3958  *
3959  * It's important to discard preallocations under i_data_sem
3960  * We don't want another block to be served from the prealloc
3961  * space when we are discarding the inode prealloc space.
3962  *
3963  * FIXME!! Make sure it is valid at all the call sites
3964  */
3965 void ext4_discard_preallocations(struct inode *inode)
3966 {
3967         struct ext4_inode_info *ei = EXT4_I(inode);
3968         struct super_block *sb = inode->i_sb;
3969         struct buffer_head *bitmap_bh = NULL;
3970         struct ext4_prealloc_space *pa, *tmp;
3971         struct ext4_allocation_context *ac;
3972         ext4_group_t group = 0;
3973         struct list_head list;
3974         struct ext4_buddy e4b;
3975         int err;
3976
3977         if (!S_ISREG(inode->i_mode)) {
3978                 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3979                 return;
3980         }
3981
3982         mb_debug("discard preallocation for inode %lu\n", inode->i_ino);
3983
3984         INIT_LIST_HEAD(&list);
3985
3986         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3987 repeat:
3988         /* first, collect all pa's in the inode */
3989         spin_lock(&ei->i_prealloc_lock);
3990         while (!list_empty(&ei->i_prealloc_list)) {
3991                 pa = list_entry(ei->i_prealloc_list.next,
3992                                 struct ext4_prealloc_space, pa_inode_list);
3993                 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3994                 spin_lock(&pa->pa_lock);
3995                 if (atomic_read(&pa->pa_count)) {
3996                         /* this shouldn't happen often - nobody should
3997                          * use preallocation while we're discarding it */
3998                         spin_unlock(&pa->pa_lock);
3999                         spin_unlock(&ei->i_prealloc_lock);
4000                         printk(KERN_ERR "uh-oh! used pa while discarding\n");
4001                         WARN_ON(1);
4002                         schedule_timeout_uninterruptible(HZ);
4003                         goto repeat;
4004
4005                 }
4006                 if (pa->pa_deleted == 0) {
4007                         pa->pa_deleted = 1;
4008                         spin_unlock(&pa->pa_lock);
4009                         list_del_rcu(&pa->pa_inode_list);
4010                         list_add(&pa->u.pa_tmp_list, &list);
4011                         continue;
4012                 }
4013
4014                 /* someone is deleting pa right now */
4015                 spin_unlock(&pa->pa_lock);
4016                 spin_unlock(&ei->i_prealloc_lock);
4017
4018                 /* we have to wait here because pa_deleted
4019                  * doesn't mean pa is already unlinked from
4020                  * the list. as we might be called from
4021                  * ->clear_inode() the inode will get freed
4022                  * and concurrent thread which is unlinking
4023                  * pa from inode's list may access already
4024                  * freed memory, bad-bad-bad */
4025
4026                 /* XXX: if this happens too often, we can
4027                  * add a flag to force wait only in case
4028                  * of ->clear_inode(), but not in case of
4029                  * regular truncate */
4030                 schedule_timeout_uninterruptible(HZ);
4031                 goto repeat;
4032         }
4033         spin_unlock(&ei->i_prealloc_lock);
4034
4035         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4036                 BUG_ON(pa->pa_linear != 0);
4037                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4038
4039                 err = ext4_mb_load_buddy(sb, group, &e4b);
4040                 if (err) {
4041                         ext4_error(sb, __func__, "Error in loading buddy "
4042                                         "information for %u", group);
4043                         continue;
4044                 }
4045
4046                 bitmap_bh = ext4_read_block_bitmap(sb, group);
4047                 if (bitmap_bh == NULL) {
4048                         ext4_error(sb, __func__, "Error in reading block "
4049                                         "bitmap for %u", group);
4050                         ext4_mb_release_desc(&e4b);
4051                         continue;
4052                 }
4053
4054                 ext4_lock_group(sb, group);
4055                 list_del(&pa->pa_group_list);
4056                 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
4057                 ext4_unlock_group(sb, group);
4058
4059                 ext4_mb_release_desc(&e4b);
4060                 put_bh(bitmap_bh);
4061
4062                 list_del(&pa->u.pa_tmp_list);
4063                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4064         }
4065         if (ac)
4066                 kmem_cache_free(ext4_ac_cachep, ac);
4067 }
4068
4069 /*
4070  * finds all preallocated spaces and return blocks being freed to them
4071  * if preallocated space becomes full (no block is used from the space)
4072  * then the function frees space in buddy
4073  * XXX: at the moment, truncate (which is the only way to free blocks)
4074  * discards all preallocations
4075  */
4076 static void ext4_mb_return_to_preallocation(struct inode *inode,
4077                                         struct ext4_buddy *e4b,
4078                                         sector_t block, int count)
4079 {
4080         BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
4081 }
4082 #ifdef MB_DEBUG
4083 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4084 {
4085         struct super_block *sb = ac->ac_sb;
4086         ext4_group_t i;
4087
4088         printk(KERN_ERR "EXT4-fs: Can't allocate:"
4089                         " Allocation context details:\n");
4090         printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
4091                         ac->ac_status, ac->ac_flags);
4092         printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
4093                         "best %lu/%lu/%lu@%lu cr %d\n",
4094                         (unsigned long)ac->ac_o_ex.fe_group,
4095                         (unsigned long)ac->ac_o_ex.fe_start,
4096                         (unsigned long)ac->ac_o_ex.fe_len,
4097                         (unsigned long)ac->ac_o_ex.fe_logical,
4098                         (unsigned long)ac->ac_g_ex.fe_group,
4099                         (unsigned long)ac->ac_g_ex.fe_start,
4100                         (unsigned long)ac->ac_g_ex.fe_len,
4101                         (unsigned long)ac->ac_g_ex.fe_logical,
4102                         (unsigned long)ac->ac_b_ex.fe_group,
4103                         (unsigned long)ac->ac_b_ex.fe_start,
4104                         (unsigned long)ac->ac_b_ex.fe_len,
4105                         (unsigned long)ac->ac_b_ex.fe_logical,
4106                         (int)ac->ac_criteria);
4107         printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
4108                 ac->ac_found);
4109         printk(KERN_ERR "EXT4-fs: groups: \n");
4110         for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) {
4111                 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4112                 struct ext4_prealloc_space *pa;
4113                 ext4_grpblk_t start;
4114                 struct list_head *cur;
4115                 ext4_lock_group(sb, i);
4116                 list_for_each(cur, &grp->bb_prealloc_list) {
4117                         pa = list_entry(cur, struct ext4_prealloc_space,
4118                                         pa_group_list);
4119                         spin_lock(&pa->pa_lock);
4120                         ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4121                                                      NULL, &start);
4122                         spin_unlock(&pa->pa_lock);
4123                         printk(KERN_ERR "PA:%lu:%d:%u \n", i,
4124                                                         start, pa->pa_len);
4125                 }
4126                 ext4_unlock_group(sb, i);
4127
4128                 if (grp->bb_free == 0)
4129                         continue;
4130                 printk(KERN_ERR "%lu: %d/%d \n",
4131                        i, grp->bb_free, grp->bb_fragments);
4132         }
4133         printk(KERN_ERR "\n");
4134 }
4135 #else
4136 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4137 {
4138         return;
4139 }
4140 #endif
4141
4142 /*
4143  * We use locality group preallocation for small size file. The size of the
4144  * file is determined by the current size or the resulting size after
4145  * allocation which ever is larger
4146  *
4147  * One can tune this size via /proc/fs/ext4/<partition>/stream_req
4148  */
4149 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4150 {
4151         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4152         int bsbits = ac->ac_sb->s_blocksize_bits;
4153         loff_t size, isize;
4154
4155         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4156                 return;
4157
4158         size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
4159         isize = i_size_read(ac->ac_inode) >> bsbits;
4160         size = max(size, isize);
4161
4162         /* don't use group allocation for large files */
4163         if (size >= sbi->s_mb_stream_request)
4164                 return;
4165
4166         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4167                 return;
4168
4169         BUG_ON(ac->ac_lg != NULL);
4170         /*
4171          * locality group prealloc space are per cpu. The reason for having
4172          * per cpu locality group is to reduce the contention between block
4173          * request from multiple CPUs.
4174          */
4175         ac->ac_lg = per_cpu_ptr(sbi->s_locality_groups, raw_smp_processor_id());
4176
4177         /* we're going to use group allocation */
4178         ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4179
4180         /* serialize all allocations in the group */
4181         mutex_lock(&ac->ac_lg->lg_mutex);
4182 }
4183
4184 static noinline_for_stack int
4185 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4186                                 struct ext4_allocation_request *ar)
4187 {
4188         struct super_block *sb = ar->inode->i_sb;
4189         struct ext4_sb_info *sbi = EXT4_SB(sb);
4190         struct ext4_super_block *es = sbi->s_es;
4191         ext4_group_t group;
4192         unsigned int len;
4193         ext4_fsblk_t goal;
4194         ext4_grpblk_t block;
4195
4196         /* we can't allocate > group size */
4197         len = ar->len;
4198
4199         /* just a dirty hack to filter too big requests  */
4200         if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4201                 len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4202
4203         /* start searching from the goal */
4204         goal = ar->goal;
4205         if (goal < le32_to_cpu(es->s_first_data_block) ||
4206                         goal >= ext4_blocks_count(es))
4207                 goal = le32_to_cpu(es->s_first_data_block);
4208         ext4_get_group_no_and_offset(sb, goal, &group, &block);
4209
4210         /* set up allocation goals */
4211         ac->ac_b_ex.fe_logical = ar->logical;
4212         ac->ac_b_ex.fe_group = 0;
4213         ac->ac_b_ex.fe_start = 0;
4214         ac->ac_b_ex.fe_len = 0;
4215         ac->ac_status = AC_STATUS_CONTINUE;
4216         ac->ac_groups_scanned = 0;
4217         ac->ac_ex_scanned = 0;
4218         ac->ac_found = 0;
4219         ac->ac_sb = sb;
4220         ac->ac_inode = ar->inode;
4221         ac->ac_o_ex.fe_logical = ar->logical;
4222         ac->ac_o_ex.fe_group = group;
4223         ac->ac_o_ex.fe_start = block;
4224         ac->ac_o_ex.fe_len = len;
4225         ac->ac_g_ex.fe_logical = ar->logical;
4226         ac->ac_g_ex.fe_group = group;
4227         ac->ac_g_ex.fe_start = block;
4228         ac->ac_g_ex.fe_len = len;
4229         ac->ac_f_ex.fe_len = 0;
4230         ac->ac_flags = ar->flags;
4231         ac->ac_2order = 0;
4232         ac->ac_criteria = 0;
4233         ac->ac_pa = NULL;
4234         ac->ac_bitmap_page = NULL;
4235         ac->ac_buddy_page = NULL;
4236         ac->ac_lg = NULL;
4237
4238         /* we have to define context: we'll we work with a file or
4239          * locality group. this is a policy, actually */
4240         ext4_mb_group_or_file(ac);
4241
4242         mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4243                         "left: %u/%u, right %u/%u to %swritable\n",
4244                         (unsigned) ar->len, (unsigned) ar->logical,
4245                         (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4246                         (unsigned) ar->lleft, (unsigned) ar->pleft,
4247                         (unsigned) ar->lright, (unsigned) ar->pright,
4248                         atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4249         return 0;
4250
4251 }
4252
4253 static noinline_for_stack void
4254 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4255                                         struct ext4_locality_group *lg,
4256                                         int order, int total_entries)
4257 {
4258         ext4_group_t group = 0;
4259         struct ext4_buddy e4b;
4260         struct list_head discard_list;
4261         struct ext4_prealloc_space *pa, *tmp;
4262         struct ext4_allocation_context *ac;
4263
4264         mb_debug("discard locality group preallocation\n");
4265
4266         INIT_LIST_HEAD(&discard_list);
4267         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4268
4269         spin_lock(&lg->lg_prealloc_lock);
4270         list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4271                                                 pa_inode_list) {
4272                 spin_lock(&pa->pa_lock);
4273                 if (atomic_read(&pa->pa_count)) {
4274                         /*
4275                          * This is the pa that we just used
4276                          * for block allocation. So don't
4277                          * free that
4278                          */
4279                         spin_unlock(&pa->pa_lock);
4280                         continue;
4281                 }
4282                 if (pa->pa_deleted) {
4283                         spin_unlock(&pa->pa_lock);
4284                         continue;
4285                 }
4286                 /* only lg prealloc space */
4287                 BUG_ON(!pa->pa_linear);
4288
4289                 /* seems this one can be freed ... */
4290                 pa->pa_deleted = 1;
4291                 spin_unlock(&pa->pa_lock);
4292
4293                 list_del_rcu(&pa->pa_inode_list);
4294                 list_add(&pa->u.pa_tmp_list, &discard_list);
4295
4296                 total_entries--;
4297                 if (total_entries <= 5) {
4298                         /*
4299                          * we want to keep only 5 entries
4300                          * allowing it to grow to 8. This
4301                          * mak sure we don't call discard
4302                          * soon for this list.
4303                          */
4304                         break;
4305                 }
4306         }
4307         spin_unlock(&lg->lg_prealloc_lock);
4308
4309         list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4310
4311                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4312                 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4313                         ext4_error(sb, __func__, "Error in loading buddy "
4314                                         "information for %u", group);
4315                         continue;
4316                 }
4317                 ext4_lock_group(sb, group);
4318                 list_del(&pa->pa_group_list);
4319                 ext4_mb_release_group_pa(&e4b, pa, ac);
4320                 ext4_unlock_group(sb, group);
4321
4322                 ext4_mb_release_desc(&e4b);
4323                 list_del(&pa->u.pa_tmp_list);
4324                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4325         }
4326         if (ac)
4327                 kmem_cache_free(ext4_ac_cachep, ac);
4328 }
4329
4330 /*
4331  * We have incremented pa_count. So it cannot be freed at this
4332  * point. Also we hold lg_mutex. So no parallel allocation is
4333  * possible from this lg. That means pa_free cannot be updated.
4334  *
4335  * A parallel ext4_mb_discard_group_preallocations is possible.
4336  * which can cause the lg_prealloc_list to be updated.
4337  */
4338
4339 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4340 {
4341         int order, added = 0, lg_prealloc_count = 1;
4342         struct super_block *sb = ac->ac_sb;
4343         struct ext4_locality_group *lg = ac->ac_lg;
4344         struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4345
4346         order = fls(pa->pa_free) - 1;
4347         if (order > PREALLOC_TB_SIZE - 1)
4348                 /* The max size of hash table is PREALLOC_TB_SIZE */
4349                 order = PREALLOC_TB_SIZE - 1;
4350         /* Add the prealloc space to lg */
4351         rcu_read_lock();
4352         list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4353                                                 pa_inode_list) {
4354                 spin_lock(&tmp_pa->pa_lock);
4355                 if (tmp_pa->pa_deleted) {
4356                         spin_unlock(&pa->pa_lock);
4357                         continue;
4358                 }
4359                 if (!added && pa->pa_free < tmp_pa->pa_free) {
4360                         /* Add to the tail of the previous entry */
4361                         list_add_tail_rcu(&pa->pa_inode_list,
4362                                                 &tmp_pa->pa_inode_list);
4363                         added = 1;
4364                         /*
4365                          * we want to count the total
4366                          * number of entries in the list
4367                          */
4368                 }
4369                 spin_unlock(&tmp_pa->pa_lock);
4370                 lg_prealloc_count++;
4371         }
4372         if (!added)
4373                 list_add_tail_rcu(&pa->pa_inode_list,
4374                                         &lg->lg_prealloc_list[order]);
4375         rcu_read_unlock();
4376
4377         /* Now trim the list to be not more than 8 elements */
4378         if (lg_prealloc_count > 8) {
4379                 ext4_mb_discard_lg_preallocations(sb, lg,
4380                                                 order, lg_prealloc_count);
4381                 return;
4382         }
4383         return ;
4384 }
4385
4386 /*
4387  * release all resource we used in allocation
4388  */
4389 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4390 {
4391         struct ext4_prealloc_space *pa = ac->ac_pa;
4392         if (pa) {
4393                 if (pa->pa_linear) {
4394                         /* see comment in ext4_mb_use_group_pa() */
4395                         spin_lock(&pa->pa_lock);
4396                         pa->pa_pstart += ac->ac_b_ex.fe_len;
4397                         pa->pa_lstart += ac->ac_b_ex.fe_len;
4398                         pa->pa_free -= ac->ac_b_ex.fe_len;
4399                         pa->pa_len -= ac->ac_b_ex.fe_len;
4400                         spin_unlock(&pa->pa_lock);
4401                         /*
4402                          * We want to add the pa to the right bucket.
4403                          * Remove it from the list and while adding
4404                          * make sure the list to which we are adding
4405                          * doesn't grow big.
4406                          */
4407                         if (likely(pa->pa_free)) {
4408                                 spin_lock(pa->pa_obj_lock);
4409                                 list_del_rcu(&pa->pa_inode_list);
4410                                 spin_unlock(pa->pa_obj_lock);
4411                                 ext4_mb_add_n_trim(ac);
4412                         }
4413                 }
4414                 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4415         }
4416         if (ac->ac_bitmap_page)
4417                 page_cache_release(ac->ac_bitmap_page);
4418         if (ac->ac_buddy_page)
4419                 page_cache_release(ac->ac_buddy_page);
4420         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4421                 mutex_unlock(&ac->ac_lg->lg_mutex);
4422         ext4_mb_collect_stats(ac);
4423         return 0;
4424 }
4425
4426 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4427 {
4428         ext4_group_t i;
4429         int ret;
4430         int freed = 0;
4431
4432         for (i = 0; i < EXT4_SB(sb)->s_groups_count && needed > 0; i++) {
4433                 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4434                 freed += ret;
4435                 needed -= ret;
4436         }
4437
4438         return freed;
4439 }
4440
4441 /*
4442  * Main entry point into mballoc to allocate blocks
4443  * it tries to use preallocation first, then falls back
4444  * to usual allocation
4445  */
4446 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4447                                  struct ext4_allocation_request *ar, int *errp)
4448 {
4449         int freed;
4450         struct ext4_allocation_context *ac = NULL;
4451         struct ext4_sb_info *sbi;
4452         struct super_block *sb;
4453         ext4_fsblk_t block = 0;
4454         unsigned int inquota;
4455         unsigned int reserv_blks = 0;
4456
4457         sb = ar->inode->i_sb;
4458         sbi = EXT4_SB(sb);
4459
4460         if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag) {
4461                 /*
4462                  * With delalloc we already reserved the blocks
4463                  */
4464                 while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
4465                         /* let others to free the space */
4466                         yield();
4467                         ar->len = ar->len >> 1;
4468                 }
4469                 if (!ar->len) {
4470                         *errp = -ENOSPC;
4471                         return 0;
4472                 }
4473                 reserv_blks = ar->len;
4474         }
4475         while (ar->len && DQUOT_ALLOC_BLOCK(ar->inode, ar->len)) {
4476                 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4477                 ar->len--;
4478         }
4479         if (ar->len == 0) {
4480                 *errp = -EDQUOT;
4481                 return 0;
4482         }
4483         inquota = ar->len;
4484
4485         if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4486                 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4487
4488         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4489         if (!ac) {
4490                 ar->len = 0;
4491                 *errp = -ENOMEM;
4492                 goto out1;
4493         }
4494
4495         *errp = ext4_mb_initialize_context(ac, ar);
4496         if (*errp) {
4497                 ar->len = 0;
4498                 goto out2;
4499         }
4500
4501         ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4502         if (!ext4_mb_use_preallocated(ac)) {
4503                 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4504                 ext4_mb_normalize_request(ac, ar);
4505 repeat:
4506                 /* allocate space in core */
4507                 ext4_mb_regular_allocator(ac);
4508
4509                 /* as we've just preallocated more space than
4510                  * user requested orinally, we store allocated
4511                  * space in a special descriptor */
4512                 if (ac->ac_status == AC_STATUS_FOUND &&
4513                                 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4514                         ext4_mb_new_preallocation(ac);
4515         }
4516
4517         if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4518                 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4519                 if (*errp ==  -EAGAIN) {
4520                         ac->ac_b_ex.fe_group = 0;
4521                         ac->ac_b_ex.fe_start = 0;
4522                         ac->ac_b_ex.fe_len = 0;
4523                         ac->ac_status = AC_STATUS_CONTINUE;
4524                         goto repeat;
4525                 } else if (*errp) {
4526                         ac->ac_b_ex.fe_len = 0;
4527                         ar->len = 0;
4528                         ext4_mb_show_ac(ac);
4529                 } else {
4530                         block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4531                         ar->len = ac->ac_b_ex.fe_len;
4532                 }
4533         } else {
4534                 freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4535                 if (freed)
4536                         goto repeat;
4537                 *errp = -ENOSPC;
4538                 ac->ac_b_ex.fe_len = 0;
4539                 ar->len = 0;
4540                 ext4_mb_show_ac(ac);
4541         }
4542
4543         ext4_mb_release_context(ac);
4544
4545 out2:
4546         kmem_cache_free(ext4_ac_cachep, ac);
4547 out1:
4548         if (ar->len < inquota)
4549                 DQUOT_FREE_BLOCK(ar->inode, inquota - ar->len);
4550
4551         return block;
4552 }
4553
4554 /*
4555  * We can merge two free data extents only if the physical blocks
4556  * are contiguous, AND the extents were freed by the same transaction,
4557  * AND the blocks are associated with the same group.
4558  */
4559 static int can_merge(struct ext4_free_data *entry1,
4560                         struct ext4_free_data *entry2)
4561 {
4562         if ((entry1->t_tid == entry2->t_tid) &&
4563             (entry1->group == entry2->group) &&
4564             ((entry1->start_blk + entry1->count) == entry2->start_blk))
4565                 return 1;
4566         return 0;
4567 }
4568
4569 static noinline_for_stack int
4570 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4571                           ext4_group_t group, ext4_grpblk_t block, int count)
4572 {
4573         struct ext4_group_info *db = e4b->bd_info;
4574         struct super_block *sb = e4b->bd_sb;
4575         struct ext4_sb_info *sbi = EXT4_SB(sb);
4576         struct ext4_free_data *entry, *new_entry;
4577         struct rb_node **n = &db->bb_free_root.rb_node, *node;
4578         struct rb_node *parent = NULL, *new_node;
4579
4580         BUG_ON(!ext4_handle_valid(handle));
4581         BUG_ON(e4b->bd_bitmap_page == NULL);
4582         BUG_ON(e4b->bd_buddy_page == NULL);
4583
4584         new_entry  = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4585         new_entry->start_blk = block;
4586         new_entry->group  = group;
4587         new_entry->count = count;
4588         new_entry->t_tid = handle->h_transaction->t_tid;
4589         new_node = &new_entry->node;
4590
4591         ext4_lock_group(sb, group);
4592         if (!*n) {
4593                 /* first free block exent. We need to
4594                    protect buddy cache from being freed,
4595                  * otherwise we'll refresh it from
4596                  * on-disk bitmap and lose not-yet-available
4597                  * blocks */
4598                 page_cache_get(e4b->bd_buddy_page);
4599                 page_cache_get(e4b->bd_bitmap_page);
4600         }
4601         while (*n) {
4602                 parent = *n;
4603                 entry = rb_entry(parent, struct ext4_free_data, node);
4604                 if (block < entry->start_blk)
4605                         n = &(*n)->rb_left;
4606                 else if (block >= (entry->start_blk + entry->count))
4607                         n = &(*n)->rb_right;
4608                 else {
4609                         ext4_unlock_group(sb, group);
4610                         ext4_error(sb, __func__,
4611                             "Double free of blocks %d (%d %d)",
4612                             block, entry->start_blk, entry->count);
4613                         return 0;
4614                 }
4615         }
4616
4617         rb_link_node(new_node, parent, n);
4618         rb_insert_color(new_node, &db->bb_free_root);
4619
4620         /* Now try to see the extent can be merged to left and right */
4621         node = rb_prev(new_node);
4622         if (node) {
4623                 entry = rb_entry(node, struct ext4_free_data, node);
4624                 if (can_merge(entry, new_entry)) {
4625                         new_entry->start_blk = entry->start_blk;
4626                         new_entry->count += entry->count;
4627                         rb_erase(node, &(db->bb_free_root));
4628                         spin_lock(&sbi->s_md_lock);
4629                         list_del(&entry->list);
4630                         spin_unlock(&sbi->s_md_lock);
4631                         kmem_cache_free(ext4_free_ext_cachep, entry);
4632                 }
4633         }
4634
4635         node = rb_next(new_node);
4636         if (node) {
4637                 entry = rb_entry(node, struct ext4_free_data, node);
4638                 if (can_merge(new_entry, entry)) {
4639                         new_entry->count += entry->count;
4640                         rb_erase(node, &(db->bb_free_root));
4641                         spin_lock(&sbi->s_md_lock);
4642                         list_del(&entry->list);
4643                         spin_unlock(&sbi->s_md_lock);
4644                         kmem_cache_free(ext4_free_ext_cachep, entry);
4645                 }
4646         }
4647         /* Add the extent to transaction's private list */
4648         spin_lock(&sbi->s_md_lock);
4649         list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4650         spin_unlock(&sbi->s_md_lock);
4651         ext4_unlock_group(sb, group);
4652         return 0;
4653 }
4654
4655 /*
4656  * Main entry point into mballoc to free blocks
4657  */
4658 void ext4_mb_free_blocks(handle_t *handle, struct inode *inode,
4659                         unsigned long block, unsigned long count,
4660                         int metadata, unsigned long *freed)
4661 {
4662         struct buffer_head *bitmap_bh = NULL;
4663         struct super_block *sb = inode->i_sb;
4664         struct ext4_allocation_context *ac = NULL;
4665         struct ext4_group_desc *gdp;
4666         struct ext4_super_block *es;
4667         unsigned int overflow;
4668         ext4_grpblk_t bit;
4669         struct buffer_head *gd_bh;
4670         ext4_group_t block_group;
4671         struct ext4_sb_info *sbi;
4672         struct ext4_buddy e4b;
4673         int err = 0;
4674         int ret;
4675
4676         *freed = 0;
4677
4678         sbi = EXT4_SB(sb);
4679         es = EXT4_SB(sb)->s_es;
4680         if (block < le32_to_cpu(es->s_first_data_block) ||
4681             block + count < block ||
4682             block + count > ext4_blocks_count(es)) {
4683                 ext4_error(sb, __func__,
4684                             "Freeing blocks not in datazone - "
4685                             "block = %lu, count = %lu", block, count);
4686                 goto error_return;
4687         }
4688
4689         ext4_debug("freeing block %lu\n", block);
4690
4691         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4692         if (ac) {
4693                 ac->ac_op = EXT4_MB_HISTORY_FREE;
4694                 ac->ac_inode = inode;
4695                 ac->ac_sb = sb;
4696         }
4697
4698 do_more:
4699         overflow = 0;
4700         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4701
4702         /*
4703          * Check to see if we are freeing blocks across a group
4704          * boundary.
4705          */
4706         if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4707                 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4708                 count -= overflow;
4709         }
4710         bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4711         if (!bitmap_bh) {
4712                 err = -EIO;
4713                 goto error_return;
4714         }
4715         gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4716         if (!gdp) {
4717                 err = -EIO;
4718                 goto error_return;
4719         }
4720
4721         if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4722             in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4723             in_range(block, ext4_inode_table(sb, gdp),
4724                       EXT4_SB(sb)->s_itb_per_group) ||
4725             in_range(block + count - 1, ext4_inode_table(sb, gdp),
4726                       EXT4_SB(sb)->s_itb_per_group)) {
4727
4728                 ext4_error(sb, __func__,
4729                            "Freeing blocks in system zone - "
4730                            "Block = %lu, count = %lu", block, count);
4731                 /* err = 0. ext4_std_error should be a no op */
4732                 goto error_return;
4733         }
4734
4735         BUFFER_TRACE(bitmap_bh, "getting write access");
4736         err = ext4_journal_get_write_access(handle, bitmap_bh);
4737         if (err)
4738                 goto error_return;
4739
4740         /*
4741          * We are about to modify some metadata.  Call the journal APIs
4742          * to unshare ->b_data if a currently-committing transaction is
4743          * using it
4744          */
4745         BUFFER_TRACE(gd_bh, "get_write_access");
4746         err = ext4_journal_get_write_access(handle, gd_bh);
4747         if (err)
4748                 goto error_return;
4749 #ifdef AGGRESSIVE_CHECK
4750         {
4751                 int i;
4752                 for (i = 0; i < count; i++)
4753                         BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4754         }
4755 #endif
4756         mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data,
4757                         bit, count);
4758
4759         /* We dirtied the bitmap block */
4760         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4761         err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4762         if (err)
4763                 goto error_return;
4764
4765         if (ac) {
4766                 ac->ac_b_ex.fe_group = block_group;
4767                 ac->ac_b_ex.fe_start = bit;
4768                 ac->ac_b_ex.fe_len = count;
4769                 ext4_mb_store_history(ac);
4770         }
4771
4772         err = ext4_mb_load_buddy(sb, block_group, &e4b);
4773         if (err)
4774                 goto error_return;
4775         if (metadata && ext4_handle_valid(handle)) {
4776                 /* blocks being freed are metadata. these blocks shouldn't
4777                  * be used until this transaction is committed */
4778                 ext4_mb_free_metadata(handle, &e4b, block_group, bit, count);
4779         } else {
4780                 ext4_lock_group(sb, block_group);
4781                 mb_free_blocks(inode, &e4b, bit, count);
4782                 ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4783                 ext4_unlock_group(sb, block_group);
4784         }
4785
4786         spin_lock(sb_bgl_lock(sbi, block_group));
4787         le16_add_cpu(&gdp->bg_free_blocks_count, count);
4788         gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4789         spin_unlock(sb_bgl_lock(sbi, block_group));
4790         percpu_counter_add(&sbi->s_freeblocks_counter, count);
4791
4792         if (sbi->s_log_groups_per_flex) {
4793                 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4794                 spin_lock(sb_bgl_lock(sbi, flex_group));
4795                 sbi->s_flex_groups[flex_group].free_blocks += count;
4796                 spin_unlock(sb_bgl_lock(sbi, flex_group));
4797         }
4798
4799         ext4_mb_release_desc(&e4b);
4800
4801         *freed += count;
4802
4803         /* And the group descriptor block */
4804         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4805         ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4806         if (!err)
4807                 err = ret;
4808
4809         if (overflow && !err) {
4810                 block += count;
4811                 count = overflow;
4812                 put_bh(bitmap_bh);
4813                 goto do_more;
4814         }
4815         sb->s_dirt = 1;
4816 error_return:
4817         brelse(bitmap_bh);
4818         ext4_std_error(sb, err);
4819         if (ac)
4820                 kmem_cache_free(ext4_ac_cachep, ac);
4821         return;
4822 }