ext4: fix ext4_evict_inode() racing against workqueue processing code
[pandora-kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = raw->i_checksum_lo;
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = raw->i_checksum_hi;
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = csum_lo;
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = csum_hi;
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138                 struct inode *inode, struct page *page, loff_t from,
139                 loff_t length, int flags);
140
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146         int ea_blocks = EXT4_I(inode)->i_file_acl ?
147                 (inode->i_sb->s_blocksize >> 9) : 0;
148
149         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158                                  int nblocks)
159 {
160         int ret;
161
162         /*
163          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164          * moment, get_block can be called only for blocks inside i_size since
165          * page cache has been already dropped and writes are blocked by
166          * i_mutex. So we can safely drop the i_data_sem here.
167          */
168         BUG_ON(EXT4_JOURNAL(inode) == NULL);
169         jbd_debug(2, "restarting handle %p\n", handle);
170         up_write(&EXT4_I(inode)->i_data_sem);
171         ret = ext4_journal_restart(handle, nblocks);
172         down_write(&EXT4_I(inode)->i_data_sem);
173         ext4_discard_preallocations(inode);
174
175         return ret;
176 }
177
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183         handle_t *handle;
184         int err;
185
186         trace_ext4_evict_inode(inode);
187
188         if (inode->i_nlink) {
189                 /*
190                  * When journalling data dirty buffers are tracked only in the
191                  * journal. So although mm thinks everything is clean and
192                  * ready for reaping the inode might still have some pages to
193                  * write in the running transaction or waiting to be
194                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
195                  * (via truncate_inode_pages()) to discard these buffers can
196                  * cause data loss. Also even if we did not discard these
197                  * buffers, we would have no way to find them after the inode
198                  * is reaped and thus user could see stale data if he tries to
199                  * read them before the transaction is checkpointed. So be
200                  * careful and force everything to disk here... We use
201                  * ei->i_datasync_tid to store the newest transaction
202                  * containing inode's data.
203                  *
204                  * Note that directories do not have this problem because they
205                  * don't use page cache.
206                  */
207                 if (ext4_should_journal_data(inode) &&
208                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
209                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
210                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
211
212                         jbd2_log_start_commit(journal, commit_tid);
213                         jbd2_log_wait_commit(journal, commit_tid);
214                         filemap_write_and_wait(&inode->i_data);
215                 }
216                 truncate_inode_pages(&inode->i_data, 0);
217                 ext4_ioend_shutdown(inode);
218                 goto no_delete;
219         }
220
221         if (!is_bad_inode(inode))
222                 dquot_initialize(inode);
223
224         if (ext4_should_order_data(inode))
225                 ext4_begin_ordered_truncate(inode, 0);
226         truncate_inode_pages(&inode->i_data, 0);
227         ext4_ioend_shutdown(inode);
228
229         if (is_bad_inode(inode))
230                 goto no_delete;
231
232         /*
233          * Protect us against freezing - iput() caller didn't have to have any
234          * protection against it
235          */
236         sb_start_intwrite(inode->i_sb);
237         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238                                     ext4_blocks_for_truncate(inode)+3);
239         if (IS_ERR(handle)) {
240                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
241                 /*
242                  * If we're going to skip the normal cleanup, we still need to
243                  * make sure that the in-core orphan linked list is properly
244                  * cleaned up.
245                  */
246                 ext4_orphan_del(NULL, inode);
247                 sb_end_intwrite(inode->i_sb);
248                 goto no_delete;
249         }
250
251         if (IS_SYNC(inode))
252                 ext4_handle_sync(handle);
253         inode->i_size = 0;
254         err = ext4_mark_inode_dirty(handle, inode);
255         if (err) {
256                 ext4_warning(inode->i_sb,
257                              "couldn't mark inode dirty (err %d)", err);
258                 goto stop_handle;
259         }
260         if (inode->i_blocks)
261                 ext4_truncate(inode);
262
263         /*
264          * ext4_ext_truncate() doesn't reserve any slop when it
265          * restarts journal transactions; therefore there may not be
266          * enough credits left in the handle to remove the inode from
267          * the orphan list and set the dtime field.
268          */
269         if (!ext4_handle_has_enough_credits(handle, 3)) {
270                 err = ext4_journal_extend(handle, 3);
271                 if (err > 0)
272                         err = ext4_journal_restart(handle, 3);
273                 if (err != 0) {
274                         ext4_warning(inode->i_sb,
275                                      "couldn't extend journal (err %d)", err);
276                 stop_handle:
277                         ext4_journal_stop(handle);
278                         ext4_orphan_del(NULL, inode);
279                         sb_end_intwrite(inode->i_sb);
280                         goto no_delete;
281                 }
282         }
283
284         /*
285          * Kill off the orphan record which ext4_truncate created.
286          * AKPM: I think this can be inside the above `if'.
287          * Note that ext4_orphan_del() has to be able to cope with the
288          * deletion of a non-existent orphan - this is because we don't
289          * know if ext4_truncate() actually created an orphan record.
290          * (Well, we could do this if we need to, but heck - it works)
291          */
292         ext4_orphan_del(handle, inode);
293         EXT4_I(inode)->i_dtime  = get_seconds();
294
295         /*
296          * One subtle ordering requirement: if anything has gone wrong
297          * (transaction abort, IO errors, whatever), then we can still
298          * do these next steps (the fs will already have been marked as
299          * having errors), but we can't free the inode if the mark_dirty
300          * fails.
301          */
302         if (ext4_mark_inode_dirty(handle, inode))
303                 /* If that failed, just do the required in-core inode clear. */
304                 ext4_clear_inode(inode);
305         else
306                 ext4_free_inode(handle, inode);
307         ext4_journal_stop(handle);
308         sb_end_intwrite(inode->i_sb);
309         return;
310 no_delete:
311         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
312 }
313
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317         return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320
321 /*
322  * Calculate the number of metadata blocks need to reserve
323  * to allocate a block located at @lblock
324  */
325 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326 {
327         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328                 return ext4_ext_calc_metadata_amount(inode, lblock);
329
330         return ext4_ind_calc_metadata_amount(inode, lblock);
331 }
332
333 /*
334  * Called with i_data_sem down, which is important since we can call
335  * ext4_discard_preallocations() from here.
336  */
337 void ext4_da_update_reserve_space(struct inode *inode,
338                                         int used, int quota_claim)
339 {
340         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341         struct ext4_inode_info *ei = EXT4_I(inode);
342
343         spin_lock(&ei->i_block_reservation_lock);
344         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345         if (unlikely(used > ei->i_reserved_data_blocks)) {
346                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347                          "with only %d reserved data blocks",
348                          __func__, inode->i_ino, used,
349                          ei->i_reserved_data_blocks);
350                 WARN_ON(1);
351                 used = ei->i_reserved_data_blocks;
352         }
353
354         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
356                         "with only %d reserved metadata blocks "
357                         "(releasing %d blocks with reserved %d data blocks)",
358                         inode->i_ino, ei->i_allocated_meta_blocks,
359                              ei->i_reserved_meta_blocks, used,
360                              ei->i_reserved_data_blocks);
361                 WARN_ON(1);
362                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
363         }
364
365         /* Update per-inode reservations */
366         ei->i_reserved_data_blocks -= used;
367         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369                            used + ei->i_allocated_meta_blocks);
370         ei->i_allocated_meta_blocks = 0;
371
372         if (ei->i_reserved_data_blocks == 0) {
373                 /*
374                  * We can release all of the reserved metadata blocks
375                  * only when we have written all of the delayed
376                  * allocation blocks.
377                  */
378                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379                                    ei->i_reserved_meta_blocks);
380                 ei->i_reserved_meta_blocks = 0;
381                 ei->i_da_metadata_calc_len = 0;
382         }
383         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384
385         /* Update quota subsystem for data blocks */
386         if (quota_claim)
387                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
388         else {
389                 /*
390                  * We did fallocate with an offset that is already delayed
391                  * allocated. So on delayed allocated writeback we should
392                  * not re-claim the quota for fallocated blocks.
393                  */
394                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395         }
396
397         /*
398          * If we have done all the pending block allocations and if
399          * there aren't any writers on the inode, we can discard the
400          * inode's preallocations.
401          */
402         if ((ei->i_reserved_data_blocks == 0) &&
403             (atomic_read(&inode->i_writecount) == 0))
404                 ext4_discard_preallocations(inode);
405 }
406
407 static int __check_block_validity(struct inode *inode, const char *func,
408                                 unsigned int line,
409                                 struct ext4_map_blocks *map)
410 {
411         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
412                                    map->m_len)) {
413                 ext4_error_inode(inode, func, line, map->m_pblk,
414                                  "lblock %lu mapped to illegal pblock "
415                                  "(length %d)", (unsigned long) map->m_lblk,
416                                  map->m_len);
417                 return -EIO;
418         }
419         return 0;
420 }
421
422 #define check_block_validity(inode, map)        \
423         __check_block_validity((inode), __func__, __LINE__, (map))
424
425 /*
426  * Return the number of contiguous dirty pages in a given inode
427  * starting at page frame idx.
428  */
429 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
430                                     unsigned int max_pages)
431 {
432         struct address_space *mapping = inode->i_mapping;
433         pgoff_t index;
434         struct pagevec pvec;
435         pgoff_t num = 0;
436         int i, nr_pages, done = 0;
437
438         if (max_pages == 0)
439                 return 0;
440         pagevec_init(&pvec, 0);
441         while (!done) {
442                 index = idx;
443                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
444                                               PAGECACHE_TAG_DIRTY,
445                                               (pgoff_t)PAGEVEC_SIZE);
446                 if (nr_pages == 0)
447                         break;
448                 for (i = 0; i < nr_pages; i++) {
449                         struct page *page = pvec.pages[i];
450                         struct buffer_head *bh, *head;
451
452                         lock_page(page);
453                         if (unlikely(page->mapping != mapping) ||
454                             !PageDirty(page) ||
455                             PageWriteback(page) ||
456                             page->index != idx) {
457                                 done = 1;
458                                 unlock_page(page);
459                                 break;
460                         }
461                         if (page_has_buffers(page)) {
462                                 bh = head = page_buffers(page);
463                                 do {
464                                         if (!buffer_delay(bh) &&
465                                             !buffer_unwritten(bh))
466                                                 done = 1;
467                                         bh = bh->b_this_page;
468                                 } while (!done && (bh != head));
469                         }
470                         unlock_page(page);
471                         if (done)
472                                 break;
473                         idx++;
474                         num++;
475                         if (num >= max_pages) {
476                                 done = 1;
477                                 break;
478                         }
479                 }
480                 pagevec_release(&pvec);
481         }
482         return num;
483 }
484
485 #ifdef ES_AGGRESSIVE_TEST
486 static void ext4_map_blocks_es_recheck(handle_t *handle,
487                                        struct inode *inode,
488                                        struct ext4_map_blocks *es_map,
489                                        struct ext4_map_blocks *map,
490                                        int flags)
491 {
492         int retval;
493
494         map->m_flags = 0;
495         /*
496          * There is a race window that the result is not the same.
497          * e.g. xfstests #223 when dioread_nolock enables.  The reason
498          * is that we lookup a block mapping in extent status tree with
499          * out taking i_data_sem.  So at the time the unwritten extent
500          * could be converted.
501          */
502         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
503                 down_read((&EXT4_I(inode)->i_data_sem));
504         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
505                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
506                                              EXT4_GET_BLOCKS_KEEP_SIZE);
507         } else {
508                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
509                                              EXT4_GET_BLOCKS_KEEP_SIZE);
510         }
511         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512                 up_read((&EXT4_I(inode)->i_data_sem));
513         /*
514          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
515          * because it shouldn't be marked in es_map->m_flags.
516          */
517         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
518
519         /*
520          * We don't check m_len because extent will be collpased in status
521          * tree.  So the m_len might not equal.
522          */
523         if (es_map->m_lblk != map->m_lblk ||
524             es_map->m_flags != map->m_flags ||
525             es_map->m_pblk != map->m_pblk) {
526                 printk("ES cache assertation failed for inode: %lu "
527                        "es_cached ex [%d/%d/%llu/%x] != "
528                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
529                        inode->i_ino, es_map->m_lblk, es_map->m_len,
530                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
531                        map->m_len, map->m_pblk, map->m_flags,
532                        retval, flags);
533         }
534 }
535 #endif /* ES_AGGRESSIVE_TEST */
536
537 /*
538  * The ext4_map_blocks() function tries to look up the requested blocks,
539  * and returns if the blocks are already mapped.
540  *
541  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
542  * and store the allocated blocks in the result buffer head and mark it
543  * mapped.
544  *
545  * If file type is extents based, it will call ext4_ext_map_blocks(),
546  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
547  * based files
548  *
549  * On success, it returns the number of blocks being mapped or allocate.
550  * if create==0 and the blocks are pre-allocated and uninitialized block,
551  * the result buffer head is unmapped. If the create ==1, it will make sure
552  * the buffer head is mapped.
553  *
554  * It returns 0 if plain look up failed (blocks have not been allocated), in
555  * that case, buffer head is unmapped
556  *
557  * It returns the error in case of allocation failure.
558  */
559 int ext4_map_blocks(handle_t *handle, struct inode *inode,
560                     struct ext4_map_blocks *map, int flags)
561 {
562         struct extent_status es;
563         int retval;
564 #ifdef ES_AGGRESSIVE_TEST
565         struct ext4_map_blocks orig_map;
566
567         memcpy(&orig_map, map, sizeof(*map));
568 #endif
569
570         map->m_flags = 0;
571         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
572                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
573                   (unsigned long) map->m_lblk);
574
575         /* Lookup extent status tree firstly */
576         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
577                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
578                         map->m_pblk = ext4_es_pblock(&es) +
579                                         map->m_lblk - es.es_lblk;
580                         map->m_flags |= ext4_es_is_written(&es) ?
581                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
582                         retval = es.es_len - (map->m_lblk - es.es_lblk);
583                         if (retval > map->m_len)
584                                 retval = map->m_len;
585                         map->m_len = retval;
586                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
587                         retval = 0;
588                 } else {
589                         BUG_ON(1);
590                 }
591 #ifdef ES_AGGRESSIVE_TEST
592                 ext4_map_blocks_es_recheck(handle, inode, map,
593                                            &orig_map, flags);
594 #endif
595                 goto found;
596         }
597
598         /*
599          * Try to see if we can get the block without requesting a new
600          * file system block.
601          */
602         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
603                 down_read((&EXT4_I(inode)->i_data_sem));
604         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
605                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
606                                              EXT4_GET_BLOCKS_KEEP_SIZE);
607         } else {
608                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
609                                              EXT4_GET_BLOCKS_KEEP_SIZE);
610         }
611         if (retval > 0) {
612                 int ret;
613                 unsigned long long status;
614
615 #ifdef ES_AGGRESSIVE_TEST
616                 if (retval != map->m_len) {
617                         printk("ES len assertation failed for inode: %lu "
618                                "retval %d != map->m_len %d "
619                                "in %s (lookup)\n", inode->i_ino, retval,
620                                map->m_len, __func__);
621                 }
622 #endif
623
624                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
625                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
626                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
627                     ext4_find_delalloc_range(inode, map->m_lblk,
628                                              map->m_lblk + map->m_len - 1))
629                         status |= EXTENT_STATUS_DELAYED;
630                 ret = ext4_es_insert_extent(inode, map->m_lblk,
631                                             map->m_len, map->m_pblk, status);
632                 if (ret < 0)
633                         retval = ret;
634         }
635         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
636                 up_read((&EXT4_I(inode)->i_data_sem));
637
638 found:
639         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
640                 int ret = check_block_validity(inode, map);
641                 if (ret != 0)
642                         return ret;
643         }
644
645         /* If it is only a block(s) look up */
646         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
647                 return retval;
648
649         /*
650          * Returns if the blocks have already allocated
651          *
652          * Note that if blocks have been preallocated
653          * ext4_ext_get_block() returns the create = 0
654          * with buffer head unmapped.
655          */
656         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
657                 return retval;
658
659         /*
660          * Here we clear m_flags because after allocating an new extent,
661          * it will be set again.
662          */
663         map->m_flags &= ~EXT4_MAP_FLAGS;
664
665         /*
666          * New blocks allocate and/or writing to uninitialized extent
667          * will possibly result in updating i_data, so we take
668          * the write lock of i_data_sem, and call get_blocks()
669          * with create == 1 flag.
670          */
671         down_write((&EXT4_I(inode)->i_data_sem));
672
673         /*
674          * if the caller is from delayed allocation writeout path
675          * we have already reserved fs blocks for allocation
676          * let the underlying get_block() function know to
677          * avoid double accounting
678          */
679         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
680                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
681         /*
682          * We need to check for EXT4 here because migrate
683          * could have changed the inode type in between
684          */
685         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
686                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
687         } else {
688                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
689
690                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
691                         /*
692                          * We allocated new blocks which will result in
693                          * i_data's format changing.  Force the migrate
694                          * to fail by clearing migrate flags
695                          */
696                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
697                 }
698
699                 /*
700                  * Update reserved blocks/metadata blocks after successful
701                  * block allocation which had been deferred till now. We don't
702                  * support fallocate for non extent files. So we can update
703                  * reserve space here.
704                  */
705                 if ((retval > 0) &&
706                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
707                         ext4_da_update_reserve_space(inode, retval, 1);
708         }
709         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
710                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
711
712         if (retval > 0) {
713                 int ret;
714                 unsigned long long status;
715
716 #ifdef ES_AGGRESSIVE_TEST
717                 if (retval != map->m_len) {
718                         printk("ES len assertation failed for inode: %lu "
719                                "retval %d != map->m_len %d "
720                                "in %s (allocation)\n", inode->i_ino, retval,
721                                map->m_len, __func__);
722                 }
723 #endif
724
725                 /*
726                  * If the extent has been zeroed out, we don't need to update
727                  * extent status tree.
728                  */
729                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
730                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
731                         if (ext4_es_is_written(&es))
732                                 goto has_zeroout;
733                 }
734                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
735                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
736                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
737                     ext4_find_delalloc_range(inode, map->m_lblk,
738                                              map->m_lblk + map->m_len - 1))
739                         status |= EXTENT_STATUS_DELAYED;
740                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
741                                             map->m_pblk, status);
742                 if (ret < 0)
743                         retval = ret;
744         }
745
746 has_zeroout:
747         up_write((&EXT4_I(inode)->i_data_sem));
748         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
749                 int ret = check_block_validity(inode, map);
750                 if (ret != 0)
751                         return ret;
752         }
753         return retval;
754 }
755
756 /* Maximum number of blocks we map for direct IO at once. */
757 #define DIO_MAX_BLOCKS 4096
758
759 static int _ext4_get_block(struct inode *inode, sector_t iblock,
760                            struct buffer_head *bh, int flags)
761 {
762         handle_t *handle = ext4_journal_current_handle();
763         struct ext4_map_blocks map;
764         int ret = 0, started = 0;
765         int dio_credits;
766
767         if (ext4_has_inline_data(inode))
768                 return -ERANGE;
769
770         map.m_lblk = iblock;
771         map.m_len = bh->b_size >> inode->i_blkbits;
772
773         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
774                 /* Direct IO write... */
775                 if (map.m_len > DIO_MAX_BLOCKS)
776                         map.m_len = DIO_MAX_BLOCKS;
777                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
778                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
779                                             dio_credits);
780                 if (IS_ERR(handle)) {
781                         ret = PTR_ERR(handle);
782                         return ret;
783                 }
784                 started = 1;
785         }
786
787         ret = ext4_map_blocks(handle, inode, &map, flags);
788         if (ret > 0) {
789                 map_bh(bh, inode->i_sb, map.m_pblk);
790                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
791                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
792                 ret = 0;
793         }
794         if (started)
795                 ext4_journal_stop(handle);
796         return ret;
797 }
798
799 int ext4_get_block(struct inode *inode, sector_t iblock,
800                    struct buffer_head *bh, int create)
801 {
802         return _ext4_get_block(inode, iblock, bh,
803                                create ? EXT4_GET_BLOCKS_CREATE : 0);
804 }
805
806 /*
807  * `handle' can be NULL if create is zero
808  */
809 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
810                                 ext4_lblk_t block, int create, int *errp)
811 {
812         struct ext4_map_blocks map;
813         struct buffer_head *bh;
814         int fatal = 0, err;
815
816         J_ASSERT(handle != NULL || create == 0);
817
818         map.m_lblk = block;
819         map.m_len = 1;
820         err = ext4_map_blocks(handle, inode, &map,
821                               create ? EXT4_GET_BLOCKS_CREATE : 0);
822
823         /* ensure we send some value back into *errp */
824         *errp = 0;
825
826         if (create && err == 0)
827                 err = -ENOSPC;  /* should never happen */
828         if (err < 0)
829                 *errp = err;
830         if (err <= 0)
831                 return NULL;
832
833         bh = sb_getblk(inode->i_sb, map.m_pblk);
834         if (unlikely(!bh)) {
835                 *errp = -ENOMEM;
836                 return NULL;
837         }
838         if (map.m_flags & EXT4_MAP_NEW) {
839                 J_ASSERT(create != 0);
840                 J_ASSERT(handle != NULL);
841
842                 /*
843                  * Now that we do not always journal data, we should
844                  * keep in mind whether this should always journal the
845                  * new buffer as metadata.  For now, regular file
846                  * writes use ext4_get_block instead, so it's not a
847                  * problem.
848                  */
849                 lock_buffer(bh);
850                 BUFFER_TRACE(bh, "call get_create_access");
851                 fatal = ext4_journal_get_create_access(handle, bh);
852                 if (!fatal && !buffer_uptodate(bh)) {
853                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
854                         set_buffer_uptodate(bh);
855                 }
856                 unlock_buffer(bh);
857                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
858                 err = ext4_handle_dirty_metadata(handle, inode, bh);
859                 if (!fatal)
860                         fatal = err;
861         } else {
862                 BUFFER_TRACE(bh, "not a new buffer");
863         }
864         if (fatal) {
865                 *errp = fatal;
866                 brelse(bh);
867                 bh = NULL;
868         }
869         return bh;
870 }
871
872 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
873                                ext4_lblk_t block, int create, int *err)
874 {
875         struct buffer_head *bh;
876
877         bh = ext4_getblk(handle, inode, block, create, err);
878         if (!bh)
879                 return bh;
880         if (buffer_uptodate(bh))
881                 return bh;
882         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
883         wait_on_buffer(bh);
884         if (buffer_uptodate(bh))
885                 return bh;
886         put_bh(bh);
887         *err = -EIO;
888         return NULL;
889 }
890
891 int ext4_walk_page_buffers(handle_t *handle,
892                            struct buffer_head *head,
893                            unsigned from,
894                            unsigned to,
895                            int *partial,
896                            int (*fn)(handle_t *handle,
897                                      struct buffer_head *bh))
898 {
899         struct buffer_head *bh;
900         unsigned block_start, block_end;
901         unsigned blocksize = head->b_size;
902         int err, ret = 0;
903         struct buffer_head *next;
904
905         for (bh = head, block_start = 0;
906              ret == 0 && (bh != head || !block_start);
907              block_start = block_end, bh = next) {
908                 next = bh->b_this_page;
909                 block_end = block_start + blocksize;
910                 if (block_end <= from || block_start >= to) {
911                         if (partial && !buffer_uptodate(bh))
912                                 *partial = 1;
913                         continue;
914                 }
915                 err = (*fn)(handle, bh);
916                 if (!ret)
917                         ret = err;
918         }
919         return ret;
920 }
921
922 /*
923  * To preserve ordering, it is essential that the hole instantiation and
924  * the data write be encapsulated in a single transaction.  We cannot
925  * close off a transaction and start a new one between the ext4_get_block()
926  * and the commit_write().  So doing the jbd2_journal_start at the start of
927  * prepare_write() is the right place.
928  *
929  * Also, this function can nest inside ext4_writepage().  In that case, we
930  * *know* that ext4_writepage() has generated enough buffer credits to do the
931  * whole page.  So we won't block on the journal in that case, which is good,
932  * because the caller may be PF_MEMALLOC.
933  *
934  * By accident, ext4 can be reentered when a transaction is open via
935  * quota file writes.  If we were to commit the transaction while thus
936  * reentered, there can be a deadlock - we would be holding a quota
937  * lock, and the commit would never complete if another thread had a
938  * transaction open and was blocking on the quota lock - a ranking
939  * violation.
940  *
941  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
942  * will _not_ run commit under these circumstances because handle->h_ref
943  * is elevated.  We'll still have enough credits for the tiny quotafile
944  * write.
945  */
946 int do_journal_get_write_access(handle_t *handle,
947                                 struct buffer_head *bh)
948 {
949         int dirty = buffer_dirty(bh);
950         int ret;
951
952         if (!buffer_mapped(bh) || buffer_freed(bh))
953                 return 0;
954         /*
955          * __block_write_begin() could have dirtied some buffers. Clean
956          * the dirty bit as jbd2_journal_get_write_access() could complain
957          * otherwise about fs integrity issues. Setting of the dirty bit
958          * by __block_write_begin() isn't a real problem here as we clear
959          * the bit before releasing a page lock and thus writeback cannot
960          * ever write the buffer.
961          */
962         if (dirty)
963                 clear_buffer_dirty(bh);
964         ret = ext4_journal_get_write_access(handle, bh);
965         if (!ret && dirty)
966                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
967         return ret;
968 }
969
970 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
971                    struct buffer_head *bh_result, int create);
972 static int ext4_write_begin(struct file *file, struct address_space *mapping,
973                             loff_t pos, unsigned len, unsigned flags,
974                             struct page **pagep, void **fsdata)
975 {
976         struct inode *inode = mapping->host;
977         int ret, needed_blocks;
978         handle_t *handle;
979         int retries = 0;
980         struct page *page;
981         pgoff_t index;
982         unsigned from, to;
983
984         trace_ext4_write_begin(inode, pos, len, flags);
985         /*
986          * Reserve one block more for addition to orphan list in case
987          * we allocate blocks but write fails for some reason
988          */
989         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
990         index = pos >> PAGE_CACHE_SHIFT;
991         from = pos & (PAGE_CACHE_SIZE - 1);
992         to = from + len;
993
994         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
995                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
996                                                     flags, pagep);
997                 if (ret < 0)
998                         return ret;
999                 if (ret == 1)
1000                         return 0;
1001         }
1002
1003         /*
1004          * grab_cache_page_write_begin() can take a long time if the
1005          * system is thrashing due to memory pressure, or if the page
1006          * is being written back.  So grab it first before we start
1007          * the transaction handle.  This also allows us to allocate
1008          * the page (if needed) without using GFP_NOFS.
1009          */
1010 retry_grab:
1011         page = grab_cache_page_write_begin(mapping, index, flags);
1012         if (!page)
1013                 return -ENOMEM;
1014         unlock_page(page);
1015
1016 retry_journal:
1017         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1018         if (IS_ERR(handle)) {
1019                 page_cache_release(page);
1020                 return PTR_ERR(handle);
1021         }
1022
1023         lock_page(page);
1024         if (page->mapping != mapping) {
1025                 /* The page got truncated from under us */
1026                 unlock_page(page);
1027                 page_cache_release(page);
1028                 ext4_journal_stop(handle);
1029                 goto retry_grab;
1030         }
1031         wait_on_page_writeback(page);
1032
1033         if (ext4_should_dioread_nolock(inode))
1034                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1035         else
1036                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1037
1038         if (!ret && ext4_should_journal_data(inode)) {
1039                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1040                                              from, to, NULL,
1041                                              do_journal_get_write_access);
1042         }
1043
1044         if (ret) {
1045                 unlock_page(page);
1046                 /*
1047                  * __block_write_begin may have instantiated a few blocks
1048                  * outside i_size.  Trim these off again. Don't need
1049                  * i_size_read because we hold i_mutex.
1050                  *
1051                  * Add inode to orphan list in case we crash before
1052                  * truncate finishes
1053                  */
1054                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1055                         ext4_orphan_add(handle, inode);
1056
1057                 ext4_journal_stop(handle);
1058                 if (pos + len > inode->i_size) {
1059                         ext4_truncate_failed_write(inode);
1060                         /*
1061                          * If truncate failed early the inode might
1062                          * still be on the orphan list; we need to
1063                          * make sure the inode is removed from the
1064                          * orphan list in that case.
1065                          */
1066                         if (inode->i_nlink)
1067                                 ext4_orphan_del(NULL, inode);
1068                 }
1069
1070                 if (ret == -ENOSPC &&
1071                     ext4_should_retry_alloc(inode->i_sb, &retries))
1072                         goto retry_journal;
1073                 page_cache_release(page);
1074                 return ret;
1075         }
1076         *pagep = page;
1077         return ret;
1078 }
1079
1080 /* For write_end() in data=journal mode */
1081 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1082 {
1083         if (!buffer_mapped(bh) || buffer_freed(bh))
1084                 return 0;
1085         set_buffer_uptodate(bh);
1086         return ext4_handle_dirty_metadata(handle, NULL, bh);
1087 }
1088
1089 static int ext4_generic_write_end(struct file *file,
1090                                   struct address_space *mapping,
1091                                   loff_t pos, unsigned len, unsigned copied,
1092                                   struct page *page, void *fsdata)
1093 {
1094         int i_size_changed = 0;
1095         struct inode *inode = mapping->host;
1096         handle_t *handle = ext4_journal_current_handle();
1097
1098         if (ext4_has_inline_data(inode))
1099                 copied = ext4_write_inline_data_end(inode, pos, len,
1100                                                     copied, page);
1101         else
1102                 copied = block_write_end(file, mapping, pos,
1103                                          len, copied, page, fsdata);
1104
1105         /*
1106          * No need to use i_size_read() here, the i_size
1107          * cannot change under us because we hold i_mutex.
1108          *
1109          * But it's important to update i_size while still holding page lock:
1110          * page writeout could otherwise come in and zero beyond i_size.
1111          */
1112         if (pos + copied > inode->i_size) {
1113                 i_size_write(inode, pos + copied);
1114                 i_size_changed = 1;
1115         }
1116
1117         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1118                 /* We need to mark inode dirty even if
1119                  * new_i_size is less that inode->i_size
1120                  * bu greater than i_disksize.(hint delalloc)
1121                  */
1122                 ext4_update_i_disksize(inode, (pos + copied));
1123                 i_size_changed = 1;
1124         }
1125         unlock_page(page);
1126         page_cache_release(page);
1127
1128         /*
1129          * Don't mark the inode dirty under page lock. First, it unnecessarily
1130          * makes the holding time of page lock longer. Second, it forces lock
1131          * ordering of page lock and transaction start for journaling
1132          * filesystems.
1133          */
1134         if (i_size_changed)
1135                 ext4_mark_inode_dirty(handle, inode);
1136
1137         return copied;
1138 }
1139
1140 /*
1141  * We need to pick up the new inode size which generic_commit_write gave us
1142  * `file' can be NULL - eg, when called from page_symlink().
1143  *
1144  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1145  * buffers are managed internally.
1146  */
1147 static int ext4_ordered_write_end(struct file *file,
1148                                   struct address_space *mapping,
1149                                   loff_t pos, unsigned len, unsigned copied,
1150                                   struct page *page, void *fsdata)
1151 {
1152         handle_t *handle = ext4_journal_current_handle();
1153         struct inode *inode = mapping->host;
1154         int ret = 0, ret2;
1155
1156         trace_ext4_ordered_write_end(inode, pos, len, copied);
1157         ret = ext4_jbd2_file_inode(handle, inode);
1158
1159         if (ret == 0) {
1160                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1161                                                         page, fsdata);
1162                 copied = ret2;
1163                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1164                         /* if we have allocated more blocks and copied
1165                          * less. We will have blocks allocated outside
1166                          * inode->i_size. So truncate them
1167                          */
1168                         ext4_orphan_add(handle, inode);
1169                 if (ret2 < 0)
1170                         ret = ret2;
1171         } else {
1172                 unlock_page(page);
1173                 page_cache_release(page);
1174         }
1175
1176         ret2 = ext4_journal_stop(handle);
1177         if (!ret)
1178                 ret = ret2;
1179
1180         if (pos + len > inode->i_size) {
1181                 ext4_truncate_failed_write(inode);
1182                 /*
1183                  * If truncate failed early the inode might still be
1184                  * on the orphan list; we need to make sure the inode
1185                  * is removed from the orphan list in that case.
1186                  */
1187                 if (inode->i_nlink)
1188                         ext4_orphan_del(NULL, inode);
1189         }
1190
1191
1192         return ret ? ret : copied;
1193 }
1194
1195 static int ext4_writeback_write_end(struct file *file,
1196                                     struct address_space *mapping,
1197                                     loff_t pos, unsigned len, unsigned copied,
1198                                     struct page *page, void *fsdata)
1199 {
1200         handle_t *handle = ext4_journal_current_handle();
1201         struct inode *inode = mapping->host;
1202         int ret = 0, ret2;
1203
1204         trace_ext4_writeback_write_end(inode, pos, len, copied);
1205         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1206                                                         page, fsdata);
1207         copied = ret2;
1208         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1209                 /* if we have allocated more blocks and copied
1210                  * less. We will have blocks allocated outside
1211                  * inode->i_size. So truncate them
1212                  */
1213                 ext4_orphan_add(handle, inode);
1214
1215         if (ret2 < 0)
1216                 ret = ret2;
1217
1218         ret2 = ext4_journal_stop(handle);
1219         if (!ret)
1220                 ret = ret2;
1221
1222         if (pos + len > inode->i_size) {
1223                 ext4_truncate_failed_write(inode);
1224                 /*
1225                  * If truncate failed early the inode might still be
1226                  * on the orphan list; we need to make sure the inode
1227                  * is removed from the orphan list in that case.
1228                  */
1229                 if (inode->i_nlink)
1230                         ext4_orphan_del(NULL, inode);
1231         }
1232
1233         return ret ? ret : copied;
1234 }
1235
1236 static int ext4_journalled_write_end(struct file *file,
1237                                      struct address_space *mapping,
1238                                      loff_t pos, unsigned len, unsigned copied,
1239                                      struct page *page, void *fsdata)
1240 {
1241         handle_t *handle = ext4_journal_current_handle();
1242         struct inode *inode = mapping->host;
1243         int ret = 0, ret2;
1244         int partial = 0;
1245         unsigned from, to;
1246         loff_t new_i_size;
1247
1248         trace_ext4_journalled_write_end(inode, pos, len, copied);
1249         from = pos & (PAGE_CACHE_SIZE - 1);
1250         to = from + len;
1251
1252         BUG_ON(!ext4_handle_valid(handle));
1253
1254         if (ext4_has_inline_data(inode))
1255                 copied = ext4_write_inline_data_end(inode, pos, len,
1256                                                     copied, page);
1257         else {
1258                 if (copied < len) {
1259                         if (!PageUptodate(page))
1260                                 copied = 0;
1261                         page_zero_new_buffers(page, from+copied, to);
1262                 }
1263
1264                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1265                                              to, &partial, write_end_fn);
1266                 if (!partial)
1267                         SetPageUptodate(page);
1268         }
1269         new_i_size = pos + copied;
1270         if (new_i_size > inode->i_size)
1271                 i_size_write(inode, pos+copied);
1272         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1273         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1274         if (new_i_size > EXT4_I(inode)->i_disksize) {
1275                 ext4_update_i_disksize(inode, new_i_size);
1276                 ret2 = ext4_mark_inode_dirty(handle, inode);
1277                 if (!ret)
1278                         ret = ret2;
1279         }
1280
1281         unlock_page(page);
1282         page_cache_release(page);
1283         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1284                 /* if we have allocated more blocks and copied
1285                  * less. We will have blocks allocated outside
1286                  * inode->i_size. So truncate them
1287                  */
1288                 ext4_orphan_add(handle, inode);
1289
1290         ret2 = ext4_journal_stop(handle);
1291         if (!ret)
1292                 ret = ret2;
1293         if (pos + len > inode->i_size) {
1294                 ext4_truncate_failed_write(inode);
1295                 /*
1296                  * If truncate failed early the inode might still be
1297                  * on the orphan list; we need to make sure the inode
1298                  * is removed from the orphan list in that case.
1299                  */
1300                 if (inode->i_nlink)
1301                         ext4_orphan_del(NULL, inode);
1302         }
1303
1304         return ret ? ret : copied;
1305 }
1306
1307 /*
1308  * Reserve a metadata for a single block located at lblock
1309  */
1310 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1311 {
1312         int retries = 0;
1313         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1314         struct ext4_inode_info *ei = EXT4_I(inode);
1315         unsigned int md_needed;
1316         ext4_lblk_t save_last_lblock;
1317         int save_len;
1318
1319         /*
1320          * recalculate the amount of metadata blocks to reserve
1321          * in order to allocate nrblocks
1322          * worse case is one extent per block
1323          */
1324 repeat:
1325         spin_lock(&ei->i_block_reservation_lock);
1326         /*
1327          * ext4_calc_metadata_amount() has side effects, which we have
1328          * to be prepared undo if we fail to claim space.
1329          */
1330         save_len = ei->i_da_metadata_calc_len;
1331         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1332         md_needed = EXT4_NUM_B2C(sbi,
1333                                  ext4_calc_metadata_amount(inode, lblock));
1334         trace_ext4_da_reserve_space(inode, md_needed);
1335
1336         /*
1337          * We do still charge estimated metadata to the sb though;
1338          * we cannot afford to run out of free blocks.
1339          */
1340         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1341                 ei->i_da_metadata_calc_len = save_len;
1342                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1343                 spin_unlock(&ei->i_block_reservation_lock);
1344                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1345                         cond_resched();
1346                         goto repeat;
1347                 }
1348                 return -ENOSPC;
1349         }
1350         ei->i_reserved_meta_blocks += md_needed;
1351         spin_unlock(&ei->i_block_reservation_lock);
1352
1353         return 0;       /* success */
1354 }
1355
1356 /*
1357  * Reserve a single cluster located at lblock
1358  */
1359 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1360 {
1361         int retries = 0;
1362         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1363         struct ext4_inode_info *ei = EXT4_I(inode);
1364         unsigned int md_needed;
1365         int ret;
1366         ext4_lblk_t save_last_lblock;
1367         int save_len;
1368
1369         /*
1370          * We will charge metadata quota at writeout time; this saves
1371          * us from metadata over-estimation, though we may go over by
1372          * a small amount in the end.  Here we just reserve for data.
1373          */
1374         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1375         if (ret)
1376                 return ret;
1377
1378         /*
1379          * recalculate the amount of metadata blocks to reserve
1380          * in order to allocate nrblocks
1381          * worse case is one extent per block
1382          */
1383 repeat:
1384         spin_lock(&ei->i_block_reservation_lock);
1385         /*
1386          * ext4_calc_metadata_amount() has side effects, which we have
1387          * to be prepared undo if we fail to claim space.
1388          */
1389         save_len = ei->i_da_metadata_calc_len;
1390         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1391         md_needed = EXT4_NUM_B2C(sbi,
1392                                  ext4_calc_metadata_amount(inode, lblock));
1393         trace_ext4_da_reserve_space(inode, md_needed);
1394
1395         /*
1396          * We do still charge estimated metadata to the sb though;
1397          * we cannot afford to run out of free blocks.
1398          */
1399         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1400                 ei->i_da_metadata_calc_len = save_len;
1401                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1402                 spin_unlock(&ei->i_block_reservation_lock);
1403                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1404                         cond_resched();
1405                         goto repeat;
1406                 }
1407                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1408                 return -ENOSPC;
1409         }
1410         ei->i_reserved_data_blocks++;
1411         ei->i_reserved_meta_blocks += md_needed;
1412         spin_unlock(&ei->i_block_reservation_lock);
1413
1414         return 0;       /* success */
1415 }
1416
1417 static void ext4_da_release_space(struct inode *inode, int to_free)
1418 {
1419         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1420         struct ext4_inode_info *ei = EXT4_I(inode);
1421
1422         if (!to_free)
1423                 return;         /* Nothing to release, exit */
1424
1425         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1426
1427         trace_ext4_da_release_space(inode, to_free);
1428         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1429                 /*
1430                  * if there aren't enough reserved blocks, then the
1431                  * counter is messed up somewhere.  Since this
1432                  * function is called from invalidate page, it's
1433                  * harmless to return without any action.
1434                  */
1435                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1436                          "ino %lu, to_free %d with only %d reserved "
1437                          "data blocks", inode->i_ino, to_free,
1438                          ei->i_reserved_data_blocks);
1439                 WARN_ON(1);
1440                 to_free = ei->i_reserved_data_blocks;
1441         }
1442         ei->i_reserved_data_blocks -= to_free;
1443
1444         if (ei->i_reserved_data_blocks == 0) {
1445                 /*
1446                  * We can release all of the reserved metadata blocks
1447                  * only when we have written all of the delayed
1448                  * allocation blocks.
1449                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1450                  * i_reserved_data_blocks, etc. refer to number of clusters.
1451                  */
1452                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1453                                    ei->i_reserved_meta_blocks);
1454                 ei->i_reserved_meta_blocks = 0;
1455                 ei->i_da_metadata_calc_len = 0;
1456         }
1457
1458         /* update fs dirty data blocks counter */
1459         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1460
1461         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1462
1463         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1464 }
1465
1466 static void ext4_da_page_release_reservation(struct page *page,
1467                                              unsigned long offset)
1468 {
1469         int to_release = 0;
1470         struct buffer_head *head, *bh;
1471         unsigned int curr_off = 0;
1472         struct inode *inode = page->mapping->host;
1473         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1474         int num_clusters;
1475         ext4_fsblk_t lblk;
1476
1477         head = page_buffers(page);
1478         bh = head;
1479         do {
1480                 unsigned int next_off = curr_off + bh->b_size;
1481
1482                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1483                         to_release++;
1484                         clear_buffer_delay(bh);
1485                 }
1486                 curr_off = next_off;
1487         } while ((bh = bh->b_this_page) != head);
1488
1489         if (to_release) {
1490                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1491                 ext4_es_remove_extent(inode, lblk, to_release);
1492         }
1493
1494         /* If we have released all the blocks belonging to a cluster, then we
1495          * need to release the reserved space for that cluster. */
1496         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1497         while (num_clusters > 0) {
1498                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1499                         ((num_clusters - 1) << sbi->s_cluster_bits);
1500                 if (sbi->s_cluster_ratio == 1 ||
1501                     !ext4_find_delalloc_cluster(inode, lblk))
1502                         ext4_da_release_space(inode, 1);
1503
1504                 num_clusters--;
1505         }
1506 }
1507
1508 /*
1509  * Delayed allocation stuff
1510  */
1511
1512 /*
1513  * mpage_da_submit_io - walks through extent of pages and try to write
1514  * them with writepage() call back
1515  *
1516  * @mpd->inode: inode
1517  * @mpd->first_page: first page of the extent
1518  * @mpd->next_page: page after the last page of the extent
1519  *
1520  * By the time mpage_da_submit_io() is called we expect all blocks
1521  * to be allocated. this may be wrong if allocation failed.
1522  *
1523  * As pages are already locked by write_cache_pages(), we can't use it
1524  */
1525 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1526                               struct ext4_map_blocks *map)
1527 {
1528         struct pagevec pvec;
1529         unsigned long index, end;
1530         int ret = 0, err, nr_pages, i;
1531         struct inode *inode = mpd->inode;
1532         struct address_space *mapping = inode->i_mapping;
1533         loff_t size = i_size_read(inode);
1534         unsigned int len, block_start;
1535         struct buffer_head *bh, *page_bufs = NULL;
1536         sector_t pblock = 0, cur_logical = 0;
1537         struct ext4_io_submit io_submit;
1538
1539         BUG_ON(mpd->next_page <= mpd->first_page);
1540         memset(&io_submit, 0, sizeof(io_submit));
1541         /*
1542          * We need to start from the first_page to the next_page - 1
1543          * to make sure we also write the mapped dirty buffer_heads.
1544          * If we look at mpd->b_blocknr we would only be looking
1545          * at the currently mapped buffer_heads.
1546          */
1547         index = mpd->first_page;
1548         end = mpd->next_page - 1;
1549
1550         pagevec_init(&pvec, 0);
1551         while (index <= end) {
1552                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1553                 if (nr_pages == 0)
1554                         break;
1555                 for (i = 0; i < nr_pages; i++) {
1556                         int skip_page = 0;
1557                         struct page *page = pvec.pages[i];
1558
1559                         index = page->index;
1560                         if (index > end)
1561                                 break;
1562
1563                         if (index == size >> PAGE_CACHE_SHIFT)
1564                                 len = size & ~PAGE_CACHE_MASK;
1565                         else
1566                                 len = PAGE_CACHE_SIZE;
1567                         if (map) {
1568                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1569                                                         inode->i_blkbits);
1570                                 pblock = map->m_pblk + (cur_logical -
1571                                                         map->m_lblk);
1572                         }
1573                         index++;
1574
1575                         BUG_ON(!PageLocked(page));
1576                         BUG_ON(PageWriteback(page));
1577
1578                         bh = page_bufs = page_buffers(page);
1579                         block_start = 0;
1580                         do {
1581                                 if (map && (cur_logical >= map->m_lblk) &&
1582                                     (cur_logical <= (map->m_lblk +
1583                                                      (map->m_len - 1)))) {
1584                                         if (buffer_delay(bh)) {
1585                                                 clear_buffer_delay(bh);
1586                                                 bh->b_blocknr = pblock;
1587                                         }
1588                                         if (buffer_unwritten(bh) ||
1589                                             buffer_mapped(bh))
1590                                                 BUG_ON(bh->b_blocknr != pblock);
1591                                         if (map->m_flags & EXT4_MAP_UNINIT)
1592                                                 set_buffer_uninit(bh);
1593                                         clear_buffer_unwritten(bh);
1594                                 }
1595
1596                                 /*
1597                                  * skip page if block allocation undone and
1598                                  * block is dirty
1599                                  */
1600                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1601                                         skip_page = 1;
1602                                 bh = bh->b_this_page;
1603                                 block_start += bh->b_size;
1604                                 cur_logical++;
1605                                 pblock++;
1606                         } while (bh != page_bufs);
1607
1608                         if (skip_page) {
1609                                 unlock_page(page);
1610                                 continue;
1611                         }
1612
1613                         clear_page_dirty_for_io(page);
1614                         err = ext4_bio_write_page(&io_submit, page, len,
1615                                                   mpd->wbc);
1616                         if (!err)
1617                                 mpd->pages_written++;
1618                         /*
1619                          * In error case, we have to continue because
1620                          * remaining pages are still locked
1621                          */
1622                         if (ret == 0)
1623                                 ret = err;
1624                 }
1625                 pagevec_release(&pvec);
1626         }
1627         ext4_io_submit(&io_submit);
1628         return ret;
1629 }
1630
1631 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1632 {
1633         int nr_pages, i;
1634         pgoff_t index, end;
1635         struct pagevec pvec;
1636         struct inode *inode = mpd->inode;
1637         struct address_space *mapping = inode->i_mapping;
1638         ext4_lblk_t start, last;
1639
1640         index = mpd->first_page;
1641         end   = mpd->next_page - 1;
1642
1643         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1644         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1645         ext4_es_remove_extent(inode, start, last - start + 1);
1646
1647         pagevec_init(&pvec, 0);
1648         while (index <= end) {
1649                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1650                 if (nr_pages == 0)
1651                         break;
1652                 for (i = 0; i < nr_pages; i++) {
1653                         struct page *page = pvec.pages[i];
1654                         if (page->index > end)
1655                                 break;
1656                         BUG_ON(!PageLocked(page));
1657                         BUG_ON(PageWriteback(page));
1658                         block_invalidatepage(page, 0);
1659                         ClearPageUptodate(page);
1660                         unlock_page(page);
1661                 }
1662                 index = pvec.pages[nr_pages - 1]->index + 1;
1663                 pagevec_release(&pvec);
1664         }
1665         return;
1666 }
1667
1668 static void ext4_print_free_blocks(struct inode *inode)
1669 {
1670         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1671         struct super_block *sb = inode->i_sb;
1672
1673         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1674                EXT4_C2B(EXT4_SB(inode->i_sb),
1675                         ext4_count_free_clusters(inode->i_sb)));
1676         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1677         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1678                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1679                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1680         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1681                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1682                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1683         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1684         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1685                  EXT4_I(inode)->i_reserved_data_blocks);
1686         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1687                EXT4_I(inode)->i_reserved_meta_blocks);
1688         return;
1689 }
1690
1691 /*
1692  * mpage_da_map_and_submit - go through given space, map them
1693  *       if necessary, and then submit them for I/O
1694  *
1695  * @mpd - bh describing space
1696  *
1697  * The function skips space we know is already mapped to disk blocks.
1698  *
1699  */
1700 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1701 {
1702         int err, blks, get_blocks_flags;
1703         struct ext4_map_blocks map, *mapp = NULL;
1704         sector_t next = mpd->b_blocknr;
1705         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1706         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1707         handle_t *handle = NULL;
1708
1709         /*
1710          * If the blocks are mapped already, or we couldn't accumulate
1711          * any blocks, then proceed immediately to the submission stage.
1712          */
1713         if ((mpd->b_size == 0) ||
1714             ((mpd->b_state  & (1 << BH_Mapped)) &&
1715              !(mpd->b_state & (1 << BH_Delay)) &&
1716              !(mpd->b_state & (1 << BH_Unwritten))))
1717                 goto submit_io;
1718
1719         handle = ext4_journal_current_handle();
1720         BUG_ON(!handle);
1721
1722         /*
1723          * Call ext4_map_blocks() to allocate any delayed allocation
1724          * blocks, or to convert an uninitialized extent to be
1725          * initialized (in the case where we have written into
1726          * one or more preallocated blocks).
1727          *
1728          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1729          * indicate that we are on the delayed allocation path.  This
1730          * affects functions in many different parts of the allocation
1731          * call path.  This flag exists primarily because we don't
1732          * want to change *many* call functions, so ext4_map_blocks()
1733          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1734          * inode's allocation semaphore is taken.
1735          *
1736          * If the blocks in questions were delalloc blocks, set
1737          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1738          * variables are updated after the blocks have been allocated.
1739          */
1740         map.m_lblk = next;
1741         map.m_len = max_blocks;
1742         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1743         if (ext4_should_dioread_nolock(mpd->inode))
1744                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1745         if (mpd->b_state & (1 << BH_Delay))
1746                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1747
1748         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1749         if (blks < 0) {
1750                 struct super_block *sb = mpd->inode->i_sb;
1751
1752                 err = blks;
1753                 /*
1754                  * If get block returns EAGAIN or ENOSPC and there
1755                  * appears to be free blocks we will just let
1756                  * mpage_da_submit_io() unlock all of the pages.
1757                  */
1758                 if (err == -EAGAIN)
1759                         goto submit_io;
1760
1761                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1762                         mpd->retval = err;
1763                         goto submit_io;
1764                 }
1765
1766                 /*
1767                  * get block failure will cause us to loop in
1768                  * writepages, because a_ops->writepage won't be able
1769                  * to make progress. The page will be redirtied by
1770                  * writepage and writepages will again try to write
1771                  * the same.
1772                  */
1773                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1774                         ext4_msg(sb, KERN_CRIT,
1775                                  "delayed block allocation failed for inode %lu "
1776                                  "at logical offset %llu with max blocks %zd "
1777                                  "with error %d", mpd->inode->i_ino,
1778                                  (unsigned long long) next,
1779                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1780                         ext4_msg(sb, KERN_CRIT,
1781                                 "This should not happen!! Data will be lost");
1782                         if (err == -ENOSPC)
1783                                 ext4_print_free_blocks(mpd->inode);
1784                 }
1785                 /* invalidate all the pages */
1786                 ext4_da_block_invalidatepages(mpd);
1787
1788                 /* Mark this page range as having been completed */
1789                 mpd->io_done = 1;
1790                 return;
1791         }
1792         BUG_ON(blks == 0);
1793
1794         mapp = &map;
1795         if (map.m_flags & EXT4_MAP_NEW) {
1796                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1797                 int i;
1798
1799                 for (i = 0; i < map.m_len; i++)
1800                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1801         }
1802
1803         /*
1804          * Update on-disk size along with block allocation.
1805          */
1806         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1807         if (disksize > i_size_read(mpd->inode))
1808                 disksize = i_size_read(mpd->inode);
1809         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1810                 ext4_update_i_disksize(mpd->inode, disksize);
1811                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1812                 if (err)
1813                         ext4_error(mpd->inode->i_sb,
1814                                    "Failed to mark inode %lu dirty",
1815                                    mpd->inode->i_ino);
1816         }
1817
1818 submit_io:
1819         mpage_da_submit_io(mpd, mapp);
1820         mpd->io_done = 1;
1821 }
1822
1823 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1824                 (1 << BH_Delay) | (1 << BH_Unwritten))
1825
1826 /*
1827  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1828  *
1829  * @mpd->lbh - extent of blocks
1830  * @logical - logical number of the block in the file
1831  * @b_state - b_state of the buffer head added
1832  *
1833  * the function is used to collect contig. blocks in same state
1834  */
1835 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1836                                    unsigned long b_state)
1837 {
1838         sector_t next;
1839         int blkbits = mpd->inode->i_blkbits;
1840         int nrblocks = mpd->b_size >> blkbits;
1841
1842         /*
1843          * XXX Don't go larger than mballoc is willing to allocate
1844          * This is a stopgap solution.  We eventually need to fold
1845          * mpage_da_submit_io() into this function and then call
1846          * ext4_map_blocks() multiple times in a loop
1847          */
1848         if (nrblocks >= (8*1024*1024 >> blkbits))
1849                 goto flush_it;
1850
1851         /* check if the reserved journal credits might overflow */
1852         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1853                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1854                         /*
1855                          * With non-extent format we are limited by the journal
1856                          * credit available.  Total credit needed to insert
1857                          * nrblocks contiguous blocks is dependent on the
1858                          * nrblocks.  So limit nrblocks.
1859                          */
1860                         goto flush_it;
1861                 }
1862         }
1863         /*
1864          * First block in the extent
1865          */
1866         if (mpd->b_size == 0) {
1867                 mpd->b_blocknr = logical;
1868                 mpd->b_size = 1 << blkbits;
1869                 mpd->b_state = b_state & BH_FLAGS;
1870                 return;
1871         }
1872
1873         next = mpd->b_blocknr + nrblocks;
1874         /*
1875          * Can we merge the block to our big extent?
1876          */
1877         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1878                 mpd->b_size += 1 << blkbits;
1879                 return;
1880         }
1881
1882 flush_it:
1883         /*
1884          * We couldn't merge the block to our extent, so we
1885          * need to flush current  extent and start new one
1886          */
1887         mpage_da_map_and_submit(mpd);
1888         return;
1889 }
1890
1891 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1892 {
1893         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1894 }
1895
1896 /*
1897  * This function is grabs code from the very beginning of
1898  * ext4_map_blocks, but assumes that the caller is from delayed write
1899  * time. This function looks up the requested blocks and sets the
1900  * buffer delay bit under the protection of i_data_sem.
1901  */
1902 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1903                               struct ext4_map_blocks *map,
1904                               struct buffer_head *bh)
1905 {
1906         struct extent_status es;
1907         int retval;
1908         sector_t invalid_block = ~((sector_t) 0xffff);
1909 #ifdef ES_AGGRESSIVE_TEST
1910         struct ext4_map_blocks orig_map;
1911
1912         memcpy(&orig_map, map, sizeof(*map));
1913 #endif
1914
1915         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1916                 invalid_block = ~0;
1917
1918         map->m_flags = 0;
1919         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1920                   "logical block %lu\n", inode->i_ino, map->m_len,
1921                   (unsigned long) map->m_lblk);
1922
1923         /* Lookup extent status tree firstly */
1924         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1925
1926                 if (ext4_es_is_hole(&es)) {
1927                         retval = 0;
1928                         down_read((&EXT4_I(inode)->i_data_sem));
1929                         goto add_delayed;
1930                 }
1931
1932                 /*
1933                  * Delayed extent could be allocated by fallocate.
1934                  * So we need to check it.
1935                  */
1936                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1937                         map_bh(bh, inode->i_sb, invalid_block);
1938                         set_buffer_new(bh);
1939                         set_buffer_delay(bh);
1940                         return 0;
1941                 }
1942
1943                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1944                 retval = es.es_len - (iblock - es.es_lblk);
1945                 if (retval > map->m_len)
1946                         retval = map->m_len;
1947                 map->m_len = retval;
1948                 if (ext4_es_is_written(&es))
1949                         map->m_flags |= EXT4_MAP_MAPPED;
1950                 else if (ext4_es_is_unwritten(&es))
1951                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1952                 else
1953                         BUG_ON(1);
1954
1955 #ifdef ES_AGGRESSIVE_TEST
1956                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1957 #endif
1958                 return retval;
1959         }
1960
1961         /*
1962          * Try to see if we can get the block without requesting a new
1963          * file system block.
1964          */
1965         down_read((&EXT4_I(inode)->i_data_sem));
1966         if (ext4_has_inline_data(inode)) {
1967                 /*
1968                  * We will soon create blocks for this page, and let
1969                  * us pretend as if the blocks aren't allocated yet.
1970                  * In case of clusters, we have to handle the work
1971                  * of mapping from cluster so that the reserved space
1972                  * is calculated properly.
1973                  */
1974                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1975                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1976                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1977                 retval = 0;
1978         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1979                 retval = ext4_ext_map_blocks(NULL, inode, map,
1980                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1981         else
1982                 retval = ext4_ind_map_blocks(NULL, inode, map,
1983                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1984
1985 add_delayed:
1986         if (retval == 0) {
1987                 int ret;
1988                 /*
1989                  * XXX: __block_prepare_write() unmaps passed block,
1990                  * is it OK?
1991                  */
1992                 /*
1993                  * If the block was allocated from previously allocated cluster,
1994                  * then we don't need to reserve it again. However we still need
1995                  * to reserve metadata for every block we're going to write.
1996                  */
1997                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1998                         ret = ext4_da_reserve_space(inode, iblock);
1999                         if (ret) {
2000                                 /* not enough space to reserve */
2001                                 retval = ret;
2002                                 goto out_unlock;
2003                         }
2004                 } else {
2005                         ret = ext4_da_reserve_metadata(inode, iblock);
2006                         if (ret) {
2007                                 /* not enough space to reserve */
2008                                 retval = ret;
2009                                 goto out_unlock;
2010                         }
2011                 }
2012
2013                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2014                                             ~0, EXTENT_STATUS_DELAYED);
2015                 if (ret) {
2016                         retval = ret;
2017                         goto out_unlock;
2018                 }
2019
2020                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
2021                  * and it should not appear on the bh->b_state.
2022                  */
2023                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
2024
2025                 map_bh(bh, inode->i_sb, invalid_block);
2026                 set_buffer_new(bh);
2027                 set_buffer_delay(bh);
2028         } else if (retval > 0) {
2029                 int ret;
2030                 unsigned long long status;
2031
2032 #ifdef ES_AGGRESSIVE_TEST
2033                 if (retval != map->m_len) {
2034                         printk("ES len assertation failed for inode: %lu "
2035                                "retval %d != map->m_len %d "
2036                                "in %s (lookup)\n", inode->i_ino, retval,
2037                                map->m_len, __func__);
2038                 }
2039 #endif
2040
2041                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2042                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2043                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2044                                             map->m_pblk, status);
2045                 if (ret != 0)
2046                         retval = ret;
2047         }
2048
2049 out_unlock:
2050         up_read((&EXT4_I(inode)->i_data_sem));
2051
2052         return retval;
2053 }
2054
2055 /*
2056  * This is a special get_blocks_t callback which is used by
2057  * ext4_da_write_begin().  It will either return mapped block or
2058  * reserve space for a single block.
2059  *
2060  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2061  * We also have b_blocknr = -1 and b_bdev initialized properly
2062  *
2063  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2064  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2065  * initialized properly.
2066  */
2067 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2068                            struct buffer_head *bh, int create)
2069 {
2070         struct ext4_map_blocks map;
2071         int ret = 0;
2072
2073         BUG_ON(create == 0);
2074         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2075
2076         map.m_lblk = iblock;
2077         map.m_len = 1;
2078
2079         /*
2080          * first, we need to know whether the block is allocated already
2081          * preallocated blocks are unmapped but should treated
2082          * the same as allocated blocks.
2083          */
2084         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2085         if (ret <= 0)
2086                 return ret;
2087
2088         map_bh(bh, inode->i_sb, map.m_pblk);
2089         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2090
2091         if (buffer_unwritten(bh)) {
2092                 /* A delayed write to unwritten bh should be marked
2093                  * new and mapped.  Mapped ensures that we don't do
2094                  * get_block multiple times when we write to the same
2095                  * offset and new ensures that we do proper zero out
2096                  * for partial write.
2097                  */
2098                 set_buffer_new(bh);
2099                 set_buffer_mapped(bh);
2100         }
2101         return 0;
2102 }
2103
2104 static int bget_one(handle_t *handle, struct buffer_head *bh)
2105 {
2106         get_bh(bh);
2107         return 0;
2108 }
2109
2110 static int bput_one(handle_t *handle, struct buffer_head *bh)
2111 {
2112         put_bh(bh);
2113         return 0;
2114 }
2115
2116 static int __ext4_journalled_writepage(struct page *page,
2117                                        unsigned int len)
2118 {
2119         struct address_space *mapping = page->mapping;
2120         struct inode *inode = mapping->host;
2121         struct buffer_head *page_bufs = NULL;
2122         handle_t *handle = NULL;
2123         int ret = 0, err = 0;
2124         int inline_data = ext4_has_inline_data(inode);
2125         struct buffer_head *inode_bh = NULL;
2126
2127         ClearPageChecked(page);
2128
2129         if (inline_data) {
2130                 BUG_ON(page->index != 0);
2131                 BUG_ON(len > ext4_get_max_inline_size(inode));
2132                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2133                 if (inode_bh == NULL)
2134                         goto out;
2135         } else {
2136                 page_bufs = page_buffers(page);
2137                 if (!page_bufs) {
2138                         BUG();
2139                         goto out;
2140                 }
2141                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2142                                        NULL, bget_one);
2143         }
2144         /* As soon as we unlock the page, it can go away, but we have
2145          * references to buffers so we are safe */
2146         unlock_page(page);
2147
2148         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2149                                     ext4_writepage_trans_blocks(inode));
2150         if (IS_ERR(handle)) {
2151                 ret = PTR_ERR(handle);
2152                 goto out;
2153         }
2154
2155         BUG_ON(!ext4_handle_valid(handle));
2156
2157         if (inline_data) {
2158                 ret = ext4_journal_get_write_access(handle, inode_bh);
2159
2160                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2161
2162         } else {
2163                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2164                                              do_journal_get_write_access);
2165
2166                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2167                                              write_end_fn);
2168         }
2169         if (ret == 0)
2170                 ret = err;
2171         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2172         err = ext4_journal_stop(handle);
2173         if (!ret)
2174                 ret = err;
2175
2176         if (!ext4_has_inline_data(inode))
2177                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2178                                        NULL, bput_one);
2179         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2180 out:
2181         brelse(inode_bh);
2182         return ret;
2183 }
2184
2185 /*
2186  * Note that we don't need to start a transaction unless we're journaling data
2187  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2188  * need to file the inode to the transaction's list in ordered mode because if
2189  * we are writing back data added by write(), the inode is already there and if
2190  * we are writing back data modified via mmap(), no one guarantees in which
2191  * transaction the data will hit the disk. In case we are journaling data, we
2192  * cannot start transaction directly because transaction start ranks above page
2193  * lock so we have to do some magic.
2194  *
2195  * This function can get called via...
2196  *   - ext4_da_writepages after taking page lock (have journal handle)
2197  *   - journal_submit_inode_data_buffers (no journal handle)
2198  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2199  *   - grab_page_cache when doing write_begin (have journal handle)
2200  *
2201  * We don't do any block allocation in this function. If we have page with
2202  * multiple blocks we need to write those buffer_heads that are mapped. This
2203  * is important for mmaped based write. So if we do with blocksize 1K
2204  * truncate(f, 1024);
2205  * a = mmap(f, 0, 4096);
2206  * a[0] = 'a';
2207  * truncate(f, 4096);
2208  * we have in the page first buffer_head mapped via page_mkwrite call back
2209  * but other buffer_heads would be unmapped but dirty (dirty done via the
2210  * do_wp_page). So writepage should write the first block. If we modify
2211  * the mmap area beyond 1024 we will again get a page_fault and the
2212  * page_mkwrite callback will do the block allocation and mark the
2213  * buffer_heads mapped.
2214  *
2215  * We redirty the page if we have any buffer_heads that is either delay or
2216  * unwritten in the page.
2217  *
2218  * We can get recursively called as show below.
2219  *
2220  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2221  *              ext4_writepage()
2222  *
2223  * But since we don't do any block allocation we should not deadlock.
2224  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2225  */
2226 static int ext4_writepage(struct page *page,
2227                           struct writeback_control *wbc)
2228 {
2229         int ret = 0;
2230         loff_t size;
2231         unsigned int len;
2232         struct buffer_head *page_bufs = NULL;
2233         struct inode *inode = page->mapping->host;
2234         struct ext4_io_submit io_submit;
2235
2236         trace_ext4_writepage(page);
2237         size = i_size_read(inode);
2238         if (page->index == size >> PAGE_CACHE_SHIFT)
2239                 len = size & ~PAGE_CACHE_MASK;
2240         else
2241                 len = PAGE_CACHE_SIZE;
2242
2243         page_bufs = page_buffers(page);
2244         /*
2245          * We cannot do block allocation or other extent handling in this
2246          * function. If there are buffers needing that, we have to redirty
2247          * the page. But we may reach here when we do a journal commit via
2248          * journal_submit_inode_data_buffers() and in that case we must write
2249          * allocated buffers to achieve data=ordered mode guarantees.
2250          */
2251         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2252                                    ext4_bh_delay_or_unwritten)) {
2253                 redirty_page_for_writepage(wbc, page);
2254                 if (current->flags & PF_MEMALLOC) {
2255                         /*
2256                          * For memory cleaning there's no point in writing only
2257                          * some buffers. So just bail out. Warn if we came here
2258                          * from direct reclaim.
2259                          */
2260                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2261                                                         == PF_MEMALLOC);
2262                         unlock_page(page);
2263                         return 0;
2264                 }
2265         }
2266
2267         if (PageChecked(page) && ext4_should_journal_data(inode))
2268                 /*
2269                  * It's mmapped pagecache.  Add buffers and journal it.  There
2270                  * doesn't seem much point in redirtying the page here.
2271                  */
2272                 return __ext4_journalled_writepage(page, len);
2273
2274         memset(&io_submit, 0, sizeof(io_submit));
2275         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2276         ext4_io_submit(&io_submit);
2277         return ret;
2278 }
2279
2280 /*
2281  * This is called via ext4_da_writepages() to
2282  * calculate the total number of credits to reserve to fit
2283  * a single extent allocation into a single transaction,
2284  * ext4_da_writpeages() will loop calling this before
2285  * the block allocation.
2286  */
2287
2288 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2289 {
2290         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2291
2292         /*
2293          * With non-extent format the journal credit needed to
2294          * insert nrblocks contiguous block is dependent on
2295          * number of contiguous block. So we will limit
2296          * number of contiguous block to a sane value
2297          */
2298         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2299             (max_blocks > EXT4_MAX_TRANS_DATA))
2300                 max_blocks = EXT4_MAX_TRANS_DATA;
2301
2302         return ext4_chunk_trans_blocks(inode, max_blocks);
2303 }
2304
2305 /*
2306  * write_cache_pages_da - walk the list of dirty pages of the given
2307  * address space and accumulate pages that need writing, and call
2308  * mpage_da_map_and_submit to map a single contiguous memory region
2309  * and then write them.
2310  */
2311 static int write_cache_pages_da(handle_t *handle,
2312                                 struct address_space *mapping,
2313                                 struct writeback_control *wbc,
2314                                 struct mpage_da_data *mpd,
2315                                 pgoff_t *done_index)
2316 {
2317         struct buffer_head      *bh, *head;
2318         struct inode            *inode = mapping->host;
2319         struct pagevec          pvec;
2320         unsigned int            nr_pages;
2321         sector_t                logical;
2322         pgoff_t                 index, end;
2323         long                    nr_to_write = wbc->nr_to_write;
2324         int                     i, tag, ret = 0;
2325
2326         memset(mpd, 0, sizeof(struct mpage_da_data));
2327         mpd->wbc = wbc;
2328         mpd->inode = inode;
2329         pagevec_init(&pvec, 0);
2330         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2331         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2332
2333         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2334                 tag = PAGECACHE_TAG_TOWRITE;
2335         else
2336                 tag = PAGECACHE_TAG_DIRTY;
2337
2338         *done_index = index;
2339         while (index <= end) {
2340                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2341                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2342                 if (nr_pages == 0)
2343                         return 0;
2344
2345                 for (i = 0; i < nr_pages; i++) {
2346                         struct page *page = pvec.pages[i];
2347
2348                         /*
2349                          * At this point, the page may be truncated or
2350                          * invalidated (changing page->mapping to NULL), or
2351                          * even swizzled back from swapper_space to tmpfs file
2352                          * mapping. However, page->index will not change
2353                          * because we have a reference on the page.
2354                          */
2355                         if (page->index > end)
2356                                 goto out;
2357
2358                         *done_index = page->index + 1;
2359
2360                         /*
2361                          * If we can't merge this page, and we have
2362                          * accumulated an contiguous region, write it
2363                          */
2364                         if ((mpd->next_page != page->index) &&
2365                             (mpd->next_page != mpd->first_page)) {
2366                                 mpage_da_map_and_submit(mpd);
2367                                 goto ret_extent_tail;
2368                         }
2369
2370                         lock_page(page);
2371
2372                         /*
2373                          * If the page is no longer dirty, or its
2374                          * mapping no longer corresponds to inode we
2375                          * are writing (which means it has been
2376                          * truncated or invalidated), or the page is
2377                          * already under writeback and we are not
2378                          * doing a data integrity writeback, skip the page
2379                          */
2380                         if (!PageDirty(page) ||
2381                             (PageWriteback(page) &&
2382                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2383                             unlikely(page->mapping != mapping)) {
2384                                 unlock_page(page);
2385                                 continue;
2386                         }
2387
2388                         wait_on_page_writeback(page);
2389                         BUG_ON(PageWriteback(page));
2390
2391                         /*
2392                          * If we have inline data and arrive here, it means that
2393                          * we will soon create the block for the 1st page, so
2394                          * we'd better clear the inline data here.
2395                          */
2396                         if (ext4_has_inline_data(inode)) {
2397                                 BUG_ON(ext4_test_inode_state(inode,
2398                                                 EXT4_STATE_MAY_INLINE_DATA));
2399                                 ext4_destroy_inline_data(handle, inode);
2400                         }
2401
2402                         if (mpd->next_page != page->index)
2403                                 mpd->first_page = page->index;
2404                         mpd->next_page = page->index + 1;
2405                         logical = (sector_t) page->index <<
2406                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2407
2408                         /* Add all dirty buffers to mpd */
2409                         head = page_buffers(page);
2410                         bh = head;
2411                         do {
2412                                 BUG_ON(buffer_locked(bh));
2413                                 /*
2414                                  * We need to try to allocate unmapped blocks
2415                                  * in the same page.  Otherwise we won't make
2416                                  * progress with the page in ext4_writepage
2417                                  */
2418                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2419                                         mpage_add_bh_to_extent(mpd, logical,
2420                                                                bh->b_state);
2421                                         if (mpd->io_done)
2422                                                 goto ret_extent_tail;
2423                                 } else if (buffer_dirty(bh) &&
2424                                            buffer_mapped(bh)) {
2425                                         /*
2426                                          * mapped dirty buffer. We need to
2427                                          * update the b_state because we look
2428                                          * at b_state in mpage_da_map_blocks.
2429                                          * We don't update b_size because if we
2430                                          * find an unmapped buffer_head later
2431                                          * we need to use the b_state flag of
2432                                          * that buffer_head.
2433                                          */
2434                                         if (mpd->b_size == 0)
2435                                                 mpd->b_state =
2436                                                         bh->b_state & BH_FLAGS;
2437                                 }
2438                                 logical++;
2439                         } while ((bh = bh->b_this_page) != head);
2440
2441                         if (nr_to_write > 0) {
2442                                 nr_to_write--;
2443                                 if (nr_to_write == 0 &&
2444                                     wbc->sync_mode == WB_SYNC_NONE)
2445                                         /*
2446                                          * We stop writing back only if we are
2447                                          * not doing integrity sync. In case of
2448                                          * integrity sync we have to keep going
2449                                          * because someone may be concurrently
2450                                          * dirtying pages, and we might have
2451                                          * synced a lot of newly appeared dirty
2452                                          * pages, but have not synced all of the
2453                                          * old dirty pages.
2454                                          */
2455                                         goto out;
2456                         }
2457                 }
2458                 pagevec_release(&pvec);
2459                 cond_resched();
2460         }
2461         return 0;
2462 ret_extent_tail:
2463         ret = MPAGE_DA_EXTENT_TAIL;
2464 out:
2465         pagevec_release(&pvec);
2466         cond_resched();
2467         return ret;
2468 }
2469
2470
2471 static int ext4_da_writepages(struct address_space *mapping,
2472                               struct writeback_control *wbc)
2473 {
2474         pgoff_t index;
2475         int range_whole = 0;
2476         handle_t *handle = NULL;
2477         struct mpage_da_data mpd;
2478         struct inode *inode = mapping->host;
2479         int pages_written = 0;
2480         unsigned int max_pages;
2481         int range_cyclic, cycled = 1, io_done = 0;
2482         int needed_blocks, ret = 0;
2483         long desired_nr_to_write, nr_to_writebump = 0;
2484         loff_t range_start = wbc->range_start;
2485         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2486         pgoff_t done_index = 0;
2487         pgoff_t end;
2488         struct blk_plug plug;
2489
2490         trace_ext4_da_writepages(inode, wbc);
2491
2492         /*
2493          * No pages to write? This is mainly a kludge to avoid starting
2494          * a transaction for special inodes like journal inode on last iput()
2495          * because that could violate lock ordering on umount
2496          */
2497         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2498                 return 0;
2499
2500         /*
2501          * If the filesystem has aborted, it is read-only, so return
2502          * right away instead of dumping stack traces later on that
2503          * will obscure the real source of the problem.  We test
2504          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2505          * the latter could be true if the filesystem is mounted
2506          * read-only, and in that case, ext4_da_writepages should
2507          * *never* be called, so if that ever happens, we would want
2508          * the stack trace.
2509          */
2510         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2511                 return -EROFS;
2512
2513         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2514                 range_whole = 1;
2515
2516         range_cyclic = wbc->range_cyclic;
2517         if (wbc->range_cyclic) {
2518                 index = mapping->writeback_index;
2519                 if (index)
2520                         cycled = 0;
2521                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2522                 wbc->range_end  = LLONG_MAX;
2523                 wbc->range_cyclic = 0;
2524                 end = -1;
2525         } else {
2526                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2527                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2528         }
2529
2530         /*
2531          * This works around two forms of stupidity.  The first is in
2532          * the writeback code, which caps the maximum number of pages
2533          * written to be 1024 pages.  This is wrong on multiple
2534          * levels; different architectues have a different page size,
2535          * which changes the maximum amount of data which gets
2536          * written.  Secondly, 4 megabytes is way too small.  XFS
2537          * forces this value to be 16 megabytes by multiplying
2538          * nr_to_write parameter by four, and then relies on its
2539          * allocator to allocate larger extents to make them
2540          * contiguous.  Unfortunately this brings us to the second
2541          * stupidity, which is that ext4's mballoc code only allocates
2542          * at most 2048 blocks.  So we force contiguous writes up to
2543          * the number of dirty blocks in the inode, or
2544          * sbi->max_writeback_mb_bump whichever is smaller.
2545          */
2546         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2547         if (!range_cyclic && range_whole) {
2548                 if (wbc->nr_to_write == LONG_MAX)
2549                         desired_nr_to_write = wbc->nr_to_write;
2550                 else
2551                         desired_nr_to_write = wbc->nr_to_write * 8;
2552         } else
2553                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2554                                                            max_pages);
2555         if (desired_nr_to_write > max_pages)
2556                 desired_nr_to_write = max_pages;
2557
2558         if (wbc->nr_to_write < desired_nr_to_write) {
2559                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2560                 wbc->nr_to_write = desired_nr_to_write;
2561         }
2562
2563 retry:
2564         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2565                 tag_pages_for_writeback(mapping, index, end);
2566
2567         blk_start_plug(&plug);
2568         while (!ret && wbc->nr_to_write > 0) {
2569
2570                 /*
2571                  * we  insert one extent at a time. So we need
2572                  * credit needed for single extent allocation.
2573                  * journalled mode is currently not supported
2574                  * by delalloc
2575                  */
2576                 BUG_ON(ext4_should_journal_data(inode));
2577                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2578
2579                 /* start a new transaction*/
2580                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2581                                             needed_blocks);
2582                 if (IS_ERR(handle)) {
2583                         ret = PTR_ERR(handle);
2584                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2585                                "%ld pages, ino %lu; err %d", __func__,
2586                                 wbc->nr_to_write, inode->i_ino, ret);
2587                         blk_finish_plug(&plug);
2588                         goto out_writepages;
2589                 }
2590
2591                 /*
2592                  * Now call write_cache_pages_da() to find the next
2593                  * contiguous region of logical blocks that need
2594                  * blocks to be allocated by ext4 and submit them.
2595                  */
2596                 ret = write_cache_pages_da(handle, mapping,
2597                                            wbc, &mpd, &done_index);
2598                 /*
2599                  * If we have a contiguous extent of pages and we
2600                  * haven't done the I/O yet, map the blocks and submit
2601                  * them for I/O.
2602                  */
2603                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2604                         mpage_da_map_and_submit(&mpd);
2605                         ret = MPAGE_DA_EXTENT_TAIL;
2606                 }
2607                 trace_ext4_da_write_pages(inode, &mpd);
2608                 wbc->nr_to_write -= mpd.pages_written;
2609
2610                 ext4_journal_stop(handle);
2611
2612                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2613                         /* commit the transaction which would
2614                          * free blocks released in the transaction
2615                          * and try again
2616                          */
2617                         jbd2_journal_force_commit_nested(sbi->s_journal);
2618                         ret = 0;
2619                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2620                         /*
2621                          * Got one extent now try with rest of the pages.
2622                          * If mpd.retval is set -EIO, journal is aborted.
2623                          * So we don't need to write any more.
2624                          */
2625                         pages_written += mpd.pages_written;
2626                         ret = mpd.retval;
2627                         io_done = 1;
2628                 } else if (wbc->nr_to_write)
2629                         /*
2630                          * There is no more writeout needed
2631                          * or we requested for a noblocking writeout
2632                          * and we found the device congested
2633                          */
2634                         break;
2635         }
2636         blk_finish_plug(&plug);
2637         if (!io_done && !cycled) {
2638                 cycled = 1;
2639                 index = 0;
2640                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2641                 wbc->range_end  = mapping->writeback_index - 1;
2642                 goto retry;
2643         }
2644
2645         /* Update index */
2646         wbc->range_cyclic = range_cyclic;
2647         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2648                 /*
2649                  * set the writeback_index so that range_cyclic
2650                  * mode will write it back later
2651                  */
2652                 mapping->writeback_index = done_index;
2653
2654 out_writepages:
2655         wbc->nr_to_write -= nr_to_writebump;
2656         wbc->range_start = range_start;
2657         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2658         return ret;
2659 }
2660
2661 static int ext4_nonda_switch(struct super_block *sb)
2662 {
2663         s64 free_blocks, dirty_blocks;
2664         struct ext4_sb_info *sbi = EXT4_SB(sb);
2665
2666         /*
2667          * switch to non delalloc mode if we are running low
2668          * on free block. The free block accounting via percpu
2669          * counters can get slightly wrong with percpu_counter_batch getting
2670          * accumulated on each CPU without updating global counters
2671          * Delalloc need an accurate free block accounting. So switch
2672          * to non delalloc when we are near to error range.
2673          */
2674         free_blocks  = EXT4_C2B(sbi,
2675                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2676         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2677         /*
2678          * Start pushing delalloc when 1/2 of free blocks are dirty.
2679          */
2680         if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2681             !writeback_in_progress(sb->s_bdi) &&
2682             down_read_trylock(&sb->s_umount)) {
2683                 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2684                 up_read(&sb->s_umount);
2685         }
2686
2687         if (2 * free_blocks < 3 * dirty_blocks ||
2688                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2689                 /*
2690                  * free block count is less than 150% of dirty blocks
2691                  * or free blocks is less than watermark
2692                  */
2693                 return 1;
2694         }
2695         return 0;
2696 }
2697
2698 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2699                                loff_t pos, unsigned len, unsigned flags,
2700                                struct page **pagep, void **fsdata)
2701 {
2702         int ret, retries = 0;
2703         struct page *page;
2704         pgoff_t index;
2705         struct inode *inode = mapping->host;
2706         handle_t *handle;
2707
2708         index = pos >> PAGE_CACHE_SHIFT;
2709
2710         if (ext4_nonda_switch(inode->i_sb)) {
2711                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2712                 return ext4_write_begin(file, mapping, pos,
2713                                         len, flags, pagep, fsdata);
2714         }
2715         *fsdata = (void *)0;
2716         trace_ext4_da_write_begin(inode, pos, len, flags);
2717
2718         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2719                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2720                                                       pos, len, flags,
2721                                                       pagep, fsdata);
2722                 if (ret < 0)
2723                         return ret;
2724                 if (ret == 1)
2725                         return 0;
2726         }
2727
2728         /*
2729          * grab_cache_page_write_begin() can take a long time if the
2730          * system is thrashing due to memory pressure, or if the page
2731          * is being written back.  So grab it first before we start
2732          * the transaction handle.  This also allows us to allocate
2733          * the page (if needed) without using GFP_NOFS.
2734          */
2735 retry_grab:
2736         page = grab_cache_page_write_begin(mapping, index, flags);
2737         if (!page)
2738                 return -ENOMEM;
2739         unlock_page(page);
2740
2741         /*
2742          * With delayed allocation, we don't log the i_disksize update
2743          * if there is delayed block allocation. But we still need
2744          * to journalling the i_disksize update if writes to the end
2745          * of file which has an already mapped buffer.
2746          */
2747 retry_journal:
2748         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2749         if (IS_ERR(handle)) {
2750                 page_cache_release(page);
2751                 return PTR_ERR(handle);
2752         }
2753
2754         lock_page(page);
2755         if (page->mapping != mapping) {
2756                 /* The page got truncated from under us */
2757                 unlock_page(page);
2758                 page_cache_release(page);
2759                 ext4_journal_stop(handle);
2760                 goto retry_grab;
2761         }
2762         /* In case writeback began while the page was unlocked */
2763         wait_on_page_writeback(page);
2764
2765         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2766         if (ret < 0) {
2767                 unlock_page(page);
2768                 ext4_journal_stop(handle);
2769                 /*
2770                  * block_write_begin may have instantiated a few blocks
2771                  * outside i_size.  Trim these off again. Don't need
2772                  * i_size_read because we hold i_mutex.
2773                  */
2774                 if (pos + len > inode->i_size)
2775                         ext4_truncate_failed_write(inode);
2776
2777                 if (ret == -ENOSPC &&
2778                     ext4_should_retry_alloc(inode->i_sb, &retries))
2779                         goto retry_journal;
2780
2781                 page_cache_release(page);
2782                 return ret;
2783         }
2784
2785         *pagep = page;
2786         return ret;
2787 }
2788
2789 /*
2790  * Check if we should update i_disksize
2791  * when write to the end of file but not require block allocation
2792  */
2793 static int ext4_da_should_update_i_disksize(struct page *page,
2794                                             unsigned long offset)
2795 {
2796         struct buffer_head *bh;
2797         struct inode *inode = page->mapping->host;
2798         unsigned int idx;
2799         int i;
2800
2801         bh = page_buffers(page);
2802         idx = offset >> inode->i_blkbits;
2803
2804         for (i = 0; i < idx; i++)
2805                 bh = bh->b_this_page;
2806
2807         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2808                 return 0;
2809         return 1;
2810 }
2811
2812 static int ext4_da_write_end(struct file *file,
2813                              struct address_space *mapping,
2814                              loff_t pos, unsigned len, unsigned copied,
2815                              struct page *page, void *fsdata)
2816 {
2817         struct inode *inode = mapping->host;
2818         int ret = 0, ret2;
2819         handle_t *handle = ext4_journal_current_handle();
2820         loff_t new_i_size;
2821         unsigned long start, end;
2822         int write_mode = (int)(unsigned long)fsdata;
2823
2824         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2825                 switch (ext4_inode_journal_mode(inode)) {
2826                 case EXT4_INODE_ORDERED_DATA_MODE:
2827                         return ext4_ordered_write_end(file, mapping, pos,
2828                                         len, copied, page, fsdata);
2829                 case EXT4_INODE_WRITEBACK_DATA_MODE:
2830                         return ext4_writeback_write_end(file, mapping, pos,
2831                                         len, copied, page, fsdata);
2832                 default:
2833                         BUG();
2834                 }
2835         }
2836
2837         trace_ext4_da_write_end(inode, pos, len, copied);
2838         start = pos & (PAGE_CACHE_SIZE - 1);
2839         end = start + copied - 1;
2840
2841         /*
2842          * generic_write_end() will run mark_inode_dirty() if i_size
2843          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2844          * into that.
2845          */
2846         new_i_size = pos + copied;
2847         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2848                 if (ext4_has_inline_data(inode) ||
2849                     ext4_da_should_update_i_disksize(page, end)) {
2850                         down_write(&EXT4_I(inode)->i_data_sem);
2851                         if (new_i_size > EXT4_I(inode)->i_disksize)
2852                                 EXT4_I(inode)->i_disksize = new_i_size;
2853                         up_write(&EXT4_I(inode)->i_data_sem);
2854                         /* We need to mark inode dirty even if
2855                          * new_i_size is less that inode->i_size
2856                          * bu greater than i_disksize.(hint delalloc)
2857                          */
2858                         ext4_mark_inode_dirty(handle, inode);
2859                 }
2860         }
2861
2862         if (write_mode != CONVERT_INLINE_DATA &&
2863             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2864             ext4_has_inline_data(inode))
2865                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2866                                                      page);
2867         else
2868                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2869                                                         page, fsdata);
2870
2871         copied = ret2;
2872         if (ret2 < 0)
2873                 ret = ret2;
2874         ret2 = ext4_journal_stop(handle);
2875         if (!ret)
2876                 ret = ret2;
2877
2878         return ret ? ret : copied;
2879 }
2880
2881 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2882 {
2883         /*
2884          * Drop reserved blocks
2885          */
2886         BUG_ON(!PageLocked(page));
2887         if (!page_has_buffers(page))
2888                 goto out;
2889
2890         ext4_da_page_release_reservation(page, offset);
2891
2892 out:
2893         ext4_invalidatepage(page, offset);
2894
2895         return;
2896 }
2897
2898 /*
2899  * Force all delayed allocation blocks to be allocated for a given inode.
2900  */
2901 int ext4_alloc_da_blocks(struct inode *inode)
2902 {
2903         trace_ext4_alloc_da_blocks(inode);
2904
2905         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2906             !EXT4_I(inode)->i_reserved_meta_blocks)
2907                 return 0;
2908
2909         /*
2910          * We do something simple for now.  The filemap_flush() will
2911          * also start triggering a write of the data blocks, which is
2912          * not strictly speaking necessary (and for users of
2913          * laptop_mode, not even desirable).  However, to do otherwise
2914          * would require replicating code paths in:
2915          *
2916          * ext4_da_writepages() ->
2917          *    write_cache_pages() ---> (via passed in callback function)
2918          *        __mpage_da_writepage() -->
2919          *           mpage_add_bh_to_extent()
2920          *           mpage_da_map_blocks()
2921          *
2922          * The problem is that write_cache_pages(), located in
2923          * mm/page-writeback.c, marks pages clean in preparation for
2924          * doing I/O, which is not desirable if we're not planning on
2925          * doing I/O at all.
2926          *
2927          * We could call write_cache_pages(), and then redirty all of
2928          * the pages by calling redirty_page_for_writepage() but that
2929          * would be ugly in the extreme.  So instead we would need to
2930          * replicate parts of the code in the above functions,
2931          * simplifying them because we wouldn't actually intend to
2932          * write out the pages, but rather only collect contiguous
2933          * logical block extents, call the multi-block allocator, and
2934          * then update the buffer heads with the block allocations.
2935          *
2936          * For now, though, we'll cheat by calling filemap_flush(),
2937          * which will map the blocks, and start the I/O, but not
2938          * actually wait for the I/O to complete.
2939          */
2940         return filemap_flush(inode->i_mapping);
2941 }
2942
2943 /*
2944  * bmap() is special.  It gets used by applications such as lilo and by
2945  * the swapper to find the on-disk block of a specific piece of data.
2946  *
2947  * Naturally, this is dangerous if the block concerned is still in the
2948  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2949  * filesystem and enables swap, then they may get a nasty shock when the
2950  * data getting swapped to that swapfile suddenly gets overwritten by
2951  * the original zero's written out previously to the journal and
2952  * awaiting writeback in the kernel's buffer cache.
2953  *
2954  * So, if we see any bmap calls here on a modified, data-journaled file,
2955  * take extra steps to flush any blocks which might be in the cache.
2956  */
2957 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2958 {
2959         struct inode *inode = mapping->host;
2960         journal_t *journal;
2961         int err;
2962
2963         /*
2964          * We can get here for an inline file via the FIBMAP ioctl
2965          */
2966         if (ext4_has_inline_data(inode))
2967                 return 0;
2968
2969         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2970                         test_opt(inode->i_sb, DELALLOC)) {
2971                 /*
2972                  * With delalloc we want to sync the file
2973                  * so that we can make sure we allocate
2974                  * blocks for file
2975                  */
2976                 filemap_write_and_wait(mapping);
2977         }
2978
2979         if (EXT4_JOURNAL(inode) &&
2980             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2981                 /*
2982                  * This is a REALLY heavyweight approach, but the use of
2983                  * bmap on dirty files is expected to be extremely rare:
2984                  * only if we run lilo or swapon on a freshly made file
2985                  * do we expect this to happen.
2986                  *
2987                  * (bmap requires CAP_SYS_RAWIO so this does not
2988                  * represent an unprivileged user DOS attack --- we'd be
2989                  * in trouble if mortal users could trigger this path at
2990                  * will.)
2991                  *
2992                  * NB. EXT4_STATE_JDATA is not set on files other than
2993                  * regular files.  If somebody wants to bmap a directory
2994                  * or symlink and gets confused because the buffer
2995                  * hasn't yet been flushed to disk, they deserve
2996                  * everything they get.
2997                  */
2998
2999                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3000                 journal = EXT4_JOURNAL(inode);
3001                 jbd2_journal_lock_updates(journal);
3002                 err = jbd2_journal_flush(journal);
3003                 jbd2_journal_unlock_updates(journal);
3004
3005                 if (err)
3006                         return 0;
3007         }
3008
3009         return generic_block_bmap(mapping, block, ext4_get_block);
3010 }
3011
3012 static int ext4_readpage(struct file *file, struct page *page)
3013 {
3014         int ret = -EAGAIN;
3015         struct inode *inode = page->mapping->host;
3016
3017         trace_ext4_readpage(page);
3018
3019         if (ext4_has_inline_data(inode))
3020                 ret = ext4_readpage_inline(inode, page);
3021
3022         if (ret == -EAGAIN)
3023                 return mpage_readpage(page, ext4_get_block);
3024
3025         return ret;
3026 }
3027
3028 static int
3029 ext4_readpages(struct file *file, struct address_space *mapping,
3030                 struct list_head *pages, unsigned nr_pages)
3031 {
3032         struct inode *inode = mapping->host;
3033
3034         /* If the file has inline data, no need to do readpages. */
3035         if (ext4_has_inline_data(inode))
3036                 return 0;
3037
3038         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3039 }
3040
3041 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3042 {
3043         trace_ext4_invalidatepage(page, offset);
3044
3045         /* No journalling happens on data buffers when this function is used */
3046         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3047
3048         block_invalidatepage(page, offset);
3049 }
3050
3051 static int __ext4_journalled_invalidatepage(struct page *page,
3052                                             unsigned long offset)
3053 {
3054         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3055
3056         trace_ext4_journalled_invalidatepage(page, offset);
3057
3058         /*
3059          * If it's a full truncate we just forget about the pending dirtying
3060          */
3061         if (offset == 0)
3062                 ClearPageChecked(page);
3063
3064         return jbd2_journal_invalidatepage(journal, page, offset);
3065 }
3066
3067 /* Wrapper for aops... */
3068 static void ext4_journalled_invalidatepage(struct page *page,
3069                                            unsigned long offset)
3070 {
3071         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3072 }
3073
3074 static int ext4_releasepage(struct page *page, gfp_t wait)
3075 {
3076         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3077
3078         trace_ext4_releasepage(page);
3079
3080         /* Page has dirty journalled data -> cannot release */
3081         if (PageChecked(page))
3082                 return 0;
3083         if (journal)
3084                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3085         else
3086                 return try_to_free_buffers(page);
3087 }
3088
3089 /*
3090  * ext4_get_block used when preparing for a DIO write or buffer write.
3091  * We allocate an uinitialized extent if blocks haven't been allocated.
3092  * The extent will be converted to initialized after the IO is complete.
3093  */
3094 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3095                    struct buffer_head *bh_result, int create)
3096 {
3097         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3098                    inode->i_ino, create);
3099         return _ext4_get_block(inode, iblock, bh_result,
3100                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3101 }
3102
3103 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3104                    struct buffer_head *bh_result, int create)
3105 {
3106         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3107                    inode->i_ino, create);
3108         return _ext4_get_block(inode, iblock, bh_result,
3109                                EXT4_GET_BLOCKS_NO_LOCK);
3110 }
3111
3112 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3113                             ssize_t size, void *private, int ret,
3114                             bool is_async)
3115 {
3116         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
3117         ext4_io_end_t *io_end = iocb->private;
3118
3119         /* if not async direct IO or dio with 0 bytes write, just return */
3120         if (!io_end || !size)
3121                 goto out;
3122
3123         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3124                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3125                   iocb->private, io_end->inode->i_ino, iocb, offset,
3126                   size);
3127
3128         iocb->private = NULL;
3129
3130         /* if not aio dio with unwritten extents, just free io and return */
3131         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3132                 ext4_free_io_end(io_end);
3133 out:
3134                 inode_dio_done(inode);
3135                 if (is_async)
3136                         aio_complete(iocb, ret, 0);
3137                 return;
3138         }
3139
3140         io_end->offset = offset;
3141         io_end->size = size;
3142         if (is_async) {
3143                 io_end->iocb = iocb;
3144                 io_end->result = ret;
3145         }
3146
3147         ext4_add_complete_io(io_end);
3148 }
3149
3150 /*
3151  * For ext4 extent files, ext4 will do direct-io write to holes,
3152  * preallocated extents, and those write extend the file, no need to
3153  * fall back to buffered IO.
3154  *
3155  * For holes, we fallocate those blocks, mark them as uninitialized
3156  * If those blocks were preallocated, we mark sure they are split, but
3157  * still keep the range to write as uninitialized.
3158  *
3159  * The unwritten extents will be converted to written when DIO is completed.
3160  * For async direct IO, since the IO may still pending when return, we
3161  * set up an end_io call back function, which will do the conversion
3162  * when async direct IO completed.
3163  *
3164  * If the O_DIRECT write will extend the file then add this inode to the
3165  * orphan list.  So recovery will truncate it back to the original size
3166  * if the machine crashes during the write.
3167  *
3168  */
3169 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3170                               const struct iovec *iov, loff_t offset,
3171                               unsigned long nr_segs)
3172 {
3173         struct file *file = iocb->ki_filp;
3174         struct inode *inode = file->f_mapping->host;
3175         ssize_t ret;
3176         size_t count = iov_length(iov, nr_segs);
3177         int overwrite = 0;
3178         get_block_t *get_block_func = NULL;
3179         int dio_flags = 0;
3180         loff_t final_size = offset + count;
3181
3182         /* Use the old path for reads and writes beyond i_size. */
3183         if (rw != WRITE || final_size > inode->i_size)
3184                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3185
3186         BUG_ON(iocb->private == NULL);
3187
3188         /* If we do a overwrite dio, i_mutex locking can be released */
3189         overwrite = *((int *)iocb->private);
3190
3191         if (overwrite) {
3192                 atomic_inc(&inode->i_dio_count);
3193                 down_read(&EXT4_I(inode)->i_data_sem);
3194                 mutex_unlock(&inode->i_mutex);
3195         }
3196
3197         /*
3198          * We could direct write to holes and fallocate.
3199          *
3200          * Allocated blocks to fill the hole are marked as
3201          * uninitialized to prevent parallel buffered read to expose
3202          * the stale data before DIO complete the data IO.
3203          *
3204          * As to previously fallocated extents, ext4 get_block will
3205          * just simply mark the buffer mapped but still keep the
3206          * extents uninitialized.
3207          *
3208          * For non AIO case, we will convert those unwritten extents
3209          * to written after return back from blockdev_direct_IO.
3210          *
3211          * For async DIO, the conversion needs to be deferred when the
3212          * IO is completed. The ext4 end_io callback function will be
3213          * called to take care of the conversion work.  Here for async
3214          * case, we allocate an io_end structure to hook to the iocb.
3215          */
3216         iocb->private = NULL;
3217         ext4_inode_aio_set(inode, NULL);
3218         if (!is_sync_kiocb(iocb)) {
3219                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3220                 if (!io_end) {
3221                         ret = -ENOMEM;
3222                         goto retake_lock;
3223                 }
3224                 io_end->flag |= EXT4_IO_END_DIRECT;
3225                 iocb->private = io_end;
3226                 /*
3227                  * we save the io structure for current async direct
3228                  * IO, so that later ext4_map_blocks() could flag the
3229                  * io structure whether there is a unwritten extents
3230                  * needs to be converted when IO is completed.
3231                  */
3232                 ext4_inode_aio_set(inode, io_end);
3233         }
3234
3235         if (overwrite) {
3236                 get_block_func = ext4_get_block_write_nolock;
3237         } else {
3238                 get_block_func = ext4_get_block_write;
3239                 dio_flags = DIO_LOCKING;
3240         }
3241         ret = __blockdev_direct_IO(rw, iocb, inode,
3242                                    inode->i_sb->s_bdev, iov,
3243                                    offset, nr_segs,
3244                                    get_block_func,
3245                                    ext4_end_io_dio,
3246                                    NULL,
3247                                    dio_flags);
3248
3249         if (iocb->private)
3250                 ext4_inode_aio_set(inode, NULL);
3251         /*
3252          * The io_end structure takes a reference to the inode, that
3253          * structure needs to be destroyed and the reference to the
3254          * inode need to be dropped, when IO is complete, even with 0
3255          * byte write, or failed.
3256          *
3257          * In the successful AIO DIO case, the io_end structure will
3258          * be destroyed and the reference to the inode will be dropped
3259          * after the end_io call back function is called.
3260          *
3261          * In the case there is 0 byte write, or error case, since VFS
3262          * direct IO won't invoke the end_io call back function, we
3263          * need to free the end_io structure here.
3264          */
3265         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3266                 ext4_free_io_end(iocb->private);
3267                 iocb->private = NULL;
3268         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3269                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3270                 int err;
3271                 /*
3272                  * for non AIO case, since the IO is already
3273                  * completed, we could do the conversion right here
3274                  */
3275                 err = ext4_convert_unwritten_extents(inode,
3276                                                      offset, ret);
3277                 if (err < 0)
3278                         ret = err;
3279                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3280         }
3281
3282 retake_lock:
3283         /* take i_mutex locking again if we do a ovewrite dio */
3284         if (overwrite) {
3285                 inode_dio_done(inode);
3286                 up_read(&EXT4_I(inode)->i_data_sem);
3287                 mutex_lock(&inode->i_mutex);
3288         }
3289
3290         return ret;
3291 }
3292
3293 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3294                               const struct iovec *iov, loff_t offset,
3295                               unsigned long nr_segs)
3296 {
3297         struct file *file = iocb->ki_filp;
3298         struct inode *inode = file->f_mapping->host;
3299         ssize_t ret;
3300
3301         /*
3302          * If we are doing data journalling we don't support O_DIRECT
3303          */
3304         if (ext4_should_journal_data(inode))
3305                 return 0;
3306
3307         /* Let buffer I/O handle the inline data case. */
3308         if (ext4_has_inline_data(inode))
3309                 return 0;
3310
3311         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3312         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3313                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3314         else
3315                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3316         trace_ext4_direct_IO_exit(inode, offset,
3317                                 iov_length(iov, nr_segs), rw, ret);
3318         return ret;
3319 }
3320
3321 /*
3322  * Pages can be marked dirty completely asynchronously from ext4's journalling
3323  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3324  * much here because ->set_page_dirty is called under VFS locks.  The page is
3325  * not necessarily locked.
3326  *
3327  * We cannot just dirty the page and leave attached buffers clean, because the
3328  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3329  * or jbddirty because all the journalling code will explode.
3330  *
3331  * So what we do is to mark the page "pending dirty" and next time writepage
3332  * is called, propagate that into the buffers appropriately.
3333  */
3334 static int ext4_journalled_set_page_dirty(struct page *page)
3335 {
3336         SetPageChecked(page);
3337         return __set_page_dirty_nobuffers(page);
3338 }
3339
3340 static const struct address_space_operations ext4_ordered_aops = {
3341         .readpage               = ext4_readpage,
3342         .readpages              = ext4_readpages,
3343         .writepage              = ext4_writepage,
3344         .write_begin            = ext4_write_begin,
3345         .write_end              = ext4_ordered_write_end,
3346         .bmap                   = ext4_bmap,
3347         .invalidatepage         = ext4_invalidatepage,
3348         .releasepage            = ext4_releasepage,
3349         .direct_IO              = ext4_direct_IO,
3350         .migratepage            = buffer_migrate_page,
3351         .is_partially_uptodate  = block_is_partially_uptodate,
3352         .error_remove_page      = generic_error_remove_page,
3353 };
3354
3355 static const struct address_space_operations ext4_writeback_aops = {
3356         .readpage               = ext4_readpage,
3357         .readpages              = ext4_readpages,
3358         .writepage              = ext4_writepage,
3359         .write_begin            = ext4_write_begin,
3360         .write_end              = ext4_writeback_write_end,
3361         .bmap                   = ext4_bmap,
3362         .invalidatepage         = ext4_invalidatepage,
3363         .releasepage            = ext4_releasepage,
3364         .direct_IO              = ext4_direct_IO,
3365         .migratepage            = buffer_migrate_page,
3366         .is_partially_uptodate  = block_is_partially_uptodate,
3367         .error_remove_page      = generic_error_remove_page,
3368 };
3369
3370 static const struct address_space_operations ext4_journalled_aops = {
3371         .readpage               = ext4_readpage,
3372         .readpages              = ext4_readpages,
3373         .writepage              = ext4_writepage,
3374         .write_begin            = ext4_write_begin,
3375         .write_end              = ext4_journalled_write_end,
3376         .set_page_dirty         = ext4_journalled_set_page_dirty,
3377         .bmap                   = ext4_bmap,
3378         .invalidatepage         = ext4_journalled_invalidatepage,
3379         .releasepage            = ext4_releasepage,
3380         .direct_IO              = ext4_direct_IO,
3381         .is_partially_uptodate  = block_is_partially_uptodate,
3382         .error_remove_page      = generic_error_remove_page,
3383 };
3384
3385 static const struct address_space_operations ext4_da_aops = {
3386         .readpage               = ext4_readpage,
3387         .readpages              = ext4_readpages,
3388         .writepage              = ext4_writepage,
3389         .writepages             = ext4_da_writepages,
3390         .write_begin            = ext4_da_write_begin,
3391         .write_end              = ext4_da_write_end,
3392         .bmap                   = ext4_bmap,
3393         .invalidatepage         = ext4_da_invalidatepage,
3394         .releasepage            = ext4_releasepage,
3395         .direct_IO              = ext4_direct_IO,
3396         .migratepage            = buffer_migrate_page,
3397         .is_partially_uptodate  = block_is_partially_uptodate,
3398         .error_remove_page      = generic_error_remove_page,
3399 };
3400
3401 void ext4_set_aops(struct inode *inode)
3402 {
3403         switch (ext4_inode_journal_mode(inode)) {
3404         case EXT4_INODE_ORDERED_DATA_MODE:
3405                 if (test_opt(inode->i_sb, DELALLOC))
3406                         inode->i_mapping->a_ops = &ext4_da_aops;
3407                 else
3408                         inode->i_mapping->a_ops = &ext4_ordered_aops;
3409                 break;
3410         case EXT4_INODE_WRITEBACK_DATA_MODE:
3411                 if (test_opt(inode->i_sb, DELALLOC))
3412                         inode->i_mapping->a_ops = &ext4_da_aops;
3413                 else
3414                         inode->i_mapping->a_ops = &ext4_writeback_aops;
3415                 break;
3416         case EXT4_INODE_JOURNAL_DATA_MODE:
3417                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3418                 break;
3419         default:
3420                 BUG();
3421         }
3422 }
3423
3424
3425 /*
3426  * ext4_discard_partial_page_buffers()
3427  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3428  * This function finds and locks the page containing the offset
3429  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3430  * Calling functions that already have the page locked should call
3431  * ext4_discard_partial_page_buffers_no_lock directly.
3432  */
3433 int ext4_discard_partial_page_buffers(handle_t *handle,
3434                 struct address_space *mapping, loff_t from,
3435                 loff_t length, int flags)
3436 {
3437         struct inode *inode = mapping->host;
3438         struct page *page;
3439         int err = 0;
3440
3441         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3442                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3443         if (!page)
3444                 return -ENOMEM;
3445
3446         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3447                 from, length, flags);
3448
3449         unlock_page(page);
3450         page_cache_release(page);
3451         return err;
3452 }
3453
3454 /*
3455  * ext4_discard_partial_page_buffers_no_lock()
3456  * Zeros a page range of length 'length' starting from offset 'from'.
3457  * Buffer heads that correspond to the block aligned regions of the
3458  * zeroed range will be unmapped.  Unblock aligned regions
3459  * will have the corresponding buffer head mapped if needed so that
3460  * that region of the page can be updated with the partial zero out.
3461  *
3462  * This function assumes that the page has already been  locked.  The
3463  * The range to be discarded must be contained with in the given page.
3464  * If the specified range exceeds the end of the page it will be shortened
3465  * to the end of the page that corresponds to 'from'.  This function is
3466  * appropriate for updating a page and it buffer heads to be unmapped and
3467  * zeroed for blocks that have been either released, or are going to be
3468  * released.
3469  *
3470  * handle: The journal handle
3471  * inode:  The files inode
3472  * page:   A locked page that contains the offset "from"
3473  * from:   The starting byte offset (from the beginning of the file)
3474  *         to begin discarding
3475  * len:    The length of bytes to discard
3476  * flags:  Optional flags that may be used:
3477  *
3478  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3479  *         Only zero the regions of the page whose buffer heads
3480  *         have already been unmapped.  This flag is appropriate
3481  *         for updating the contents of a page whose blocks may
3482  *         have already been released, and we only want to zero
3483  *         out the regions that correspond to those released blocks.
3484  *
3485  * Returns zero on success or negative on failure.
3486  */
3487 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3488                 struct inode *inode, struct page *page, loff_t from,
3489                 loff_t length, int flags)
3490 {
3491         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3492         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3493         unsigned int blocksize, max, pos;
3494         ext4_lblk_t iblock;
3495         struct buffer_head *bh;
3496         int err = 0;
3497
3498         blocksize = inode->i_sb->s_blocksize;
3499         max = PAGE_CACHE_SIZE - offset;
3500
3501         if (index != page->index)
3502                 return -EINVAL;
3503
3504         /*
3505          * correct length if it does not fall between
3506          * 'from' and the end of the page
3507          */
3508         if (length > max || length < 0)
3509                 length = max;
3510
3511         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3512
3513         if (!page_has_buffers(page))
3514                 create_empty_buffers(page, blocksize, 0);
3515
3516         /* Find the buffer that contains "offset" */
3517         bh = page_buffers(page);
3518         pos = blocksize;
3519         while (offset >= pos) {
3520                 bh = bh->b_this_page;
3521                 iblock++;
3522                 pos += blocksize;
3523         }
3524
3525         pos = offset;
3526         while (pos < offset + length) {
3527                 unsigned int end_of_block, range_to_discard;
3528
3529                 err = 0;
3530
3531                 /* The length of space left to zero and unmap */
3532                 range_to_discard = offset + length - pos;
3533
3534                 /* The length of space until the end of the block */
3535                 end_of_block = blocksize - (pos & (blocksize-1));
3536
3537                 /*
3538                  * Do not unmap or zero past end of block
3539                  * for this buffer head
3540                  */
3541                 if (range_to_discard > end_of_block)
3542                         range_to_discard = end_of_block;
3543
3544
3545                 /*
3546                  * Skip this buffer head if we are only zeroing unampped
3547                  * regions of the page
3548                  */
3549                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3550                         buffer_mapped(bh))
3551                                 goto next;
3552
3553                 /* If the range is block aligned, unmap */
3554                 if (range_to_discard == blocksize) {
3555                         clear_buffer_dirty(bh);
3556                         bh->b_bdev = NULL;
3557                         clear_buffer_mapped(bh);
3558                         clear_buffer_req(bh);
3559                         clear_buffer_new(bh);
3560                         clear_buffer_delay(bh);
3561                         clear_buffer_unwritten(bh);
3562                         clear_buffer_uptodate(bh);
3563                         zero_user(page, pos, range_to_discard);
3564                         BUFFER_TRACE(bh, "Buffer discarded");
3565                         goto next;
3566                 }
3567
3568                 /*
3569                  * If this block is not completely contained in the range
3570                  * to be discarded, then it is not going to be released. Because
3571                  * we need to keep this block, we need to make sure this part
3572                  * of the page is uptodate before we modify it by writeing
3573                  * partial zeros on it.
3574                  */
3575                 if (!buffer_mapped(bh)) {
3576                         /*
3577                          * Buffer head must be mapped before we can read
3578                          * from the block
3579                          */
3580                         BUFFER_TRACE(bh, "unmapped");
3581                         ext4_get_block(inode, iblock, bh, 0);
3582                         /* unmapped? It's a hole - nothing to do */
3583                         if (!buffer_mapped(bh)) {
3584                                 BUFFER_TRACE(bh, "still unmapped");
3585                                 goto next;
3586                         }
3587                 }
3588
3589                 /* Ok, it's mapped. Make sure it's up-to-date */
3590                 if (PageUptodate(page))
3591                         set_buffer_uptodate(bh);
3592
3593                 if (!buffer_uptodate(bh)) {
3594                         err = -EIO;
3595                         ll_rw_block(READ, 1, &bh);
3596                         wait_on_buffer(bh);
3597                         /* Uhhuh. Read error. Complain and punt.*/
3598                         if (!buffer_uptodate(bh))
3599                                 goto next;
3600                 }
3601
3602                 if (ext4_should_journal_data(inode)) {
3603                         BUFFER_TRACE(bh, "get write access");
3604                         err = ext4_journal_get_write_access(handle, bh);
3605                         if (err)
3606                                 goto next;
3607                 }
3608
3609                 zero_user(page, pos, range_to_discard);
3610
3611                 err = 0;
3612                 if (ext4_should_journal_data(inode)) {
3613                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3614                 } else
3615                         mark_buffer_dirty(bh);
3616
3617                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3618 next:
3619                 bh = bh->b_this_page;
3620                 iblock++;
3621                 pos += range_to_discard;
3622         }
3623
3624         return err;
3625 }
3626
3627 int ext4_can_truncate(struct inode *inode)
3628 {
3629         if (S_ISREG(inode->i_mode))
3630                 return 1;
3631         if (S_ISDIR(inode->i_mode))
3632                 return 1;
3633         if (S_ISLNK(inode->i_mode))
3634                 return !ext4_inode_is_fast_symlink(inode);
3635         return 0;
3636 }
3637
3638 /*
3639  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3640  * associated with the given offset and length
3641  *
3642  * @inode:  File inode
3643  * @offset: The offset where the hole will begin
3644  * @len:    The length of the hole
3645  *
3646  * Returns: 0 on success or negative on failure
3647  */
3648
3649 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3650 {
3651         struct inode *inode = file->f_path.dentry->d_inode;
3652         if (!S_ISREG(inode->i_mode))
3653                 return -EOPNOTSUPP;
3654
3655         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3656                 return ext4_ind_punch_hole(file, offset, length);
3657
3658         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3659                 /* TODO: Add support for bigalloc file systems */
3660                 return -EOPNOTSUPP;
3661         }
3662
3663         trace_ext4_punch_hole(inode, offset, length);
3664
3665         return ext4_ext_punch_hole(file, offset, length);
3666 }
3667
3668 /*
3669  * ext4_truncate()
3670  *
3671  * We block out ext4_get_block() block instantiations across the entire
3672  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3673  * simultaneously on behalf of the same inode.
3674  *
3675  * As we work through the truncate and commit bits of it to the journal there
3676  * is one core, guiding principle: the file's tree must always be consistent on
3677  * disk.  We must be able to restart the truncate after a crash.
3678  *
3679  * The file's tree may be transiently inconsistent in memory (although it
3680  * probably isn't), but whenever we close off and commit a journal transaction,
3681  * the contents of (the filesystem + the journal) must be consistent and
3682  * restartable.  It's pretty simple, really: bottom up, right to left (although
3683  * left-to-right works OK too).
3684  *
3685  * Note that at recovery time, journal replay occurs *before* the restart of
3686  * truncate against the orphan inode list.
3687  *
3688  * The committed inode has the new, desired i_size (which is the same as
3689  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3690  * that this inode's truncate did not complete and it will again call
3691  * ext4_truncate() to have another go.  So there will be instantiated blocks
3692  * to the right of the truncation point in a crashed ext4 filesystem.  But
3693  * that's fine - as long as they are linked from the inode, the post-crash
3694  * ext4_truncate() run will find them and release them.
3695  */
3696 void ext4_truncate(struct inode *inode)
3697 {
3698         trace_ext4_truncate_enter(inode);
3699
3700         if (!ext4_can_truncate(inode))
3701                 return;
3702
3703         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3704
3705         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3706                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3707
3708         if (ext4_has_inline_data(inode)) {
3709                 int has_inline = 1;
3710
3711                 ext4_inline_data_truncate(inode, &has_inline);
3712                 if (has_inline)
3713                         return;
3714         }
3715
3716         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3717                 ext4_ext_truncate(inode);
3718         else
3719                 ext4_ind_truncate(inode);
3720
3721         trace_ext4_truncate_exit(inode);
3722 }
3723
3724 /*
3725  * ext4_get_inode_loc returns with an extra refcount against the inode's
3726  * underlying buffer_head on success. If 'in_mem' is true, we have all
3727  * data in memory that is needed to recreate the on-disk version of this
3728  * inode.
3729  */
3730 static int __ext4_get_inode_loc(struct inode *inode,
3731                                 struct ext4_iloc *iloc, int in_mem)
3732 {
3733         struct ext4_group_desc  *gdp;
3734         struct buffer_head      *bh;
3735         struct super_block      *sb = inode->i_sb;
3736         ext4_fsblk_t            block;
3737         int                     inodes_per_block, inode_offset;
3738
3739         iloc->bh = NULL;
3740         if (!ext4_valid_inum(sb, inode->i_ino))
3741                 return -EIO;
3742
3743         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3744         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3745         if (!gdp)
3746                 return -EIO;
3747
3748         /*
3749          * Figure out the offset within the block group inode table
3750          */
3751         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3752         inode_offset = ((inode->i_ino - 1) %
3753                         EXT4_INODES_PER_GROUP(sb));
3754         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3755         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3756
3757         bh = sb_getblk(sb, block);
3758         if (unlikely(!bh))
3759                 return -ENOMEM;
3760         if (!buffer_uptodate(bh)) {
3761                 lock_buffer(bh);
3762
3763                 /*
3764                  * If the buffer has the write error flag, we have failed
3765                  * to write out another inode in the same block.  In this
3766                  * case, we don't have to read the block because we may
3767                  * read the old inode data successfully.
3768                  */
3769                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3770                         set_buffer_uptodate(bh);
3771
3772                 if (buffer_uptodate(bh)) {
3773                         /* someone brought it uptodate while we waited */
3774                         unlock_buffer(bh);
3775                         goto has_buffer;
3776                 }
3777
3778                 /*
3779                  * If we have all information of the inode in memory and this
3780                  * is the only valid inode in the block, we need not read the
3781                  * block.
3782                  */
3783                 if (in_mem) {
3784                         struct buffer_head *bitmap_bh;
3785                         int i, start;
3786
3787                         start = inode_offset & ~(inodes_per_block - 1);
3788
3789                         /* Is the inode bitmap in cache? */
3790                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3791                         if (unlikely(!bitmap_bh))
3792                                 goto make_io;
3793
3794                         /*
3795                          * If the inode bitmap isn't in cache then the
3796                          * optimisation may end up performing two reads instead
3797                          * of one, so skip it.
3798                          */
3799                         if (!buffer_uptodate(bitmap_bh)) {
3800                                 brelse(bitmap_bh);
3801                                 goto make_io;
3802                         }
3803                         for (i = start; i < start + inodes_per_block; i++) {
3804                                 if (i == inode_offset)
3805                                         continue;
3806                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3807                                         break;
3808                         }
3809                         brelse(bitmap_bh);
3810                         if (i == start + inodes_per_block) {
3811                                 /* all other inodes are free, so skip I/O */
3812                                 memset(bh->b_data, 0, bh->b_size);
3813                                 set_buffer_uptodate(bh);
3814                                 unlock_buffer(bh);
3815                                 goto has_buffer;
3816                         }
3817                 }
3818
3819 make_io:
3820                 /*
3821                  * If we need to do any I/O, try to pre-readahead extra
3822                  * blocks from the inode table.
3823                  */
3824                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3825                         ext4_fsblk_t b, end, table;
3826                         unsigned num;
3827
3828                         table = ext4_inode_table(sb, gdp);
3829                         /* s_inode_readahead_blks is always a power of 2 */
3830                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3831                         if (table > b)
3832                                 b = table;
3833                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3834                         num = EXT4_INODES_PER_GROUP(sb);
3835                         if (ext4_has_group_desc_csum(sb))
3836                                 num -= ext4_itable_unused_count(sb, gdp);
3837                         table += num / inodes_per_block;
3838                         if (end > table)
3839                                 end = table;
3840                         while (b <= end)
3841                                 sb_breadahead(sb, b++);
3842                 }
3843
3844                 /*
3845                  * There are other valid inodes in the buffer, this inode
3846                  * has in-inode xattrs, or we don't have this inode in memory.
3847                  * Read the block from disk.
3848                  */
3849                 trace_ext4_load_inode(inode);
3850                 get_bh(bh);
3851                 bh->b_end_io = end_buffer_read_sync;
3852                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3853                 wait_on_buffer(bh);
3854                 if (!buffer_uptodate(bh)) {
3855                         EXT4_ERROR_INODE_BLOCK(inode, block,
3856                                                "unable to read itable block");
3857                         brelse(bh);
3858                         return -EIO;
3859                 }
3860         }
3861 has_buffer:
3862         iloc->bh = bh;
3863         return 0;
3864 }
3865
3866 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3867 {
3868         /* We have all inode data except xattrs in memory here. */
3869         return __ext4_get_inode_loc(inode, iloc,
3870                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3871 }
3872
3873 void ext4_set_inode_flags(struct inode *inode)
3874 {
3875         unsigned int flags = EXT4_I(inode)->i_flags;
3876
3877         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3878         if (flags & EXT4_SYNC_FL)
3879                 inode->i_flags |= S_SYNC;
3880         if (flags & EXT4_APPEND_FL)
3881                 inode->i_flags |= S_APPEND;
3882         if (flags & EXT4_IMMUTABLE_FL)
3883                 inode->i_flags |= S_IMMUTABLE;
3884         if (flags & EXT4_NOATIME_FL)
3885                 inode->i_flags |= S_NOATIME;
3886         if (flags & EXT4_DIRSYNC_FL)
3887                 inode->i_flags |= S_DIRSYNC;
3888 }
3889
3890 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3891 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3892 {
3893         unsigned int vfs_fl;
3894         unsigned long old_fl, new_fl;
3895
3896         do {
3897                 vfs_fl = ei->vfs_inode.i_flags;
3898                 old_fl = ei->i_flags;
3899                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3900                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3901                                 EXT4_DIRSYNC_FL);
3902                 if (vfs_fl & S_SYNC)
3903                         new_fl |= EXT4_SYNC_FL;
3904                 if (vfs_fl & S_APPEND)
3905                         new_fl |= EXT4_APPEND_FL;
3906                 if (vfs_fl & S_IMMUTABLE)
3907                         new_fl |= EXT4_IMMUTABLE_FL;
3908                 if (vfs_fl & S_NOATIME)
3909                         new_fl |= EXT4_NOATIME_FL;
3910                 if (vfs_fl & S_DIRSYNC)
3911                         new_fl |= EXT4_DIRSYNC_FL;
3912         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3913 }
3914
3915 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3916                                   struct ext4_inode_info *ei)
3917 {
3918         blkcnt_t i_blocks ;
3919         struct inode *inode = &(ei->vfs_inode);
3920         struct super_block *sb = inode->i_sb;
3921
3922         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3923                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3924                 /* we are using combined 48 bit field */
3925                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3926                                         le32_to_cpu(raw_inode->i_blocks_lo);
3927                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3928                         /* i_blocks represent file system block size */
3929                         return i_blocks  << (inode->i_blkbits - 9);
3930                 } else {
3931                         return i_blocks;
3932                 }
3933         } else {
3934                 return le32_to_cpu(raw_inode->i_blocks_lo);
3935         }
3936 }
3937
3938 static inline void ext4_iget_extra_inode(struct inode *inode,
3939                                          struct ext4_inode *raw_inode,
3940                                          struct ext4_inode_info *ei)
3941 {
3942         __le32 *magic = (void *)raw_inode +
3943                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3944         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3945                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3946                 ext4_find_inline_data_nolock(inode);
3947         } else
3948                 EXT4_I(inode)->i_inline_off = 0;
3949 }
3950
3951 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3952 {
3953         struct ext4_iloc iloc;
3954         struct ext4_inode *raw_inode;
3955         struct ext4_inode_info *ei;
3956         struct inode *inode;
3957         journal_t *journal = EXT4_SB(sb)->s_journal;
3958         long ret;
3959         int block;
3960         uid_t i_uid;
3961         gid_t i_gid;
3962
3963         inode = iget_locked(sb, ino);
3964         if (!inode)
3965                 return ERR_PTR(-ENOMEM);
3966         if (!(inode->i_state & I_NEW))
3967                 return inode;
3968
3969         ei = EXT4_I(inode);
3970         iloc.bh = NULL;
3971
3972         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3973         if (ret < 0)
3974                 goto bad_inode;
3975         raw_inode = ext4_raw_inode(&iloc);
3976
3977         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3978                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3979                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3980                     EXT4_INODE_SIZE(inode->i_sb)) {
3981                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3982                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3983                                 EXT4_INODE_SIZE(inode->i_sb));
3984                         ret = -EIO;
3985                         goto bad_inode;
3986                 }
3987         } else
3988                 ei->i_extra_isize = 0;
3989
3990         /* Precompute checksum seed for inode metadata */
3991         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3992                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3993                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3994                 __u32 csum;
3995                 __le32 inum = cpu_to_le32(inode->i_ino);
3996                 __le32 gen = raw_inode->i_generation;
3997                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3998                                    sizeof(inum));
3999                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4000                                               sizeof(gen));
4001         }
4002
4003         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4004                 EXT4_ERROR_INODE(inode, "checksum invalid");
4005                 ret = -EIO;
4006                 goto bad_inode;
4007         }
4008
4009         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4010         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4011         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4012         if (!(test_opt(inode->i_sb, NO_UID32))) {
4013                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4014                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4015         }
4016         i_uid_write(inode, i_uid);
4017         i_gid_write(inode, i_gid);
4018         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4019
4020         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4021         ei->i_inline_off = 0;
4022         ei->i_dir_start_lookup = 0;
4023         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4024         /* We now have enough fields to check if the inode was active or not.
4025          * This is needed because nfsd might try to access dead inodes
4026          * the test is that same one that e2fsck uses
4027          * NeilBrown 1999oct15
4028          */
4029         if (inode->i_nlink == 0) {
4030                 if (inode->i_mode == 0 ||
4031                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4032                         /* this inode is deleted */
4033                         ret = -ESTALE;
4034                         goto bad_inode;
4035                 }
4036                 /* The only unlinked inodes we let through here have
4037                  * valid i_mode and are being read by the orphan
4038                  * recovery code: that's fine, we're about to complete
4039                  * the process of deleting those. */
4040         }
4041         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4042         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4043         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4044         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4045                 ei->i_file_acl |=
4046                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4047         inode->i_size = ext4_isize(raw_inode);
4048         ei->i_disksize = inode->i_size;
4049 #ifdef CONFIG_QUOTA
4050         ei->i_reserved_quota = 0;
4051 #endif
4052         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4053         ei->i_block_group = iloc.block_group;
4054         ei->i_last_alloc_group = ~0;
4055         /*
4056          * NOTE! The in-memory inode i_data array is in little-endian order
4057          * even on big-endian machines: we do NOT byteswap the block numbers!
4058          */
4059         for (block = 0; block < EXT4_N_BLOCKS; block++)
4060                 ei->i_data[block] = raw_inode->i_block[block];
4061         INIT_LIST_HEAD(&ei->i_orphan);
4062
4063         /*
4064          * Set transaction id's of transactions that have to be committed
4065          * to finish f[data]sync. We set them to currently running transaction
4066          * as we cannot be sure that the inode or some of its metadata isn't
4067          * part of the transaction - the inode could have been reclaimed and
4068          * now it is reread from disk.
4069          */
4070         if (journal) {
4071                 transaction_t *transaction;
4072                 tid_t tid;
4073
4074                 read_lock(&journal->j_state_lock);
4075                 if (journal->j_running_transaction)
4076                         transaction = journal->j_running_transaction;
4077                 else
4078                         transaction = journal->j_committing_transaction;
4079                 if (transaction)
4080                         tid = transaction->t_tid;
4081                 else
4082                         tid = journal->j_commit_sequence;
4083                 read_unlock(&journal->j_state_lock);
4084                 ei->i_sync_tid = tid;
4085                 ei->i_datasync_tid = tid;
4086         }
4087
4088         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4089                 if (ei->i_extra_isize == 0) {
4090                         /* The extra space is currently unused. Use it. */
4091                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4092                                             EXT4_GOOD_OLD_INODE_SIZE;
4093                 } else {
4094                         ext4_iget_extra_inode(inode, raw_inode, ei);
4095                 }
4096         }
4097
4098         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4099         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4100         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4101         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4102
4103         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4104         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4105                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4106                         inode->i_version |=
4107                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4108         }
4109
4110         ret = 0;
4111         if (ei->i_file_acl &&
4112             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4113                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4114                                  ei->i_file_acl);
4115                 ret = -EIO;
4116                 goto bad_inode;
4117         } else if (!ext4_has_inline_data(inode)) {
4118                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4119                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4120                             (S_ISLNK(inode->i_mode) &&
4121                              !ext4_inode_is_fast_symlink(inode))))
4122                                 /* Validate extent which is part of inode */
4123                                 ret = ext4_ext_check_inode(inode);
4124                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4125                            (S_ISLNK(inode->i_mode) &&
4126                             !ext4_inode_is_fast_symlink(inode))) {
4127                         /* Validate block references which are part of inode */
4128                         ret = ext4_ind_check_inode(inode);
4129                 }
4130         }
4131         if (ret)
4132                 goto bad_inode;
4133
4134         if (S_ISREG(inode->i_mode)) {
4135                 inode->i_op = &ext4_file_inode_operations;
4136                 inode->i_fop = &ext4_file_operations;
4137                 ext4_set_aops(inode);
4138         } else if (S_ISDIR(inode->i_mode)) {
4139                 inode->i_op = &ext4_dir_inode_operations;
4140                 inode->i_fop = &ext4_dir_operations;
4141         } else if (S_ISLNK(inode->i_mode)) {
4142                 if (ext4_inode_is_fast_symlink(inode)) {
4143                         inode->i_op = &ext4_fast_symlink_inode_operations;
4144                         nd_terminate_link(ei->i_data, inode->i_size,
4145                                 sizeof(ei->i_data) - 1);
4146                 } else {
4147                         inode->i_op = &ext4_symlink_inode_operations;
4148                         ext4_set_aops(inode);
4149                 }
4150         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4151               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4152                 inode->i_op = &ext4_special_inode_operations;
4153                 if (raw_inode->i_block[0])
4154                         init_special_inode(inode, inode->i_mode,
4155                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4156                 else
4157                         init_special_inode(inode, inode->i_mode,
4158                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4159         } else {
4160                 ret = -EIO;
4161                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4162                 goto bad_inode;
4163         }
4164         brelse(iloc.bh);
4165         ext4_set_inode_flags(inode);
4166         unlock_new_inode(inode);
4167         return inode;
4168
4169 bad_inode:
4170         brelse(iloc.bh);
4171         iget_failed(inode);
4172         return ERR_PTR(ret);
4173 }
4174
4175 static int ext4_inode_blocks_set(handle_t *handle,
4176                                 struct ext4_inode *raw_inode,
4177                                 struct ext4_inode_info *ei)
4178 {
4179         struct inode *inode = &(ei->vfs_inode);
4180         u64 i_blocks = inode->i_blocks;
4181         struct super_block *sb = inode->i_sb;
4182
4183         if (i_blocks <= ~0U) {
4184                 /*
4185                  * i_blocks can be represented in a 32 bit variable
4186                  * as multiple of 512 bytes
4187                  */
4188                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4189                 raw_inode->i_blocks_high = 0;
4190                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4191                 return 0;
4192         }
4193         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4194                 return -EFBIG;
4195
4196         if (i_blocks <= 0xffffffffffffULL) {
4197                 /*
4198                  * i_blocks can be represented in a 48 bit variable
4199                  * as multiple of 512 bytes
4200                  */
4201                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4202                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4203                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4204         } else {
4205                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4206                 /* i_block is stored in file system block size */
4207                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4208                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4209                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4210         }
4211         return 0;
4212 }
4213
4214 /*
4215  * Post the struct inode info into an on-disk inode location in the
4216  * buffer-cache.  This gobbles the caller's reference to the
4217  * buffer_head in the inode location struct.
4218  *
4219  * The caller must have write access to iloc->bh.
4220  */
4221 static int ext4_do_update_inode(handle_t *handle,
4222                                 struct inode *inode,
4223                                 struct ext4_iloc *iloc)
4224 {
4225         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4226         struct ext4_inode_info *ei = EXT4_I(inode);
4227         struct buffer_head *bh = iloc->bh;
4228         int err = 0, rc, block;
4229         int need_datasync = 0;
4230         uid_t i_uid;
4231         gid_t i_gid;
4232
4233         /* For fields not not tracking in the in-memory inode,
4234          * initialise them to zero for new inodes. */
4235         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4236                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4237
4238         ext4_get_inode_flags(ei);
4239         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4240         i_uid = i_uid_read(inode);
4241         i_gid = i_gid_read(inode);
4242         if (!(test_opt(inode->i_sb, NO_UID32))) {
4243                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4244                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4245 /*
4246  * Fix up interoperability with old kernels. Otherwise, old inodes get
4247  * re-used with the upper 16 bits of the uid/gid intact
4248  */
4249                 if (!ei->i_dtime) {
4250                         raw_inode->i_uid_high =
4251                                 cpu_to_le16(high_16_bits(i_uid));
4252                         raw_inode->i_gid_high =
4253                                 cpu_to_le16(high_16_bits(i_gid));
4254                 } else {
4255                         raw_inode->i_uid_high = 0;
4256                         raw_inode->i_gid_high = 0;
4257                 }
4258         } else {
4259                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4260                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4261                 raw_inode->i_uid_high = 0;
4262                 raw_inode->i_gid_high = 0;
4263         }
4264         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4265
4266         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4267         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4268         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4269         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4270
4271         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4272                 goto out_brelse;
4273         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4274         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4275         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4276             cpu_to_le32(EXT4_OS_HURD))
4277                 raw_inode->i_file_acl_high =
4278                         cpu_to_le16(ei->i_file_acl >> 32);
4279         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4280         if (ei->i_disksize != ext4_isize(raw_inode)) {
4281                 ext4_isize_set(raw_inode, ei->i_disksize);
4282                 need_datasync = 1;
4283         }
4284         if (ei->i_disksize > 0x7fffffffULL) {
4285                 struct super_block *sb = inode->i_sb;
4286                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4287                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4288                                 EXT4_SB(sb)->s_es->s_rev_level ==
4289                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4290                         /* If this is the first large file
4291                          * created, add a flag to the superblock.
4292                          */
4293                         err = ext4_journal_get_write_access(handle,
4294                                         EXT4_SB(sb)->s_sbh);
4295                         if (err)
4296                                 goto out_brelse;
4297                         ext4_update_dynamic_rev(sb);
4298                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4299                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4300                         ext4_handle_sync(handle);
4301                         err = ext4_handle_dirty_super(handle, sb);
4302                 }
4303         }
4304         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4305         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4306                 if (old_valid_dev(inode->i_rdev)) {
4307                         raw_inode->i_block[0] =
4308                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4309                         raw_inode->i_block[1] = 0;
4310                 } else {
4311                         raw_inode->i_block[0] = 0;
4312                         raw_inode->i_block[1] =
4313                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4314                         raw_inode->i_block[2] = 0;
4315                 }
4316         } else if (!ext4_has_inline_data(inode)) {
4317                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4318                         raw_inode->i_block[block] = ei->i_data[block];
4319         }
4320
4321         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4322         if (ei->i_extra_isize) {
4323                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4324                         raw_inode->i_version_hi =
4325                         cpu_to_le32(inode->i_version >> 32);
4326                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4327         }
4328
4329         ext4_inode_csum_set(inode, raw_inode, ei);
4330
4331         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4332         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4333         if (!err)
4334                 err = rc;
4335         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4336
4337         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4338 out_brelse:
4339         brelse(bh);
4340         ext4_std_error(inode->i_sb, err);
4341         return err;
4342 }
4343
4344 /*
4345  * ext4_write_inode()
4346  *
4347  * We are called from a few places:
4348  *
4349  * - Within generic_file_write() for O_SYNC files.
4350  *   Here, there will be no transaction running. We wait for any running
4351  *   transaction to commit.
4352  *
4353  * - Within sys_sync(), kupdate and such.
4354  *   We wait on commit, if tol to.
4355  *
4356  * - Within prune_icache() (PF_MEMALLOC == true)
4357  *   Here we simply return.  We can't afford to block kswapd on the
4358  *   journal commit.
4359  *
4360  * In all cases it is actually safe for us to return without doing anything,
4361  * because the inode has been copied into a raw inode buffer in
4362  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4363  * knfsd.
4364  *
4365  * Note that we are absolutely dependent upon all inode dirtiers doing the
4366  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4367  * which we are interested.
4368  *
4369  * It would be a bug for them to not do this.  The code:
4370  *
4371  *      mark_inode_dirty(inode)
4372  *      stuff();
4373  *      inode->i_size = expr;
4374  *
4375  * is in error because a kswapd-driven write_inode() could occur while
4376  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4377  * will no longer be on the superblock's dirty inode list.
4378  */
4379 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4380 {
4381         int err;
4382
4383         if (current->flags & PF_MEMALLOC)
4384                 return 0;
4385
4386         if (EXT4_SB(inode->i_sb)->s_journal) {
4387                 if (ext4_journal_current_handle()) {
4388                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4389                         dump_stack();
4390                         return -EIO;
4391                 }
4392
4393                 if (wbc->sync_mode != WB_SYNC_ALL)
4394                         return 0;
4395
4396                 err = ext4_force_commit(inode->i_sb);
4397         } else {
4398                 struct ext4_iloc iloc;
4399
4400                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4401                 if (err)
4402                         return err;
4403                 if (wbc->sync_mode == WB_SYNC_ALL)
4404                         sync_dirty_buffer(iloc.bh);
4405                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4406                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4407                                          "IO error syncing inode");
4408                         err = -EIO;
4409                 }
4410                 brelse(iloc.bh);
4411         }
4412         return err;
4413 }
4414
4415 /*
4416  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4417  * buffers that are attached to a page stradding i_size and are undergoing
4418  * commit. In that case we have to wait for commit to finish and try again.
4419  */
4420 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4421 {
4422         struct page *page;
4423         unsigned offset;
4424         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4425         tid_t commit_tid = 0;
4426         int ret;
4427
4428         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4429         /*
4430          * All buffers in the last page remain valid? Then there's nothing to
4431          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4432          * blocksize case
4433          */
4434         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4435                 return;
4436         while (1) {
4437                 page = find_lock_page(inode->i_mapping,
4438                                       inode->i_size >> PAGE_CACHE_SHIFT);
4439                 if (!page)
4440                         return;
4441                 ret = __ext4_journalled_invalidatepage(page, offset);
4442                 unlock_page(page);
4443                 page_cache_release(page);
4444                 if (ret != -EBUSY)
4445                         return;
4446                 commit_tid = 0;
4447                 read_lock(&journal->j_state_lock);
4448                 if (journal->j_committing_transaction)
4449                         commit_tid = journal->j_committing_transaction->t_tid;
4450                 read_unlock(&journal->j_state_lock);
4451                 if (commit_tid)
4452                         jbd2_log_wait_commit(journal, commit_tid);
4453         }
4454 }
4455
4456 /*
4457  * ext4_setattr()
4458  *
4459  * Called from notify_change.
4460  *
4461  * We want to trap VFS attempts to truncate the file as soon as
4462  * possible.  In particular, we want to make sure that when the VFS
4463  * shrinks i_size, we put the inode on the orphan list and modify
4464  * i_disksize immediately, so that during the subsequent flushing of
4465  * dirty pages and freeing of disk blocks, we can guarantee that any
4466  * commit will leave the blocks being flushed in an unused state on
4467  * disk.  (On recovery, the inode will get truncated and the blocks will
4468  * be freed, so we have a strong guarantee that no future commit will
4469  * leave these blocks visible to the user.)
4470  *
4471  * Another thing we have to assure is that if we are in ordered mode
4472  * and inode is still attached to the committing transaction, we must
4473  * we start writeout of all the dirty pages which are being truncated.
4474  * This way we are sure that all the data written in the previous
4475  * transaction are already on disk (truncate waits for pages under
4476  * writeback).
4477  *
4478  * Called with inode->i_mutex down.
4479  */
4480 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4481 {
4482         struct inode *inode = dentry->d_inode;
4483         int error, rc = 0;
4484         int orphan = 0;
4485         const unsigned int ia_valid = attr->ia_valid;
4486
4487         error = inode_change_ok(inode, attr);
4488         if (error)
4489                 return error;
4490
4491         if (is_quota_modification(inode, attr))
4492                 dquot_initialize(inode);
4493         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4494             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4495                 handle_t *handle;
4496
4497                 /* (user+group)*(old+new) structure, inode write (sb,
4498                  * inode block, ? - but truncate inode update has it) */
4499                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4500                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4501                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4502                 if (IS_ERR(handle)) {
4503                         error = PTR_ERR(handle);
4504                         goto err_out;
4505                 }
4506                 error = dquot_transfer(inode, attr);
4507                 if (error) {
4508                         ext4_journal_stop(handle);
4509                         return error;
4510                 }
4511                 /* Update corresponding info in inode so that everything is in
4512                  * one transaction */
4513                 if (attr->ia_valid & ATTR_UID)
4514                         inode->i_uid = attr->ia_uid;
4515                 if (attr->ia_valid & ATTR_GID)
4516                         inode->i_gid = attr->ia_gid;
4517                 error = ext4_mark_inode_dirty(handle, inode);
4518                 ext4_journal_stop(handle);
4519         }
4520
4521         if (attr->ia_valid & ATTR_SIZE) {
4522
4523                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4524                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4525
4526                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4527                                 return -EFBIG;
4528                 }
4529         }
4530
4531         if (S_ISREG(inode->i_mode) &&
4532             attr->ia_valid & ATTR_SIZE &&
4533             (attr->ia_size < inode->i_size)) {
4534                 handle_t *handle;
4535
4536                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4537                 if (IS_ERR(handle)) {
4538                         error = PTR_ERR(handle);
4539                         goto err_out;
4540                 }
4541                 if (ext4_handle_valid(handle)) {
4542                         error = ext4_orphan_add(handle, inode);
4543                         orphan = 1;
4544                 }
4545                 EXT4_I(inode)->i_disksize = attr->ia_size;
4546                 rc = ext4_mark_inode_dirty(handle, inode);
4547                 if (!error)
4548                         error = rc;
4549                 ext4_journal_stop(handle);
4550
4551                 if (ext4_should_order_data(inode)) {
4552                         error = ext4_begin_ordered_truncate(inode,
4553                                                             attr->ia_size);
4554                         if (error) {
4555                                 /* Do as much error cleanup as possible */
4556                                 handle = ext4_journal_start(inode,
4557                                                             EXT4_HT_INODE, 3);
4558                                 if (IS_ERR(handle)) {
4559                                         ext4_orphan_del(NULL, inode);
4560                                         goto err_out;
4561                                 }
4562                                 ext4_orphan_del(handle, inode);
4563                                 orphan = 0;
4564                                 ext4_journal_stop(handle);
4565                                 goto err_out;
4566                         }
4567                 }
4568         }
4569
4570         if (attr->ia_valid & ATTR_SIZE) {
4571                 if (attr->ia_size != inode->i_size) {
4572                         loff_t oldsize = inode->i_size;
4573
4574                         i_size_write(inode, attr->ia_size);
4575                         /*
4576                          * Blocks are going to be removed from the inode. Wait
4577                          * for dio in flight.  Temporarily disable
4578                          * dioread_nolock to prevent livelock.
4579                          */
4580                         if (orphan) {
4581                                 if (!ext4_should_journal_data(inode)) {
4582                                         ext4_inode_block_unlocked_dio(inode);
4583                                         inode_dio_wait(inode);
4584                                         ext4_inode_resume_unlocked_dio(inode);
4585                                 } else
4586                                         ext4_wait_for_tail_page_commit(inode);
4587                         }
4588                         /*
4589                          * Truncate pagecache after we've waited for commit
4590                          * in data=journal mode to make pages freeable.
4591                          */
4592                         truncate_pagecache(inode, oldsize, inode->i_size);
4593                 }
4594                 ext4_truncate(inode);
4595         }
4596
4597         if (!rc) {
4598                 setattr_copy(inode, attr);
4599                 mark_inode_dirty(inode);
4600         }
4601
4602         /*
4603          * If the call to ext4_truncate failed to get a transaction handle at
4604          * all, we need to clean up the in-core orphan list manually.
4605          */
4606         if (orphan && inode->i_nlink)
4607                 ext4_orphan_del(NULL, inode);
4608
4609         if (!rc && (ia_valid & ATTR_MODE))
4610                 rc = ext4_acl_chmod(inode);
4611
4612 err_out:
4613         ext4_std_error(inode->i_sb, error);
4614         if (!error)
4615                 error = rc;
4616         return error;
4617 }
4618
4619 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4620                  struct kstat *stat)
4621 {
4622         struct inode *inode;
4623         unsigned long delalloc_blocks;
4624
4625         inode = dentry->d_inode;
4626         generic_fillattr(inode, stat);
4627
4628         /*
4629          * We can't update i_blocks if the block allocation is delayed
4630          * otherwise in the case of system crash before the real block
4631          * allocation is done, we will have i_blocks inconsistent with
4632          * on-disk file blocks.
4633          * We always keep i_blocks updated together with real
4634          * allocation. But to not confuse with user, stat
4635          * will return the blocks that include the delayed allocation
4636          * blocks for this file.
4637          */
4638         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4639                                 EXT4_I(inode)->i_reserved_data_blocks);
4640
4641         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4642         return 0;
4643 }
4644
4645 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4646 {
4647         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4648                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4649         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4650 }
4651
4652 /*
4653  * Account for index blocks, block groups bitmaps and block group
4654  * descriptor blocks if modify datablocks and index blocks
4655  * worse case, the indexs blocks spread over different block groups
4656  *
4657  * If datablocks are discontiguous, they are possible to spread over
4658  * different block groups too. If they are contiguous, with flexbg,
4659  * they could still across block group boundary.
4660  *
4661  * Also account for superblock, inode, quota and xattr blocks
4662  */
4663 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4664 {
4665         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4666         int gdpblocks;
4667         int idxblocks;
4668         int ret = 0;
4669
4670         /*
4671          * How many index blocks need to touch to modify nrblocks?
4672          * The "Chunk" flag indicating whether the nrblocks is
4673          * physically contiguous on disk
4674          *
4675          * For Direct IO and fallocate, they calls get_block to allocate
4676          * one single extent at a time, so they could set the "Chunk" flag
4677          */
4678         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4679
4680         ret = idxblocks;
4681
4682         /*
4683          * Now let's see how many group bitmaps and group descriptors need
4684          * to account
4685          */
4686         groups = idxblocks;
4687         if (chunk)
4688                 groups += 1;
4689         else
4690                 groups += nrblocks;
4691
4692         gdpblocks = groups;
4693         if (groups > ngroups)
4694                 groups = ngroups;
4695         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4696                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4697
4698         /* bitmaps and block group descriptor blocks */
4699         ret += groups + gdpblocks;
4700
4701         /* Blocks for super block, inode, quota and xattr blocks */
4702         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4703
4704         return ret;
4705 }
4706
4707 /*
4708  * Calculate the total number of credits to reserve to fit
4709  * the modification of a single pages into a single transaction,
4710  * which may include multiple chunks of block allocations.
4711  *
4712  * This could be called via ext4_write_begin()
4713  *
4714  * We need to consider the worse case, when
4715  * one new block per extent.
4716  */
4717 int ext4_writepage_trans_blocks(struct inode *inode)
4718 {
4719         int bpp = ext4_journal_blocks_per_page(inode);
4720         int ret;
4721
4722         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4723
4724         /* Account for data blocks for journalled mode */
4725         if (ext4_should_journal_data(inode))
4726                 ret += bpp;
4727         return ret;
4728 }
4729
4730 /*
4731  * Calculate the journal credits for a chunk of data modification.
4732  *
4733  * This is called from DIO, fallocate or whoever calling
4734  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4735  *
4736  * journal buffers for data blocks are not included here, as DIO
4737  * and fallocate do no need to journal data buffers.
4738  */
4739 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4740 {
4741         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4742 }
4743
4744 /*
4745  * The caller must have previously called ext4_reserve_inode_write().
4746  * Give this, we know that the caller already has write access to iloc->bh.
4747  */
4748 int ext4_mark_iloc_dirty(handle_t *handle,
4749                          struct inode *inode, struct ext4_iloc *iloc)
4750 {
4751         int err = 0;
4752
4753         if (IS_I_VERSION(inode))
4754                 inode_inc_iversion(inode);
4755
4756         /* the do_update_inode consumes one bh->b_count */
4757         get_bh(iloc->bh);
4758
4759         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4760         err = ext4_do_update_inode(handle, inode, iloc);
4761         put_bh(iloc->bh);
4762         return err;
4763 }
4764
4765 /*
4766  * On success, We end up with an outstanding reference count against
4767  * iloc->bh.  This _must_ be cleaned up later.
4768  */
4769
4770 int
4771 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4772                          struct ext4_iloc *iloc)
4773 {
4774         int err;
4775
4776         err = ext4_get_inode_loc(inode, iloc);
4777         if (!err) {
4778                 BUFFER_TRACE(iloc->bh, "get_write_access");
4779                 err = ext4_journal_get_write_access(handle, iloc->bh);
4780                 if (err) {
4781                         brelse(iloc->bh);
4782                         iloc->bh = NULL;
4783                 }
4784         }
4785         ext4_std_error(inode->i_sb, err);
4786         return err;
4787 }
4788
4789 /*
4790  * Expand an inode by new_extra_isize bytes.
4791  * Returns 0 on success or negative error number on failure.
4792  */
4793 static int ext4_expand_extra_isize(struct inode *inode,
4794                                    unsigned int new_extra_isize,
4795                                    struct ext4_iloc iloc,
4796                                    handle_t *handle)
4797 {
4798         struct ext4_inode *raw_inode;
4799         struct ext4_xattr_ibody_header *header;
4800
4801         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4802                 return 0;
4803
4804         raw_inode = ext4_raw_inode(&iloc);
4805
4806         header = IHDR(inode, raw_inode);
4807
4808         /* No extended attributes present */
4809         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4810             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4811                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4812                         new_extra_isize);
4813                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4814                 return 0;
4815         }
4816
4817         /* try to expand with EAs present */
4818         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4819                                           raw_inode, handle);
4820 }
4821
4822 /*
4823  * What we do here is to mark the in-core inode as clean with respect to inode
4824  * dirtiness (it may still be data-dirty).
4825  * This means that the in-core inode may be reaped by prune_icache
4826  * without having to perform any I/O.  This is a very good thing,
4827  * because *any* task may call prune_icache - even ones which
4828  * have a transaction open against a different journal.
4829  *
4830  * Is this cheating?  Not really.  Sure, we haven't written the
4831  * inode out, but prune_icache isn't a user-visible syncing function.
4832  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4833  * we start and wait on commits.
4834  */
4835 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4836 {
4837         struct ext4_iloc iloc;
4838         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4839         static unsigned int mnt_count;
4840         int err, ret;
4841
4842         might_sleep();
4843         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4844         err = ext4_reserve_inode_write(handle, inode, &iloc);
4845         if (ext4_handle_valid(handle) &&
4846             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4847             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4848                 /*
4849                  * We need extra buffer credits since we may write into EA block
4850                  * with this same handle. If journal_extend fails, then it will
4851                  * only result in a minor loss of functionality for that inode.
4852                  * If this is felt to be critical, then e2fsck should be run to
4853                  * force a large enough s_min_extra_isize.
4854                  */
4855                 if ((jbd2_journal_extend(handle,
4856                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4857                         ret = ext4_expand_extra_isize(inode,
4858                                                       sbi->s_want_extra_isize,
4859                                                       iloc, handle);
4860                         if (ret) {
4861                                 ext4_set_inode_state(inode,
4862                                                      EXT4_STATE_NO_EXPAND);
4863                                 if (mnt_count !=
4864                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4865                                         ext4_warning(inode->i_sb,
4866                                         "Unable to expand inode %lu. Delete"
4867                                         " some EAs or run e2fsck.",
4868                                         inode->i_ino);
4869                                         mnt_count =
4870                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4871                                 }
4872                         }
4873                 }
4874         }
4875         if (!err)
4876                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4877         return err;
4878 }
4879
4880 /*
4881  * ext4_dirty_inode() is called from __mark_inode_dirty()
4882  *
4883  * We're really interested in the case where a file is being extended.
4884  * i_size has been changed by generic_commit_write() and we thus need
4885  * to include the updated inode in the current transaction.
4886  *
4887  * Also, dquot_alloc_block() will always dirty the inode when blocks
4888  * are allocated to the file.
4889  *
4890  * If the inode is marked synchronous, we don't honour that here - doing
4891  * so would cause a commit on atime updates, which we don't bother doing.
4892  * We handle synchronous inodes at the highest possible level.
4893  */
4894 void ext4_dirty_inode(struct inode *inode, int flags)
4895 {
4896         handle_t *handle;
4897
4898         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4899         if (IS_ERR(handle))
4900                 goto out;
4901
4902         ext4_mark_inode_dirty(handle, inode);
4903
4904         ext4_journal_stop(handle);
4905 out:
4906         return;
4907 }
4908
4909 #if 0
4910 /*
4911  * Bind an inode's backing buffer_head into this transaction, to prevent
4912  * it from being flushed to disk early.  Unlike
4913  * ext4_reserve_inode_write, this leaves behind no bh reference and
4914  * returns no iloc structure, so the caller needs to repeat the iloc
4915  * lookup to mark the inode dirty later.
4916  */
4917 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4918 {
4919         struct ext4_iloc iloc;
4920
4921         int err = 0;
4922         if (handle) {
4923                 err = ext4_get_inode_loc(inode, &iloc);
4924                 if (!err) {
4925                         BUFFER_TRACE(iloc.bh, "get_write_access");
4926                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4927                         if (!err)
4928                                 err = ext4_handle_dirty_metadata(handle,
4929                                                                  NULL,
4930                                                                  iloc.bh);
4931                         brelse(iloc.bh);
4932                 }
4933         }
4934         ext4_std_error(inode->i_sb, err);
4935         return err;
4936 }
4937 #endif
4938
4939 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4940 {
4941         journal_t *journal;
4942         handle_t *handle;
4943         int err;
4944
4945         /*
4946          * We have to be very careful here: changing a data block's
4947          * journaling status dynamically is dangerous.  If we write a
4948          * data block to the journal, change the status and then delete
4949          * that block, we risk forgetting to revoke the old log record
4950          * from the journal and so a subsequent replay can corrupt data.
4951          * So, first we make sure that the journal is empty and that
4952          * nobody is changing anything.
4953          */
4954
4955         journal = EXT4_JOURNAL(inode);
4956         if (!journal)
4957                 return 0;
4958         if (is_journal_aborted(journal))
4959                 return -EROFS;
4960         /* We have to allocate physical blocks for delalloc blocks
4961          * before flushing journal. otherwise delalloc blocks can not
4962          * be allocated any more. even more truncate on delalloc blocks
4963          * could trigger BUG by flushing delalloc blocks in journal.
4964          * There is no delalloc block in non-journal data mode.
4965          */
4966         if (val && test_opt(inode->i_sb, DELALLOC)) {
4967                 err = ext4_alloc_da_blocks(inode);
4968                 if (err < 0)
4969                         return err;
4970         }
4971
4972         /* Wait for all existing dio workers */
4973         ext4_inode_block_unlocked_dio(inode);
4974         inode_dio_wait(inode);
4975
4976         jbd2_journal_lock_updates(journal);
4977
4978         /*
4979          * OK, there are no updates running now, and all cached data is
4980          * synced to disk.  We are now in a completely consistent state
4981          * which doesn't have anything in the journal, and we know that
4982          * no filesystem updates are running, so it is safe to modify
4983          * the inode's in-core data-journaling state flag now.
4984          */
4985
4986         if (val)
4987                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4988         else {
4989                 jbd2_journal_flush(journal);
4990                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4991         }
4992         ext4_set_aops(inode);
4993
4994         jbd2_journal_unlock_updates(journal);
4995         ext4_inode_resume_unlocked_dio(inode);
4996
4997         /* Finally we can mark the inode as dirty. */
4998
4999         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5000         if (IS_ERR(handle))
5001                 return PTR_ERR(handle);
5002
5003         err = ext4_mark_inode_dirty(handle, inode);
5004         ext4_handle_sync(handle);
5005         ext4_journal_stop(handle);
5006         ext4_std_error(inode->i_sb, err);
5007
5008         return err;
5009 }
5010
5011 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5012 {
5013         return !buffer_mapped(bh);
5014 }
5015
5016 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5017 {
5018         struct page *page = vmf->page;
5019         loff_t size;
5020         unsigned long len;
5021         int ret;
5022         struct file *file = vma->vm_file;
5023         struct inode *inode = file->f_path.dentry->d_inode;
5024         struct address_space *mapping = inode->i_mapping;
5025         handle_t *handle;
5026         get_block_t *get_block;
5027         int retries = 0;
5028
5029         sb_start_pagefault(inode->i_sb);
5030         file_update_time(vma->vm_file);
5031         /* Delalloc case is easy... */
5032         if (test_opt(inode->i_sb, DELALLOC) &&
5033             !ext4_should_journal_data(inode) &&
5034             !ext4_nonda_switch(inode->i_sb)) {
5035                 do {
5036                         ret = __block_page_mkwrite(vma, vmf,
5037                                                    ext4_da_get_block_prep);
5038                 } while (ret == -ENOSPC &&
5039                        ext4_should_retry_alloc(inode->i_sb, &retries));
5040                 goto out_ret;
5041         }
5042
5043         lock_page(page);
5044         size = i_size_read(inode);
5045         /* Page got truncated from under us? */
5046         if (page->mapping != mapping || page_offset(page) > size) {
5047                 unlock_page(page);
5048                 ret = VM_FAULT_NOPAGE;
5049                 goto out;
5050         }
5051
5052         if (page->index == size >> PAGE_CACHE_SHIFT)
5053                 len = size & ~PAGE_CACHE_MASK;
5054         else
5055                 len = PAGE_CACHE_SIZE;
5056         /*
5057          * Return if we have all the buffers mapped. This avoids the need to do
5058          * journal_start/journal_stop which can block and take a long time
5059          */
5060         if (page_has_buffers(page)) {
5061                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5062                                             0, len, NULL,
5063                                             ext4_bh_unmapped)) {
5064                         /* Wait so that we don't change page under IO */
5065                         wait_on_page_writeback(page);
5066                         ret = VM_FAULT_LOCKED;
5067                         goto out;
5068                 }
5069         }
5070         unlock_page(page);
5071         /* OK, we need to fill the hole... */
5072         if (ext4_should_dioread_nolock(inode))
5073                 get_block = ext4_get_block_write;
5074         else
5075                 get_block = ext4_get_block;
5076 retry_alloc:
5077         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5078                                     ext4_writepage_trans_blocks(inode));
5079         if (IS_ERR(handle)) {
5080                 ret = VM_FAULT_SIGBUS;
5081                 goto out;
5082         }
5083         ret = __block_page_mkwrite(vma, vmf, get_block);
5084         if (!ret && ext4_should_journal_data(inode)) {
5085                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5086                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5087                         unlock_page(page);
5088                         ret = VM_FAULT_SIGBUS;
5089                         ext4_journal_stop(handle);
5090                         goto out;
5091                 }
5092                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5093         }
5094         ext4_journal_stop(handle);
5095         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5096                 goto retry_alloc;
5097 out_ret:
5098         ret = block_page_mkwrite_return(ret);
5099 out:
5100         sb_end_pagefault(inode->i_sb);
5101         return ret;
5102 }