um: get rid of the init_prio mess
[pandora-kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static inline int ext4_begin_ordered_truncate(struct inode *inode,
51                                               loff_t new_size)
52 {
53         trace_ext4_begin_ordered_truncate(inode, new_size);
54         /*
55          * If jinode is zero, then we never opened the file for
56          * writing, so there's no need to call
57          * jbd2_journal_begin_ordered_truncate() since there's no
58          * outstanding writes we need to flush.
59          */
60         if (!EXT4_I(inode)->jinode)
61                 return 0;
62         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
63                                                    EXT4_I(inode)->jinode,
64                                                    new_size);
65 }
66
67 static void ext4_invalidatepage(struct page *page, unsigned long offset);
68 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
69                                    struct buffer_head *bh_result, int create);
70 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
71 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
72 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
73 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
74 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
75                 struct inode *inode, struct page *page, loff_t from,
76                 loff_t length, int flags);
77
78 /*
79  * Test whether an inode is a fast symlink.
80  */
81 static int ext4_inode_is_fast_symlink(struct inode *inode)
82 {
83         int ea_blocks = EXT4_I(inode)->i_file_acl ?
84                 (inode->i_sb->s_blocksize >> 9) : 0;
85
86         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
87 }
88
89 /*
90  * Restart the transaction associated with *handle.  This does a commit,
91  * so before we call here everything must be consistently dirtied against
92  * this transaction.
93  */
94 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
95                                  int nblocks)
96 {
97         int ret;
98
99         /*
100          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
101          * moment, get_block can be called only for blocks inside i_size since
102          * page cache has been already dropped and writes are blocked by
103          * i_mutex. So we can safely drop the i_data_sem here.
104          */
105         BUG_ON(EXT4_JOURNAL(inode) == NULL);
106         jbd_debug(2, "restarting handle %p\n", handle);
107         up_write(&EXT4_I(inode)->i_data_sem);
108         ret = ext4_journal_restart(handle, nblocks);
109         down_write(&EXT4_I(inode)->i_data_sem);
110         ext4_discard_preallocations(inode);
111
112         return ret;
113 }
114
115 /*
116  * Called at the last iput() if i_nlink is zero.
117  */
118 void ext4_evict_inode(struct inode *inode)
119 {
120         handle_t *handle;
121         int err;
122
123         trace_ext4_evict_inode(inode);
124
125         ext4_ioend_wait(inode);
126
127         if (inode->i_nlink) {
128                 /*
129                  * When journalling data dirty buffers are tracked only in the
130                  * journal. So although mm thinks everything is clean and
131                  * ready for reaping the inode might still have some pages to
132                  * write in the running transaction or waiting to be
133                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
134                  * (via truncate_inode_pages()) to discard these buffers can
135                  * cause data loss. Also even if we did not discard these
136                  * buffers, we would have no way to find them after the inode
137                  * is reaped and thus user could see stale data if he tries to
138                  * read them before the transaction is checkpointed. So be
139                  * careful and force everything to disk here... We use
140                  * ei->i_datasync_tid to store the newest transaction
141                  * containing inode's data.
142                  *
143                  * Note that directories do not have this problem because they
144                  * don't use page cache.
145                  */
146                 if (ext4_should_journal_data(inode) &&
147                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
148                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
149                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
150
151                         jbd2_log_start_commit(journal, commit_tid);
152                         jbd2_log_wait_commit(journal, commit_tid);
153                         filemap_write_and_wait(&inode->i_data);
154                 }
155                 truncate_inode_pages(&inode->i_data, 0);
156                 goto no_delete;
157         }
158
159         if (!is_bad_inode(inode))
160                 dquot_initialize(inode);
161
162         if (ext4_should_order_data(inode))
163                 ext4_begin_ordered_truncate(inode, 0);
164         truncate_inode_pages(&inode->i_data, 0);
165
166         if (is_bad_inode(inode))
167                 goto no_delete;
168
169         handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
170         if (IS_ERR(handle)) {
171                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
172                 /*
173                  * If we're going to skip the normal cleanup, we still need to
174                  * make sure that the in-core orphan linked list is properly
175                  * cleaned up.
176                  */
177                 ext4_orphan_del(NULL, inode);
178                 goto no_delete;
179         }
180
181         if (IS_SYNC(inode))
182                 ext4_handle_sync(handle);
183         inode->i_size = 0;
184         err = ext4_mark_inode_dirty(handle, inode);
185         if (err) {
186                 ext4_warning(inode->i_sb,
187                              "couldn't mark inode dirty (err %d)", err);
188                 goto stop_handle;
189         }
190         if (inode->i_blocks)
191                 ext4_truncate(inode);
192
193         /*
194          * ext4_ext_truncate() doesn't reserve any slop when it
195          * restarts journal transactions; therefore there may not be
196          * enough credits left in the handle to remove the inode from
197          * the orphan list and set the dtime field.
198          */
199         if (!ext4_handle_has_enough_credits(handle, 3)) {
200                 err = ext4_journal_extend(handle, 3);
201                 if (err > 0)
202                         err = ext4_journal_restart(handle, 3);
203                 if (err != 0) {
204                         ext4_warning(inode->i_sb,
205                                      "couldn't extend journal (err %d)", err);
206                 stop_handle:
207                         ext4_journal_stop(handle);
208                         ext4_orphan_del(NULL, inode);
209                         goto no_delete;
210                 }
211         }
212
213         /*
214          * Kill off the orphan record which ext4_truncate created.
215          * AKPM: I think this can be inside the above `if'.
216          * Note that ext4_orphan_del() has to be able to cope with the
217          * deletion of a non-existent orphan - this is because we don't
218          * know if ext4_truncate() actually created an orphan record.
219          * (Well, we could do this if we need to, but heck - it works)
220          */
221         ext4_orphan_del(handle, inode);
222         EXT4_I(inode)->i_dtime  = get_seconds();
223
224         /*
225          * One subtle ordering requirement: if anything has gone wrong
226          * (transaction abort, IO errors, whatever), then we can still
227          * do these next steps (the fs will already have been marked as
228          * having errors), but we can't free the inode if the mark_dirty
229          * fails.
230          */
231         if (ext4_mark_inode_dirty(handle, inode))
232                 /* If that failed, just do the required in-core inode clear. */
233                 ext4_clear_inode(inode);
234         else
235                 ext4_free_inode(handle, inode);
236         ext4_journal_stop(handle);
237         return;
238 no_delete:
239         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
240 }
241
242 #ifdef CONFIG_QUOTA
243 qsize_t *ext4_get_reserved_space(struct inode *inode)
244 {
245         return &EXT4_I(inode)->i_reserved_quota;
246 }
247 #endif
248
249 /*
250  * Calculate the number of metadata blocks need to reserve
251  * to allocate a block located at @lblock
252  */
253 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
254 {
255         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
256                 return ext4_ext_calc_metadata_amount(inode, lblock);
257
258         return ext4_ind_calc_metadata_amount(inode, lblock);
259 }
260
261 /*
262  * Called with i_data_sem down, which is important since we can call
263  * ext4_discard_preallocations() from here.
264  */
265 void ext4_da_update_reserve_space(struct inode *inode,
266                                         int used, int quota_claim)
267 {
268         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
269         struct ext4_inode_info *ei = EXT4_I(inode);
270
271         spin_lock(&ei->i_block_reservation_lock);
272         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
273         if (unlikely(used > ei->i_reserved_data_blocks)) {
274                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
275                          "with only %d reserved data blocks\n",
276                          __func__, inode->i_ino, used,
277                          ei->i_reserved_data_blocks);
278                 WARN_ON(1);
279                 used = ei->i_reserved_data_blocks;
280         }
281
282         /* Update per-inode reservations */
283         ei->i_reserved_data_blocks -= used;
284         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
285         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
286                            used + ei->i_allocated_meta_blocks);
287         ei->i_allocated_meta_blocks = 0;
288
289         if (ei->i_reserved_data_blocks == 0) {
290                 /*
291                  * We can release all of the reserved metadata blocks
292                  * only when we have written all of the delayed
293                  * allocation blocks.
294                  */
295                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
296                                    ei->i_reserved_meta_blocks);
297                 ei->i_reserved_meta_blocks = 0;
298                 ei->i_da_metadata_calc_len = 0;
299         }
300         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
301
302         /* Update quota subsystem for data blocks */
303         if (quota_claim)
304                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
305         else {
306                 /*
307                  * We did fallocate with an offset that is already delayed
308                  * allocated. So on delayed allocated writeback we should
309                  * not re-claim the quota for fallocated blocks.
310                  */
311                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
312         }
313
314         /*
315          * If we have done all the pending block allocations and if
316          * there aren't any writers on the inode, we can discard the
317          * inode's preallocations.
318          */
319         if ((ei->i_reserved_data_blocks == 0) &&
320             (atomic_read(&inode->i_writecount) == 0))
321                 ext4_discard_preallocations(inode);
322 }
323
324 static int __check_block_validity(struct inode *inode, const char *func,
325                                 unsigned int line,
326                                 struct ext4_map_blocks *map)
327 {
328         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
329                                    map->m_len)) {
330                 ext4_error_inode(inode, func, line, map->m_pblk,
331                                  "lblock %lu mapped to illegal pblock "
332                                  "(length %d)", (unsigned long) map->m_lblk,
333                                  map->m_len);
334                 return -EIO;
335         }
336         return 0;
337 }
338
339 #define check_block_validity(inode, map)        \
340         __check_block_validity((inode), __func__, __LINE__, (map))
341
342 /*
343  * Return the number of contiguous dirty pages in a given inode
344  * starting at page frame idx.
345  */
346 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
347                                     unsigned int max_pages)
348 {
349         struct address_space *mapping = inode->i_mapping;
350         pgoff_t index;
351         struct pagevec pvec;
352         pgoff_t num = 0;
353         int i, nr_pages, done = 0;
354
355         if (max_pages == 0)
356                 return 0;
357         pagevec_init(&pvec, 0);
358         while (!done) {
359                 index = idx;
360                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
361                                               PAGECACHE_TAG_DIRTY,
362                                               (pgoff_t)PAGEVEC_SIZE);
363                 if (nr_pages == 0)
364                         break;
365                 for (i = 0; i < nr_pages; i++) {
366                         struct page *page = pvec.pages[i];
367                         struct buffer_head *bh, *head;
368
369                         lock_page(page);
370                         if (unlikely(page->mapping != mapping) ||
371                             !PageDirty(page) ||
372                             PageWriteback(page) ||
373                             page->index != idx) {
374                                 done = 1;
375                                 unlock_page(page);
376                                 break;
377                         }
378                         if (page_has_buffers(page)) {
379                                 bh = head = page_buffers(page);
380                                 do {
381                                         if (!buffer_delay(bh) &&
382                                             !buffer_unwritten(bh))
383                                                 done = 1;
384                                         bh = bh->b_this_page;
385                                 } while (!done && (bh != head));
386                         }
387                         unlock_page(page);
388                         if (done)
389                                 break;
390                         idx++;
391                         num++;
392                         if (num >= max_pages) {
393                                 done = 1;
394                                 break;
395                         }
396                 }
397                 pagevec_release(&pvec);
398         }
399         return num;
400 }
401
402 /*
403  * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
404  */
405 static void set_buffers_da_mapped(struct inode *inode,
406                                    struct ext4_map_blocks *map)
407 {
408         struct address_space *mapping = inode->i_mapping;
409         struct pagevec pvec;
410         int i, nr_pages;
411         pgoff_t index, end;
412
413         index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
414         end = (map->m_lblk + map->m_len - 1) >>
415                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
416
417         pagevec_init(&pvec, 0);
418         while (index <= end) {
419                 nr_pages = pagevec_lookup(&pvec, mapping, index,
420                                           min(end - index + 1,
421                                               (pgoff_t)PAGEVEC_SIZE));
422                 if (nr_pages == 0)
423                         break;
424                 for (i = 0; i < nr_pages; i++) {
425                         struct page *page = pvec.pages[i];
426                         struct buffer_head *bh, *head;
427
428                         if (unlikely(page->mapping != mapping) ||
429                             !PageDirty(page))
430                                 break;
431
432                         if (page_has_buffers(page)) {
433                                 bh = head = page_buffers(page);
434                                 do {
435                                         set_buffer_da_mapped(bh);
436                                         bh = bh->b_this_page;
437                                 } while (bh != head);
438                         }
439                         index++;
440                 }
441                 pagevec_release(&pvec);
442         }
443 }
444
445 /*
446  * The ext4_map_blocks() function tries to look up the requested blocks,
447  * and returns if the blocks are already mapped.
448  *
449  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
450  * and store the allocated blocks in the result buffer head and mark it
451  * mapped.
452  *
453  * If file type is extents based, it will call ext4_ext_map_blocks(),
454  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
455  * based files
456  *
457  * On success, it returns the number of blocks being mapped or allocate.
458  * if create==0 and the blocks are pre-allocated and uninitialized block,
459  * the result buffer head is unmapped. If the create ==1, it will make sure
460  * the buffer head is mapped.
461  *
462  * It returns 0 if plain look up failed (blocks have not been allocated), in
463  * that case, buffer head is unmapped
464  *
465  * It returns the error in case of allocation failure.
466  */
467 int ext4_map_blocks(handle_t *handle, struct inode *inode,
468                     struct ext4_map_blocks *map, int flags)
469 {
470         int retval;
471
472         map->m_flags = 0;
473         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
474                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
475                   (unsigned long) map->m_lblk);
476         /*
477          * Try to see if we can get the block without requesting a new
478          * file system block.
479          */
480         down_read((&EXT4_I(inode)->i_data_sem));
481         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
482                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
483                                              EXT4_GET_BLOCKS_KEEP_SIZE);
484         } else {
485                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
486                                              EXT4_GET_BLOCKS_KEEP_SIZE);
487         }
488         up_read((&EXT4_I(inode)->i_data_sem));
489
490         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
491                 int ret = check_block_validity(inode, map);
492                 if (ret != 0)
493                         return ret;
494         }
495
496         /* If it is only a block(s) look up */
497         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
498                 return retval;
499
500         /*
501          * Returns if the blocks have already allocated
502          *
503          * Note that if blocks have been preallocated
504          * ext4_ext_get_block() returns the create = 0
505          * with buffer head unmapped.
506          */
507         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
508                 return retval;
509
510         /*
511          * When we call get_blocks without the create flag, the
512          * BH_Unwritten flag could have gotten set if the blocks
513          * requested were part of a uninitialized extent.  We need to
514          * clear this flag now that we are committed to convert all or
515          * part of the uninitialized extent to be an initialized
516          * extent.  This is because we need to avoid the combination
517          * of BH_Unwritten and BH_Mapped flags being simultaneously
518          * set on the buffer_head.
519          */
520         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
521
522         /*
523          * New blocks allocate and/or writing to uninitialized extent
524          * will possibly result in updating i_data, so we take
525          * the write lock of i_data_sem, and call get_blocks()
526          * with create == 1 flag.
527          */
528         down_write((&EXT4_I(inode)->i_data_sem));
529
530         /*
531          * if the caller is from delayed allocation writeout path
532          * we have already reserved fs blocks for allocation
533          * let the underlying get_block() function know to
534          * avoid double accounting
535          */
536         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
537                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
538         /*
539          * We need to check for EXT4 here because migrate
540          * could have changed the inode type in between
541          */
542         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
543                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
544         } else {
545                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
546
547                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
548                         /*
549                          * We allocated new blocks which will result in
550                          * i_data's format changing.  Force the migrate
551                          * to fail by clearing migrate flags
552                          */
553                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
554                 }
555
556                 /*
557                  * Update reserved blocks/metadata blocks after successful
558                  * block allocation which had been deferred till now. We don't
559                  * support fallocate for non extent files. So we can update
560                  * reserve space here.
561                  */
562                 if ((retval > 0) &&
563                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
564                         ext4_da_update_reserve_space(inode, retval, 1);
565         }
566         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
567                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
568
569                 /* If we have successfully mapped the delayed allocated blocks,
570                  * set the BH_Da_Mapped bit on them. Its important to do this
571                  * under the protection of i_data_sem.
572                  */
573                 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
574                         set_buffers_da_mapped(inode, map);
575         }
576
577         up_write((&EXT4_I(inode)->i_data_sem));
578         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
579                 int ret = check_block_validity(inode, map);
580                 if (ret != 0)
581                         return ret;
582         }
583         return retval;
584 }
585
586 /* Maximum number of blocks we map for direct IO at once. */
587 #define DIO_MAX_BLOCKS 4096
588
589 static int _ext4_get_block(struct inode *inode, sector_t iblock,
590                            struct buffer_head *bh, int flags)
591 {
592         handle_t *handle = ext4_journal_current_handle();
593         struct ext4_map_blocks map;
594         int ret = 0, started = 0;
595         int dio_credits;
596
597         map.m_lblk = iblock;
598         map.m_len = bh->b_size >> inode->i_blkbits;
599
600         if (flags && !handle) {
601                 /* Direct IO write... */
602                 if (map.m_len > DIO_MAX_BLOCKS)
603                         map.m_len = DIO_MAX_BLOCKS;
604                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
605                 handle = ext4_journal_start(inode, dio_credits);
606                 if (IS_ERR(handle)) {
607                         ret = PTR_ERR(handle);
608                         return ret;
609                 }
610                 started = 1;
611         }
612
613         ret = ext4_map_blocks(handle, inode, &map, flags);
614         if (ret > 0) {
615                 map_bh(bh, inode->i_sb, map.m_pblk);
616                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
617                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
618                 ret = 0;
619         }
620         if (started)
621                 ext4_journal_stop(handle);
622         return ret;
623 }
624
625 int ext4_get_block(struct inode *inode, sector_t iblock,
626                    struct buffer_head *bh, int create)
627 {
628         return _ext4_get_block(inode, iblock, bh,
629                                create ? EXT4_GET_BLOCKS_CREATE : 0);
630 }
631
632 /*
633  * `handle' can be NULL if create is zero
634  */
635 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
636                                 ext4_lblk_t block, int create, int *errp)
637 {
638         struct ext4_map_blocks map;
639         struct buffer_head *bh;
640         int fatal = 0, err;
641
642         J_ASSERT(handle != NULL || create == 0);
643
644         map.m_lblk = block;
645         map.m_len = 1;
646         err = ext4_map_blocks(handle, inode, &map,
647                               create ? EXT4_GET_BLOCKS_CREATE : 0);
648
649         if (err < 0)
650                 *errp = err;
651         if (err <= 0)
652                 return NULL;
653         *errp = 0;
654
655         bh = sb_getblk(inode->i_sb, map.m_pblk);
656         if (!bh) {
657                 *errp = -EIO;
658                 return NULL;
659         }
660         if (map.m_flags & EXT4_MAP_NEW) {
661                 J_ASSERT(create != 0);
662                 J_ASSERT(handle != NULL);
663
664                 /*
665                  * Now that we do not always journal data, we should
666                  * keep in mind whether this should always journal the
667                  * new buffer as metadata.  For now, regular file
668                  * writes use ext4_get_block instead, so it's not a
669                  * problem.
670                  */
671                 lock_buffer(bh);
672                 BUFFER_TRACE(bh, "call get_create_access");
673                 fatal = ext4_journal_get_create_access(handle, bh);
674                 if (!fatal && !buffer_uptodate(bh)) {
675                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
676                         set_buffer_uptodate(bh);
677                 }
678                 unlock_buffer(bh);
679                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
680                 err = ext4_handle_dirty_metadata(handle, inode, bh);
681                 if (!fatal)
682                         fatal = err;
683         } else {
684                 BUFFER_TRACE(bh, "not a new buffer");
685         }
686         if (fatal) {
687                 *errp = fatal;
688                 brelse(bh);
689                 bh = NULL;
690         }
691         return bh;
692 }
693
694 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
695                                ext4_lblk_t block, int create, int *err)
696 {
697         struct buffer_head *bh;
698
699         bh = ext4_getblk(handle, inode, block, create, err);
700         if (!bh)
701                 return bh;
702         if (buffer_uptodate(bh))
703                 return bh;
704         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
705         wait_on_buffer(bh);
706         if (buffer_uptodate(bh))
707                 return bh;
708         put_bh(bh);
709         *err = -EIO;
710         return NULL;
711 }
712
713 static int walk_page_buffers(handle_t *handle,
714                              struct buffer_head *head,
715                              unsigned from,
716                              unsigned to,
717                              int *partial,
718                              int (*fn)(handle_t *handle,
719                                        struct buffer_head *bh))
720 {
721         struct buffer_head *bh;
722         unsigned block_start, block_end;
723         unsigned blocksize = head->b_size;
724         int err, ret = 0;
725         struct buffer_head *next;
726
727         for (bh = head, block_start = 0;
728              ret == 0 && (bh != head || !block_start);
729              block_start = block_end, bh = next) {
730                 next = bh->b_this_page;
731                 block_end = block_start + blocksize;
732                 if (block_end <= from || block_start >= to) {
733                         if (partial && !buffer_uptodate(bh))
734                                 *partial = 1;
735                         continue;
736                 }
737                 err = (*fn)(handle, bh);
738                 if (!ret)
739                         ret = err;
740         }
741         return ret;
742 }
743
744 /*
745  * To preserve ordering, it is essential that the hole instantiation and
746  * the data write be encapsulated in a single transaction.  We cannot
747  * close off a transaction and start a new one between the ext4_get_block()
748  * and the commit_write().  So doing the jbd2_journal_start at the start of
749  * prepare_write() is the right place.
750  *
751  * Also, this function can nest inside ext4_writepage() ->
752  * block_write_full_page(). In that case, we *know* that ext4_writepage()
753  * has generated enough buffer credits to do the whole page.  So we won't
754  * block on the journal in that case, which is good, because the caller may
755  * be PF_MEMALLOC.
756  *
757  * By accident, ext4 can be reentered when a transaction is open via
758  * quota file writes.  If we were to commit the transaction while thus
759  * reentered, there can be a deadlock - we would be holding a quota
760  * lock, and the commit would never complete if another thread had a
761  * transaction open and was blocking on the quota lock - a ranking
762  * violation.
763  *
764  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
765  * will _not_ run commit under these circumstances because handle->h_ref
766  * is elevated.  We'll still have enough credits for the tiny quotafile
767  * write.
768  */
769 static int do_journal_get_write_access(handle_t *handle,
770                                        struct buffer_head *bh)
771 {
772         int dirty = buffer_dirty(bh);
773         int ret;
774
775         if (!buffer_mapped(bh) || buffer_freed(bh))
776                 return 0;
777         /*
778          * __block_write_begin() could have dirtied some buffers. Clean
779          * the dirty bit as jbd2_journal_get_write_access() could complain
780          * otherwise about fs integrity issues. Setting of the dirty bit
781          * by __block_write_begin() isn't a real problem here as we clear
782          * the bit before releasing a page lock and thus writeback cannot
783          * ever write the buffer.
784          */
785         if (dirty)
786                 clear_buffer_dirty(bh);
787         ret = ext4_journal_get_write_access(handle, bh);
788         if (!ret && dirty)
789                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
790         return ret;
791 }
792
793 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
794                    struct buffer_head *bh_result, int create);
795 static int ext4_write_begin(struct file *file, struct address_space *mapping,
796                             loff_t pos, unsigned len, unsigned flags,
797                             struct page **pagep, void **fsdata)
798 {
799         struct inode *inode = mapping->host;
800         int ret, needed_blocks;
801         handle_t *handle;
802         int retries = 0;
803         struct page *page;
804         pgoff_t index;
805         unsigned from, to;
806
807         trace_ext4_write_begin(inode, pos, len, flags);
808         /*
809          * Reserve one block more for addition to orphan list in case
810          * we allocate blocks but write fails for some reason
811          */
812         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
813         index = pos >> PAGE_CACHE_SHIFT;
814         from = pos & (PAGE_CACHE_SIZE - 1);
815         to = from + len;
816
817 retry:
818         handle = ext4_journal_start(inode, needed_blocks);
819         if (IS_ERR(handle)) {
820                 ret = PTR_ERR(handle);
821                 goto out;
822         }
823
824         /* We cannot recurse into the filesystem as the transaction is already
825          * started */
826         flags |= AOP_FLAG_NOFS;
827
828         page = grab_cache_page_write_begin(mapping, index, flags);
829         if (!page) {
830                 ext4_journal_stop(handle);
831                 ret = -ENOMEM;
832                 goto out;
833         }
834         *pagep = page;
835
836         if (ext4_should_dioread_nolock(inode))
837                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
838         else
839                 ret = __block_write_begin(page, pos, len, ext4_get_block);
840
841         if (!ret && ext4_should_journal_data(inode)) {
842                 ret = walk_page_buffers(handle, page_buffers(page),
843                                 from, to, NULL, do_journal_get_write_access);
844         }
845
846         if (ret) {
847                 unlock_page(page);
848                 page_cache_release(page);
849                 /*
850                  * __block_write_begin may have instantiated a few blocks
851                  * outside i_size.  Trim these off again. Don't need
852                  * i_size_read because we hold i_mutex.
853                  *
854                  * Add inode to orphan list in case we crash before
855                  * truncate finishes
856                  */
857                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
858                         ext4_orphan_add(handle, inode);
859
860                 ext4_journal_stop(handle);
861                 if (pos + len > inode->i_size) {
862                         ext4_truncate_failed_write(inode);
863                         /*
864                          * If truncate failed early the inode might
865                          * still be on the orphan list; we need to
866                          * make sure the inode is removed from the
867                          * orphan list in that case.
868                          */
869                         if (inode->i_nlink)
870                                 ext4_orphan_del(NULL, inode);
871                 }
872         }
873
874         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
875                 goto retry;
876 out:
877         return ret;
878 }
879
880 /* For write_end() in data=journal mode */
881 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
882 {
883         if (!buffer_mapped(bh) || buffer_freed(bh))
884                 return 0;
885         set_buffer_uptodate(bh);
886         return ext4_handle_dirty_metadata(handle, NULL, bh);
887 }
888
889 static int ext4_generic_write_end(struct file *file,
890                                   struct address_space *mapping,
891                                   loff_t pos, unsigned len, unsigned copied,
892                                   struct page *page, void *fsdata)
893 {
894         int i_size_changed = 0;
895         struct inode *inode = mapping->host;
896         handle_t *handle = ext4_journal_current_handle();
897
898         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
899
900         /*
901          * No need to use i_size_read() here, the i_size
902          * cannot change under us because we hold i_mutex.
903          *
904          * But it's important to update i_size while still holding page lock:
905          * page writeout could otherwise come in and zero beyond i_size.
906          */
907         if (pos + copied > inode->i_size) {
908                 i_size_write(inode, pos + copied);
909                 i_size_changed = 1;
910         }
911
912         if (pos + copied >  EXT4_I(inode)->i_disksize) {
913                 /* We need to mark inode dirty even if
914                  * new_i_size is less that inode->i_size
915                  * bu greater than i_disksize.(hint delalloc)
916                  */
917                 ext4_update_i_disksize(inode, (pos + copied));
918                 i_size_changed = 1;
919         }
920         unlock_page(page);
921         page_cache_release(page);
922
923         /*
924          * Don't mark the inode dirty under page lock. First, it unnecessarily
925          * makes the holding time of page lock longer. Second, it forces lock
926          * ordering of page lock and transaction start for journaling
927          * filesystems.
928          */
929         if (i_size_changed)
930                 ext4_mark_inode_dirty(handle, inode);
931
932         return copied;
933 }
934
935 /*
936  * We need to pick up the new inode size which generic_commit_write gave us
937  * `file' can be NULL - eg, when called from page_symlink().
938  *
939  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
940  * buffers are managed internally.
941  */
942 static int ext4_ordered_write_end(struct file *file,
943                                   struct address_space *mapping,
944                                   loff_t pos, unsigned len, unsigned copied,
945                                   struct page *page, void *fsdata)
946 {
947         handle_t *handle = ext4_journal_current_handle();
948         struct inode *inode = mapping->host;
949         int ret = 0, ret2;
950
951         trace_ext4_ordered_write_end(inode, pos, len, copied);
952         ret = ext4_jbd2_file_inode(handle, inode);
953
954         if (ret == 0) {
955                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
956                                                         page, fsdata);
957                 copied = ret2;
958                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
959                         /* if we have allocated more blocks and copied
960                          * less. We will have blocks allocated outside
961                          * inode->i_size. So truncate them
962                          */
963                         ext4_orphan_add(handle, inode);
964                 if (ret2 < 0)
965                         ret = ret2;
966         } else {
967                 unlock_page(page);
968                 page_cache_release(page);
969         }
970
971         ret2 = ext4_journal_stop(handle);
972         if (!ret)
973                 ret = ret2;
974
975         if (pos + len > inode->i_size) {
976                 ext4_truncate_failed_write(inode);
977                 /*
978                  * If truncate failed early the inode might still be
979                  * on the orphan list; we need to make sure the inode
980                  * is removed from the orphan list in that case.
981                  */
982                 if (inode->i_nlink)
983                         ext4_orphan_del(NULL, inode);
984         }
985
986
987         return ret ? ret : copied;
988 }
989
990 static int ext4_writeback_write_end(struct file *file,
991                                     struct address_space *mapping,
992                                     loff_t pos, unsigned len, unsigned copied,
993                                     struct page *page, void *fsdata)
994 {
995         handle_t *handle = ext4_journal_current_handle();
996         struct inode *inode = mapping->host;
997         int ret = 0, ret2;
998
999         trace_ext4_writeback_write_end(inode, pos, len, copied);
1000         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1001                                                         page, fsdata);
1002         copied = ret2;
1003         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1004                 /* if we have allocated more blocks and copied
1005                  * less. We will have blocks allocated outside
1006                  * inode->i_size. So truncate them
1007                  */
1008                 ext4_orphan_add(handle, inode);
1009
1010         if (ret2 < 0)
1011                 ret = ret2;
1012
1013         ret2 = ext4_journal_stop(handle);
1014         if (!ret)
1015                 ret = ret2;
1016
1017         if (pos + len > inode->i_size) {
1018                 ext4_truncate_failed_write(inode);
1019                 /*
1020                  * If truncate failed early the inode might still be
1021                  * on the orphan list; we need to make sure the inode
1022                  * is removed from the orphan list in that case.
1023                  */
1024                 if (inode->i_nlink)
1025                         ext4_orphan_del(NULL, inode);
1026         }
1027
1028         return ret ? ret : copied;
1029 }
1030
1031 static int ext4_journalled_write_end(struct file *file,
1032                                      struct address_space *mapping,
1033                                      loff_t pos, unsigned len, unsigned copied,
1034                                      struct page *page, void *fsdata)
1035 {
1036         handle_t *handle = ext4_journal_current_handle();
1037         struct inode *inode = mapping->host;
1038         int ret = 0, ret2;
1039         int partial = 0;
1040         unsigned from, to;
1041         loff_t new_i_size;
1042
1043         trace_ext4_journalled_write_end(inode, pos, len, copied);
1044         from = pos & (PAGE_CACHE_SIZE - 1);
1045         to = from + len;
1046
1047         BUG_ON(!ext4_handle_valid(handle));
1048
1049         if (copied < len) {
1050                 if (!PageUptodate(page))
1051                         copied = 0;
1052                 page_zero_new_buffers(page, from+copied, to);
1053         }
1054
1055         ret = walk_page_buffers(handle, page_buffers(page), from,
1056                                 to, &partial, write_end_fn);
1057         if (!partial)
1058                 SetPageUptodate(page);
1059         new_i_size = pos + copied;
1060         if (new_i_size > inode->i_size)
1061                 i_size_write(inode, pos+copied);
1062         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1063         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1064         if (new_i_size > EXT4_I(inode)->i_disksize) {
1065                 ext4_update_i_disksize(inode, new_i_size);
1066                 ret2 = ext4_mark_inode_dirty(handle, inode);
1067                 if (!ret)
1068                         ret = ret2;
1069         }
1070
1071         unlock_page(page);
1072         page_cache_release(page);
1073         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1074                 /* if we have allocated more blocks and copied
1075                  * less. We will have blocks allocated outside
1076                  * inode->i_size. So truncate them
1077                  */
1078                 ext4_orphan_add(handle, inode);
1079
1080         ret2 = ext4_journal_stop(handle);
1081         if (!ret)
1082                 ret = ret2;
1083         if (pos + len > inode->i_size) {
1084                 ext4_truncate_failed_write(inode);
1085                 /*
1086                  * If truncate failed early the inode might still be
1087                  * on the orphan list; we need to make sure the inode
1088                  * is removed from the orphan list in that case.
1089                  */
1090                 if (inode->i_nlink)
1091                         ext4_orphan_del(NULL, inode);
1092         }
1093
1094         return ret ? ret : copied;
1095 }
1096
1097 /*
1098  * Reserve a single cluster located at lblock
1099  */
1100 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1101 {
1102         int retries = 0;
1103         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1104         struct ext4_inode_info *ei = EXT4_I(inode);
1105         unsigned int md_needed;
1106         int ret;
1107
1108         /*
1109          * recalculate the amount of metadata blocks to reserve
1110          * in order to allocate nrblocks
1111          * worse case is one extent per block
1112          */
1113 repeat:
1114         spin_lock(&ei->i_block_reservation_lock);
1115         md_needed = EXT4_NUM_B2C(sbi,
1116                                  ext4_calc_metadata_amount(inode, lblock));
1117         trace_ext4_da_reserve_space(inode, md_needed);
1118         spin_unlock(&ei->i_block_reservation_lock);
1119
1120         /*
1121          * We will charge metadata quota at writeout time; this saves
1122          * us from metadata over-estimation, though we may go over by
1123          * a small amount in the end.  Here we just reserve for data.
1124          */
1125         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1126         if (ret)
1127                 return ret;
1128         /*
1129          * We do still charge estimated metadata to the sb though;
1130          * we cannot afford to run out of free blocks.
1131          */
1132         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1133                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1134                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1135                         yield();
1136                         goto repeat;
1137                 }
1138                 return -ENOSPC;
1139         }
1140         spin_lock(&ei->i_block_reservation_lock);
1141         ei->i_reserved_data_blocks++;
1142         ei->i_reserved_meta_blocks += md_needed;
1143         spin_unlock(&ei->i_block_reservation_lock);
1144
1145         return 0;       /* success */
1146 }
1147
1148 static void ext4_da_release_space(struct inode *inode, int to_free)
1149 {
1150         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1151         struct ext4_inode_info *ei = EXT4_I(inode);
1152
1153         if (!to_free)
1154                 return;         /* Nothing to release, exit */
1155
1156         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1157
1158         trace_ext4_da_release_space(inode, to_free);
1159         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1160                 /*
1161                  * if there aren't enough reserved blocks, then the
1162                  * counter is messed up somewhere.  Since this
1163                  * function is called from invalidate page, it's
1164                  * harmless to return without any action.
1165                  */
1166                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1167                          "ino %lu, to_free %d with only %d reserved "
1168                          "data blocks\n", inode->i_ino, to_free,
1169                          ei->i_reserved_data_blocks);
1170                 WARN_ON(1);
1171                 to_free = ei->i_reserved_data_blocks;
1172         }
1173         ei->i_reserved_data_blocks -= to_free;
1174
1175         if (ei->i_reserved_data_blocks == 0) {
1176                 /*
1177                  * We can release all of the reserved metadata blocks
1178                  * only when we have written all of the delayed
1179                  * allocation blocks.
1180                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1181                  * i_reserved_data_blocks, etc. refer to number of clusters.
1182                  */
1183                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1184                                    ei->i_reserved_meta_blocks);
1185                 ei->i_reserved_meta_blocks = 0;
1186                 ei->i_da_metadata_calc_len = 0;
1187         }
1188
1189         /* update fs dirty data blocks counter */
1190         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1191
1192         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1193
1194         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1195 }
1196
1197 static void ext4_da_page_release_reservation(struct page *page,
1198                                              unsigned long offset)
1199 {
1200         int to_release = 0;
1201         struct buffer_head *head, *bh;
1202         unsigned int curr_off = 0;
1203         struct inode *inode = page->mapping->host;
1204         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1205         int num_clusters;
1206
1207         head = page_buffers(page);
1208         bh = head;
1209         do {
1210                 unsigned int next_off = curr_off + bh->b_size;
1211
1212                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1213                         to_release++;
1214                         clear_buffer_delay(bh);
1215                         clear_buffer_da_mapped(bh);
1216                 }
1217                 curr_off = next_off;
1218         } while ((bh = bh->b_this_page) != head);
1219
1220         /* If we have released all the blocks belonging to a cluster, then we
1221          * need to release the reserved space for that cluster. */
1222         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1223         while (num_clusters > 0) {
1224                 ext4_fsblk_t lblk;
1225                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1226                         ((num_clusters - 1) << sbi->s_cluster_bits);
1227                 if (sbi->s_cluster_ratio == 1 ||
1228                     !ext4_find_delalloc_cluster(inode, lblk, 1))
1229                         ext4_da_release_space(inode, 1);
1230
1231                 num_clusters--;
1232         }
1233 }
1234
1235 /*
1236  * Delayed allocation stuff
1237  */
1238
1239 /*
1240  * mpage_da_submit_io - walks through extent of pages and try to write
1241  * them with writepage() call back
1242  *
1243  * @mpd->inode: inode
1244  * @mpd->first_page: first page of the extent
1245  * @mpd->next_page: page after the last page of the extent
1246  *
1247  * By the time mpage_da_submit_io() is called we expect all blocks
1248  * to be allocated. this may be wrong if allocation failed.
1249  *
1250  * As pages are already locked by write_cache_pages(), we can't use it
1251  */
1252 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1253                               struct ext4_map_blocks *map)
1254 {
1255         struct pagevec pvec;
1256         unsigned long index, end;
1257         int ret = 0, err, nr_pages, i;
1258         struct inode *inode = mpd->inode;
1259         struct address_space *mapping = inode->i_mapping;
1260         loff_t size = i_size_read(inode);
1261         unsigned int len, block_start;
1262         struct buffer_head *bh, *page_bufs = NULL;
1263         int journal_data = ext4_should_journal_data(inode);
1264         sector_t pblock = 0, cur_logical = 0;
1265         struct ext4_io_submit io_submit;
1266
1267         BUG_ON(mpd->next_page <= mpd->first_page);
1268         memset(&io_submit, 0, sizeof(io_submit));
1269         /*
1270          * We need to start from the first_page to the next_page - 1
1271          * to make sure we also write the mapped dirty buffer_heads.
1272          * If we look at mpd->b_blocknr we would only be looking
1273          * at the currently mapped buffer_heads.
1274          */
1275         index = mpd->first_page;
1276         end = mpd->next_page - 1;
1277
1278         pagevec_init(&pvec, 0);
1279         while (index <= end) {
1280                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1281                 if (nr_pages == 0)
1282                         break;
1283                 for (i = 0; i < nr_pages; i++) {
1284                         int commit_write = 0, skip_page = 0;
1285                         struct page *page = pvec.pages[i];
1286
1287                         index = page->index;
1288                         if (index > end)
1289                                 break;
1290
1291                         if (index == size >> PAGE_CACHE_SHIFT)
1292                                 len = size & ~PAGE_CACHE_MASK;
1293                         else
1294                                 len = PAGE_CACHE_SIZE;
1295                         if (map) {
1296                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1297                                                         inode->i_blkbits);
1298                                 pblock = map->m_pblk + (cur_logical -
1299                                                         map->m_lblk);
1300                         }
1301                         index++;
1302
1303                         BUG_ON(!PageLocked(page));
1304                         BUG_ON(PageWriteback(page));
1305
1306                         /*
1307                          * If the page does not have buffers (for
1308                          * whatever reason), try to create them using
1309                          * __block_write_begin.  If this fails,
1310                          * skip the page and move on.
1311                          */
1312                         if (!page_has_buffers(page)) {
1313                                 if (__block_write_begin(page, 0, len,
1314                                                 noalloc_get_block_write)) {
1315                                 skip_page:
1316                                         unlock_page(page);
1317                                         continue;
1318                                 }
1319                                 commit_write = 1;
1320                         }
1321
1322                         bh = page_bufs = page_buffers(page);
1323                         block_start = 0;
1324                         do {
1325                                 if (!bh)
1326                                         goto skip_page;
1327                                 if (map && (cur_logical >= map->m_lblk) &&
1328                                     (cur_logical <= (map->m_lblk +
1329                                                      (map->m_len - 1)))) {
1330                                         if (buffer_delay(bh)) {
1331                                                 clear_buffer_delay(bh);
1332                                                 bh->b_blocknr = pblock;
1333                                         }
1334                                         if (buffer_da_mapped(bh))
1335                                                 clear_buffer_da_mapped(bh);
1336                                         if (buffer_unwritten(bh) ||
1337                                             buffer_mapped(bh))
1338                                                 BUG_ON(bh->b_blocknr != pblock);
1339                                         if (map->m_flags & EXT4_MAP_UNINIT)
1340                                                 set_buffer_uninit(bh);
1341                                         clear_buffer_unwritten(bh);
1342                                 }
1343
1344                                 /*
1345                                  * skip page if block allocation undone and
1346                                  * block is dirty
1347                                  */
1348                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1349                                         skip_page = 1;
1350                                 bh = bh->b_this_page;
1351                                 block_start += bh->b_size;
1352                                 cur_logical++;
1353                                 pblock++;
1354                         } while (bh != page_bufs);
1355
1356                         if (skip_page)
1357                                 goto skip_page;
1358
1359                         if (commit_write)
1360                                 /* mark the buffer_heads as dirty & uptodate */
1361                                 block_commit_write(page, 0, len);
1362
1363                         clear_page_dirty_for_io(page);
1364                         /*
1365                          * Delalloc doesn't support data journalling,
1366                          * but eventually maybe we'll lift this
1367                          * restriction.
1368                          */
1369                         if (unlikely(journal_data && PageChecked(page)))
1370                                 err = __ext4_journalled_writepage(page, len);
1371                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1372                                 err = ext4_bio_write_page(&io_submit, page,
1373                                                           len, mpd->wbc);
1374                         else if (buffer_uninit(page_bufs)) {
1375                                 ext4_set_bh_endio(page_bufs, inode);
1376                                 err = block_write_full_page_endio(page,
1377                                         noalloc_get_block_write,
1378                                         mpd->wbc, ext4_end_io_buffer_write);
1379                         } else
1380                                 err = block_write_full_page(page,
1381                                         noalloc_get_block_write, mpd->wbc);
1382
1383                         if (!err)
1384                                 mpd->pages_written++;
1385                         /*
1386                          * In error case, we have to continue because
1387                          * remaining pages are still locked
1388                          */
1389                         if (ret == 0)
1390                                 ret = err;
1391                 }
1392                 pagevec_release(&pvec);
1393         }
1394         ext4_io_submit(&io_submit);
1395         return ret;
1396 }
1397
1398 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1399 {
1400         int nr_pages, i;
1401         pgoff_t index, end;
1402         struct pagevec pvec;
1403         struct inode *inode = mpd->inode;
1404         struct address_space *mapping = inode->i_mapping;
1405
1406         index = mpd->first_page;
1407         end   = mpd->next_page - 1;
1408         while (index <= end) {
1409                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1410                 if (nr_pages == 0)
1411                         break;
1412                 for (i = 0; i < nr_pages; i++) {
1413                         struct page *page = pvec.pages[i];
1414                         if (page->index > end)
1415                                 break;
1416                         BUG_ON(!PageLocked(page));
1417                         BUG_ON(PageWriteback(page));
1418                         block_invalidatepage(page, 0);
1419                         ClearPageUptodate(page);
1420                         unlock_page(page);
1421                 }
1422                 index = pvec.pages[nr_pages - 1]->index + 1;
1423                 pagevec_release(&pvec);
1424         }
1425         return;
1426 }
1427
1428 static void ext4_print_free_blocks(struct inode *inode)
1429 {
1430         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1431         printk(KERN_CRIT "Total free blocks count %lld\n",
1432                EXT4_C2B(EXT4_SB(inode->i_sb),
1433                         ext4_count_free_clusters(inode->i_sb)));
1434         printk(KERN_CRIT "Free/Dirty block details\n");
1435         printk(KERN_CRIT "free_blocks=%lld\n",
1436                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1437                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1438         printk(KERN_CRIT "dirty_blocks=%lld\n",
1439                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1440                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1441         printk(KERN_CRIT "Block reservation details\n");
1442         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1443                EXT4_I(inode)->i_reserved_data_blocks);
1444         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1445                EXT4_I(inode)->i_reserved_meta_blocks);
1446         return;
1447 }
1448
1449 /*
1450  * mpage_da_map_and_submit - go through given space, map them
1451  *       if necessary, and then submit them for I/O
1452  *
1453  * @mpd - bh describing space
1454  *
1455  * The function skips space we know is already mapped to disk blocks.
1456  *
1457  */
1458 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1459 {
1460         int err, blks, get_blocks_flags;
1461         struct ext4_map_blocks map, *mapp = NULL;
1462         sector_t next = mpd->b_blocknr;
1463         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1464         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1465         handle_t *handle = NULL;
1466
1467         /*
1468          * If the blocks are mapped already, or we couldn't accumulate
1469          * any blocks, then proceed immediately to the submission stage.
1470          */
1471         if ((mpd->b_size == 0) ||
1472             ((mpd->b_state  & (1 << BH_Mapped)) &&
1473              !(mpd->b_state & (1 << BH_Delay)) &&
1474              !(mpd->b_state & (1 << BH_Unwritten))))
1475                 goto submit_io;
1476
1477         handle = ext4_journal_current_handle();
1478         BUG_ON(!handle);
1479
1480         /*
1481          * Call ext4_map_blocks() to allocate any delayed allocation
1482          * blocks, or to convert an uninitialized extent to be
1483          * initialized (in the case where we have written into
1484          * one or more preallocated blocks).
1485          *
1486          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1487          * indicate that we are on the delayed allocation path.  This
1488          * affects functions in many different parts of the allocation
1489          * call path.  This flag exists primarily because we don't
1490          * want to change *many* call functions, so ext4_map_blocks()
1491          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1492          * inode's allocation semaphore is taken.
1493          *
1494          * If the blocks in questions were delalloc blocks, set
1495          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1496          * variables are updated after the blocks have been allocated.
1497          */
1498         map.m_lblk = next;
1499         map.m_len = max_blocks;
1500         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1501         if (ext4_should_dioread_nolock(mpd->inode))
1502                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1503         if (mpd->b_state & (1 << BH_Delay))
1504                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1505
1506         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1507         if (blks < 0) {
1508                 struct super_block *sb = mpd->inode->i_sb;
1509
1510                 err = blks;
1511                 /*
1512                  * If get block returns EAGAIN or ENOSPC and there
1513                  * appears to be free blocks we will just let
1514                  * mpage_da_submit_io() unlock all of the pages.
1515                  */
1516                 if (err == -EAGAIN)
1517                         goto submit_io;
1518
1519                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1520                         mpd->retval = err;
1521                         goto submit_io;
1522                 }
1523
1524                 /*
1525                  * get block failure will cause us to loop in
1526                  * writepages, because a_ops->writepage won't be able
1527                  * to make progress. The page will be redirtied by
1528                  * writepage and writepages will again try to write
1529                  * the same.
1530                  */
1531                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1532                         ext4_msg(sb, KERN_CRIT,
1533                                  "delayed block allocation failed for inode %lu "
1534                                  "at logical offset %llu with max blocks %zd "
1535                                  "with error %d", mpd->inode->i_ino,
1536                                  (unsigned long long) next,
1537                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1538                         ext4_msg(sb, KERN_CRIT,
1539                                 "This should not happen!! Data will be lost\n");
1540                         if (err == -ENOSPC)
1541                                 ext4_print_free_blocks(mpd->inode);
1542                 }
1543                 /* invalidate all the pages */
1544                 ext4_da_block_invalidatepages(mpd);
1545
1546                 /* Mark this page range as having been completed */
1547                 mpd->io_done = 1;
1548                 return;
1549         }
1550         BUG_ON(blks == 0);
1551
1552         mapp = &map;
1553         if (map.m_flags & EXT4_MAP_NEW) {
1554                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1555                 int i;
1556
1557                 for (i = 0; i < map.m_len; i++)
1558                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1559
1560                 if (ext4_should_order_data(mpd->inode)) {
1561                         err = ext4_jbd2_file_inode(handle, mpd->inode);
1562                         if (err) {
1563                                 /* Only if the journal is aborted */
1564                                 mpd->retval = err;
1565                                 goto submit_io;
1566                         }
1567                 }
1568         }
1569
1570         /*
1571          * Update on-disk size along with block allocation.
1572          */
1573         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1574         if (disksize > i_size_read(mpd->inode))
1575                 disksize = i_size_read(mpd->inode);
1576         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1577                 ext4_update_i_disksize(mpd->inode, disksize);
1578                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1579                 if (err)
1580                         ext4_error(mpd->inode->i_sb,
1581                                    "Failed to mark inode %lu dirty",
1582                                    mpd->inode->i_ino);
1583         }
1584
1585 submit_io:
1586         mpage_da_submit_io(mpd, mapp);
1587         mpd->io_done = 1;
1588 }
1589
1590 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1591                 (1 << BH_Delay) | (1 << BH_Unwritten))
1592
1593 /*
1594  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1595  *
1596  * @mpd->lbh - extent of blocks
1597  * @logical - logical number of the block in the file
1598  * @bh - bh of the block (used to access block's state)
1599  *
1600  * the function is used to collect contig. blocks in same state
1601  */
1602 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1603                                    sector_t logical, size_t b_size,
1604                                    unsigned long b_state)
1605 {
1606         sector_t next;
1607         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1608
1609         /*
1610          * XXX Don't go larger than mballoc is willing to allocate
1611          * This is a stopgap solution.  We eventually need to fold
1612          * mpage_da_submit_io() into this function and then call
1613          * ext4_map_blocks() multiple times in a loop
1614          */
1615         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1616                 goto flush_it;
1617
1618         /* check if thereserved journal credits might overflow */
1619         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1620                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1621                         /*
1622                          * With non-extent format we are limited by the journal
1623                          * credit available.  Total credit needed to insert
1624                          * nrblocks contiguous blocks is dependent on the
1625                          * nrblocks.  So limit nrblocks.
1626                          */
1627                         goto flush_it;
1628                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1629                                 EXT4_MAX_TRANS_DATA) {
1630                         /*
1631                          * Adding the new buffer_head would make it cross the
1632                          * allowed limit for which we have journal credit
1633                          * reserved. So limit the new bh->b_size
1634                          */
1635                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1636                                                 mpd->inode->i_blkbits;
1637                         /* we will do mpage_da_submit_io in the next loop */
1638                 }
1639         }
1640         /*
1641          * First block in the extent
1642          */
1643         if (mpd->b_size == 0) {
1644                 mpd->b_blocknr = logical;
1645                 mpd->b_size = b_size;
1646                 mpd->b_state = b_state & BH_FLAGS;
1647                 return;
1648         }
1649
1650         next = mpd->b_blocknr + nrblocks;
1651         /*
1652          * Can we merge the block to our big extent?
1653          */
1654         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1655                 mpd->b_size += b_size;
1656                 return;
1657         }
1658
1659 flush_it:
1660         /*
1661          * We couldn't merge the block to our extent, so we
1662          * need to flush current  extent and start new one
1663          */
1664         mpage_da_map_and_submit(mpd);
1665         return;
1666 }
1667
1668 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1669 {
1670         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1671 }
1672
1673 /*
1674  * This function is grabs code from the very beginning of
1675  * ext4_map_blocks, but assumes that the caller is from delayed write
1676  * time. This function looks up the requested blocks and sets the
1677  * buffer delay bit under the protection of i_data_sem.
1678  */
1679 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1680                               struct ext4_map_blocks *map,
1681                               struct buffer_head *bh)
1682 {
1683         int retval;
1684         sector_t invalid_block = ~((sector_t) 0xffff);
1685
1686         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1687                 invalid_block = ~0;
1688
1689         map->m_flags = 0;
1690         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1691                   "logical block %lu\n", inode->i_ino, map->m_len,
1692                   (unsigned long) map->m_lblk);
1693         /*
1694          * Try to see if we can get the block without requesting a new
1695          * file system block.
1696          */
1697         down_read((&EXT4_I(inode)->i_data_sem));
1698         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1699                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1700         else
1701                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1702
1703         if (retval == 0) {
1704                 /*
1705                  * XXX: __block_prepare_write() unmaps passed block,
1706                  * is it OK?
1707                  */
1708                 /* If the block was allocated from previously allocated cluster,
1709                  * then we dont need to reserve it again. */
1710                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1711                         retval = ext4_da_reserve_space(inode, iblock);
1712                         if (retval)
1713                                 /* not enough space to reserve */
1714                                 goto out_unlock;
1715                 }
1716
1717                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1718                  * and it should not appear on the bh->b_state.
1719                  */
1720                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1721
1722                 map_bh(bh, inode->i_sb, invalid_block);
1723                 set_buffer_new(bh);
1724                 set_buffer_delay(bh);
1725         }
1726
1727 out_unlock:
1728         up_read((&EXT4_I(inode)->i_data_sem));
1729
1730         return retval;
1731 }
1732
1733 /*
1734  * This is a special get_blocks_t callback which is used by
1735  * ext4_da_write_begin().  It will either return mapped block or
1736  * reserve space for a single block.
1737  *
1738  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1739  * We also have b_blocknr = -1 and b_bdev initialized properly
1740  *
1741  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1742  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1743  * initialized properly.
1744  */
1745 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1746                                   struct buffer_head *bh, int create)
1747 {
1748         struct ext4_map_blocks map;
1749         int ret = 0;
1750
1751         BUG_ON(create == 0);
1752         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1753
1754         map.m_lblk = iblock;
1755         map.m_len = 1;
1756
1757         /*
1758          * first, we need to know whether the block is allocated already
1759          * preallocated blocks are unmapped but should treated
1760          * the same as allocated blocks.
1761          */
1762         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1763         if (ret <= 0)
1764                 return ret;
1765
1766         map_bh(bh, inode->i_sb, map.m_pblk);
1767         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1768
1769         if (buffer_unwritten(bh)) {
1770                 /* A delayed write to unwritten bh should be marked
1771                  * new and mapped.  Mapped ensures that we don't do
1772                  * get_block multiple times when we write to the same
1773                  * offset and new ensures that we do proper zero out
1774                  * for partial write.
1775                  */
1776                 set_buffer_new(bh);
1777                 set_buffer_mapped(bh);
1778         }
1779         return 0;
1780 }
1781
1782 /*
1783  * This function is used as a standard get_block_t calback function
1784  * when there is no desire to allocate any blocks.  It is used as a
1785  * callback function for block_write_begin() and block_write_full_page().
1786  * These functions should only try to map a single block at a time.
1787  *
1788  * Since this function doesn't do block allocations even if the caller
1789  * requests it by passing in create=1, it is critically important that
1790  * any caller checks to make sure that any buffer heads are returned
1791  * by this function are either all already mapped or marked for
1792  * delayed allocation before calling  block_write_full_page().  Otherwise,
1793  * b_blocknr could be left unitialized, and the page write functions will
1794  * be taken by surprise.
1795  */
1796 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1797                                    struct buffer_head *bh_result, int create)
1798 {
1799         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1800         return _ext4_get_block(inode, iblock, bh_result, 0);
1801 }
1802
1803 static int bget_one(handle_t *handle, struct buffer_head *bh)
1804 {
1805         get_bh(bh);
1806         return 0;
1807 }
1808
1809 static int bput_one(handle_t *handle, struct buffer_head *bh)
1810 {
1811         put_bh(bh);
1812         return 0;
1813 }
1814
1815 static int __ext4_journalled_writepage(struct page *page,
1816                                        unsigned int len)
1817 {
1818         struct address_space *mapping = page->mapping;
1819         struct inode *inode = mapping->host;
1820         struct buffer_head *page_bufs;
1821         handle_t *handle = NULL;
1822         int ret = 0;
1823         int err;
1824
1825         ClearPageChecked(page);
1826         page_bufs = page_buffers(page);
1827         BUG_ON(!page_bufs);
1828         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1829         /* As soon as we unlock the page, it can go away, but we have
1830          * references to buffers so we are safe */
1831         unlock_page(page);
1832
1833         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1834         if (IS_ERR(handle)) {
1835                 ret = PTR_ERR(handle);
1836                 goto out;
1837         }
1838
1839         BUG_ON(!ext4_handle_valid(handle));
1840
1841         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1842                                 do_journal_get_write_access);
1843
1844         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1845                                 write_end_fn);
1846         if (ret == 0)
1847                 ret = err;
1848         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1849         err = ext4_journal_stop(handle);
1850         if (!ret)
1851                 ret = err;
1852
1853         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1854         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1855 out:
1856         return ret;
1857 }
1858
1859 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1860 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1861
1862 /*
1863  * Note that we don't need to start a transaction unless we're journaling data
1864  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1865  * need to file the inode to the transaction's list in ordered mode because if
1866  * we are writing back data added by write(), the inode is already there and if
1867  * we are writing back data modified via mmap(), no one guarantees in which
1868  * transaction the data will hit the disk. In case we are journaling data, we
1869  * cannot start transaction directly because transaction start ranks above page
1870  * lock so we have to do some magic.
1871  *
1872  * This function can get called via...
1873  *   - ext4_da_writepages after taking page lock (have journal handle)
1874  *   - journal_submit_inode_data_buffers (no journal handle)
1875  *   - shrink_page_list via pdflush (no journal handle)
1876  *   - grab_page_cache when doing write_begin (have journal handle)
1877  *
1878  * We don't do any block allocation in this function. If we have page with
1879  * multiple blocks we need to write those buffer_heads that are mapped. This
1880  * is important for mmaped based write. So if we do with blocksize 1K
1881  * truncate(f, 1024);
1882  * a = mmap(f, 0, 4096);
1883  * a[0] = 'a';
1884  * truncate(f, 4096);
1885  * we have in the page first buffer_head mapped via page_mkwrite call back
1886  * but other buffer_heads would be unmapped but dirty (dirty done via the
1887  * do_wp_page). So writepage should write the first block. If we modify
1888  * the mmap area beyond 1024 we will again get a page_fault and the
1889  * page_mkwrite callback will do the block allocation and mark the
1890  * buffer_heads mapped.
1891  *
1892  * We redirty the page if we have any buffer_heads that is either delay or
1893  * unwritten in the page.
1894  *
1895  * We can get recursively called as show below.
1896  *
1897  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1898  *              ext4_writepage()
1899  *
1900  * But since we don't do any block allocation we should not deadlock.
1901  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1902  */
1903 static int ext4_writepage(struct page *page,
1904                           struct writeback_control *wbc)
1905 {
1906         int ret = 0, commit_write = 0;
1907         loff_t size;
1908         unsigned int len;
1909         struct buffer_head *page_bufs = NULL;
1910         struct inode *inode = page->mapping->host;
1911
1912         trace_ext4_writepage(page);
1913         size = i_size_read(inode);
1914         if (page->index == size >> PAGE_CACHE_SHIFT)
1915                 len = size & ~PAGE_CACHE_MASK;
1916         else
1917                 len = PAGE_CACHE_SIZE;
1918
1919         /*
1920          * If the page does not have buffers (for whatever reason),
1921          * try to create them using __block_write_begin.  If this
1922          * fails, redirty the page and move on.
1923          */
1924         if (!page_has_buffers(page)) {
1925                 if (__block_write_begin(page, 0, len,
1926                                         noalloc_get_block_write)) {
1927                 redirty_page:
1928                         redirty_page_for_writepage(wbc, page);
1929                         unlock_page(page);
1930                         return 0;
1931                 }
1932                 commit_write = 1;
1933         }
1934         page_bufs = page_buffers(page);
1935         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1936                               ext4_bh_delay_or_unwritten)) {
1937                 /*
1938                  * We don't want to do block allocation, so redirty
1939                  * the page and return.  We may reach here when we do
1940                  * a journal commit via journal_submit_inode_data_buffers.
1941                  * We can also reach here via shrink_page_list but it
1942                  * should never be for direct reclaim so warn if that
1943                  * happens
1944                  */
1945                 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1946                                                                 PF_MEMALLOC);
1947                 goto redirty_page;
1948         }
1949         if (commit_write)
1950                 /* now mark the buffer_heads as dirty and uptodate */
1951                 block_commit_write(page, 0, len);
1952
1953         if (PageChecked(page) && ext4_should_journal_data(inode))
1954                 /*
1955                  * It's mmapped pagecache.  Add buffers and journal it.  There
1956                  * doesn't seem much point in redirtying the page here.
1957                  */
1958                 return __ext4_journalled_writepage(page, len);
1959
1960         if (buffer_uninit(page_bufs)) {
1961                 ext4_set_bh_endio(page_bufs, inode);
1962                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1963                                             wbc, ext4_end_io_buffer_write);
1964         } else
1965                 ret = block_write_full_page(page, noalloc_get_block_write,
1966                                             wbc);
1967
1968         return ret;
1969 }
1970
1971 /*
1972  * This is called via ext4_da_writepages() to
1973  * calculate the total number of credits to reserve to fit
1974  * a single extent allocation into a single transaction,
1975  * ext4_da_writpeages() will loop calling this before
1976  * the block allocation.
1977  */
1978
1979 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1980 {
1981         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1982
1983         /*
1984          * With non-extent format the journal credit needed to
1985          * insert nrblocks contiguous block is dependent on
1986          * number of contiguous block. So we will limit
1987          * number of contiguous block to a sane value
1988          */
1989         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1990             (max_blocks > EXT4_MAX_TRANS_DATA))
1991                 max_blocks = EXT4_MAX_TRANS_DATA;
1992
1993         return ext4_chunk_trans_blocks(inode, max_blocks);
1994 }
1995
1996 /*
1997  * write_cache_pages_da - walk the list of dirty pages of the given
1998  * address space and accumulate pages that need writing, and call
1999  * mpage_da_map_and_submit to map a single contiguous memory region
2000  * and then write them.
2001  */
2002 static int write_cache_pages_da(struct address_space *mapping,
2003                                 struct writeback_control *wbc,
2004                                 struct mpage_da_data *mpd,
2005                                 pgoff_t *done_index)
2006 {
2007         struct buffer_head      *bh, *head;
2008         struct inode            *inode = mapping->host;
2009         struct pagevec          pvec;
2010         unsigned int            nr_pages;
2011         sector_t                logical;
2012         pgoff_t                 index, end;
2013         long                    nr_to_write = wbc->nr_to_write;
2014         int                     i, tag, ret = 0;
2015
2016         memset(mpd, 0, sizeof(struct mpage_da_data));
2017         mpd->wbc = wbc;
2018         mpd->inode = inode;
2019         pagevec_init(&pvec, 0);
2020         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2021         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2022
2023         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2024                 tag = PAGECACHE_TAG_TOWRITE;
2025         else
2026                 tag = PAGECACHE_TAG_DIRTY;
2027
2028         *done_index = index;
2029         while (index <= end) {
2030                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2031                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2032                 if (nr_pages == 0)
2033                         return 0;
2034
2035                 for (i = 0; i < nr_pages; i++) {
2036                         struct page *page = pvec.pages[i];
2037
2038                         /*
2039                          * At this point, the page may be truncated or
2040                          * invalidated (changing page->mapping to NULL), or
2041                          * even swizzled back from swapper_space to tmpfs file
2042                          * mapping. However, page->index will not change
2043                          * because we have a reference on the page.
2044                          */
2045                         if (page->index > end)
2046                                 goto out;
2047
2048                         *done_index = page->index + 1;
2049
2050                         /*
2051                          * If we can't merge this page, and we have
2052                          * accumulated an contiguous region, write it
2053                          */
2054                         if ((mpd->next_page != page->index) &&
2055                             (mpd->next_page != mpd->first_page)) {
2056                                 mpage_da_map_and_submit(mpd);
2057                                 goto ret_extent_tail;
2058                         }
2059
2060                         lock_page(page);
2061
2062                         /*
2063                          * If the page is no longer dirty, or its
2064                          * mapping no longer corresponds to inode we
2065                          * are writing (which means it has been
2066                          * truncated or invalidated), or the page is
2067                          * already under writeback and we are not
2068                          * doing a data integrity writeback, skip the page
2069                          */
2070                         if (!PageDirty(page) ||
2071                             (PageWriteback(page) &&
2072                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2073                             unlikely(page->mapping != mapping)) {
2074                                 unlock_page(page);
2075                                 continue;
2076                         }
2077
2078                         wait_on_page_writeback(page);
2079                         BUG_ON(PageWriteback(page));
2080
2081                         if (mpd->next_page != page->index)
2082                                 mpd->first_page = page->index;
2083                         mpd->next_page = page->index + 1;
2084                         logical = (sector_t) page->index <<
2085                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2086
2087                         if (!page_has_buffers(page)) {
2088                                 mpage_add_bh_to_extent(mpd, logical,
2089                                                        PAGE_CACHE_SIZE,
2090                                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2091                                 if (mpd->io_done)
2092                                         goto ret_extent_tail;
2093                         } else {
2094                                 /*
2095                                  * Page with regular buffer heads,
2096                                  * just add all dirty ones
2097                                  */
2098                                 head = page_buffers(page);
2099                                 bh = head;
2100                                 do {
2101                                         BUG_ON(buffer_locked(bh));
2102                                         /*
2103                                          * We need to try to allocate
2104                                          * unmapped blocks in the same page.
2105                                          * Otherwise we won't make progress
2106                                          * with the page in ext4_writepage
2107                                          */
2108                                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2109                                                 mpage_add_bh_to_extent(mpd, logical,
2110                                                                        bh->b_size,
2111                                                                        bh->b_state);
2112                                                 if (mpd->io_done)
2113                                                         goto ret_extent_tail;
2114                                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2115                                                 /*
2116                                                  * mapped dirty buffer. We need
2117                                                  * to update the b_state
2118                                                  * because we look at b_state
2119                                                  * in mpage_da_map_blocks.  We
2120                                                  * don't update b_size because
2121                                                  * if we find an unmapped
2122                                                  * buffer_head later we need to
2123                                                  * use the b_state flag of that
2124                                                  * buffer_head.
2125                                                  */
2126                                                 if (mpd->b_size == 0)
2127                                                         mpd->b_state = bh->b_state & BH_FLAGS;
2128                                         }
2129                                         logical++;
2130                                 } while ((bh = bh->b_this_page) != head);
2131                         }
2132
2133                         if (nr_to_write > 0) {
2134                                 nr_to_write--;
2135                                 if (nr_to_write == 0 &&
2136                                     wbc->sync_mode == WB_SYNC_NONE)
2137                                         /*
2138                                          * We stop writing back only if we are
2139                                          * not doing integrity sync. In case of
2140                                          * integrity sync we have to keep going
2141                                          * because someone may be concurrently
2142                                          * dirtying pages, and we might have
2143                                          * synced a lot of newly appeared dirty
2144                                          * pages, but have not synced all of the
2145                                          * old dirty pages.
2146                                          */
2147                                         goto out;
2148                         }
2149                 }
2150                 pagevec_release(&pvec);
2151                 cond_resched();
2152         }
2153         return 0;
2154 ret_extent_tail:
2155         ret = MPAGE_DA_EXTENT_TAIL;
2156 out:
2157         pagevec_release(&pvec);
2158         cond_resched();
2159         return ret;
2160 }
2161
2162
2163 static int ext4_da_writepages(struct address_space *mapping,
2164                               struct writeback_control *wbc)
2165 {
2166         pgoff_t index;
2167         int range_whole = 0;
2168         handle_t *handle = NULL;
2169         struct mpage_da_data mpd;
2170         struct inode *inode = mapping->host;
2171         int pages_written = 0;
2172         unsigned int max_pages;
2173         int range_cyclic, cycled = 1, io_done = 0;
2174         int needed_blocks, ret = 0;
2175         long desired_nr_to_write, nr_to_writebump = 0;
2176         loff_t range_start = wbc->range_start;
2177         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2178         pgoff_t done_index = 0;
2179         pgoff_t end;
2180         struct blk_plug plug;
2181
2182         trace_ext4_da_writepages(inode, wbc);
2183
2184         /*
2185          * No pages to write? This is mainly a kludge to avoid starting
2186          * a transaction for special inodes like journal inode on last iput()
2187          * because that could violate lock ordering on umount
2188          */
2189         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2190                 return 0;
2191
2192         /*
2193          * If the filesystem has aborted, it is read-only, so return
2194          * right away instead of dumping stack traces later on that
2195          * will obscure the real source of the problem.  We test
2196          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2197          * the latter could be true if the filesystem is mounted
2198          * read-only, and in that case, ext4_da_writepages should
2199          * *never* be called, so if that ever happens, we would want
2200          * the stack trace.
2201          */
2202         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2203                 return -EROFS;
2204
2205         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2206                 range_whole = 1;
2207
2208         range_cyclic = wbc->range_cyclic;
2209         if (wbc->range_cyclic) {
2210                 index = mapping->writeback_index;
2211                 if (index)
2212                         cycled = 0;
2213                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2214                 wbc->range_end  = LLONG_MAX;
2215                 wbc->range_cyclic = 0;
2216                 end = -1;
2217         } else {
2218                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2219                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2220         }
2221
2222         /*
2223          * This works around two forms of stupidity.  The first is in
2224          * the writeback code, which caps the maximum number of pages
2225          * written to be 1024 pages.  This is wrong on multiple
2226          * levels; different architectues have a different page size,
2227          * which changes the maximum amount of data which gets
2228          * written.  Secondly, 4 megabytes is way too small.  XFS
2229          * forces this value to be 16 megabytes by multiplying
2230          * nr_to_write parameter by four, and then relies on its
2231          * allocator to allocate larger extents to make them
2232          * contiguous.  Unfortunately this brings us to the second
2233          * stupidity, which is that ext4's mballoc code only allocates
2234          * at most 2048 blocks.  So we force contiguous writes up to
2235          * the number of dirty blocks in the inode, or
2236          * sbi->max_writeback_mb_bump whichever is smaller.
2237          */
2238         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2239         if (!range_cyclic && range_whole) {
2240                 if (wbc->nr_to_write == LONG_MAX)
2241                         desired_nr_to_write = wbc->nr_to_write;
2242                 else
2243                         desired_nr_to_write = wbc->nr_to_write * 8;
2244         } else
2245                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2246                                                            max_pages);
2247         if (desired_nr_to_write > max_pages)
2248                 desired_nr_to_write = max_pages;
2249
2250         if (wbc->nr_to_write < desired_nr_to_write) {
2251                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2252                 wbc->nr_to_write = desired_nr_to_write;
2253         }
2254
2255 retry:
2256         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2257                 tag_pages_for_writeback(mapping, index, end);
2258
2259         blk_start_plug(&plug);
2260         while (!ret && wbc->nr_to_write > 0) {
2261
2262                 /*
2263                  * we  insert one extent at a time. So we need
2264                  * credit needed for single extent allocation.
2265                  * journalled mode is currently not supported
2266                  * by delalloc
2267                  */
2268                 BUG_ON(ext4_should_journal_data(inode));
2269                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2270
2271                 /* start a new transaction*/
2272                 handle = ext4_journal_start(inode, needed_blocks);
2273                 if (IS_ERR(handle)) {
2274                         ret = PTR_ERR(handle);
2275                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2276                                "%ld pages, ino %lu; err %d", __func__,
2277                                 wbc->nr_to_write, inode->i_ino, ret);
2278                         blk_finish_plug(&plug);
2279                         goto out_writepages;
2280                 }
2281
2282                 /*
2283                  * Now call write_cache_pages_da() to find the next
2284                  * contiguous region of logical blocks that need
2285                  * blocks to be allocated by ext4 and submit them.
2286                  */
2287                 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2288                 /*
2289                  * If we have a contiguous extent of pages and we
2290                  * haven't done the I/O yet, map the blocks and submit
2291                  * them for I/O.
2292                  */
2293                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2294                         mpage_da_map_and_submit(&mpd);
2295                         ret = MPAGE_DA_EXTENT_TAIL;
2296                 }
2297                 trace_ext4_da_write_pages(inode, &mpd);
2298                 wbc->nr_to_write -= mpd.pages_written;
2299
2300                 ext4_journal_stop(handle);
2301
2302                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2303                         /* commit the transaction which would
2304                          * free blocks released in the transaction
2305                          * and try again
2306                          */
2307                         jbd2_journal_force_commit_nested(sbi->s_journal);
2308                         ret = 0;
2309                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2310                         /*
2311                          * Got one extent now try with rest of the pages.
2312                          * If mpd.retval is set -EIO, journal is aborted.
2313                          * So we don't need to write any more.
2314                          */
2315                         pages_written += mpd.pages_written;
2316                         ret = mpd.retval;
2317                         io_done = 1;
2318                 } else if (wbc->nr_to_write)
2319                         /*
2320                          * There is no more writeout needed
2321                          * or we requested for a noblocking writeout
2322                          * and we found the device congested
2323                          */
2324                         break;
2325         }
2326         blk_finish_plug(&plug);
2327         if (!io_done && !cycled) {
2328                 cycled = 1;
2329                 index = 0;
2330                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2331                 wbc->range_end  = mapping->writeback_index - 1;
2332                 goto retry;
2333         }
2334
2335         /* Update index */
2336         wbc->range_cyclic = range_cyclic;
2337         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2338                 /*
2339                  * set the writeback_index so that range_cyclic
2340                  * mode will write it back later
2341                  */
2342                 mapping->writeback_index = done_index;
2343
2344 out_writepages:
2345         wbc->nr_to_write -= nr_to_writebump;
2346         wbc->range_start = range_start;
2347         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2348         return ret;
2349 }
2350
2351 #define FALL_BACK_TO_NONDELALLOC 1
2352 static int ext4_nonda_switch(struct super_block *sb)
2353 {
2354         s64 free_blocks, dirty_blocks;
2355         struct ext4_sb_info *sbi = EXT4_SB(sb);
2356
2357         /*
2358          * switch to non delalloc mode if we are running low
2359          * on free block. The free block accounting via percpu
2360          * counters can get slightly wrong with percpu_counter_batch getting
2361          * accumulated on each CPU without updating global counters
2362          * Delalloc need an accurate free block accounting. So switch
2363          * to non delalloc when we are near to error range.
2364          */
2365         free_blocks  = EXT4_C2B(sbi,
2366                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2367         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2368         if (2 * free_blocks < 3 * dirty_blocks ||
2369                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2370                 /*
2371                  * free block count is less than 150% of dirty blocks
2372                  * or free blocks is less than watermark
2373                  */
2374                 return 1;
2375         }
2376         /*
2377          * Even if we don't switch but are nearing capacity,
2378          * start pushing delalloc when 1/2 of free blocks are dirty.
2379          */
2380         if (free_blocks < 2 * dirty_blocks)
2381                 writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2382
2383         return 0;
2384 }
2385
2386 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2387                                loff_t pos, unsigned len, unsigned flags,
2388                                struct page **pagep, void **fsdata)
2389 {
2390         int ret, retries = 0;
2391         struct page *page;
2392         pgoff_t index;
2393         struct inode *inode = mapping->host;
2394         handle_t *handle;
2395
2396         index = pos >> PAGE_CACHE_SHIFT;
2397
2398         if (ext4_nonda_switch(inode->i_sb)) {
2399                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2400                 return ext4_write_begin(file, mapping, pos,
2401                                         len, flags, pagep, fsdata);
2402         }
2403         *fsdata = (void *)0;
2404         trace_ext4_da_write_begin(inode, pos, len, flags);
2405 retry:
2406         /*
2407          * With delayed allocation, we don't log the i_disksize update
2408          * if there is delayed block allocation. But we still need
2409          * to journalling the i_disksize update if writes to the end
2410          * of file which has an already mapped buffer.
2411          */
2412         handle = ext4_journal_start(inode, 1);
2413         if (IS_ERR(handle)) {
2414                 ret = PTR_ERR(handle);
2415                 goto out;
2416         }
2417         /* We cannot recurse into the filesystem as the transaction is already
2418          * started */
2419         flags |= AOP_FLAG_NOFS;
2420
2421         page = grab_cache_page_write_begin(mapping, index, flags);
2422         if (!page) {
2423                 ext4_journal_stop(handle);
2424                 ret = -ENOMEM;
2425                 goto out;
2426         }
2427         *pagep = page;
2428
2429         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2430         if (ret < 0) {
2431                 unlock_page(page);
2432                 ext4_journal_stop(handle);
2433                 page_cache_release(page);
2434                 /*
2435                  * block_write_begin may have instantiated a few blocks
2436                  * outside i_size.  Trim these off again. Don't need
2437                  * i_size_read because we hold i_mutex.
2438                  */
2439                 if (pos + len > inode->i_size)
2440                         ext4_truncate_failed_write(inode);
2441         }
2442
2443         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2444                 goto retry;
2445 out:
2446         return ret;
2447 }
2448
2449 /*
2450  * Check if we should update i_disksize
2451  * when write to the end of file but not require block allocation
2452  */
2453 static int ext4_da_should_update_i_disksize(struct page *page,
2454                                             unsigned long offset)
2455 {
2456         struct buffer_head *bh;
2457         struct inode *inode = page->mapping->host;
2458         unsigned int idx;
2459         int i;
2460
2461         bh = page_buffers(page);
2462         idx = offset >> inode->i_blkbits;
2463
2464         for (i = 0; i < idx; i++)
2465                 bh = bh->b_this_page;
2466
2467         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2468                 return 0;
2469         return 1;
2470 }
2471
2472 static int ext4_da_write_end(struct file *file,
2473                              struct address_space *mapping,
2474                              loff_t pos, unsigned len, unsigned copied,
2475                              struct page *page, void *fsdata)
2476 {
2477         struct inode *inode = mapping->host;
2478         int ret = 0, ret2;
2479         handle_t *handle = ext4_journal_current_handle();
2480         loff_t new_i_size;
2481         unsigned long start, end;
2482         int write_mode = (int)(unsigned long)fsdata;
2483
2484         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2485                 if (ext4_should_order_data(inode)) {
2486                         return ext4_ordered_write_end(file, mapping, pos,
2487                                         len, copied, page, fsdata);
2488                 } else if (ext4_should_writeback_data(inode)) {
2489                         return ext4_writeback_write_end(file, mapping, pos,
2490                                         len, copied, page, fsdata);
2491                 } else {
2492                         BUG();
2493                 }
2494         }
2495
2496         trace_ext4_da_write_end(inode, pos, len, copied);
2497         start = pos & (PAGE_CACHE_SIZE - 1);
2498         end = start + copied - 1;
2499
2500         /*
2501          * generic_write_end() will run mark_inode_dirty() if i_size
2502          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2503          * into that.
2504          */
2505
2506         new_i_size = pos + copied;
2507         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2508                 if (ext4_da_should_update_i_disksize(page, end)) {
2509                         down_write(&EXT4_I(inode)->i_data_sem);
2510                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2511                                 /*
2512                                  * Updating i_disksize when extending file
2513                                  * without needing block allocation
2514                                  */
2515                                 if (ext4_should_order_data(inode))
2516                                         ret = ext4_jbd2_file_inode(handle,
2517                                                                    inode);
2518
2519                                 EXT4_I(inode)->i_disksize = new_i_size;
2520                         }
2521                         up_write(&EXT4_I(inode)->i_data_sem);
2522                         /* We need to mark inode dirty even if
2523                          * new_i_size is less that inode->i_size
2524                          * bu greater than i_disksize.(hint delalloc)
2525                          */
2526                         ext4_mark_inode_dirty(handle, inode);
2527                 }
2528         }
2529         ret2 = generic_write_end(file, mapping, pos, len, copied,
2530                                                         page, fsdata);
2531         copied = ret2;
2532         if (ret2 < 0)
2533                 ret = ret2;
2534         ret2 = ext4_journal_stop(handle);
2535         if (!ret)
2536                 ret = ret2;
2537
2538         return ret ? ret : copied;
2539 }
2540
2541 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2542 {
2543         /*
2544          * Drop reserved blocks
2545          */
2546         BUG_ON(!PageLocked(page));
2547         if (!page_has_buffers(page))
2548                 goto out;
2549
2550         ext4_da_page_release_reservation(page, offset);
2551
2552 out:
2553         ext4_invalidatepage(page, offset);
2554
2555         return;
2556 }
2557
2558 /*
2559  * Force all delayed allocation blocks to be allocated for a given inode.
2560  */
2561 int ext4_alloc_da_blocks(struct inode *inode)
2562 {
2563         trace_ext4_alloc_da_blocks(inode);
2564
2565         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2566             !EXT4_I(inode)->i_reserved_meta_blocks)
2567                 return 0;
2568
2569         /*
2570          * We do something simple for now.  The filemap_flush() will
2571          * also start triggering a write of the data blocks, which is
2572          * not strictly speaking necessary (and for users of
2573          * laptop_mode, not even desirable).  However, to do otherwise
2574          * would require replicating code paths in:
2575          *
2576          * ext4_da_writepages() ->
2577          *    write_cache_pages() ---> (via passed in callback function)
2578          *        __mpage_da_writepage() -->
2579          *           mpage_add_bh_to_extent()
2580          *           mpage_da_map_blocks()
2581          *
2582          * The problem is that write_cache_pages(), located in
2583          * mm/page-writeback.c, marks pages clean in preparation for
2584          * doing I/O, which is not desirable if we're not planning on
2585          * doing I/O at all.
2586          *
2587          * We could call write_cache_pages(), and then redirty all of
2588          * the pages by calling redirty_page_for_writepage() but that
2589          * would be ugly in the extreme.  So instead we would need to
2590          * replicate parts of the code in the above functions,
2591          * simplifying them because we wouldn't actually intend to
2592          * write out the pages, but rather only collect contiguous
2593          * logical block extents, call the multi-block allocator, and
2594          * then update the buffer heads with the block allocations.
2595          *
2596          * For now, though, we'll cheat by calling filemap_flush(),
2597          * which will map the blocks, and start the I/O, but not
2598          * actually wait for the I/O to complete.
2599          */
2600         return filemap_flush(inode->i_mapping);
2601 }
2602
2603 /*
2604  * bmap() is special.  It gets used by applications such as lilo and by
2605  * the swapper to find the on-disk block of a specific piece of data.
2606  *
2607  * Naturally, this is dangerous if the block concerned is still in the
2608  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2609  * filesystem and enables swap, then they may get a nasty shock when the
2610  * data getting swapped to that swapfile suddenly gets overwritten by
2611  * the original zero's written out previously to the journal and
2612  * awaiting writeback in the kernel's buffer cache.
2613  *
2614  * So, if we see any bmap calls here on a modified, data-journaled file,
2615  * take extra steps to flush any blocks which might be in the cache.
2616  */
2617 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2618 {
2619         struct inode *inode = mapping->host;
2620         journal_t *journal;
2621         int err;
2622
2623         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2624                         test_opt(inode->i_sb, DELALLOC)) {
2625                 /*
2626                  * With delalloc we want to sync the file
2627                  * so that we can make sure we allocate
2628                  * blocks for file
2629                  */
2630                 filemap_write_and_wait(mapping);
2631         }
2632
2633         if (EXT4_JOURNAL(inode) &&
2634             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2635                 /*
2636                  * This is a REALLY heavyweight approach, but the use of
2637                  * bmap on dirty files is expected to be extremely rare:
2638                  * only if we run lilo or swapon on a freshly made file
2639                  * do we expect this to happen.
2640                  *
2641                  * (bmap requires CAP_SYS_RAWIO so this does not
2642                  * represent an unprivileged user DOS attack --- we'd be
2643                  * in trouble if mortal users could trigger this path at
2644                  * will.)
2645                  *
2646                  * NB. EXT4_STATE_JDATA is not set on files other than
2647                  * regular files.  If somebody wants to bmap a directory
2648                  * or symlink and gets confused because the buffer
2649                  * hasn't yet been flushed to disk, they deserve
2650                  * everything they get.
2651                  */
2652
2653                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2654                 journal = EXT4_JOURNAL(inode);
2655                 jbd2_journal_lock_updates(journal);
2656                 err = jbd2_journal_flush(journal);
2657                 jbd2_journal_unlock_updates(journal);
2658
2659                 if (err)
2660                         return 0;
2661         }
2662
2663         return generic_block_bmap(mapping, block, ext4_get_block);
2664 }
2665
2666 static int ext4_readpage(struct file *file, struct page *page)
2667 {
2668         trace_ext4_readpage(page);
2669         return mpage_readpage(page, ext4_get_block);
2670 }
2671
2672 static int
2673 ext4_readpages(struct file *file, struct address_space *mapping,
2674                 struct list_head *pages, unsigned nr_pages)
2675 {
2676         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2677 }
2678
2679 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2680 {
2681         struct buffer_head *head, *bh;
2682         unsigned int curr_off = 0;
2683
2684         if (!page_has_buffers(page))
2685                 return;
2686         head = bh = page_buffers(page);
2687         do {
2688                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2689                                         && bh->b_private) {
2690                         ext4_free_io_end(bh->b_private);
2691                         bh->b_private = NULL;
2692                         bh->b_end_io = NULL;
2693                 }
2694                 curr_off = curr_off + bh->b_size;
2695                 bh = bh->b_this_page;
2696         } while (bh != head);
2697 }
2698
2699 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2700 {
2701         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2702
2703         trace_ext4_invalidatepage(page, offset);
2704
2705         /*
2706          * free any io_end structure allocated for buffers to be discarded
2707          */
2708         if (ext4_should_dioread_nolock(page->mapping->host))
2709                 ext4_invalidatepage_free_endio(page, offset);
2710         /*
2711          * If it's a full truncate we just forget about the pending dirtying
2712          */
2713         if (offset == 0)
2714                 ClearPageChecked(page);
2715
2716         if (journal)
2717                 jbd2_journal_invalidatepage(journal, page, offset);
2718         else
2719                 block_invalidatepage(page, offset);
2720 }
2721
2722 static int ext4_releasepage(struct page *page, gfp_t wait)
2723 {
2724         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2725
2726         trace_ext4_releasepage(page);
2727
2728         WARN_ON(PageChecked(page));
2729         if (!page_has_buffers(page))
2730                 return 0;
2731         if (journal)
2732                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2733         else
2734                 return try_to_free_buffers(page);
2735 }
2736
2737 /*
2738  * ext4_get_block used when preparing for a DIO write or buffer write.
2739  * We allocate an uinitialized extent if blocks haven't been allocated.
2740  * The extent will be converted to initialized after the IO is complete.
2741  */
2742 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2743                    struct buffer_head *bh_result, int create)
2744 {
2745         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2746                    inode->i_ino, create);
2747         return _ext4_get_block(inode, iblock, bh_result,
2748                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2749 }
2750
2751 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2752                             ssize_t size, void *private, int ret,
2753                             bool is_async)
2754 {
2755         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2756         ext4_io_end_t *io_end = iocb->private;
2757         struct workqueue_struct *wq;
2758         unsigned long flags;
2759         struct ext4_inode_info *ei;
2760
2761         /* if not async direct IO or dio with 0 bytes write, just return */
2762         if (!io_end || !size)
2763                 goto out;
2764
2765         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2766                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2767                   iocb->private, io_end->inode->i_ino, iocb, offset,
2768                   size);
2769
2770         iocb->private = NULL;
2771
2772         /* if not aio dio with unwritten extents, just free io and return */
2773         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2774                 ext4_free_io_end(io_end);
2775 out:
2776                 if (is_async)
2777                         aio_complete(iocb, ret, 0);
2778                 inode_dio_done(inode);
2779                 return;
2780         }
2781
2782         io_end->offset = offset;
2783         io_end->size = size;
2784         if (is_async) {
2785                 io_end->iocb = iocb;
2786                 io_end->result = ret;
2787         }
2788         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2789
2790         /* Add the io_end to per-inode completed aio dio list*/
2791         ei = EXT4_I(io_end->inode);
2792         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2793         list_add_tail(&io_end->list, &ei->i_completed_io_list);
2794         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2795
2796         /* queue the work to convert unwritten extents to written */
2797         queue_work(wq, &io_end->work);
2798
2799         /* XXX: probably should move into the real I/O completion handler */
2800         inode_dio_done(inode);
2801 }
2802
2803 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2804 {
2805         ext4_io_end_t *io_end = bh->b_private;
2806         struct workqueue_struct *wq;
2807         struct inode *inode;
2808         unsigned long flags;
2809
2810         if (!test_clear_buffer_uninit(bh) || !io_end)
2811                 goto out;
2812
2813         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2814                 printk("sb umounted, discard end_io request for inode %lu\n",
2815                         io_end->inode->i_ino);
2816                 ext4_free_io_end(io_end);
2817                 goto out;
2818         }
2819
2820         /*
2821          * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2822          * but being more careful is always safe for the future change.
2823          */
2824         inode = io_end->inode;
2825         ext4_set_io_unwritten_flag(inode, io_end);
2826
2827         /* Add the io_end to per-inode completed io list*/
2828         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2829         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2830         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2831
2832         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2833         /* queue the work to convert unwritten extents to written */
2834         queue_work(wq, &io_end->work);
2835 out:
2836         bh->b_private = NULL;
2837         bh->b_end_io = NULL;
2838         clear_buffer_uninit(bh);
2839         end_buffer_async_write(bh, uptodate);
2840 }
2841
2842 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2843 {
2844         ext4_io_end_t *io_end;
2845         struct page *page = bh->b_page;
2846         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2847         size_t size = bh->b_size;
2848
2849 retry:
2850         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2851         if (!io_end) {
2852                 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2853                 schedule();
2854                 goto retry;
2855         }
2856         io_end->offset = offset;
2857         io_end->size = size;
2858         /*
2859          * We need to hold a reference to the page to make sure it
2860          * doesn't get evicted before ext4_end_io_work() has a chance
2861          * to convert the extent from written to unwritten.
2862          */
2863         io_end->page = page;
2864         get_page(io_end->page);
2865
2866         bh->b_private = io_end;
2867         bh->b_end_io = ext4_end_io_buffer_write;
2868         return 0;
2869 }
2870
2871 /*
2872  * For ext4 extent files, ext4 will do direct-io write to holes,
2873  * preallocated extents, and those write extend the file, no need to
2874  * fall back to buffered IO.
2875  *
2876  * For holes, we fallocate those blocks, mark them as uninitialized
2877  * If those blocks were preallocated, we mark sure they are splited, but
2878  * still keep the range to write as uninitialized.
2879  *
2880  * The unwrritten extents will be converted to written when DIO is completed.
2881  * For async direct IO, since the IO may still pending when return, we
2882  * set up an end_io call back function, which will do the conversion
2883  * when async direct IO completed.
2884  *
2885  * If the O_DIRECT write will extend the file then add this inode to the
2886  * orphan list.  So recovery will truncate it back to the original size
2887  * if the machine crashes during the write.
2888  *
2889  */
2890 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2891                               const struct iovec *iov, loff_t offset,
2892                               unsigned long nr_segs)
2893 {
2894         struct file *file = iocb->ki_filp;
2895         struct inode *inode = file->f_mapping->host;
2896         ssize_t ret;
2897         size_t count = iov_length(iov, nr_segs);
2898
2899         loff_t final_size = offset + count;
2900         if (rw == WRITE && final_size <= inode->i_size) {
2901                 /*
2902                  * We could direct write to holes and fallocate.
2903                  *
2904                  * Allocated blocks to fill the hole are marked as uninitialized
2905                  * to prevent parallel buffered read to expose the stale data
2906                  * before DIO complete the data IO.
2907                  *
2908                  * As to previously fallocated extents, ext4 get_block
2909                  * will just simply mark the buffer mapped but still
2910                  * keep the extents uninitialized.
2911                  *
2912                  * for non AIO case, we will convert those unwritten extents
2913                  * to written after return back from blockdev_direct_IO.
2914                  *
2915                  * for async DIO, the conversion needs to be defered when
2916                  * the IO is completed. The ext4 end_io callback function
2917                  * will be called to take care of the conversion work.
2918                  * Here for async case, we allocate an io_end structure to
2919                  * hook to the iocb.
2920                  */
2921                 iocb->private = NULL;
2922                 EXT4_I(inode)->cur_aio_dio = NULL;
2923                 if (!is_sync_kiocb(iocb)) {
2924                         iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2925                         if (!iocb->private)
2926                                 return -ENOMEM;
2927                         /*
2928                          * we save the io structure for current async
2929                          * direct IO, so that later ext4_map_blocks()
2930                          * could flag the io structure whether there
2931                          * is a unwritten extents needs to be converted
2932                          * when IO is completed.
2933                          */
2934                         EXT4_I(inode)->cur_aio_dio = iocb->private;
2935                 }
2936
2937                 ret = __blockdev_direct_IO(rw, iocb, inode,
2938                                          inode->i_sb->s_bdev, iov,
2939                                          offset, nr_segs,
2940                                          ext4_get_block_write,
2941                                          ext4_end_io_dio,
2942                                          NULL,
2943                                          DIO_LOCKING | DIO_SKIP_HOLES);
2944                 if (iocb->private)
2945                         EXT4_I(inode)->cur_aio_dio = NULL;
2946                 /*
2947                  * The io_end structure takes a reference to the inode,
2948                  * that structure needs to be destroyed and the
2949                  * reference to the inode need to be dropped, when IO is
2950                  * complete, even with 0 byte write, or failed.
2951                  *
2952                  * In the successful AIO DIO case, the io_end structure will be
2953                  * desctroyed and the reference to the inode will be dropped
2954                  * after the end_io call back function is called.
2955                  *
2956                  * In the case there is 0 byte write, or error case, since
2957                  * VFS direct IO won't invoke the end_io call back function,
2958                  * we need to free the end_io structure here.
2959                  */
2960                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2961                         ext4_free_io_end(iocb->private);
2962                         iocb->private = NULL;
2963                 } else if (ret > 0 && ext4_test_inode_state(inode,
2964                                                 EXT4_STATE_DIO_UNWRITTEN)) {
2965                         int err;
2966                         /*
2967                          * for non AIO case, since the IO is already
2968                          * completed, we could do the conversion right here
2969                          */
2970                         err = ext4_convert_unwritten_extents(inode,
2971                                                              offset, ret);
2972                         if (err < 0)
2973                                 ret = err;
2974                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2975                 }
2976                 return ret;
2977         }
2978
2979         /* for write the the end of file case, we fall back to old way */
2980         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2981 }
2982
2983 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2984                               const struct iovec *iov, loff_t offset,
2985                               unsigned long nr_segs)
2986 {
2987         struct file *file = iocb->ki_filp;
2988         struct inode *inode = file->f_mapping->host;
2989         ssize_t ret;
2990
2991         /*
2992          * If we are doing data journalling we don't support O_DIRECT
2993          */
2994         if (ext4_should_journal_data(inode))
2995                 return 0;
2996
2997         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2998         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2999                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3000         else
3001                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3002         trace_ext4_direct_IO_exit(inode, offset,
3003                                 iov_length(iov, nr_segs), rw, ret);
3004         return ret;
3005 }
3006
3007 /*
3008  * Pages can be marked dirty completely asynchronously from ext4's journalling
3009  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3010  * much here because ->set_page_dirty is called under VFS locks.  The page is
3011  * not necessarily locked.
3012  *
3013  * We cannot just dirty the page and leave attached buffers clean, because the
3014  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3015  * or jbddirty because all the journalling code will explode.
3016  *
3017  * So what we do is to mark the page "pending dirty" and next time writepage
3018  * is called, propagate that into the buffers appropriately.
3019  */
3020 static int ext4_journalled_set_page_dirty(struct page *page)
3021 {
3022         SetPageChecked(page);
3023         return __set_page_dirty_nobuffers(page);
3024 }
3025
3026 static const struct address_space_operations ext4_ordered_aops = {
3027         .readpage               = ext4_readpage,
3028         .readpages              = ext4_readpages,
3029         .writepage              = ext4_writepage,
3030         .write_begin            = ext4_write_begin,
3031         .write_end              = ext4_ordered_write_end,
3032         .bmap                   = ext4_bmap,
3033         .invalidatepage         = ext4_invalidatepage,
3034         .releasepage            = ext4_releasepage,
3035         .direct_IO              = ext4_direct_IO,
3036         .migratepage            = buffer_migrate_page,
3037         .is_partially_uptodate  = block_is_partially_uptodate,
3038         .error_remove_page      = generic_error_remove_page,
3039 };
3040
3041 static const struct address_space_operations ext4_writeback_aops = {
3042         .readpage               = ext4_readpage,
3043         .readpages              = ext4_readpages,
3044         .writepage              = ext4_writepage,
3045         .write_begin            = ext4_write_begin,
3046         .write_end              = ext4_writeback_write_end,
3047         .bmap                   = ext4_bmap,
3048         .invalidatepage         = ext4_invalidatepage,
3049         .releasepage            = ext4_releasepage,
3050         .direct_IO              = ext4_direct_IO,
3051         .migratepage            = buffer_migrate_page,
3052         .is_partially_uptodate  = block_is_partially_uptodate,
3053         .error_remove_page      = generic_error_remove_page,
3054 };
3055
3056 static const struct address_space_operations ext4_journalled_aops = {
3057         .readpage               = ext4_readpage,
3058         .readpages              = ext4_readpages,
3059         .writepage              = ext4_writepage,
3060         .write_begin            = ext4_write_begin,
3061         .write_end              = ext4_journalled_write_end,
3062         .set_page_dirty         = ext4_journalled_set_page_dirty,
3063         .bmap                   = ext4_bmap,
3064         .invalidatepage         = ext4_invalidatepage,
3065         .releasepage            = ext4_releasepage,
3066         .direct_IO              = ext4_direct_IO,
3067         .is_partially_uptodate  = block_is_partially_uptodate,
3068         .error_remove_page      = generic_error_remove_page,
3069 };
3070
3071 static const struct address_space_operations ext4_da_aops = {
3072         .readpage               = ext4_readpage,
3073         .readpages              = ext4_readpages,
3074         .writepage              = ext4_writepage,
3075         .writepages             = ext4_da_writepages,
3076         .write_begin            = ext4_da_write_begin,
3077         .write_end              = ext4_da_write_end,
3078         .bmap                   = ext4_bmap,
3079         .invalidatepage         = ext4_da_invalidatepage,
3080         .releasepage            = ext4_releasepage,
3081         .direct_IO              = ext4_direct_IO,
3082         .migratepage            = buffer_migrate_page,
3083         .is_partially_uptodate  = block_is_partially_uptodate,
3084         .error_remove_page      = generic_error_remove_page,
3085 };
3086
3087 void ext4_set_aops(struct inode *inode)
3088 {
3089         if (ext4_should_order_data(inode) &&
3090                 test_opt(inode->i_sb, DELALLOC))
3091                 inode->i_mapping->a_ops = &ext4_da_aops;
3092         else if (ext4_should_order_data(inode))
3093                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3094         else if (ext4_should_writeback_data(inode) &&
3095                  test_opt(inode->i_sb, DELALLOC))
3096                 inode->i_mapping->a_ops = &ext4_da_aops;
3097         else if (ext4_should_writeback_data(inode))
3098                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3099         else
3100                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3101 }
3102
3103
3104 /*
3105  * ext4_discard_partial_page_buffers()
3106  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3107  * This function finds and locks the page containing the offset
3108  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3109  * Calling functions that already have the page locked should call
3110  * ext4_discard_partial_page_buffers_no_lock directly.
3111  */
3112 int ext4_discard_partial_page_buffers(handle_t *handle,
3113                 struct address_space *mapping, loff_t from,
3114                 loff_t length, int flags)
3115 {
3116         struct inode *inode = mapping->host;
3117         struct page *page;
3118         int err = 0;
3119
3120         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3121                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3122         if (!page)
3123                 return -ENOMEM;
3124
3125         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3126                 from, length, flags);
3127
3128         unlock_page(page);
3129         page_cache_release(page);
3130         return err;
3131 }
3132
3133 /*
3134  * ext4_discard_partial_page_buffers_no_lock()
3135  * Zeros a page range of length 'length' starting from offset 'from'.
3136  * Buffer heads that correspond to the block aligned regions of the
3137  * zeroed range will be unmapped.  Unblock aligned regions
3138  * will have the corresponding buffer head mapped if needed so that
3139  * that region of the page can be updated with the partial zero out.
3140  *
3141  * This function assumes that the page has already been  locked.  The
3142  * The range to be discarded must be contained with in the given page.
3143  * If the specified range exceeds the end of the page it will be shortened
3144  * to the end of the page that corresponds to 'from'.  This function is
3145  * appropriate for updating a page and it buffer heads to be unmapped and
3146  * zeroed for blocks that have been either released, or are going to be
3147  * released.
3148  *
3149  * handle: The journal handle
3150  * inode:  The files inode
3151  * page:   A locked page that contains the offset "from"
3152  * from:   The starting byte offset (from the begining of the file)
3153  *         to begin discarding
3154  * len:    The length of bytes to discard
3155  * flags:  Optional flags that may be used:
3156  *
3157  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3158  *         Only zero the regions of the page whose buffer heads
3159  *         have already been unmapped.  This flag is appropriate
3160  *         for updateing the contents of a page whose blocks may
3161  *         have already been released, and we only want to zero
3162  *         out the regions that correspond to those released blocks.
3163  *
3164  * Returns zero on sucess or negative on failure.
3165  */
3166 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3167                 struct inode *inode, struct page *page, loff_t from,
3168                 loff_t length, int flags)
3169 {
3170         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3171         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3172         unsigned int blocksize, max, pos;
3173         ext4_lblk_t iblock;
3174         struct buffer_head *bh;
3175         int err = 0;
3176
3177         blocksize = inode->i_sb->s_blocksize;
3178         max = PAGE_CACHE_SIZE - offset;
3179
3180         if (index != page->index)
3181                 return -EINVAL;
3182
3183         /*
3184          * correct length if it does not fall between
3185          * 'from' and the end of the page
3186          */
3187         if (length > max || length < 0)
3188                 length = max;
3189
3190         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3191
3192         if (!page_has_buffers(page))
3193                 create_empty_buffers(page, blocksize, 0);
3194
3195         /* Find the buffer that contains "offset" */
3196         bh = page_buffers(page);
3197         pos = blocksize;
3198         while (offset >= pos) {
3199                 bh = bh->b_this_page;
3200                 iblock++;
3201                 pos += blocksize;
3202         }
3203
3204         pos = offset;
3205         while (pos < offset + length) {
3206                 unsigned int end_of_block, range_to_discard;
3207
3208                 err = 0;
3209
3210                 /* The length of space left to zero and unmap */
3211                 range_to_discard = offset + length - pos;
3212
3213                 /* The length of space until the end of the block */
3214                 end_of_block = blocksize - (pos & (blocksize-1));
3215
3216                 /*
3217                  * Do not unmap or zero past end of block
3218                  * for this buffer head
3219                  */
3220                 if (range_to_discard > end_of_block)
3221                         range_to_discard = end_of_block;
3222
3223
3224                 /*
3225                  * Skip this buffer head if we are only zeroing unampped
3226                  * regions of the page
3227                  */
3228                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3229                         buffer_mapped(bh))
3230                                 goto next;
3231
3232                 /* If the range is block aligned, unmap */
3233                 if (range_to_discard == blocksize) {
3234                         clear_buffer_dirty(bh);
3235                         bh->b_bdev = NULL;
3236                         clear_buffer_mapped(bh);
3237                         clear_buffer_req(bh);
3238                         clear_buffer_new(bh);
3239                         clear_buffer_delay(bh);
3240                         clear_buffer_unwritten(bh);
3241                         clear_buffer_uptodate(bh);
3242                         zero_user(page, pos, range_to_discard);
3243                         BUFFER_TRACE(bh, "Buffer discarded");
3244                         goto next;
3245                 }
3246
3247                 /*
3248                  * If this block is not completely contained in the range
3249                  * to be discarded, then it is not going to be released. Because
3250                  * we need to keep this block, we need to make sure this part
3251                  * of the page is uptodate before we modify it by writeing
3252                  * partial zeros on it.
3253                  */
3254                 if (!buffer_mapped(bh)) {
3255                         /*
3256                          * Buffer head must be mapped before we can read
3257                          * from the block
3258                          */
3259                         BUFFER_TRACE(bh, "unmapped");
3260                         ext4_get_block(inode, iblock, bh, 0);
3261                         /* unmapped? It's a hole - nothing to do */
3262                         if (!buffer_mapped(bh)) {
3263                                 BUFFER_TRACE(bh, "still unmapped");
3264                                 goto next;
3265                         }
3266                 }
3267
3268                 /* Ok, it's mapped. Make sure it's up-to-date */
3269                 if (PageUptodate(page))
3270                         set_buffer_uptodate(bh);
3271
3272                 if (!buffer_uptodate(bh)) {
3273                         err = -EIO;
3274                         ll_rw_block(READ, 1, &bh);
3275                         wait_on_buffer(bh);
3276                         /* Uhhuh. Read error. Complain and punt.*/
3277                         if (!buffer_uptodate(bh))
3278                                 goto next;
3279                 }
3280
3281                 if (ext4_should_journal_data(inode)) {
3282                         BUFFER_TRACE(bh, "get write access");
3283                         err = ext4_journal_get_write_access(handle, bh);
3284                         if (err)
3285                                 goto next;
3286                 }
3287
3288                 zero_user(page, pos, range_to_discard);
3289
3290                 err = 0;
3291                 if (ext4_should_journal_data(inode)) {
3292                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3293                 } else
3294                         mark_buffer_dirty(bh);
3295
3296                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3297 next:
3298                 bh = bh->b_this_page;
3299                 iblock++;
3300                 pos += range_to_discard;
3301         }
3302
3303         return err;
3304 }
3305
3306 int ext4_can_truncate(struct inode *inode)
3307 {
3308         if (S_ISREG(inode->i_mode))
3309                 return 1;
3310         if (S_ISDIR(inode->i_mode))
3311                 return 1;
3312         if (S_ISLNK(inode->i_mode))
3313                 return !ext4_inode_is_fast_symlink(inode);
3314         return 0;
3315 }
3316
3317 /*
3318  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3319  * associated with the given offset and length
3320  *
3321  * @inode:  File inode
3322  * @offset: The offset where the hole will begin
3323  * @len:    The length of the hole
3324  *
3325  * Returns: 0 on sucess or negative on failure
3326  */
3327
3328 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3329 {
3330         struct inode *inode = file->f_path.dentry->d_inode;
3331         if (!S_ISREG(inode->i_mode))
3332                 return -ENOTSUPP;
3333
3334         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3335                 /* TODO: Add support for non extent hole punching */
3336                 return -ENOTSUPP;
3337         }
3338
3339         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3340                 /* TODO: Add support for bigalloc file systems */
3341                 return -ENOTSUPP;
3342         }
3343
3344         return ext4_ext_punch_hole(file, offset, length);
3345 }
3346
3347 /*
3348  * ext4_truncate()
3349  *
3350  * We block out ext4_get_block() block instantiations across the entire
3351  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3352  * simultaneously on behalf of the same inode.
3353  *
3354  * As we work through the truncate and commit bits of it to the journal there
3355  * is one core, guiding principle: the file's tree must always be consistent on
3356  * disk.  We must be able to restart the truncate after a crash.
3357  *
3358  * The file's tree may be transiently inconsistent in memory (although it
3359  * probably isn't), but whenever we close off and commit a journal transaction,
3360  * the contents of (the filesystem + the journal) must be consistent and
3361  * restartable.  It's pretty simple, really: bottom up, right to left (although
3362  * left-to-right works OK too).
3363  *
3364  * Note that at recovery time, journal replay occurs *before* the restart of
3365  * truncate against the orphan inode list.
3366  *
3367  * The committed inode has the new, desired i_size (which is the same as
3368  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3369  * that this inode's truncate did not complete and it will again call
3370  * ext4_truncate() to have another go.  So there will be instantiated blocks
3371  * to the right of the truncation point in a crashed ext4 filesystem.  But
3372  * that's fine - as long as they are linked from the inode, the post-crash
3373  * ext4_truncate() run will find them and release them.
3374  */
3375 void ext4_truncate(struct inode *inode)
3376 {
3377         trace_ext4_truncate_enter(inode);
3378
3379         if (!ext4_can_truncate(inode))
3380                 return;
3381
3382         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3383
3384         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3385                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3386
3387         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3388                 ext4_ext_truncate(inode);
3389         else
3390                 ext4_ind_truncate(inode);
3391
3392         trace_ext4_truncate_exit(inode);
3393 }
3394
3395 /*
3396  * ext4_get_inode_loc returns with an extra refcount against the inode's
3397  * underlying buffer_head on success. If 'in_mem' is true, we have all
3398  * data in memory that is needed to recreate the on-disk version of this
3399  * inode.
3400  */
3401 static int __ext4_get_inode_loc(struct inode *inode,
3402                                 struct ext4_iloc *iloc, int in_mem)
3403 {
3404         struct ext4_group_desc  *gdp;
3405         struct buffer_head      *bh;
3406         struct super_block      *sb = inode->i_sb;
3407         ext4_fsblk_t            block;
3408         int                     inodes_per_block, inode_offset;
3409
3410         iloc->bh = NULL;
3411         if (!ext4_valid_inum(sb, inode->i_ino))
3412                 return -EIO;
3413
3414         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3415         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3416         if (!gdp)
3417                 return -EIO;
3418
3419         /*
3420          * Figure out the offset within the block group inode table
3421          */
3422         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3423         inode_offset = ((inode->i_ino - 1) %
3424                         EXT4_INODES_PER_GROUP(sb));
3425         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3426         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3427
3428         bh = sb_getblk(sb, block);
3429         if (!bh) {
3430                 EXT4_ERROR_INODE_BLOCK(inode, block,
3431                                        "unable to read itable block");
3432                 return -EIO;
3433         }
3434         if (!buffer_uptodate(bh)) {
3435                 lock_buffer(bh);
3436
3437                 /*
3438                  * If the buffer has the write error flag, we have failed
3439                  * to write out another inode in the same block.  In this
3440                  * case, we don't have to read the block because we may
3441                  * read the old inode data successfully.
3442                  */
3443                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3444                         set_buffer_uptodate(bh);
3445
3446                 if (buffer_uptodate(bh)) {
3447                         /* someone brought it uptodate while we waited */
3448                         unlock_buffer(bh);
3449                         goto has_buffer;
3450                 }
3451
3452                 /*
3453                  * If we have all information of the inode in memory and this
3454                  * is the only valid inode in the block, we need not read the
3455                  * block.
3456                  */
3457                 if (in_mem) {
3458                         struct buffer_head *bitmap_bh;
3459                         int i, start;
3460
3461                         start = inode_offset & ~(inodes_per_block - 1);
3462
3463                         /* Is the inode bitmap in cache? */
3464                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3465                         if (!bitmap_bh)
3466                                 goto make_io;
3467
3468                         /*
3469                          * If the inode bitmap isn't in cache then the
3470                          * optimisation may end up performing two reads instead
3471                          * of one, so skip it.
3472                          */
3473                         if (!buffer_uptodate(bitmap_bh)) {
3474                                 brelse(bitmap_bh);
3475                                 goto make_io;
3476                         }
3477                         for (i = start; i < start + inodes_per_block; i++) {
3478                                 if (i == inode_offset)
3479                                         continue;
3480                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3481                                         break;
3482                         }
3483                         brelse(bitmap_bh);
3484                         if (i == start + inodes_per_block) {
3485                                 /* all other inodes are free, so skip I/O */
3486                                 memset(bh->b_data, 0, bh->b_size);
3487                                 set_buffer_uptodate(bh);
3488                                 unlock_buffer(bh);
3489                                 goto has_buffer;
3490                         }
3491                 }
3492
3493 make_io:
3494                 /*
3495                  * If we need to do any I/O, try to pre-readahead extra
3496                  * blocks from the inode table.
3497                  */
3498                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3499                         ext4_fsblk_t b, end, table;
3500                         unsigned num;
3501
3502                         table = ext4_inode_table(sb, gdp);
3503                         /* s_inode_readahead_blks is always a power of 2 */
3504                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3505                         if (table > b)
3506                                 b = table;
3507                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3508                         num = EXT4_INODES_PER_GROUP(sb);
3509                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3510                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3511                                 num -= ext4_itable_unused_count(sb, gdp);
3512                         table += num / inodes_per_block;
3513                         if (end > table)
3514                                 end = table;
3515                         while (b <= end)
3516                                 sb_breadahead(sb, b++);
3517                 }
3518
3519                 /*
3520                  * There are other valid inodes in the buffer, this inode
3521                  * has in-inode xattrs, or we don't have this inode in memory.
3522                  * Read the block from disk.
3523                  */
3524                 trace_ext4_load_inode(inode);
3525                 get_bh(bh);
3526                 bh->b_end_io = end_buffer_read_sync;
3527                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3528                 wait_on_buffer(bh);
3529                 if (!buffer_uptodate(bh)) {
3530                         EXT4_ERROR_INODE_BLOCK(inode, block,
3531                                                "unable to read itable block");
3532                         brelse(bh);
3533                         return -EIO;
3534                 }
3535         }
3536 has_buffer:
3537         iloc->bh = bh;
3538         return 0;
3539 }
3540
3541 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3542 {
3543         /* We have all inode data except xattrs in memory here. */
3544         return __ext4_get_inode_loc(inode, iloc,
3545                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3546 }
3547
3548 void ext4_set_inode_flags(struct inode *inode)
3549 {
3550         unsigned int flags = EXT4_I(inode)->i_flags;
3551
3552         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3553         if (flags & EXT4_SYNC_FL)
3554                 inode->i_flags |= S_SYNC;
3555         if (flags & EXT4_APPEND_FL)
3556                 inode->i_flags |= S_APPEND;
3557         if (flags & EXT4_IMMUTABLE_FL)
3558                 inode->i_flags |= S_IMMUTABLE;
3559         if (flags & EXT4_NOATIME_FL)
3560                 inode->i_flags |= S_NOATIME;
3561         if (flags & EXT4_DIRSYNC_FL)
3562                 inode->i_flags |= S_DIRSYNC;
3563 }
3564
3565 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3566 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3567 {
3568         unsigned int vfs_fl;
3569         unsigned long old_fl, new_fl;
3570
3571         do {
3572                 vfs_fl = ei->vfs_inode.i_flags;
3573                 old_fl = ei->i_flags;
3574                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3575                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3576                                 EXT4_DIRSYNC_FL);
3577                 if (vfs_fl & S_SYNC)
3578                         new_fl |= EXT4_SYNC_FL;
3579                 if (vfs_fl & S_APPEND)
3580                         new_fl |= EXT4_APPEND_FL;
3581                 if (vfs_fl & S_IMMUTABLE)
3582                         new_fl |= EXT4_IMMUTABLE_FL;
3583                 if (vfs_fl & S_NOATIME)
3584                         new_fl |= EXT4_NOATIME_FL;
3585                 if (vfs_fl & S_DIRSYNC)
3586                         new_fl |= EXT4_DIRSYNC_FL;
3587         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3588 }
3589
3590 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3591                                   struct ext4_inode_info *ei)
3592 {
3593         blkcnt_t i_blocks ;
3594         struct inode *inode = &(ei->vfs_inode);
3595         struct super_block *sb = inode->i_sb;
3596
3597         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3598                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3599                 /* we are using combined 48 bit field */
3600                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3601                                         le32_to_cpu(raw_inode->i_blocks_lo);
3602                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3603                         /* i_blocks represent file system block size */
3604                         return i_blocks  << (inode->i_blkbits - 9);
3605                 } else {
3606                         return i_blocks;
3607                 }
3608         } else {
3609                 return le32_to_cpu(raw_inode->i_blocks_lo);
3610         }
3611 }
3612
3613 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3614 {
3615         struct ext4_iloc iloc;
3616         struct ext4_inode *raw_inode;
3617         struct ext4_inode_info *ei;
3618         struct inode *inode;
3619         journal_t *journal = EXT4_SB(sb)->s_journal;
3620         long ret;
3621         int block;
3622
3623         inode = iget_locked(sb, ino);
3624         if (!inode)
3625                 return ERR_PTR(-ENOMEM);
3626         if (!(inode->i_state & I_NEW))
3627                 return inode;
3628
3629         ei = EXT4_I(inode);
3630         iloc.bh = NULL;
3631
3632         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3633         if (ret < 0)
3634                 goto bad_inode;
3635         raw_inode = ext4_raw_inode(&iloc);
3636         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3637         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3638         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3639         if (!(test_opt(inode->i_sb, NO_UID32))) {
3640                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3641                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3642         }
3643         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3644
3645         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3646         ei->i_dir_start_lookup = 0;
3647         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3648         /* We now have enough fields to check if the inode was active or not.
3649          * This is needed because nfsd might try to access dead inodes
3650          * the test is that same one that e2fsck uses
3651          * NeilBrown 1999oct15
3652          */
3653         if (inode->i_nlink == 0) {
3654                 if (inode->i_mode == 0 ||
3655                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3656                         /* this inode is deleted */
3657                         ret = -ESTALE;
3658                         goto bad_inode;
3659                 }
3660                 /* The only unlinked inodes we let through here have
3661                  * valid i_mode and are being read by the orphan
3662                  * recovery code: that's fine, we're about to complete
3663                  * the process of deleting those. */
3664         }
3665         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3666         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3667         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3668         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3669                 ei->i_file_acl |=
3670                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3671         inode->i_size = ext4_isize(raw_inode);
3672         ei->i_disksize = inode->i_size;
3673 #ifdef CONFIG_QUOTA
3674         ei->i_reserved_quota = 0;
3675 #endif
3676         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3677         ei->i_block_group = iloc.block_group;
3678         ei->i_last_alloc_group = ~0;
3679         /*
3680          * NOTE! The in-memory inode i_data array is in little-endian order
3681          * even on big-endian machines: we do NOT byteswap the block numbers!
3682          */
3683         for (block = 0; block < EXT4_N_BLOCKS; block++)
3684                 ei->i_data[block] = raw_inode->i_block[block];
3685         INIT_LIST_HEAD(&ei->i_orphan);
3686
3687         /*
3688          * Set transaction id's of transactions that have to be committed
3689          * to finish f[data]sync. We set them to currently running transaction
3690          * as we cannot be sure that the inode or some of its metadata isn't
3691          * part of the transaction - the inode could have been reclaimed and
3692          * now it is reread from disk.
3693          */
3694         if (journal) {
3695                 transaction_t *transaction;
3696                 tid_t tid;
3697
3698                 read_lock(&journal->j_state_lock);
3699                 if (journal->j_running_transaction)
3700                         transaction = journal->j_running_transaction;
3701                 else
3702                         transaction = journal->j_committing_transaction;
3703                 if (transaction)
3704                         tid = transaction->t_tid;
3705                 else
3706                         tid = journal->j_commit_sequence;
3707                 read_unlock(&journal->j_state_lock);
3708                 ei->i_sync_tid = tid;
3709                 ei->i_datasync_tid = tid;
3710         }
3711
3712         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3713                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3714                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3715                     EXT4_INODE_SIZE(inode->i_sb)) {
3716                         ret = -EIO;
3717                         goto bad_inode;
3718                 }
3719                 if (ei->i_extra_isize == 0) {
3720                         /* The extra space is currently unused. Use it. */
3721                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3722                                             EXT4_GOOD_OLD_INODE_SIZE;
3723                 } else {
3724                         __le32 *magic = (void *)raw_inode +
3725                                         EXT4_GOOD_OLD_INODE_SIZE +
3726                                         ei->i_extra_isize;
3727                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3728                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3729                 }
3730         } else
3731                 ei->i_extra_isize = 0;
3732
3733         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3734         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3735         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3736         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3737
3738         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3739         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3740                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3741                         inode->i_version |=
3742                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3743         }
3744
3745         ret = 0;
3746         if (ei->i_file_acl &&
3747             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3748                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3749                                  ei->i_file_acl);
3750                 ret = -EIO;
3751                 goto bad_inode;
3752         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3753                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3754                     (S_ISLNK(inode->i_mode) &&
3755                      !ext4_inode_is_fast_symlink(inode)))
3756                         /* Validate extent which is part of inode */
3757                         ret = ext4_ext_check_inode(inode);
3758         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3759                    (S_ISLNK(inode->i_mode) &&
3760                     !ext4_inode_is_fast_symlink(inode))) {
3761                 /* Validate block references which are part of inode */
3762                 ret = ext4_ind_check_inode(inode);
3763         }
3764         if (ret)
3765                 goto bad_inode;
3766
3767         if (S_ISREG(inode->i_mode)) {
3768                 inode->i_op = &ext4_file_inode_operations;
3769                 inode->i_fop = &ext4_file_operations;
3770                 ext4_set_aops(inode);
3771         } else if (S_ISDIR(inode->i_mode)) {
3772                 inode->i_op = &ext4_dir_inode_operations;
3773                 inode->i_fop = &ext4_dir_operations;
3774         } else if (S_ISLNK(inode->i_mode)) {
3775                 if (ext4_inode_is_fast_symlink(inode)) {
3776                         inode->i_op = &ext4_fast_symlink_inode_operations;
3777                         nd_terminate_link(ei->i_data, inode->i_size,
3778                                 sizeof(ei->i_data) - 1);
3779                 } else {
3780                         inode->i_op = &ext4_symlink_inode_operations;
3781                         ext4_set_aops(inode);
3782                 }
3783         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3784               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3785                 inode->i_op = &ext4_special_inode_operations;
3786                 if (raw_inode->i_block[0])
3787                         init_special_inode(inode, inode->i_mode,
3788                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3789                 else
3790                         init_special_inode(inode, inode->i_mode,
3791                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3792         } else {
3793                 ret = -EIO;
3794                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3795                 goto bad_inode;
3796         }
3797         brelse(iloc.bh);
3798         ext4_set_inode_flags(inode);
3799         unlock_new_inode(inode);
3800         return inode;
3801
3802 bad_inode:
3803         brelse(iloc.bh);
3804         iget_failed(inode);
3805         return ERR_PTR(ret);
3806 }
3807
3808 static int ext4_inode_blocks_set(handle_t *handle,
3809                                 struct ext4_inode *raw_inode,
3810                                 struct ext4_inode_info *ei)
3811 {
3812         struct inode *inode = &(ei->vfs_inode);
3813         u64 i_blocks = inode->i_blocks;
3814         struct super_block *sb = inode->i_sb;
3815
3816         if (i_blocks <= ~0U) {
3817                 /*
3818                  * i_blocks can be represnted in a 32 bit variable
3819                  * as multiple of 512 bytes
3820                  */
3821                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3822                 raw_inode->i_blocks_high = 0;
3823                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3824                 return 0;
3825         }
3826         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3827                 return -EFBIG;
3828
3829         if (i_blocks <= 0xffffffffffffULL) {
3830                 /*
3831                  * i_blocks can be represented in a 48 bit variable
3832                  * as multiple of 512 bytes
3833                  */
3834                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3835                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3836                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3837         } else {
3838                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3839                 /* i_block is stored in file system block size */
3840                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3841                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3842                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3843         }
3844         return 0;
3845 }
3846
3847 /*
3848  * Post the struct inode info into an on-disk inode location in the
3849  * buffer-cache.  This gobbles the caller's reference to the
3850  * buffer_head in the inode location struct.
3851  *
3852  * The caller must have write access to iloc->bh.
3853  */
3854 static int ext4_do_update_inode(handle_t *handle,
3855                                 struct inode *inode,
3856                                 struct ext4_iloc *iloc)
3857 {
3858         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3859         struct ext4_inode_info *ei = EXT4_I(inode);
3860         struct buffer_head *bh = iloc->bh;
3861         int err = 0, rc, block;
3862
3863         /* For fields not not tracking in the in-memory inode,
3864          * initialise them to zero for new inodes. */
3865         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3866                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3867
3868         ext4_get_inode_flags(ei);
3869         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3870         if (!(test_opt(inode->i_sb, NO_UID32))) {
3871                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3872                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3873 /*
3874  * Fix up interoperability with old kernels. Otherwise, old inodes get
3875  * re-used with the upper 16 bits of the uid/gid intact
3876  */
3877                 if (!ei->i_dtime) {
3878                         raw_inode->i_uid_high =
3879                                 cpu_to_le16(high_16_bits(inode->i_uid));
3880                         raw_inode->i_gid_high =
3881                                 cpu_to_le16(high_16_bits(inode->i_gid));
3882                 } else {
3883                         raw_inode->i_uid_high = 0;
3884                         raw_inode->i_gid_high = 0;
3885                 }
3886         } else {
3887                 raw_inode->i_uid_low =
3888                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
3889                 raw_inode->i_gid_low =
3890                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
3891                 raw_inode->i_uid_high = 0;
3892                 raw_inode->i_gid_high = 0;
3893         }
3894         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3895
3896         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3897         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3898         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3899         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3900
3901         if (ext4_inode_blocks_set(handle, raw_inode, ei))
3902                 goto out_brelse;
3903         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3904         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3905         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3906             cpu_to_le32(EXT4_OS_HURD))
3907                 raw_inode->i_file_acl_high =
3908                         cpu_to_le16(ei->i_file_acl >> 32);
3909         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3910         ext4_isize_set(raw_inode, ei->i_disksize);
3911         if (ei->i_disksize > 0x7fffffffULL) {
3912                 struct super_block *sb = inode->i_sb;
3913                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3914                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3915                                 EXT4_SB(sb)->s_es->s_rev_level ==
3916                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3917                         /* If this is the first large file
3918                          * created, add a flag to the superblock.
3919                          */
3920                         err = ext4_journal_get_write_access(handle,
3921                                         EXT4_SB(sb)->s_sbh);
3922                         if (err)
3923                                 goto out_brelse;
3924                         ext4_update_dynamic_rev(sb);
3925                         EXT4_SET_RO_COMPAT_FEATURE(sb,
3926                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3927                         sb->s_dirt = 1;
3928                         ext4_handle_sync(handle);
3929                         err = ext4_handle_dirty_metadata(handle, NULL,
3930                                         EXT4_SB(sb)->s_sbh);
3931                 }
3932         }
3933         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3934         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3935                 if (old_valid_dev(inode->i_rdev)) {
3936                         raw_inode->i_block[0] =
3937                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
3938                         raw_inode->i_block[1] = 0;
3939                 } else {
3940                         raw_inode->i_block[0] = 0;
3941                         raw_inode->i_block[1] =
3942                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
3943                         raw_inode->i_block[2] = 0;
3944                 }
3945         } else
3946                 for (block = 0; block < EXT4_N_BLOCKS; block++)
3947                         raw_inode->i_block[block] = ei->i_data[block];
3948
3949         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3950         if (ei->i_extra_isize) {
3951                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3952                         raw_inode->i_version_hi =
3953                         cpu_to_le32(inode->i_version >> 32);
3954                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3955         }
3956
3957         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3958         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
3959         if (!err)
3960                 err = rc;
3961         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
3962
3963         ext4_update_inode_fsync_trans(handle, inode, 0);
3964 out_brelse:
3965         brelse(bh);
3966         ext4_std_error(inode->i_sb, err);
3967         return err;
3968 }
3969
3970 /*
3971  * ext4_write_inode()
3972  *
3973  * We are called from a few places:
3974  *
3975  * - Within generic_file_write() for O_SYNC files.
3976  *   Here, there will be no transaction running. We wait for any running
3977  *   trasnaction to commit.
3978  *
3979  * - Within sys_sync(), kupdate and such.
3980  *   We wait on commit, if tol to.
3981  *
3982  * - Within prune_icache() (PF_MEMALLOC == true)
3983  *   Here we simply return.  We can't afford to block kswapd on the
3984  *   journal commit.
3985  *
3986  * In all cases it is actually safe for us to return without doing anything,
3987  * because the inode has been copied into a raw inode buffer in
3988  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3989  * knfsd.
3990  *
3991  * Note that we are absolutely dependent upon all inode dirtiers doing the
3992  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3993  * which we are interested.
3994  *
3995  * It would be a bug for them to not do this.  The code:
3996  *
3997  *      mark_inode_dirty(inode)
3998  *      stuff();
3999  *      inode->i_size = expr;
4000  *
4001  * is in error because a kswapd-driven write_inode() could occur while
4002  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4003  * will no longer be on the superblock's dirty inode list.
4004  */
4005 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4006 {
4007         int err;
4008
4009         if (current->flags & PF_MEMALLOC)
4010                 return 0;
4011
4012         if (EXT4_SB(inode->i_sb)->s_journal) {
4013                 if (ext4_journal_current_handle()) {
4014                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4015                         dump_stack();
4016                         return -EIO;
4017                 }
4018
4019                 if (wbc->sync_mode != WB_SYNC_ALL)
4020                         return 0;
4021
4022                 err = ext4_force_commit(inode->i_sb);
4023         } else {
4024                 struct ext4_iloc iloc;
4025
4026                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4027                 if (err)
4028                         return err;
4029                 if (wbc->sync_mode == WB_SYNC_ALL)
4030                         sync_dirty_buffer(iloc.bh);
4031                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4032                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4033                                          "IO error syncing inode");
4034                         err = -EIO;
4035                 }
4036                 brelse(iloc.bh);
4037         }
4038         return err;
4039 }
4040
4041 /*
4042  * ext4_setattr()
4043  *
4044  * Called from notify_change.
4045  *
4046  * We want to trap VFS attempts to truncate the file as soon as
4047  * possible.  In particular, we want to make sure that when the VFS
4048  * shrinks i_size, we put the inode on the orphan list and modify
4049  * i_disksize immediately, so that during the subsequent flushing of
4050  * dirty pages and freeing of disk blocks, we can guarantee that any
4051  * commit will leave the blocks being flushed in an unused state on
4052  * disk.  (On recovery, the inode will get truncated and the blocks will
4053  * be freed, so we have a strong guarantee that no future commit will
4054  * leave these blocks visible to the user.)
4055  *
4056  * Another thing we have to assure is that if we are in ordered mode
4057  * and inode is still attached to the committing transaction, we must
4058  * we start writeout of all the dirty pages which are being truncated.
4059  * This way we are sure that all the data written in the previous
4060  * transaction are already on disk (truncate waits for pages under
4061  * writeback).
4062  *
4063  * Called with inode->i_mutex down.
4064  */
4065 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4066 {
4067         struct inode *inode = dentry->d_inode;
4068         int error, rc = 0;
4069         int orphan = 0;
4070         const unsigned int ia_valid = attr->ia_valid;
4071
4072         error = inode_change_ok(inode, attr);
4073         if (error)
4074                 return error;
4075
4076         if (is_quota_modification(inode, attr))
4077                 dquot_initialize(inode);
4078         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4079                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4080                 handle_t *handle;
4081
4082                 /* (user+group)*(old+new) structure, inode write (sb,
4083                  * inode block, ? - but truncate inode update has it) */
4084                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4085                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4086                 if (IS_ERR(handle)) {
4087                         error = PTR_ERR(handle);
4088                         goto err_out;
4089                 }
4090                 error = dquot_transfer(inode, attr);
4091                 if (error) {
4092                         ext4_journal_stop(handle);
4093                         return error;
4094                 }
4095                 /* Update corresponding info in inode so that everything is in
4096                  * one transaction */
4097                 if (attr->ia_valid & ATTR_UID)
4098                         inode->i_uid = attr->ia_uid;
4099                 if (attr->ia_valid & ATTR_GID)
4100                         inode->i_gid = attr->ia_gid;
4101                 error = ext4_mark_inode_dirty(handle, inode);
4102                 ext4_journal_stop(handle);
4103         }
4104
4105         if (attr->ia_valid & ATTR_SIZE) {
4106                 inode_dio_wait(inode);
4107
4108                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4109                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4110
4111                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4112                                 return -EFBIG;
4113                 }
4114         }
4115
4116         if (S_ISREG(inode->i_mode) &&
4117             attr->ia_valid & ATTR_SIZE &&
4118             (attr->ia_size < inode->i_size)) {
4119                 handle_t *handle;
4120
4121                 handle = ext4_journal_start(inode, 3);
4122                 if (IS_ERR(handle)) {
4123                         error = PTR_ERR(handle);
4124                         goto err_out;
4125                 }
4126                 if (ext4_handle_valid(handle)) {
4127                         error = ext4_orphan_add(handle, inode);
4128                         orphan = 1;
4129                 }
4130                 EXT4_I(inode)->i_disksize = attr->ia_size;
4131                 rc = ext4_mark_inode_dirty(handle, inode);
4132                 if (!error)
4133                         error = rc;
4134                 ext4_journal_stop(handle);
4135
4136                 if (ext4_should_order_data(inode)) {
4137                         error = ext4_begin_ordered_truncate(inode,
4138                                                             attr->ia_size);
4139                         if (error) {
4140                                 /* Do as much error cleanup as possible */
4141                                 handle = ext4_journal_start(inode, 3);
4142                                 if (IS_ERR(handle)) {
4143                                         ext4_orphan_del(NULL, inode);
4144                                         goto err_out;
4145                                 }
4146                                 ext4_orphan_del(handle, inode);
4147                                 orphan = 0;
4148                                 ext4_journal_stop(handle);
4149                                 goto err_out;
4150                         }
4151                 }
4152         }
4153
4154         if (attr->ia_valid & ATTR_SIZE) {
4155                 if (attr->ia_size != i_size_read(inode)) {
4156                         truncate_setsize(inode, attr->ia_size);
4157                         ext4_truncate(inode);
4158                 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
4159                         ext4_truncate(inode);
4160         }
4161
4162         if (!rc) {
4163                 setattr_copy(inode, attr);
4164                 mark_inode_dirty(inode);
4165         }
4166
4167         /*
4168          * If the call to ext4_truncate failed to get a transaction handle at
4169          * all, we need to clean up the in-core orphan list manually.
4170          */
4171         if (orphan && inode->i_nlink)
4172                 ext4_orphan_del(NULL, inode);
4173
4174         if (!rc && (ia_valid & ATTR_MODE))
4175                 rc = ext4_acl_chmod(inode);
4176
4177 err_out:
4178         ext4_std_error(inode->i_sb, error);
4179         if (!error)
4180                 error = rc;
4181         return error;
4182 }
4183
4184 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4185                  struct kstat *stat)
4186 {
4187         struct inode *inode;
4188         unsigned long delalloc_blocks;
4189
4190         inode = dentry->d_inode;
4191         generic_fillattr(inode, stat);
4192
4193         /*
4194          * We can't update i_blocks if the block allocation is delayed
4195          * otherwise in the case of system crash before the real block
4196          * allocation is done, we will have i_blocks inconsistent with
4197          * on-disk file blocks.
4198          * We always keep i_blocks updated together with real
4199          * allocation. But to not confuse with user, stat
4200          * will return the blocks that include the delayed allocation
4201          * blocks for this file.
4202          */
4203         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4204
4205         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4206         return 0;
4207 }
4208
4209 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4210 {
4211         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4212                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4213         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4214 }
4215
4216 /*
4217  * Account for index blocks, block groups bitmaps and block group
4218  * descriptor blocks if modify datablocks and index blocks
4219  * worse case, the indexs blocks spread over different block groups
4220  *
4221  * If datablocks are discontiguous, they are possible to spread over
4222  * different block groups too. If they are contiuguous, with flexbg,
4223  * they could still across block group boundary.
4224  *
4225  * Also account for superblock, inode, quota and xattr blocks
4226  */
4227 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4228 {
4229         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4230         int gdpblocks;
4231         int idxblocks;
4232         int ret = 0;
4233
4234         /*
4235          * How many index blocks need to touch to modify nrblocks?
4236          * The "Chunk" flag indicating whether the nrblocks is
4237          * physically contiguous on disk
4238          *
4239          * For Direct IO and fallocate, they calls get_block to allocate
4240          * one single extent at a time, so they could set the "Chunk" flag
4241          */
4242         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4243
4244         ret = idxblocks;
4245
4246         /*
4247          * Now let's see how many group bitmaps and group descriptors need
4248          * to account
4249          */
4250         groups = idxblocks;
4251         if (chunk)
4252                 groups += 1;
4253         else
4254                 groups += nrblocks;
4255
4256         gdpblocks = groups;
4257         if (groups > ngroups)
4258                 groups = ngroups;
4259         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4260                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4261
4262         /* bitmaps and block group descriptor blocks */
4263         ret += groups + gdpblocks;
4264
4265         /* Blocks for super block, inode, quota and xattr blocks */
4266         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4267
4268         return ret;
4269 }
4270
4271 /*
4272  * Calculate the total number of credits to reserve to fit
4273  * the modification of a single pages into a single transaction,
4274  * which may include multiple chunks of block allocations.
4275  *
4276  * This could be called via ext4_write_begin()
4277  *
4278  * We need to consider the worse case, when
4279  * one new block per extent.
4280  */
4281 int ext4_writepage_trans_blocks(struct inode *inode)
4282 {
4283         int bpp = ext4_journal_blocks_per_page(inode);
4284         int ret;
4285
4286         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4287
4288         /* Account for data blocks for journalled mode */
4289         if (ext4_should_journal_data(inode))
4290                 ret += bpp;
4291         return ret;
4292 }
4293
4294 /*
4295  * Calculate the journal credits for a chunk of data modification.
4296  *
4297  * This is called from DIO, fallocate or whoever calling
4298  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4299  *
4300  * journal buffers for data blocks are not included here, as DIO
4301  * and fallocate do no need to journal data buffers.
4302  */
4303 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4304 {
4305         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4306 }
4307
4308 /*
4309  * The caller must have previously called ext4_reserve_inode_write().
4310  * Give this, we know that the caller already has write access to iloc->bh.
4311  */
4312 int ext4_mark_iloc_dirty(handle_t *handle,
4313                          struct inode *inode, struct ext4_iloc *iloc)
4314 {
4315         int err = 0;
4316
4317         if (test_opt(inode->i_sb, I_VERSION))
4318                 inode_inc_iversion(inode);
4319
4320         /* the do_update_inode consumes one bh->b_count */
4321         get_bh(iloc->bh);
4322
4323         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4324         err = ext4_do_update_inode(handle, inode, iloc);
4325         put_bh(iloc->bh);
4326         return err;
4327 }
4328
4329 /*
4330  * On success, We end up with an outstanding reference count against
4331  * iloc->bh.  This _must_ be cleaned up later.
4332  */
4333
4334 int
4335 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4336                          struct ext4_iloc *iloc)
4337 {
4338         int err;
4339
4340         err = ext4_get_inode_loc(inode, iloc);
4341         if (!err) {
4342                 BUFFER_TRACE(iloc->bh, "get_write_access");
4343                 err = ext4_journal_get_write_access(handle, iloc->bh);
4344                 if (err) {
4345                         brelse(iloc->bh);
4346                         iloc->bh = NULL;
4347                 }
4348         }
4349         ext4_std_error(inode->i_sb, err);
4350         return err;
4351 }
4352
4353 /*
4354  * Expand an inode by new_extra_isize bytes.
4355  * Returns 0 on success or negative error number on failure.
4356  */
4357 static int ext4_expand_extra_isize(struct inode *inode,
4358                                    unsigned int new_extra_isize,
4359                                    struct ext4_iloc iloc,
4360                                    handle_t *handle)
4361 {
4362         struct ext4_inode *raw_inode;
4363         struct ext4_xattr_ibody_header *header;
4364
4365         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4366                 return 0;
4367
4368         raw_inode = ext4_raw_inode(&iloc);
4369
4370         header = IHDR(inode, raw_inode);
4371
4372         /* No extended attributes present */
4373         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4374             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4375                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4376                         new_extra_isize);
4377                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4378                 return 0;
4379         }
4380
4381         /* try to expand with EAs present */
4382         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4383                                           raw_inode, handle);
4384 }
4385
4386 /*
4387  * What we do here is to mark the in-core inode as clean with respect to inode
4388  * dirtiness (it may still be data-dirty).
4389  * This means that the in-core inode may be reaped by prune_icache
4390  * without having to perform any I/O.  This is a very good thing,
4391  * because *any* task may call prune_icache - even ones which
4392  * have a transaction open against a different journal.
4393  *
4394  * Is this cheating?  Not really.  Sure, we haven't written the
4395  * inode out, but prune_icache isn't a user-visible syncing function.
4396  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4397  * we start and wait on commits.
4398  *
4399  * Is this efficient/effective?  Well, we're being nice to the system
4400  * by cleaning up our inodes proactively so they can be reaped
4401  * without I/O.  But we are potentially leaving up to five seconds'
4402  * worth of inodes floating about which prune_icache wants us to
4403  * write out.  One way to fix that would be to get prune_icache()
4404  * to do a write_super() to free up some memory.  It has the desired
4405  * effect.
4406  */
4407 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4408 {
4409         struct ext4_iloc iloc;
4410         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4411         static unsigned int mnt_count;
4412         int err, ret;
4413
4414         might_sleep();
4415         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4416         err = ext4_reserve_inode_write(handle, inode, &iloc);
4417         if (ext4_handle_valid(handle) &&
4418             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4419             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4420                 /*
4421                  * We need extra buffer credits since we may write into EA block
4422                  * with this same handle. If journal_extend fails, then it will
4423                  * only result in a minor loss of functionality for that inode.
4424                  * If this is felt to be critical, then e2fsck should be run to
4425                  * force a large enough s_min_extra_isize.
4426                  */
4427                 if ((jbd2_journal_extend(handle,
4428                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4429                         ret = ext4_expand_extra_isize(inode,
4430                                                       sbi->s_want_extra_isize,
4431                                                       iloc, handle);
4432                         if (ret) {
4433                                 ext4_set_inode_state(inode,
4434                                                      EXT4_STATE_NO_EXPAND);
4435                                 if (mnt_count !=
4436                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4437                                         ext4_warning(inode->i_sb,
4438                                         "Unable to expand inode %lu. Delete"
4439                                         " some EAs or run e2fsck.",
4440                                         inode->i_ino);
4441                                         mnt_count =
4442                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4443                                 }
4444                         }
4445                 }
4446         }
4447         if (!err)
4448                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4449         return err;
4450 }
4451
4452 /*
4453  * ext4_dirty_inode() is called from __mark_inode_dirty()
4454  *
4455  * We're really interested in the case where a file is being extended.
4456  * i_size has been changed by generic_commit_write() and we thus need
4457  * to include the updated inode in the current transaction.
4458  *
4459  * Also, dquot_alloc_block() will always dirty the inode when blocks
4460  * are allocated to the file.
4461  *
4462  * If the inode is marked synchronous, we don't honour that here - doing
4463  * so would cause a commit on atime updates, which we don't bother doing.
4464  * We handle synchronous inodes at the highest possible level.
4465  */
4466 void ext4_dirty_inode(struct inode *inode, int flags)
4467 {
4468         handle_t *handle;
4469
4470         handle = ext4_journal_start(inode, 2);
4471         if (IS_ERR(handle))
4472                 goto out;
4473
4474         ext4_mark_inode_dirty(handle, inode);
4475
4476         ext4_journal_stop(handle);
4477 out:
4478         return;
4479 }
4480
4481 #if 0
4482 /*
4483  * Bind an inode's backing buffer_head into this transaction, to prevent
4484  * it from being flushed to disk early.  Unlike
4485  * ext4_reserve_inode_write, this leaves behind no bh reference and
4486  * returns no iloc structure, so the caller needs to repeat the iloc
4487  * lookup to mark the inode dirty later.
4488  */
4489 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4490 {
4491         struct ext4_iloc iloc;
4492
4493         int err = 0;
4494         if (handle) {
4495                 err = ext4_get_inode_loc(inode, &iloc);
4496                 if (!err) {
4497                         BUFFER_TRACE(iloc.bh, "get_write_access");
4498                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4499                         if (!err)
4500                                 err = ext4_handle_dirty_metadata(handle,
4501                                                                  NULL,
4502                                                                  iloc.bh);
4503                         brelse(iloc.bh);
4504                 }
4505         }
4506         ext4_std_error(inode->i_sb, err);
4507         return err;
4508 }
4509 #endif
4510
4511 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4512 {
4513         journal_t *journal;
4514         handle_t *handle;
4515         int err;
4516
4517         /*
4518          * We have to be very careful here: changing a data block's
4519          * journaling status dynamically is dangerous.  If we write a
4520          * data block to the journal, change the status and then delete
4521          * that block, we risk forgetting to revoke the old log record
4522          * from the journal and so a subsequent replay can corrupt data.
4523          * So, first we make sure that the journal is empty and that
4524          * nobody is changing anything.
4525          */
4526
4527         journal = EXT4_JOURNAL(inode);
4528         if (!journal)
4529                 return 0;
4530         if (is_journal_aborted(journal))
4531                 return -EROFS;
4532         /* We have to allocate physical blocks for delalloc blocks
4533          * before flushing journal. otherwise delalloc blocks can not
4534          * be allocated any more. even more truncate on delalloc blocks
4535          * could trigger BUG by flushing delalloc blocks in journal.
4536          * There is no delalloc block in non-journal data mode.
4537          */
4538         if (val && test_opt(inode->i_sb, DELALLOC)) {
4539                 err = ext4_alloc_da_blocks(inode);
4540                 if (err < 0)
4541                         return err;
4542         }
4543
4544         jbd2_journal_lock_updates(journal);
4545
4546         /*
4547          * OK, there are no updates running now, and all cached data is
4548          * synced to disk.  We are now in a completely consistent state
4549          * which doesn't have anything in the journal, and we know that
4550          * no filesystem updates are running, so it is safe to modify
4551          * the inode's in-core data-journaling state flag now.
4552          */
4553
4554         if (val)
4555                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4556         else {
4557                 jbd2_journal_flush(journal);
4558                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4559         }
4560         ext4_set_aops(inode);
4561
4562         jbd2_journal_unlock_updates(journal);
4563
4564         /* Finally we can mark the inode as dirty. */
4565
4566         handle = ext4_journal_start(inode, 1);
4567         if (IS_ERR(handle))
4568                 return PTR_ERR(handle);
4569
4570         err = ext4_mark_inode_dirty(handle, inode);
4571         ext4_handle_sync(handle);
4572         ext4_journal_stop(handle);
4573         ext4_std_error(inode->i_sb, err);
4574
4575         return err;
4576 }
4577
4578 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4579 {
4580         return !buffer_mapped(bh);
4581 }
4582
4583 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4584 {
4585         struct page *page = vmf->page;
4586         loff_t size;
4587         unsigned long len;
4588         int ret;
4589         struct file *file = vma->vm_file;
4590         struct inode *inode = file->f_path.dentry->d_inode;
4591         struct address_space *mapping = inode->i_mapping;
4592         handle_t *handle;
4593         get_block_t *get_block;
4594         int retries = 0;
4595
4596         /*
4597          * This check is racy but catches the common case. We rely on
4598          * __block_page_mkwrite() to do a reliable check.
4599          */
4600         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4601         /* Delalloc case is easy... */
4602         if (test_opt(inode->i_sb, DELALLOC) &&
4603             !ext4_should_journal_data(inode) &&
4604             !ext4_nonda_switch(inode->i_sb)) {
4605                 do {
4606                         ret = __block_page_mkwrite(vma, vmf,
4607                                                    ext4_da_get_block_prep);
4608                 } while (ret == -ENOSPC &&
4609                        ext4_should_retry_alloc(inode->i_sb, &retries));
4610                 goto out_ret;
4611         }
4612
4613         lock_page(page);
4614         size = i_size_read(inode);
4615         /* Page got truncated from under us? */
4616         if (page->mapping != mapping || page_offset(page) > size) {
4617                 unlock_page(page);
4618                 ret = VM_FAULT_NOPAGE;
4619                 goto out;
4620         }
4621
4622         if (page->index == size >> PAGE_CACHE_SHIFT)
4623                 len = size & ~PAGE_CACHE_MASK;
4624         else
4625                 len = PAGE_CACHE_SIZE;
4626         /*
4627          * Return if we have all the buffers mapped. This avoids the need to do
4628          * journal_start/journal_stop which can block and take a long time
4629          */
4630         if (page_has_buffers(page)) {
4631                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4632                                         ext4_bh_unmapped)) {
4633                         /* Wait so that we don't change page under IO */
4634                         wait_on_page_writeback(page);
4635                         ret = VM_FAULT_LOCKED;
4636                         goto out;
4637                 }
4638         }
4639         unlock_page(page);
4640         /* OK, we need to fill the hole... */
4641         if (ext4_should_dioread_nolock(inode))
4642                 get_block = ext4_get_block_write;
4643         else
4644                 get_block = ext4_get_block;
4645 retry_alloc:
4646         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4647         if (IS_ERR(handle)) {
4648                 ret = VM_FAULT_SIGBUS;
4649                 goto out;
4650         }
4651         ret = __block_page_mkwrite(vma, vmf, get_block);
4652         if (!ret && ext4_should_journal_data(inode)) {
4653                 if (walk_page_buffers(handle, page_buffers(page), 0,
4654                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4655                         unlock_page(page);
4656                         ret = VM_FAULT_SIGBUS;
4657                         ext4_journal_stop(handle);
4658                         goto out;
4659                 }
4660                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4661         }
4662         ext4_journal_stop(handle);
4663         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4664                 goto retry_alloc;
4665 out_ret:
4666         ret = block_page_mkwrite_return(ret);
4667 out:
4668         return ret;
4669 }