ext4: dirty page has always buffers attached
[pandora-kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = raw->i_checksum_lo;
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = raw->i_checksum_hi;
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = csum_lo;
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = csum_hi;
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138                 struct inode *inode, struct page *page, loff_t from,
139                 loff_t length, int flags);
140
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146         int ea_blocks = EXT4_I(inode)->i_file_acl ?
147                 (inode->i_sb->s_blocksize >> 9) : 0;
148
149         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158                                  int nblocks)
159 {
160         int ret;
161
162         /*
163          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164          * moment, get_block can be called only for blocks inside i_size since
165          * page cache has been already dropped and writes are blocked by
166          * i_mutex. So we can safely drop the i_data_sem here.
167          */
168         BUG_ON(EXT4_JOURNAL(inode) == NULL);
169         jbd_debug(2, "restarting handle %p\n", handle);
170         up_write(&EXT4_I(inode)->i_data_sem);
171         ret = ext4_journal_restart(handle, nblocks);
172         down_write(&EXT4_I(inode)->i_data_sem);
173         ext4_discard_preallocations(inode);
174
175         return ret;
176 }
177
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183         handle_t *handle;
184         int err;
185
186         trace_ext4_evict_inode(inode);
187
188         ext4_ioend_wait(inode);
189
190         if (inode->i_nlink) {
191                 /*
192                  * When journalling data dirty buffers are tracked only in the
193                  * journal. So although mm thinks everything is clean and
194                  * ready for reaping the inode might still have some pages to
195                  * write in the running transaction or waiting to be
196                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
197                  * (via truncate_inode_pages()) to discard these buffers can
198                  * cause data loss. Also even if we did not discard these
199                  * buffers, we would have no way to find them after the inode
200                  * is reaped and thus user could see stale data if he tries to
201                  * read them before the transaction is checkpointed. So be
202                  * careful and force everything to disk here... We use
203                  * ei->i_datasync_tid to store the newest transaction
204                  * containing inode's data.
205                  *
206                  * Note that directories do not have this problem because they
207                  * don't use page cache.
208                  */
209                 if (ext4_should_journal_data(inode) &&
210                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_log_start_commit(journal, commit_tid);
215                         jbd2_log_wait_commit(journal, commit_tid);
216                         filemap_write_and_wait(&inode->i_data);
217                 }
218                 truncate_inode_pages(&inode->i_data, 0);
219                 goto no_delete;
220         }
221
222         if (!is_bad_inode(inode))
223                 dquot_initialize(inode);
224
225         if (ext4_should_order_data(inode))
226                 ext4_begin_ordered_truncate(inode, 0);
227         truncate_inode_pages(&inode->i_data, 0);
228
229         if (is_bad_inode(inode))
230                 goto no_delete;
231
232         /*
233          * Protect us against freezing - iput() caller didn't have to have any
234          * protection against it
235          */
236         sb_start_intwrite(inode->i_sb);
237         handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
238         if (IS_ERR(handle)) {
239                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
240                 /*
241                  * If we're going to skip the normal cleanup, we still need to
242                  * make sure that the in-core orphan linked list is properly
243                  * cleaned up.
244                  */
245                 ext4_orphan_del(NULL, inode);
246                 sb_end_intwrite(inode->i_sb);
247                 goto no_delete;
248         }
249
250         if (IS_SYNC(inode))
251                 ext4_handle_sync(handle);
252         inode->i_size = 0;
253         err = ext4_mark_inode_dirty(handle, inode);
254         if (err) {
255                 ext4_warning(inode->i_sb,
256                              "couldn't mark inode dirty (err %d)", err);
257                 goto stop_handle;
258         }
259         if (inode->i_blocks)
260                 ext4_truncate(inode);
261
262         /*
263          * ext4_ext_truncate() doesn't reserve any slop when it
264          * restarts journal transactions; therefore there may not be
265          * enough credits left in the handle to remove the inode from
266          * the orphan list and set the dtime field.
267          */
268         if (!ext4_handle_has_enough_credits(handle, 3)) {
269                 err = ext4_journal_extend(handle, 3);
270                 if (err > 0)
271                         err = ext4_journal_restart(handle, 3);
272                 if (err != 0) {
273                         ext4_warning(inode->i_sb,
274                                      "couldn't extend journal (err %d)", err);
275                 stop_handle:
276                         ext4_journal_stop(handle);
277                         ext4_orphan_del(NULL, inode);
278                         sb_end_intwrite(inode->i_sb);
279                         goto no_delete;
280                 }
281         }
282
283         /*
284          * Kill off the orphan record which ext4_truncate created.
285          * AKPM: I think this can be inside the above `if'.
286          * Note that ext4_orphan_del() has to be able to cope with the
287          * deletion of a non-existent orphan - this is because we don't
288          * know if ext4_truncate() actually created an orphan record.
289          * (Well, we could do this if we need to, but heck - it works)
290          */
291         ext4_orphan_del(handle, inode);
292         EXT4_I(inode)->i_dtime  = get_seconds();
293
294         /*
295          * One subtle ordering requirement: if anything has gone wrong
296          * (transaction abort, IO errors, whatever), then we can still
297          * do these next steps (the fs will already have been marked as
298          * having errors), but we can't free the inode if the mark_dirty
299          * fails.
300          */
301         if (ext4_mark_inode_dirty(handle, inode))
302                 /* If that failed, just do the required in-core inode clear. */
303                 ext4_clear_inode(inode);
304         else
305                 ext4_free_inode(handle, inode);
306         ext4_journal_stop(handle);
307         sb_end_intwrite(inode->i_sb);
308         return;
309 no_delete:
310         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
311 }
312
313 #ifdef CONFIG_QUOTA
314 qsize_t *ext4_get_reserved_space(struct inode *inode)
315 {
316         return &EXT4_I(inode)->i_reserved_quota;
317 }
318 #endif
319
320 /*
321  * Calculate the number of metadata blocks need to reserve
322  * to allocate a block located at @lblock
323  */
324 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
325 {
326         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
327                 return ext4_ext_calc_metadata_amount(inode, lblock);
328
329         return ext4_ind_calc_metadata_amount(inode, lblock);
330 }
331
332 /*
333  * Called with i_data_sem down, which is important since we can call
334  * ext4_discard_preallocations() from here.
335  */
336 void ext4_da_update_reserve_space(struct inode *inode,
337                                         int used, int quota_claim)
338 {
339         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340         struct ext4_inode_info *ei = EXT4_I(inode);
341
342         spin_lock(&ei->i_block_reservation_lock);
343         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344         if (unlikely(used > ei->i_reserved_data_blocks)) {
345                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
346                          "with only %d reserved data blocks",
347                          __func__, inode->i_ino, used,
348                          ei->i_reserved_data_blocks);
349                 WARN_ON(1);
350                 used = ei->i_reserved_data_blocks;
351         }
352
353         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
354                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
355                          "with only %d reserved metadata blocks\n", __func__,
356                          inode->i_ino, ei->i_allocated_meta_blocks,
357                          ei->i_reserved_meta_blocks);
358                 WARN_ON(1);
359                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
360         }
361
362         /* Update per-inode reservations */
363         ei->i_reserved_data_blocks -= used;
364         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
365         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
366                            used + ei->i_allocated_meta_blocks);
367         ei->i_allocated_meta_blocks = 0;
368
369         if (ei->i_reserved_data_blocks == 0) {
370                 /*
371                  * We can release all of the reserved metadata blocks
372                  * only when we have written all of the delayed
373                  * allocation blocks.
374                  */
375                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
376                                    ei->i_reserved_meta_blocks);
377                 ei->i_reserved_meta_blocks = 0;
378                 ei->i_da_metadata_calc_len = 0;
379         }
380         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
381
382         /* Update quota subsystem for data blocks */
383         if (quota_claim)
384                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
385         else {
386                 /*
387                  * We did fallocate with an offset that is already delayed
388                  * allocated. So on delayed allocated writeback we should
389                  * not re-claim the quota for fallocated blocks.
390                  */
391                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
392         }
393
394         /*
395          * If we have done all the pending block allocations and if
396          * there aren't any writers on the inode, we can discard the
397          * inode's preallocations.
398          */
399         if ((ei->i_reserved_data_blocks == 0) &&
400             (atomic_read(&inode->i_writecount) == 0))
401                 ext4_discard_preallocations(inode);
402 }
403
404 static int __check_block_validity(struct inode *inode, const char *func,
405                                 unsigned int line,
406                                 struct ext4_map_blocks *map)
407 {
408         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
409                                    map->m_len)) {
410                 ext4_error_inode(inode, func, line, map->m_pblk,
411                                  "lblock %lu mapped to illegal pblock "
412                                  "(length %d)", (unsigned long) map->m_lblk,
413                                  map->m_len);
414                 return -EIO;
415         }
416         return 0;
417 }
418
419 #define check_block_validity(inode, map)        \
420         __check_block_validity((inode), __func__, __LINE__, (map))
421
422 /*
423  * Return the number of contiguous dirty pages in a given inode
424  * starting at page frame idx.
425  */
426 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
427                                     unsigned int max_pages)
428 {
429         struct address_space *mapping = inode->i_mapping;
430         pgoff_t index;
431         struct pagevec pvec;
432         pgoff_t num = 0;
433         int i, nr_pages, done = 0;
434
435         if (max_pages == 0)
436                 return 0;
437         pagevec_init(&pvec, 0);
438         while (!done) {
439                 index = idx;
440                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
441                                               PAGECACHE_TAG_DIRTY,
442                                               (pgoff_t)PAGEVEC_SIZE);
443                 if (nr_pages == 0)
444                         break;
445                 for (i = 0; i < nr_pages; i++) {
446                         struct page *page = pvec.pages[i];
447                         struct buffer_head *bh, *head;
448
449                         lock_page(page);
450                         if (unlikely(page->mapping != mapping) ||
451                             !PageDirty(page) ||
452                             PageWriteback(page) ||
453                             page->index != idx) {
454                                 done = 1;
455                                 unlock_page(page);
456                                 break;
457                         }
458                         if (page_has_buffers(page)) {
459                                 bh = head = page_buffers(page);
460                                 do {
461                                         if (!buffer_delay(bh) &&
462                                             !buffer_unwritten(bh))
463                                                 done = 1;
464                                         bh = bh->b_this_page;
465                                 } while (!done && (bh != head));
466                         }
467                         unlock_page(page);
468                         if (done)
469                                 break;
470                         idx++;
471                         num++;
472                         if (num >= max_pages) {
473                                 done = 1;
474                                 break;
475                         }
476                 }
477                 pagevec_release(&pvec);
478         }
479         return num;
480 }
481
482 /*
483  * The ext4_map_blocks() function tries to look up the requested blocks,
484  * and returns if the blocks are already mapped.
485  *
486  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
487  * and store the allocated blocks in the result buffer head and mark it
488  * mapped.
489  *
490  * If file type is extents based, it will call ext4_ext_map_blocks(),
491  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
492  * based files
493  *
494  * On success, it returns the number of blocks being mapped or allocate.
495  * if create==0 and the blocks are pre-allocated and uninitialized block,
496  * the result buffer head is unmapped. If the create ==1, it will make sure
497  * the buffer head is mapped.
498  *
499  * It returns 0 if plain look up failed (blocks have not been allocated), in
500  * that case, buffer head is unmapped
501  *
502  * It returns the error in case of allocation failure.
503  */
504 int ext4_map_blocks(handle_t *handle, struct inode *inode,
505                     struct ext4_map_blocks *map, int flags)
506 {
507         int retval;
508
509         map->m_flags = 0;
510         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
511                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
512                   (unsigned long) map->m_lblk);
513         /*
514          * Try to see if we can get the block without requesting a new
515          * file system block.
516          */
517         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
518                 down_read((&EXT4_I(inode)->i_data_sem));
519         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
520                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
521                                              EXT4_GET_BLOCKS_KEEP_SIZE);
522         } else {
523                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
524                                              EXT4_GET_BLOCKS_KEEP_SIZE);
525         }
526         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
527                 up_read((&EXT4_I(inode)->i_data_sem));
528
529         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
530                 int ret;
531                 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
532                         /* delayed alloc may be allocated by fallocate and
533                          * coverted to initialized by directIO.
534                          * we need to handle delayed extent here.
535                          */
536                         down_write((&EXT4_I(inode)->i_data_sem));
537                         goto delayed_mapped;
538                 }
539                 ret = check_block_validity(inode, map);
540                 if (ret != 0)
541                         return ret;
542         }
543
544         /* If it is only a block(s) look up */
545         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
546                 return retval;
547
548         /*
549          * Returns if the blocks have already allocated
550          *
551          * Note that if blocks have been preallocated
552          * ext4_ext_get_block() returns the create = 0
553          * with buffer head unmapped.
554          */
555         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
556                 return retval;
557
558         /*
559          * When we call get_blocks without the create flag, the
560          * BH_Unwritten flag could have gotten set if the blocks
561          * requested were part of a uninitialized extent.  We need to
562          * clear this flag now that we are committed to convert all or
563          * part of the uninitialized extent to be an initialized
564          * extent.  This is because we need to avoid the combination
565          * of BH_Unwritten and BH_Mapped flags being simultaneously
566          * set on the buffer_head.
567          */
568         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
569
570         /*
571          * New blocks allocate and/or writing to uninitialized extent
572          * will possibly result in updating i_data, so we take
573          * the write lock of i_data_sem, and call get_blocks()
574          * with create == 1 flag.
575          */
576         down_write((&EXT4_I(inode)->i_data_sem));
577
578         /*
579          * if the caller is from delayed allocation writeout path
580          * we have already reserved fs blocks for allocation
581          * let the underlying get_block() function know to
582          * avoid double accounting
583          */
584         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
585                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
586         /*
587          * We need to check for EXT4 here because migrate
588          * could have changed the inode type in between
589          */
590         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
591                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
592         } else {
593                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
594
595                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
596                         /*
597                          * We allocated new blocks which will result in
598                          * i_data's format changing.  Force the migrate
599                          * to fail by clearing migrate flags
600                          */
601                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
602                 }
603
604                 /*
605                  * Update reserved blocks/metadata blocks after successful
606                  * block allocation which had been deferred till now. We don't
607                  * support fallocate for non extent files. So we can update
608                  * reserve space here.
609                  */
610                 if ((retval > 0) &&
611                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
612                         ext4_da_update_reserve_space(inode, retval, 1);
613         }
614         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
615                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
616
617                 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
618                         int ret;
619 delayed_mapped:
620                         /* delayed allocation blocks has been allocated */
621                         ret = ext4_es_remove_extent(inode, map->m_lblk,
622                                                     map->m_len);
623                         if (ret < 0)
624                                 retval = ret;
625                 }
626         }
627
628         up_write((&EXT4_I(inode)->i_data_sem));
629         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
630                 int ret = check_block_validity(inode, map);
631                 if (ret != 0)
632                         return ret;
633         }
634         return retval;
635 }
636
637 /* Maximum number of blocks we map for direct IO at once. */
638 #define DIO_MAX_BLOCKS 4096
639
640 static int _ext4_get_block(struct inode *inode, sector_t iblock,
641                            struct buffer_head *bh, int flags)
642 {
643         handle_t *handle = ext4_journal_current_handle();
644         struct ext4_map_blocks map;
645         int ret = 0, started = 0;
646         int dio_credits;
647
648         if (ext4_has_inline_data(inode))
649                 return -ERANGE;
650
651         map.m_lblk = iblock;
652         map.m_len = bh->b_size >> inode->i_blkbits;
653
654         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
655                 /* Direct IO write... */
656                 if (map.m_len > DIO_MAX_BLOCKS)
657                         map.m_len = DIO_MAX_BLOCKS;
658                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
659                 handle = ext4_journal_start(inode, dio_credits);
660                 if (IS_ERR(handle)) {
661                         ret = PTR_ERR(handle);
662                         return ret;
663                 }
664                 started = 1;
665         }
666
667         ret = ext4_map_blocks(handle, inode, &map, flags);
668         if (ret > 0) {
669                 map_bh(bh, inode->i_sb, map.m_pblk);
670                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
671                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
672                 ret = 0;
673         }
674         if (started)
675                 ext4_journal_stop(handle);
676         return ret;
677 }
678
679 int ext4_get_block(struct inode *inode, sector_t iblock,
680                    struct buffer_head *bh, int create)
681 {
682         return _ext4_get_block(inode, iblock, bh,
683                                create ? EXT4_GET_BLOCKS_CREATE : 0);
684 }
685
686 /*
687  * `handle' can be NULL if create is zero
688  */
689 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
690                                 ext4_lblk_t block, int create, int *errp)
691 {
692         struct ext4_map_blocks map;
693         struct buffer_head *bh;
694         int fatal = 0, err;
695
696         J_ASSERT(handle != NULL || create == 0);
697
698         map.m_lblk = block;
699         map.m_len = 1;
700         err = ext4_map_blocks(handle, inode, &map,
701                               create ? EXT4_GET_BLOCKS_CREATE : 0);
702
703         /* ensure we send some value back into *errp */
704         *errp = 0;
705
706         if (err < 0)
707                 *errp = err;
708         if (err <= 0)
709                 return NULL;
710
711         bh = sb_getblk(inode->i_sb, map.m_pblk);
712         if (unlikely(!bh)) {
713                 *errp = -ENOMEM;
714                 return NULL;
715         }
716         if (map.m_flags & EXT4_MAP_NEW) {
717                 J_ASSERT(create != 0);
718                 J_ASSERT(handle != NULL);
719
720                 /*
721                  * Now that we do not always journal data, we should
722                  * keep in mind whether this should always journal the
723                  * new buffer as metadata.  For now, regular file
724                  * writes use ext4_get_block instead, so it's not a
725                  * problem.
726                  */
727                 lock_buffer(bh);
728                 BUFFER_TRACE(bh, "call get_create_access");
729                 fatal = ext4_journal_get_create_access(handle, bh);
730                 if (!fatal && !buffer_uptodate(bh)) {
731                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
732                         set_buffer_uptodate(bh);
733                 }
734                 unlock_buffer(bh);
735                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
736                 err = ext4_handle_dirty_metadata(handle, inode, bh);
737                 if (!fatal)
738                         fatal = err;
739         } else {
740                 BUFFER_TRACE(bh, "not a new buffer");
741         }
742         if (fatal) {
743                 *errp = fatal;
744                 brelse(bh);
745                 bh = NULL;
746         }
747         return bh;
748 }
749
750 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
751                                ext4_lblk_t block, int create, int *err)
752 {
753         struct buffer_head *bh;
754
755         bh = ext4_getblk(handle, inode, block, create, err);
756         if (!bh)
757                 return bh;
758         if (buffer_uptodate(bh))
759                 return bh;
760         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
761         wait_on_buffer(bh);
762         if (buffer_uptodate(bh))
763                 return bh;
764         put_bh(bh);
765         *err = -EIO;
766         return NULL;
767 }
768
769 int ext4_walk_page_buffers(handle_t *handle,
770                            struct buffer_head *head,
771                            unsigned from,
772                            unsigned to,
773                            int *partial,
774                            int (*fn)(handle_t *handle,
775                                      struct buffer_head *bh))
776 {
777         struct buffer_head *bh;
778         unsigned block_start, block_end;
779         unsigned blocksize = head->b_size;
780         int err, ret = 0;
781         struct buffer_head *next;
782
783         for (bh = head, block_start = 0;
784              ret == 0 && (bh != head || !block_start);
785              block_start = block_end, bh = next) {
786                 next = bh->b_this_page;
787                 block_end = block_start + blocksize;
788                 if (block_end <= from || block_start >= to) {
789                         if (partial && !buffer_uptodate(bh))
790                                 *partial = 1;
791                         continue;
792                 }
793                 err = (*fn)(handle, bh);
794                 if (!ret)
795                         ret = err;
796         }
797         return ret;
798 }
799
800 /*
801  * To preserve ordering, it is essential that the hole instantiation and
802  * the data write be encapsulated in a single transaction.  We cannot
803  * close off a transaction and start a new one between the ext4_get_block()
804  * and the commit_write().  So doing the jbd2_journal_start at the start of
805  * prepare_write() is the right place.
806  *
807  * Also, this function can nest inside ext4_writepage().  In that case, we
808  * *know* that ext4_writepage() has generated enough buffer credits to do the
809  * whole page.  So we won't block on the journal in that case, which is good,
810  * because the caller may be PF_MEMALLOC.
811  *
812  * By accident, ext4 can be reentered when a transaction is open via
813  * quota file writes.  If we were to commit the transaction while thus
814  * reentered, there can be a deadlock - we would be holding a quota
815  * lock, and the commit would never complete if another thread had a
816  * transaction open and was blocking on the quota lock - a ranking
817  * violation.
818  *
819  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
820  * will _not_ run commit under these circumstances because handle->h_ref
821  * is elevated.  We'll still have enough credits for the tiny quotafile
822  * write.
823  */
824 int do_journal_get_write_access(handle_t *handle,
825                                 struct buffer_head *bh)
826 {
827         int dirty = buffer_dirty(bh);
828         int ret;
829
830         if (!buffer_mapped(bh) || buffer_freed(bh))
831                 return 0;
832         /*
833          * __block_write_begin() could have dirtied some buffers. Clean
834          * the dirty bit as jbd2_journal_get_write_access() could complain
835          * otherwise about fs integrity issues. Setting of the dirty bit
836          * by __block_write_begin() isn't a real problem here as we clear
837          * the bit before releasing a page lock and thus writeback cannot
838          * ever write the buffer.
839          */
840         if (dirty)
841                 clear_buffer_dirty(bh);
842         ret = ext4_journal_get_write_access(handle, bh);
843         if (!ret && dirty)
844                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
845         return ret;
846 }
847
848 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
849                    struct buffer_head *bh_result, int create);
850 static int ext4_write_begin(struct file *file, struct address_space *mapping,
851                             loff_t pos, unsigned len, unsigned flags,
852                             struct page **pagep, void **fsdata)
853 {
854         struct inode *inode = mapping->host;
855         int ret, needed_blocks;
856         handle_t *handle;
857         int retries = 0;
858         struct page *page;
859         pgoff_t index;
860         unsigned from, to;
861
862         trace_ext4_write_begin(inode, pos, len, flags);
863         /*
864          * Reserve one block more for addition to orphan list in case
865          * we allocate blocks but write fails for some reason
866          */
867         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
868         index = pos >> PAGE_CACHE_SHIFT;
869         from = pos & (PAGE_CACHE_SIZE - 1);
870         to = from + len;
871
872         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
873                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
874                                                     flags, pagep);
875                 if (ret < 0)
876                         goto out;
877                 if (ret == 1) {
878                         ret = 0;
879                         goto out;
880                 }
881         }
882
883 retry:
884         handle = ext4_journal_start(inode, needed_blocks);
885         if (IS_ERR(handle)) {
886                 ret = PTR_ERR(handle);
887                 goto out;
888         }
889
890         /* We cannot recurse into the filesystem as the transaction is already
891          * started */
892         flags |= AOP_FLAG_NOFS;
893
894         page = grab_cache_page_write_begin(mapping, index, flags);
895         if (!page) {
896                 ext4_journal_stop(handle);
897                 ret = -ENOMEM;
898                 goto out;
899         }
900
901         *pagep = page;
902
903         if (ext4_should_dioread_nolock(inode))
904                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
905         else
906                 ret = __block_write_begin(page, pos, len, ext4_get_block);
907
908         if (!ret && ext4_should_journal_data(inode)) {
909                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
910                                              from, to, NULL,
911                                              do_journal_get_write_access);
912         }
913
914         if (ret) {
915                 unlock_page(page);
916                 page_cache_release(page);
917                 /*
918                  * __block_write_begin may have instantiated a few blocks
919                  * outside i_size.  Trim these off again. Don't need
920                  * i_size_read because we hold i_mutex.
921                  *
922                  * Add inode to orphan list in case we crash before
923                  * truncate finishes
924                  */
925                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
926                         ext4_orphan_add(handle, inode);
927
928                 ext4_journal_stop(handle);
929                 if (pos + len > inode->i_size) {
930                         ext4_truncate_failed_write(inode);
931                         /*
932                          * If truncate failed early the inode might
933                          * still be on the orphan list; we need to
934                          * make sure the inode is removed from the
935                          * orphan list in that case.
936                          */
937                         if (inode->i_nlink)
938                                 ext4_orphan_del(NULL, inode);
939                 }
940         }
941
942         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
943                 goto retry;
944 out:
945         return ret;
946 }
947
948 /* For write_end() in data=journal mode */
949 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
950 {
951         if (!buffer_mapped(bh) || buffer_freed(bh))
952                 return 0;
953         set_buffer_uptodate(bh);
954         return ext4_handle_dirty_metadata(handle, NULL, bh);
955 }
956
957 static int ext4_generic_write_end(struct file *file,
958                                   struct address_space *mapping,
959                                   loff_t pos, unsigned len, unsigned copied,
960                                   struct page *page, void *fsdata)
961 {
962         int i_size_changed = 0;
963         struct inode *inode = mapping->host;
964         handle_t *handle = ext4_journal_current_handle();
965
966         if (ext4_has_inline_data(inode))
967                 copied = ext4_write_inline_data_end(inode, pos, len,
968                                                     copied, page);
969         else
970                 copied = block_write_end(file, mapping, pos,
971                                          len, copied, page, fsdata);
972
973         /*
974          * No need to use i_size_read() here, the i_size
975          * cannot change under us because we hold i_mutex.
976          *
977          * But it's important to update i_size while still holding page lock:
978          * page writeout could otherwise come in and zero beyond i_size.
979          */
980         if (pos + copied > inode->i_size) {
981                 i_size_write(inode, pos + copied);
982                 i_size_changed = 1;
983         }
984
985         if (pos + copied >  EXT4_I(inode)->i_disksize) {
986                 /* We need to mark inode dirty even if
987                  * new_i_size is less that inode->i_size
988                  * bu greater than i_disksize.(hint delalloc)
989                  */
990                 ext4_update_i_disksize(inode, (pos + copied));
991                 i_size_changed = 1;
992         }
993         unlock_page(page);
994         page_cache_release(page);
995
996         /*
997          * Don't mark the inode dirty under page lock. First, it unnecessarily
998          * makes the holding time of page lock longer. Second, it forces lock
999          * ordering of page lock and transaction start for journaling
1000          * filesystems.
1001          */
1002         if (i_size_changed)
1003                 ext4_mark_inode_dirty(handle, inode);
1004
1005         return copied;
1006 }
1007
1008 /*
1009  * We need to pick up the new inode size which generic_commit_write gave us
1010  * `file' can be NULL - eg, when called from page_symlink().
1011  *
1012  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1013  * buffers are managed internally.
1014  */
1015 static int ext4_ordered_write_end(struct file *file,
1016                                   struct address_space *mapping,
1017                                   loff_t pos, unsigned len, unsigned copied,
1018                                   struct page *page, void *fsdata)
1019 {
1020         handle_t *handle = ext4_journal_current_handle();
1021         struct inode *inode = mapping->host;
1022         int ret = 0, ret2;
1023
1024         trace_ext4_ordered_write_end(inode, pos, len, copied);
1025         ret = ext4_jbd2_file_inode(handle, inode);
1026
1027         if (ret == 0) {
1028                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1029                                                         page, fsdata);
1030                 copied = ret2;
1031                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1032                         /* if we have allocated more blocks and copied
1033                          * less. We will have blocks allocated outside
1034                          * inode->i_size. So truncate them
1035                          */
1036                         ext4_orphan_add(handle, inode);
1037                 if (ret2 < 0)
1038                         ret = ret2;
1039         } else {
1040                 unlock_page(page);
1041                 page_cache_release(page);
1042         }
1043
1044         ret2 = ext4_journal_stop(handle);
1045         if (!ret)
1046                 ret = ret2;
1047
1048         if (pos + len > inode->i_size) {
1049                 ext4_truncate_failed_write(inode);
1050                 /*
1051                  * If truncate failed early the inode might still be
1052                  * on the orphan list; we need to make sure the inode
1053                  * is removed from the orphan list in that case.
1054                  */
1055                 if (inode->i_nlink)
1056                         ext4_orphan_del(NULL, inode);
1057         }
1058
1059
1060         return ret ? ret : copied;
1061 }
1062
1063 static int ext4_writeback_write_end(struct file *file,
1064                                     struct address_space *mapping,
1065                                     loff_t pos, unsigned len, unsigned copied,
1066                                     struct page *page, void *fsdata)
1067 {
1068         handle_t *handle = ext4_journal_current_handle();
1069         struct inode *inode = mapping->host;
1070         int ret = 0, ret2;
1071
1072         trace_ext4_writeback_write_end(inode, pos, len, copied);
1073         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1074                                                         page, fsdata);
1075         copied = ret2;
1076         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1077                 /* if we have allocated more blocks and copied
1078                  * less. We will have blocks allocated outside
1079                  * inode->i_size. So truncate them
1080                  */
1081                 ext4_orphan_add(handle, inode);
1082
1083         if (ret2 < 0)
1084                 ret = ret2;
1085
1086         ret2 = ext4_journal_stop(handle);
1087         if (!ret)
1088                 ret = ret2;
1089
1090         if (pos + len > inode->i_size) {
1091                 ext4_truncate_failed_write(inode);
1092                 /*
1093                  * If truncate failed early the inode might still be
1094                  * on the orphan list; we need to make sure the inode
1095                  * is removed from the orphan list in that case.
1096                  */
1097                 if (inode->i_nlink)
1098                         ext4_orphan_del(NULL, inode);
1099         }
1100
1101         return ret ? ret : copied;
1102 }
1103
1104 static int ext4_journalled_write_end(struct file *file,
1105                                      struct address_space *mapping,
1106                                      loff_t pos, unsigned len, unsigned copied,
1107                                      struct page *page, void *fsdata)
1108 {
1109         handle_t *handle = ext4_journal_current_handle();
1110         struct inode *inode = mapping->host;
1111         int ret = 0, ret2;
1112         int partial = 0;
1113         unsigned from, to;
1114         loff_t new_i_size;
1115
1116         trace_ext4_journalled_write_end(inode, pos, len, copied);
1117         from = pos & (PAGE_CACHE_SIZE - 1);
1118         to = from + len;
1119
1120         BUG_ON(!ext4_handle_valid(handle));
1121
1122         if (ext4_has_inline_data(inode))
1123                 copied = ext4_write_inline_data_end(inode, pos, len,
1124                                                     copied, page);
1125         else {
1126                 if (copied < len) {
1127                         if (!PageUptodate(page))
1128                                 copied = 0;
1129                         page_zero_new_buffers(page, from+copied, to);
1130                 }
1131
1132                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1133                                              to, &partial, write_end_fn);
1134                 if (!partial)
1135                         SetPageUptodate(page);
1136         }
1137         new_i_size = pos + copied;
1138         if (new_i_size > inode->i_size)
1139                 i_size_write(inode, pos+copied);
1140         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1141         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1142         if (new_i_size > EXT4_I(inode)->i_disksize) {
1143                 ext4_update_i_disksize(inode, new_i_size);
1144                 ret2 = ext4_mark_inode_dirty(handle, inode);
1145                 if (!ret)
1146                         ret = ret2;
1147         }
1148
1149         unlock_page(page);
1150         page_cache_release(page);
1151         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1152                 /* if we have allocated more blocks and copied
1153                  * less. We will have blocks allocated outside
1154                  * inode->i_size. So truncate them
1155                  */
1156                 ext4_orphan_add(handle, inode);
1157
1158         ret2 = ext4_journal_stop(handle);
1159         if (!ret)
1160                 ret = ret2;
1161         if (pos + len > inode->i_size) {
1162                 ext4_truncate_failed_write(inode);
1163                 /*
1164                  * If truncate failed early the inode might still be
1165                  * on the orphan list; we need to make sure the inode
1166                  * is removed from the orphan list in that case.
1167                  */
1168                 if (inode->i_nlink)
1169                         ext4_orphan_del(NULL, inode);
1170         }
1171
1172         return ret ? ret : copied;
1173 }
1174
1175 /*
1176  * Reserve a single cluster located at lblock
1177  */
1178 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1179 {
1180         int retries = 0;
1181         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1182         struct ext4_inode_info *ei = EXT4_I(inode);
1183         unsigned int md_needed;
1184         int ret;
1185         ext4_lblk_t save_last_lblock;
1186         int save_len;
1187
1188         /*
1189          * We will charge metadata quota at writeout time; this saves
1190          * us from metadata over-estimation, though we may go over by
1191          * a small amount in the end.  Here we just reserve for data.
1192          */
1193         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1194         if (ret)
1195                 return ret;
1196
1197         /*
1198          * recalculate the amount of metadata blocks to reserve
1199          * in order to allocate nrblocks
1200          * worse case is one extent per block
1201          */
1202 repeat:
1203         spin_lock(&ei->i_block_reservation_lock);
1204         /*
1205          * ext4_calc_metadata_amount() has side effects, which we have
1206          * to be prepared undo if we fail to claim space.
1207          */
1208         save_len = ei->i_da_metadata_calc_len;
1209         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1210         md_needed = EXT4_NUM_B2C(sbi,
1211                                  ext4_calc_metadata_amount(inode, lblock));
1212         trace_ext4_da_reserve_space(inode, md_needed);
1213
1214         /*
1215          * We do still charge estimated metadata to the sb though;
1216          * we cannot afford to run out of free blocks.
1217          */
1218         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1219                 ei->i_da_metadata_calc_len = save_len;
1220                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1221                 spin_unlock(&ei->i_block_reservation_lock);
1222                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1223                         yield();
1224                         goto repeat;
1225                 }
1226                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1227                 return -ENOSPC;
1228         }
1229         ei->i_reserved_data_blocks++;
1230         ei->i_reserved_meta_blocks += md_needed;
1231         spin_unlock(&ei->i_block_reservation_lock);
1232
1233         return 0;       /* success */
1234 }
1235
1236 static void ext4_da_release_space(struct inode *inode, int to_free)
1237 {
1238         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1239         struct ext4_inode_info *ei = EXT4_I(inode);
1240
1241         if (!to_free)
1242                 return;         /* Nothing to release, exit */
1243
1244         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1245
1246         trace_ext4_da_release_space(inode, to_free);
1247         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1248                 /*
1249                  * if there aren't enough reserved blocks, then the
1250                  * counter is messed up somewhere.  Since this
1251                  * function is called from invalidate page, it's
1252                  * harmless to return without any action.
1253                  */
1254                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1255                          "ino %lu, to_free %d with only %d reserved "
1256                          "data blocks", inode->i_ino, to_free,
1257                          ei->i_reserved_data_blocks);
1258                 WARN_ON(1);
1259                 to_free = ei->i_reserved_data_blocks;
1260         }
1261         ei->i_reserved_data_blocks -= to_free;
1262
1263         if (ei->i_reserved_data_blocks == 0) {
1264                 /*
1265                  * We can release all of the reserved metadata blocks
1266                  * only when we have written all of the delayed
1267                  * allocation blocks.
1268                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1269                  * i_reserved_data_blocks, etc. refer to number of clusters.
1270                  */
1271                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1272                                    ei->i_reserved_meta_blocks);
1273                 ei->i_reserved_meta_blocks = 0;
1274                 ei->i_da_metadata_calc_len = 0;
1275         }
1276
1277         /* update fs dirty data blocks counter */
1278         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1279
1280         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1281
1282         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1283 }
1284
1285 static void ext4_da_page_release_reservation(struct page *page,
1286                                              unsigned long offset)
1287 {
1288         int to_release = 0;
1289         struct buffer_head *head, *bh;
1290         unsigned int curr_off = 0;
1291         struct inode *inode = page->mapping->host;
1292         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1293         int num_clusters;
1294         ext4_fsblk_t lblk;
1295
1296         head = page_buffers(page);
1297         bh = head;
1298         do {
1299                 unsigned int next_off = curr_off + bh->b_size;
1300
1301                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1302                         to_release++;
1303                         clear_buffer_delay(bh);
1304                 }
1305                 curr_off = next_off;
1306         } while ((bh = bh->b_this_page) != head);
1307
1308         if (to_release) {
1309                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1310                 ext4_es_remove_extent(inode, lblk, to_release);
1311         }
1312
1313         /* If we have released all the blocks belonging to a cluster, then we
1314          * need to release the reserved space for that cluster. */
1315         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1316         while (num_clusters > 0) {
1317                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1318                         ((num_clusters - 1) << sbi->s_cluster_bits);
1319                 if (sbi->s_cluster_ratio == 1 ||
1320                     !ext4_find_delalloc_cluster(inode, lblk))
1321                         ext4_da_release_space(inode, 1);
1322
1323                 num_clusters--;
1324         }
1325 }
1326
1327 /*
1328  * Delayed allocation stuff
1329  */
1330
1331 /*
1332  * mpage_da_submit_io - walks through extent of pages and try to write
1333  * them with writepage() call back
1334  *
1335  * @mpd->inode: inode
1336  * @mpd->first_page: first page of the extent
1337  * @mpd->next_page: page after the last page of the extent
1338  *
1339  * By the time mpage_da_submit_io() is called we expect all blocks
1340  * to be allocated. this may be wrong if allocation failed.
1341  *
1342  * As pages are already locked by write_cache_pages(), we can't use it
1343  */
1344 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1345                               struct ext4_map_blocks *map)
1346 {
1347         struct pagevec pvec;
1348         unsigned long index, end;
1349         int ret = 0, err, nr_pages, i;
1350         struct inode *inode = mpd->inode;
1351         struct address_space *mapping = inode->i_mapping;
1352         loff_t size = i_size_read(inode);
1353         unsigned int len, block_start;
1354         struct buffer_head *bh, *page_bufs = NULL;
1355         sector_t pblock = 0, cur_logical = 0;
1356         struct ext4_io_submit io_submit;
1357
1358         BUG_ON(mpd->next_page <= mpd->first_page);
1359         memset(&io_submit, 0, sizeof(io_submit));
1360         /*
1361          * We need to start from the first_page to the next_page - 1
1362          * to make sure we also write the mapped dirty buffer_heads.
1363          * If we look at mpd->b_blocknr we would only be looking
1364          * at the currently mapped buffer_heads.
1365          */
1366         index = mpd->first_page;
1367         end = mpd->next_page - 1;
1368
1369         pagevec_init(&pvec, 0);
1370         while (index <= end) {
1371                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1372                 if (nr_pages == 0)
1373                         break;
1374                 for (i = 0; i < nr_pages; i++) {
1375                         int skip_page = 0;
1376                         struct page *page = pvec.pages[i];
1377
1378                         index = page->index;
1379                         if (index > end)
1380                                 break;
1381
1382                         if (index == size >> PAGE_CACHE_SHIFT)
1383                                 len = size & ~PAGE_CACHE_MASK;
1384                         else
1385                                 len = PAGE_CACHE_SIZE;
1386                         if (map) {
1387                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1388                                                         inode->i_blkbits);
1389                                 pblock = map->m_pblk + (cur_logical -
1390                                                         map->m_lblk);
1391                         }
1392                         index++;
1393
1394                         BUG_ON(!PageLocked(page));
1395                         BUG_ON(PageWriteback(page));
1396
1397                         bh = page_bufs = page_buffers(page);
1398                         block_start = 0;
1399                         do {
1400                                 if (map && (cur_logical >= map->m_lblk) &&
1401                                     (cur_logical <= (map->m_lblk +
1402                                                      (map->m_len - 1)))) {
1403                                         if (buffer_delay(bh)) {
1404                                                 clear_buffer_delay(bh);
1405                                                 bh->b_blocknr = pblock;
1406                                         }
1407                                         if (buffer_unwritten(bh) ||
1408                                             buffer_mapped(bh))
1409                                                 BUG_ON(bh->b_blocknr != pblock);
1410                                         if (map->m_flags & EXT4_MAP_UNINIT)
1411                                                 set_buffer_uninit(bh);
1412                                         clear_buffer_unwritten(bh);
1413                                 }
1414
1415                                 /*
1416                                  * skip page if block allocation undone and
1417                                  * block is dirty
1418                                  */
1419                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1420                                         skip_page = 1;
1421                                 bh = bh->b_this_page;
1422                                 block_start += bh->b_size;
1423                                 cur_logical++;
1424                                 pblock++;
1425                         } while (bh != page_bufs);
1426
1427                         if (skip_page) {
1428                                 unlock_page(page);
1429                                 continue;
1430                         }
1431
1432                         clear_page_dirty_for_io(page);
1433                         err = ext4_bio_write_page(&io_submit, page, len,
1434                                                   mpd->wbc);
1435                         if (!err)
1436                                 mpd->pages_written++;
1437                         /*
1438                          * In error case, we have to continue because
1439                          * remaining pages are still locked
1440                          */
1441                         if (ret == 0)
1442                                 ret = err;
1443                 }
1444                 pagevec_release(&pvec);
1445         }
1446         ext4_io_submit(&io_submit);
1447         return ret;
1448 }
1449
1450 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1451 {
1452         int nr_pages, i;
1453         pgoff_t index, end;
1454         struct pagevec pvec;
1455         struct inode *inode = mpd->inode;
1456         struct address_space *mapping = inode->i_mapping;
1457         ext4_lblk_t start, last;
1458
1459         index = mpd->first_page;
1460         end   = mpd->next_page - 1;
1461
1462         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1463         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1464         ext4_es_remove_extent(inode, start, last - start + 1);
1465
1466         pagevec_init(&pvec, 0);
1467         while (index <= end) {
1468                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1469                 if (nr_pages == 0)
1470                         break;
1471                 for (i = 0; i < nr_pages; i++) {
1472                         struct page *page = pvec.pages[i];
1473                         if (page->index > end)
1474                                 break;
1475                         BUG_ON(!PageLocked(page));
1476                         BUG_ON(PageWriteback(page));
1477                         block_invalidatepage(page, 0);
1478                         ClearPageUptodate(page);
1479                         unlock_page(page);
1480                 }
1481                 index = pvec.pages[nr_pages - 1]->index + 1;
1482                 pagevec_release(&pvec);
1483         }
1484         return;
1485 }
1486
1487 static void ext4_print_free_blocks(struct inode *inode)
1488 {
1489         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1490         struct super_block *sb = inode->i_sb;
1491
1492         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1493                EXT4_C2B(EXT4_SB(inode->i_sb),
1494                         ext4_count_free_clusters(inode->i_sb)));
1495         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1496         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1497                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1498                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1499         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1500                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1501                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1502         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1503         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1504                  EXT4_I(inode)->i_reserved_data_blocks);
1505         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1506                EXT4_I(inode)->i_reserved_meta_blocks);
1507         return;
1508 }
1509
1510 /*
1511  * mpage_da_map_and_submit - go through given space, map them
1512  *       if necessary, and then submit them for I/O
1513  *
1514  * @mpd - bh describing space
1515  *
1516  * The function skips space we know is already mapped to disk blocks.
1517  *
1518  */
1519 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1520 {
1521         int err, blks, get_blocks_flags;
1522         struct ext4_map_blocks map, *mapp = NULL;
1523         sector_t next = mpd->b_blocknr;
1524         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1525         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1526         handle_t *handle = NULL;
1527
1528         /*
1529          * If the blocks are mapped already, or we couldn't accumulate
1530          * any blocks, then proceed immediately to the submission stage.
1531          */
1532         if ((mpd->b_size == 0) ||
1533             ((mpd->b_state  & (1 << BH_Mapped)) &&
1534              !(mpd->b_state & (1 << BH_Delay)) &&
1535              !(mpd->b_state & (1 << BH_Unwritten))))
1536                 goto submit_io;
1537
1538         handle = ext4_journal_current_handle();
1539         BUG_ON(!handle);
1540
1541         /*
1542          * Call ext4_map_blocks() to allocate any delayed allocation
1543          * blocks, or to convert an uninitialized extent to be
1544          * initialized (in the case where we have written into
1545          * one or more preallocated blocks).
1546          *
1547          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1548          * indicate that we are on the delayed allocation path.  This
1549          * affects functions in many different parts of the allocation
1550          * call path.  This flag exists primarily because we don't
1551          * want to change *many* call functions, so ext4_map_blocks()
1552          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1553          * inode's allocation semaphore is taken.
1554          *
1555          * If the blocks in questions were delalloc blocks, set
1556          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1557          * variables are updated after the blocks have been allocated.
1558          */
1559         map.m_lblk = next;
1560         map.m_len = max_blocks;
1561         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1562         if (ext4_should_dioread_nolock(mpd->inode))
1563                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1564         if (mpd->b_state & (1 << BH_Delay))
1565                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1566
1567         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1568         if (blks < 0) {
1569                 struct super_block *sb = mpd->inode->i_sb;
1570
1571                 err = blks;
1572                 /*
1573                  * If get block returns EAGAIN or ENOSPC and there
1574                  * appears to be free blocks we will just let
1575                  * mpage_da_submit_io() unlock all of the pages.
1576                  */
1577                 if (err == -EAGAIN)
1578                         goto submit_io;
1579
1580                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1581                         mpd->retval = err;
1582                         goto submit_io;
1583                 }
1584
1585                 /*
1586                  * get block failure will cause us to loop in
1587                  * writepages, because a_ops->writepage won't be able
1588                  * to make progress. The page will be redirtied by
1589                  * writepage and writepages will again try to write
1590                  * the same.
1591                  */
1592                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1593                         ext4_msg(sb, KERN_CRIT,
1594                                  "delayed block allocation failed for inode %lu "
1595                                  "at logical offset %llu with max blocks %zd "
1596                                  "with error %d", mpd->inode->i_ino,
1597                                  (unsigned long long) next,
1598                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1599                         ext4_msg(sb, KERN_CRIT,
1600                                 "This should not happen!! Data will be lost\n");
1601                         if (err == -ENOSPC)
1602                                 ext4_print_free_blocks(mpd->inode);
1603                 }
1604                 /* invalidate all the pages */
1605                 ext4_da_block_invalidatepages(mpd);
1606
1607                 /* Mark this page range as having been completed */
1608                 mpd->io_done = 1;
1609                 return;
1610         }
1611         BUG_ON(blks == 0);
1612
1613         mapp = &map;
1614         if (map.m_flags & EXT4_MAP_NEW) {
1615                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1616                 int i;
1617
1618                 for (i = 0; i < map.m_len; i++)
1619                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1620         }
1621
1622         /*
1623          * Update on-disk size along with block allocation.
1624          */
1625         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1626         if (disksize > i_size_read(mpd->inode))
1627                 disksize = i_size_read(mpd->inode);
1628         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1629                 ext4_update_i_disksize(mpd->inode, disksize);
1630                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1631                 if (err)
1632                         ext4_error(mpd->inode->i_sb,
1633                                    "Failed to mark inode %lu dirty",
1634                                    mpd->inode->i_ino);
1635         }
1636
1637 submit_io:
1638         mpage_da_submit_io(mpd, mapp);
1639         mpd->io_done = 1;
1640 }
1641
1642 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1643                 (1 << BH_Delay) | (1 << BH_Unwritten))
1644
1645 /*
1646  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1647  *
1648  * @mpd->lbh - extent of blocks
1649  * @logical - logical number of the block in the file
1650  * @bh - bh of the block (used to access block's state)
1651  *
1652  * the function is used to collect contig. blocks in same state
1653  */
1654 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1655                                    sector_t logical, size_t b_size,
1656                                    unsigned long b_state)
1657 {
1658         sector_t next;
1659         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1660
1661         /*
1662          * XXX Don't go larger than mballoc is willing to allocate
1663          * This is a stopgap solution.  We eventually need to fold
1664          * mpage_da_submit_io() into this function and then call
1665          * ext4_map_blocks() multiple times in a loop
1666          */
1667         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1668                 goto flush_it;
1669
1670         /* check if thereserved journal credits might overflow */
1671         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1672                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1673                         /*
1674                          * With non-extent format we are limited by the journal
1675                          * credit available.  Total credit needed to insert
1676                          * nrblocks contiguous blocks is dependent on the
1677                          * nrblocks.  So limit nrblocks.
1678                          */
1679                         goto flush_it;
1680                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1681                                 EXT4_MAX_TRANS_DATA) {
1682                         /*
1683                          * Adding the new buffer_head would make it cross the
1684                          * allowed limit for which we have journal credit
1685                          * reserved. So limit the new bh->b_size
1686                          */
1687                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1688                                                 mpd->inode->i_blkbits;
1689                         /* we will do mpage_da_submit_io in the next loop */
1690                 }
1691         }
1692         /*
1693          * First block in the extent
1694          */
1695         if (mpd->b_size == 0) {
1696                 mpd->b_blocknr = logical;
1697                 mpd->b_size = b_size;
1698                 mpd->b_state = b_state & BH_FLAGS;
1699                 return;
1700         }
1701
1702         next = mpd->b_blocknr + nrblocks;
1703         /*
1704          * Can we merge the block to our big extent?
1705          */
1706         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1707                 mpd->b_size += b_size;
1708                 return;
1709         }
1710
1711 flush_it:
1712         /*
1713          * We couldn't merge the block to our extent, so we
1714          * need to flush current  extent and start new one
1715          */
1716         mpage_da_map_and_submit(mpd);
1717         return;
1718 }
1719
1720 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1721 {
1722         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1723 }
1724
1725 /*
1726  * This function is grabs code from the very beginning of
1727  * ext4_map_blocks, but assumes that the caller is from delayed write
1728  * time. This function looks up the requested blocks and sets the
1729  * buffer delay bit under the protection of i_data_sem.
1730  */
1731 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1732                               struct ext4_map_blocks *map,
1733                               struct buffer_head *bh)
1734 {
1735         int retval;
1736         sector_t invalid_block = ~((sector_t) 0xffff);
1737
1738         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1739                 invalid_block = ~0;
1740
1741         map->m_flags = 0;
1742         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1743                   "logical block %lu\n", inode->i_ino, map->m_len,
1744                   (unsigned long) map->m_lblk);
1745         /*
1746          * Try to see if we can get the block without requesting a new
1747          * file system block.
1748          */
1749         down_read((&EXT4_I(inode)->i_data_sem));
1750         if (ext4_has_inline_data(inode)) {
1751                 /*
1752                  * We will soon create blocks for this page, and let
1753                  * us pretend as if the blocks aren't allocated yet.
1754                  * In case of clusters, we have to handle the work
1755                  * of mapping from cluster so that the reserved space
1756                  * is calculated properly.
1757                  */
1758                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1759                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1760                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1761                 retval = 0;
1762         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1763                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1764         else
1765                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1766
1767         if (retval == 0) {
1768                 /*
1769                  * XXX: __block_prepare_write() unmaps passed block,
1770                  * is it OK?
1771                  */
1772                 /* If the block was allocated from previously allocated cluster,
1773                  * then we dont need to reserve it again. */
1774                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1775                         retval = ext4_da_reserve_space(inode, iblock);
1776                         if (retval)
1777                                 /* not enough space to reserve */
1778                                 goto out_unlock;
1779                 }
1780
1781                 retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len);
1782                 if (retval)
1783                         goto out_unlock;
1784
1785                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1786                  * and it should not appear on the bh->b_state.
1787                  */
1788                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1789
1790                 map_bh(bh, inode->i_sb, invalid_block);
1791                 set_buffer_new(bh);
1792                 set_buffer_delay(bh);
1793         }
1794
1795 out_unlock:
1796         up_read((&EXT4_I(inode)->i_data_sem));
1797
1798         return retval;
1799 }
1800
1801 /*
1802  * This is a special get_blocks_t callback which is used by
1803  * ext4_da_write_begin().  It will either return mapped block or
1804  * reserve space for a single block.
1805  *
1806  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1807  * We also have b_blocknr = -1 and b_bdev initialized properly
1808  *
1809  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1810  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1811  * initialized properly.
1812  */
1813 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1814                            struct buffer_head *bh, int create)
1815 {
1816         struct ext4_map_blocks map;
1817         int ret = 0;
1818
1819         BUG_ON(create == 0);
1820         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1821
1822         map.m_lblk = iblock;
1823         map.m_len = 1;
1824
1825         /*
1826          * first, we need to know whether the block is allocated already
1827          * preallocated blocks are unmapped but should treated
1828          * the same as allocated blocks.
1829          */
1830         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1831         if (ret <= 0)
1832                 return ret;
1833
1834         map_bh(bh, inode->i_sb, map.m_pblk);
1835         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1836
1837         if (buffer_unwritten(bh)) {
1838                 /* A delayed write to unwritten bh should be marked
1839                  * new and mapped.  Mapped ensures that we don't do
1840                  * get_block multiple times when we write to the same
1841                  * offset and new ensures that we do proper zero out
1842                  * for partial write.
1843                  */
1844                 set_buffer_new(bh);
1845                 set_buffer_mapped(bh);
1846         }
1847         return 0;
1848 }
1849
1850 static int bget_one(handle_t *handle, struct buffer_head *bh)
1851 {
1852         get_bh(bh);
1853         return 0;
1854 }
1855
1856 static int bput_one(handle_t *handle, struct buffer_head *bh)
1857 {
1858         put_bh(bh);
1859         return 0;
1860 }
1861
1862 static int __ext4_journalled_writepage(struct page *page,
1863                                        unsigned int len)
1864 {
1865         struct address_space *mapping = page->mapping;
1866         struct inode *inode = mapping->host;
1867         struct buffer_head *page_bufs = NULL;
1868         handle_t *handle = NULL;
1869         int ret = 0, err = 0;
1870         int inline_data = ext4_has_inline_data(inode);
1871         struct buffer_head *inode_bh = NULL;
1872
1873         ClearPageChecked(page);
1874
1875         if (inline_data) {
1876                 BUG_ON(page->index != 0);
1877                 BUG_ON(len > ext4_get_max_inline_size(inode));
1878                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1879                 if (inode_bh == NULL)
1880                         goto out;
1881         } else {
1882                 page_bufs = page_buffers(page);
1883                 if (!page_bufs) {
1884                         BUG();
1885                         goto out;
1886                 }
1887                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1888                                        NULL, bget_one);
1889         }
1890         /* As soon as we unlock the page, it can go away, but we have
1891          * references to buffers so we are safe */
1892         unlock_page(page);
1893
1894         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1895         if (IS_ERR(handle)) {
1896                 ret = PTR_ERR(handle);
1897                 goto out;
1898         }
1899
1900         BUG_ON(!ext4_handle_valid(handle));
1901
1902         if (inline_data) {
1903                 ret = ext4_journal_get_write_access(handle, inode_bh);
1904
1905                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1906
1907         } else {
1908                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1909                                              do_journal_get_write_access);
1910
1911                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1912                                              write_end_fn);
1913         }
1914         if (ret == 0)
1915                 ret = err;
1916         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1917         err = ext4_journal_stop(handle);
1918         if (!ret)
1919                 ret = err;
1920
1921         if (!ext4_has_inline_data(inode))
1922                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1923                                        NULL, bput_one);
1924         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1925 out:
1926         brelse(inode_bh);
1927         return ret;
1928 }
1929
1930 /*
1931  * Note that we don't need to start a transaction unless we're journaling data
1932  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1933  * need to file the inode to the transaction's list in ordered mode because if
1934  * we are writing back data added by write(), the inode is already there and if
1935  * we are writing back data modified via mmap(), no one guarantees in which
1936  * transaction the data will hit the disk. In case we are journaling data, we
1937  * cannot start transaction directly because transaction start ranks above page
1938  * lock so we have to do some magic.
1939  *
1940  * This function can get called via...
1941  *   - ext4_da_writepages after taking page lock (have journal handle)
1942  *   - journal_submit_inode_data_buffers (no journal handle)
1943  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1944  *   - grab_page_cache when doing write_begin (have journal handle)
1945  *
1946  * We don't do any block allocation in this function. If we have page with
1947  * multiple blocks we need to write those buffer_heads that are mapped. This
1948  * is important for mmaped based write. So if we do with blocksize 1K
1949  * truncate(f, 1024);
1950  * a = mmap(f, 0, 4096);
1951  * a[0] = 'a';
1952  * truncate(f, 4096);
1953  * we have in the page first buffer_head mapped via page_mkwrite call back
1954  * but other buffer_heads would be unmapped but dirty (dirty done via the
1955  * do_wp_page). So writepage should write the first block. If we modify
1956  * the mmap area beyond 1024 we will again get a page_fault and the
1957  * page_mkwrite callback will do the block allocation and mark the
1958  * buffer_heads mapped.
1959  *
1960  * We redirty the page if we have any buffer_heads that is either delay or
1961  * unwritten in the page.
1962  *
1963  * We can get recursively called as show below.
1964  *
1965  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1966  *              ext4_writepage()
1967  *
1968  * But since we don't do any block allocation we should not deadlock.
1969  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1970  */
1971 static int ext4_writepage(struct page *page,
1972                           struct writeback_control *wbc)
1973 {
1974         int ret = 0;
1975         loff_t size;
1976         unsigned int len;
1977         struct buffer_head *page_bufs = NULL;
1978         struct inode *inode = page->mapping->host;
1979         struct ext4_io_submit io_submit;
1980
1981         trace_ext4_writepage(page);
1982         size = i_size_read(inode);
1983         if (page->index == size >> PAGE_CACHE_SHIFT)
1984                 len = size & ~PAGE_CACHE_MASK;
1985         else
1986                 len = PAGE_CACHE_SIZE;
1987
1988         page_bufs = page_buffers(page);
1989         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1990                                    ext4_bh_delay_or_unwritten)) {
1991                 /*
1992                  * We don't want to do block allocation, so redirty
1993                  * the page and return.  We may reach here when we do
1994                  * a journal commit via journal_submit_inode_data_buffers.
1995                  * We can also reach here via shrink_page_list but it
1996                  * should never be for direct reclaim so warn if that
1997                  * happens
1998                  */
1999                 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2000                                                                 PF_MEMALLOC);
2001                 redirty_page_for_writepage(wbc, page);
2002                 unlock_page(page);
2003                 return 0;
2004         }
2005
2006         if (PageChecked(page) && ext4_should_journal_data(inode))
2007                 /*
2008                  * It's mmapped pagecache.  Add buffers and journal it.  There
2009                  * doesn't seem much point in redirtying the page here.
2010                  */
2011                 return __ext4_journalled_writepage(page, len);
2012
2013         memset(&io_submit, 0, sizeof(io_submit));
2014         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2015         ext4_io_submit(&io_submit);
2016         return ret;
2017 }
2018
2019 /*
2020  * This is called via ext4_da_writepages() to
2021  * calculate the total number of credits to reserve to fit
2022  * a single extent allocation into a single transaction,
2023  * ext4_da_writpeages() will loop calling this before
2024  * the block allocation.
2025  */
2026
2027 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2028 {
2029         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2030
2031         /*
2032          * With non-extent format the journal credit needed to
2033          * insert nrblocks contiguous block is dependent on
2034          * number of contiguous block. So we will limit
2035          * number of contiguous block to a sane value
2036          */
2037         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2038             (max_blocks > EXT4_MAX_TRANS_DATA))
2039                 max_blocks = EXT4_MAX_TRANS_DATA;
2040
2041         return ext4_chunk_trans_blocks(inode, max_blocks);
2042 }
2043
2044 /*
2045  * write_cache_pages_da - walk the list of dirty pages of the given
2046  * address space and accumulate pages that need writing, and call
2047  * mpage_da_map_and_submit to map a single contiguous memory region
2048  * and then write them.
2049  */
2050 static int write_cache_pages_da(handle_t *handle,
2051                                 struct address_space *mapping,
2052                                 struct writeback_control *wbc,
2053                                 struct mpage_da_data *mpd,
2054                                 pgoff_t *done_index)
2055 {
2056         struct buffer_head      *bh, *head;
2057         struct inode            *inode = mapping->host;
2058         struct pagevec          pvec;
2059         unsigned int            nr_pages;
2060         sector_t                logical;
2061         pgoff_t                 index, end;
2062         long                    nr_to_write = wbc->nr_to_write;
2063         int                     i, tag, ret = 0;
2064
2065         memset(mpd, 0, sizeof(struct mpage_da_data));
2066         mpd->wbc = wbc;
2067         mpd->inode = inode;
2068         pagevec_init(&pvec, 0);
2069         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2070         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2071
2072         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2073                 tag = PAGECACHE_TAG_TOWRITE;
2074         else
2075                 tag = PAGECACHE_TAG_DIRTY;
2076
2077         *done_index = index;
2078         while (index <= end) {
2079                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2080                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2081                 if (nr_pages == 0)
2082                         return 0;
2083
2084                 for (i = 0; i < nr_pages; i++) {
2085                         struct page *page = pvec.pages[i];
2086
2087                         /*
2088                          * At this point, the page may be truncated or
2089                          * invalidated (changing page->mapping to NULL), or
2090                          * even swizzled back from swapper_space to tmpfs file
2091                          * mapping. However, page->index will not change
2092                          * because we have a reference on the page.
2093                          */
2094                         if (page->index > end)
2095                                 goto out;
2096
2097                         *done_index = page->index + 1;
2098
2099                         /*
2100                          * If we can't merge this page, and we have
2101                          * accumulated an contiguous region, write it
2102                          */
2103                         if ((mpd->next_page != page->index) &&
2104                             (mpd->next_page != mpd->first_page)) {
2105                                 mpage_da_map_and_submit(mpd);
2106                                 goto ret_extent_tail;
2107                         }
2108
2109                         lock_page(page);
2110
2111                         /*
2112                          * If the page is no longer dirty, or its
2113                          * mapping no longer corresponds to inode we
2114                          * are writing (which means it has been
2115                          * truncated or invalidated), or the page is
2116                          * already under writeback and we are not
2117                          * doing a data integrity writeback, skip the page
2118                          */
2119                         if (!PageDirty(page) ||
2120                             (PageWriteback(page) &&
2121                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2122                             unlikely(page->mapping != mapping)) {
2123                                 unlock_page(page);
2124                                 continue;
2125                         }
2126
2127                         wait_on_page_writeback(page);
2128                         BUG_ON(PageWriteback(page));
2129
2130                         /*
2131                          * If we have inline data and arrive here, it means that
2132                          * we will soon create the block for the 1st page, so
2133                          * we'd better clear the inline data here.
2134                          */
2135                         if (ext4_has_inline_data(inode)) {
2136                                 BUG_ON(ext4_test_inode_state(inode,
2137                                                 EXT4_STATE_MAY_INLINE_DATA));
2138                                 ext4_destroy_inline_data(handle, inode);
2139                         }
2140
2141                         if (mpd->next_page != page->index)
2142                                 mpd->first_page = page->index;
2143                         mpd->next_page = page->index + 1;
2144                         logical = (sector_t) page->index <<
2145                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2146
2147                         /* Add all dirty buffers to mpd */
2148                         head = page_buffers(page);
2149                         bh = head;
2150                         do {
2151                                 BUG_ON(buffer_locked(bh));
2152                                 /*
2153                                  * We need to try to allocate unmapped blocks
2154                                  * in the same page.  Otherwise we won't make
2155                                  * progress with the page in ext4_writepage
2156                                  */
2157                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2158                                         mpage_add_bh_to_extent(mpd, logical,
2159                                                                bh->b_size,
2160                                                                bh->b_state);
2161                                         if (mpd->io_done)
2162                                                 goto ret_extent_tail;
2163                                 } else if (buffer_dirty(bh) &&
2164                                            buffer_mapped(bh)) {
2165                                         /*
2166                                          * mapped dirty buffer. We need to
2167                                          * update the b_state because we look
2168                                          * at b_state in mpage_da_map_blocks.
2169                                          * We don't update b_size because if we
2170                                          * find an unmapped buffer_head later
2171                                          * we need to use the b_state flag of
2172                                          * that buffer_head.
2173                                          */
2174                                         if (mpd->b_size == 0)
2175                                                 mpd->b_state =
2176                                                         bh->b_state & BH_FLAGS;
2177                                 }
2178                                 logical++;
2179                         } while ((bh = bh->b_this_page) != head);
2180
2181                         if (nr_to_write > 0) {
2182                                 nr_to_write--;
2183                                 if (nr_to_write == 0 &&
2184                                     wbc->sync_mode == WB_SYNC_NONE)
2185                                         /*
2186                                          * We stop writing back only if we are
2187                                          * not doing integrity sync. In case of
2188                                          * integrity sync we have to keep going
2189                                          * because someone may be concurrently
2190                                          * dirtying pages, and we might have
2191                                          * synced a lot of newly appeared dirty
2192                                          * pages, but have not synced all of the
2193                                          * old dirty pages.
2194                                          */
2195                                         goto out;
2196                         }
2197                 }
2198                 pagevec_release(&pvec);
2199                 cond_resched();
2200         }
2201         return 0;
2202 ret_extent_tail:
2203         ret = MPAGE_DA_EXTENT_TAIL;
2204 out:
2205         pagevec_release(&pvec);
2206         cond_resched();
2207         return ret;
2208 }
2209
2210
2211 static int ext4_da_writepages(struct address_space *mapping,
2212                               struct writeback_control *wbc)
2213 {
2214         pgoff_t index;
2215         int range_whole = 0;
2216         handle_t *handle = NULL;
2217         struct mpage_da_data mpd;
2218         struct inode *inode = mapping->host;
2219         int pages_written = 0;
2220         unsigned int max_pages;
2221         int range_cyclic, cycled = 1, io_done = 0;
2222         int needed_blocks, ret = 0;
2223         long desired_nr_to_write, nr_to_writebump = 0;
2224         loff_t range_start = wbc->range_start;
2225         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2226         pgoff_t done_index = 0;
2227         pgoff_t end;
2228         struct blk_plug plug;
2229
2230         trace_ext4_da_writepages(inode, wbc);
2231
2232         /*
2233          * No pages to write? This is mainly a kludge to avoid starting
2234          * a transaction for special inodes like journal inode on last iput()
2235          * because that could violate lock ordering on umount
2236          */
2237         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2238                 return 0;
2239
2240         /*
2241          * If the filesystem has aborted, it is read-only, so return
2242          * right away instead of dumping stack traces later on that
2243          * will obscure the real source of the problem.  We test
2244          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2245          * the latter could be true if the filesystem is mounted
2246          * read-only, and in that case, ext4_da_writepages should
2247          * *never* be called, so if that ever happens, we would want
2248          * the stack trace.
2249          */
2250         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2251                 return -EROFS;
2252
2253         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2254                 range_whole = 1;
2255
2256         range_cyclic = wbc->range_cyclic;
2257         if (wbc->range_cyclic) {
2258                 index = mapping->writeback_index;
2259                 if (index)
2260                         cycled = 0;
2261                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2262                 wbc->range_end  = LLONG_MAX;
2263                 wbc->range_cyclic = 0;
2264                 end = -1;
2265         } else {
2266                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2267                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2268         }
2269
2270         /*
2271          * This works around two forms of stupidity.  The first is in
2272          * the writeback code, which caps the maximum number of pages
2273          * written to be 1024 pages.  This is wrong on multiple
2274          * levels; different architectues have a different page size,
2275          * which changes the maximum amount of data which gets
2276          * written.  Secondly, 4 megabytes is way too small.  XFS
2277          * forces this value to be 16 megabytes by multiplying
2278          * nr_to_write parameter by four, and then relies on its
2279          * allocator to allocate larger extents to make them
2280          * contiguous.  Unfortunately this brings us to the second
2281          * stupidity, which is that ext4's mballoc code only allocates
2282          * at most 2048 blocks.  So we force contiguous writes up to
2283          * the number of dirty blocks in the inode, or
2284          * sbi->max_writeback_mb_bump whichever is smaller.
2285          */
2286         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2287         if (!range_cyclic && range_whole) {
2288                 if (wbc->nr_to_write == LONG_MAX)
2289                         desired_nr_to_write = wbc->nr_to_write;
2290                 else
2291                         desired_nr_to_write = wbc->nr_to_write * 8;
2292         } else
2293                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2294                                                            max_pages);
2295         if (desired_nr_to_write > max_pages)
2296                 desired_nr_to_write = max_pages;
2297
2298         if (wbc->nr_to_write < desired_nr_to_write) {
2299                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2300                 wbc->nr_to_write = desired_nr_to_write;
2301         }
2302
2303 retry:
2304         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2305                 tag_pages_for_writeback(mapping, index, end);
2306
2307         blk_start_plug(&plug);
2308         while (!ret && wbc->nr_to_write > 0) {
2309
2310                 /*
2311                  * we  insert one extent at a time. So we need
2312                  * credit needed for single extent allocation.
2313                  * journalled mode is currently not supported
2314                  * by delalloc
2315                  */
2316                 BUG_ON(ext4_should_journal_data(inode));
2317                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2318
2319                 /* start a new transaction*/
2320                 handle = ext4_journal_start(inode, needed_blocks);
2321                 if (IS_ERR(handle)) {
2322                         ret = PTR_ERR(handle);
2323                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2324                                "%ld pages, ino %lu; err %d", __func__,
2325                                 wbc->nr_to_write, inode->i_ino, ret);
2326                         blk_finish_plug(&plug);
2327                         goto out_writepages;
2328                 }
2329
2330                 /*
2331                  * Now call write_cache_pages_da() to find the next
2332                  * contiguous region of logical blocks that need
2333                  * blocks to be allocated by ext4 and submit them.
2334                  */
2335                 ret = write_cache_pages_da(handle, mapping,
2336                                            wbc, &mpd, &done_index);
2337                 /*
2338                  * If we have a contiguous extent of pages and we
2339                  * haven't done the I/O yet, map the blocks and submit
2340                  * them for I/O.
2341                  */
2342                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2343                         mpage_da_map_and_submit(&mpd);
2344                         ret = MPAGE_DA_EXTENT_TAIL;
2345                 }
2346                 trace_ext4_da_write_pages(inode, &mpd);
2347                 wbc->nr_to_write -= mpd.pages_written;
2348
2349                 ext4_journal_stop(handle);
2350
2351                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2352                         /* commit the transaction which would
2353                          * free blocks released in the transaction
2354                          * and try again
2355                          */
2356                         jbd2_journal_force_commit_nested(sbi->s_journal);
2357                         ret = 0;
2358                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2359                         /*
2360                          * Got one extent now try with rest of the pages.
2361                          * If mpd.retval is set -EIO, journal is aborted.
2362                          * So we don't need to write any more.
2363                          */
2364                         pages_written += mpd.pages_written;
2365                         ret = mpd.retval;
2366                         io_done = 1;
2367                 } else if (wbc->nr_to_write)
2368                         /*
2369                          * There is no more writeout needed
2370                          * or we requested for a noblocking writeout
2371                          * and we found the device congested
2372                          */
2373                         break;
2374         }
2375         blk_finish_plug(&plug);
2376         if (!io_done && !cycled) {
2377                 cycled = 1;
2378                 index = 0;
2379                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2380                 wbc->range_end  = mapping->writeback_index - 1;
2381                 goto retry;
2382         }
2383
2384         /* Update index */
2385         wbc->range_cyclic = range_cyclic;
2386         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2387                 /*
2388                  * set the writeback_index so that range_cyclic
2389                  * mode will write it back later
2390                  */
2391                 mapping->writeback_index = done_index;
2392
2393 out_writepages:
2394         wbc->nr_to_write -= nr_to_writebump;
2395         wbc->range_start = range_start;
2396         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2397         return ret;
2398 }
2399
2400 static int ext4_nonda_switch(struct super_block *sb)
2401 {
2402         s64 free_blocks, dirty_blocks;
2403         struct ext4_sb_info *sbi = EXT4_SB(sb);
2404
2405         /*
2406          * switch to non delalloc mode if we are running low
2407          * on free block. The free block accounting via percpu
2408          * counters can get slightly wrong with percpu_counter_batch getting
2409          * accumulated on each CPU without updating global counters
2410          * Delalloc need an accurate free block accounting. So switch
2411          * to non delalloc when we are near to error range.
2412          */
2413         free_blocks  = EXT4_C2B(sbi,
2414                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2415         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2416         /*
2417          * Start pushing delalloc when 1/2 of free blocks are dirty.
2418          */
2419         if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2420             !writeback_in_progress(sb->s_bdi) &&
2421             down_read_trylock(&sb->s_umount)) {
2422                 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2423                 up_read(&sb->s_umount);
2424         }
2425
2426         if (2 * free_blocks < 3 * dirty_blocks ||
2427                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2428                 /*
2429                  * free block count is less than 150% of dirty blocks
2430                  * or free blocks is less than watermark
2431                  */
2432                 return 1;
2433         }
2434         return 0;
2435 }
2436
2437 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2438                                loff_t pos, unsigned len, unsigned flags,
2439                                struct page **pagep, void **fsdata)
2440 {
2441         int ret, retries = 0;
2442         struct page *page;
2443         pgoff_t index;
2444         struct inode *inode = mapping->host;
2445         handle_t *handle;
2446
2447         index = pos >> PAGE_CACHE_SHIFT;
2448
2449         if (ext4_nonda_switch(inode->i_sb)) {
2450                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2451                 return ext4_write_begin(file, mapping, pos,
2452                                         len, flags, pagep, fsdata);
2453         }
2454         *fsdata = (void *)0;
2455         trace_ext4_da_write_begin(inode, pos, len, flags);
2456
2457         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2458                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2459                                                       pos, len, flags,
2460                                                       pagep, fsdata);
2461                 if (ret < 0)
2462                         goto out;
2463                 if (ret == 1) {
2464                         ret = 0;
2465                         goto out;
2466                 }
2467         }
2468
2469 retry:
2470         /*
2471          * With delayed allocation, we don't log the i_disksize update
2472          * if there is delayed block allocation. But we still need
2473          * to journalling the i_disksize update if writes to the end
2474          * of file which has an already mapped buffer.
2475          */
2476         handle = ext4_journal_start(inode, 1);
2477         if (IS_ERR(handle)) {
2478                 ret = PTR_ERR(handle);
2479                 goto out;
2480         }
2481         /* We cannot recurse into the filesystem as the transaction is already
2482          * started */
2483         flags |= AOP_FLAG_NOFS;
2484
2485         page = grab_cache_page_write_begin(mapping, index, flags);
2486         if (!page) {
2487                 ext4_journal_stop(handle);
2488                 ret = -ENOMEM;
2489                 goto out;
2490         }
2491         *pagep = page;
2492
2493         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2494         if (ret < 0) {
2495                 unlock_page(page);
2496                 ext4_journal_stop(handle);
2497                 page_cache_release(page);
2498                 /*
2499                  * block_write_begin may have instantiated a few blocks
2500                  * outside i_size.  Trim these off again. Don't need
2501                  * i_size_read because we hold i_mutex.
2502                  */
2503                 if (pos + len > inode->i_size)
2504                         ext4_truncate_failed_write(inode);
2505         }
2506
2507         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2508                 goto retry;
2509 out:
2510         return ret;
2511 }
2512
2513 /*
2514  * Check if we should update i_disksize
2515  * when write to the end of file but not require block allocation
2516  */
2517 static int ext4_da_should_update_i_disksize(struct page *page,
2518                                             unsigned long offset)
2519 {
2520         struct buffer_head *bh;
2521         struct inode *inode = page->mapping->host;
2522         unsigned int idx;
2523         int i;
2524
2525         bh = page_buffers(page);
2526         idx = offset >> inode->i_blkbits;
2527
2528         for (i = 0; i < idx; i++)
2529                 bh = bh->b_this_page;
2530
2531         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2532                 return 0;
2533         return 1;
2534 }
2535
2536 static int ext4_da_write_end(struct file *file,
2537                              struct address_space *mapping,
2538                              loff_t pos, unsigned len, unsigned copied,
2539                              struct page *page, void *fsdata)
2540 {
2541         struct inode *inode = mapping->host;
2542         int ret = 0, ret2;
2543         handle_t *handle = ext4_journal_current_handle();
2544         loff_t new_i_size;
2545         unsigned long start, end;
2546         int write_mode = (int)(unsigned long)fsdata;
2547
2548         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2549                 switch (ext4_inode_journal_mode(inode)) {
2550                 case EXT4_INODE_ORDERED_DATA_MODE:
2551                         return ext4_ordered_write_end(file, mapping, pos,
2552                                         len, copied, page, fsdata);
2553                 case EXT4_INODE_WRITEBACK_DATA_MODE:
2554                         return ext4_writeback_write_end(file, mapping, pos,
2555                                         len, copied, page, fsdata);
2556                 default:
2557                         BUG();
2558                 }
2559         }
2560
2561         trace_ext4_da_write_end(inode, pos, len, copied);
2562         start = pos & (PAGE_CACHE_SIZE - 1);
2563         end = start + copied - 1;
2564
2565         /*
2566          * generic_write_end() will run mark_inode_dirty() if i_size
2567          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2568          * into that.
2569          */
2570         new_i_size = pos + copied;
2571         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2572                 if (ext4_has_inline_data(inode) ||
2573                     ext4_da_should_update_i_disksize(page, end)) {
2574                         down_write(&EXT4_I(inode)->i_data_sem);
2575                         if (new_i_size > EXT4_I(inode)->i_disksize)
2576                                 EXT4_I(inode)->i_disksize = new_i_size;
2577                         up_write(&EXT4_I(inode)->i_data_sem);
2578                         /* We need to mark inode dirty even if
2579                          * new_i_size is less that inode->i_size
2580                          * bu greater than i_disksize.(hint delalloc)
2581                          */
2582                         ext4_mark_inode_dirty(handle, inode);
2583                 }
2584         }
2585
2586         if (write_mode != CONVERT_INLINE_DATA &&
2587             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2588             ext4_has_inline_data(inode))
2589                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2590                                                      page);
2591         else
2592                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2593                                                         page, fsdata);
2594
2595         copied = ret2;
2596         if (ret2 < 0)
2597                 ret = ret2;
2598         ret2 = ext4_journal_stop(handle);
2599         if (!ret)
2600                 ret = ret2;
2601
2602         return ret ? ret : copied;
2603 }
2604
2605 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2606 {
2607         /*
2608          * Drop reserved blocks
2609          */
2610         BUG_ON(!PageLocked(page));
2611         if (!page_has_buffers(page))
2612                 goto out;
2613
2614         ext4_da_page_release_reservation(page, offset);
2615
2616 out:
2617         ext4_invalidatepage(page, offset);
2618
2619         return;
2620 }
2621
2622 /*
2623  * Force all delayed allocation blocks to be allocated for a given inode.
2624  */
2625 int ext4_alloc_da_blocks(struct inode *inode)
2626 {
2627         trace_ext4_alloc_da_blocks(inode);
2628
2629         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2630             !EXT4_I(inode)->i_reserved_meta_blocks)
2631                 return 0;
2632
2633         /*
2634          * We do something simple for now.  The filemap_flush() will
2635          * also start triggering a write of the data blocks, which is
2636          * not strictly speaking necessary (and for users of
2637          * laptop_mode, not even desirable).  However, to do otherwise
2638          * would require replicating code paths in:
2639          *
2640          * ext4_da_writepages() ->
2641          *    write_cache_pages() ---> (via passed in callback function)
2642          *        __mpage_da_writepage() -->
2643          *           mpage_add_bh_to_extent()
2644          *           mpage_da_map_blocks()
2645          *
2646          * The problem is that write_cache_pages(), located in
2647          * mm/page-writeback.c, marks pages clean in preparation for
2648          * doing I/O, which is not desirable if we're not planning on
2649          * doing I/O at all.
2650          *
2651          * We could call write_cache_pages(), and then redirty all of
2652          * the pages by calling redirty_page_for_writepage() but that
2653          * would be ugly in the extreme.  So instead we would need to
2654          * replicate parts of the code in the above functions,
2655          * simplifying them because we wouldn't actually intend to
2656          * write out the pages, but rather only collect contiguous
2657          * logical block extents, call the multi-block allocator, and
2658          * then update the buffer heads with the block allocations.
2659          *
2660          * For now, though, we'll cheat by calling filemap_flush(),
2661          * which will map the blocks, and start the I/O, but not
2662          * actually wait for the I/O to complete.
2663          */
2664         return filemap_flush(inode->i_mapping);
2665 }
2666
2667 /*
2668  * bmap() is special.  It gets used by applications such as lilo and by
2669  * the swapper to find the on-disk block of a specific piece of data.
2670  *
2671  * Naturally, this is dangerous if the block concerned is still in the
2672  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2673  * filesystem and enables swap, then they may get a nasty shock when the
2674  * data getting swapped to that swapfile suddenly gets overwritten by
2675  * the original zero's written out previously to the journal and
2676  * awaiting writeback in the kernel's buffer cache.
2677  *
2678  * So, if we see any bmap calls here on a modified, data-journaled file,
2679  * take extra steps to flush any blocks which might be in the cache.
2680  */
2681 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2682 {
2683         struct inode *inode = mapping->host;
2684         journal_t *journal;
2685         int err;
2686
2687         /*
2688          * We can get here for an inline file via the FIBMAP ioctl
2689          */
2690         if (ext4_has_inline_data(inode))
2691                 return 0;
2692
2693         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2694                         test_opt(inode->i_sb, DELALLOC)) {
2695                 /*
2696                  * With delalloc we want to sync the file
2697                  * so that we can make sure we allocate
2698                  * blocks for file
2699                  */
2700                 filemap_write_and_wait(mapping);
2701         }
2702
2703         if (EXT4_JOURNAL(inode) &&
2704             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2705                 /*
2706                  * This is a REALLY heavyweight approach, but the use of
2707                  * bmap on dirty files is expected to be extremely rare:
2708                  * only if we run lilo or swapon on a freshly made file
2709                  * do we expect this to happen.
2710                  *
2711                  * (bmap requires CAP_SYS_RAWIO so this does not
2712                  * represent an unprivileged user DOS attack --- we'd be
2713                  * in trouble if mortal users could trigger this path at
2714                  * will.)
2715                  *
2716                  * NB. EXT4_STATE_JDATA is not set on files other than
2717                  * regular files.  If somebody wants to bmap a directory
2718                  * or symlink and gets confused because the buffer
2719                  * hasn't yet been flushed to disk, they deserve
2720                  * everything they get.
2721                  */
2722
2723                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2724                 journal = EXT4_JOURNAL(inode);
2725                 jbd2_journal_lock_updates(journal);
2726                 err = jbd2_journal_flush(journal);
2727                 jbd2_journal_unlock_updates(journal);
2728
2729                 if (err)
2730                         return 0;
2731         }
2732
2733         return generic_block_bmap(mapping, block, ext4_get_block);
2734 }
2735
2736 static int ext4_readpage(struct file *file, struct page *page)
2737 {
2738         int ret = -EAGAIN;
2739         struct inode *inode = page->mapping->host;
2740
2741         trace_ext4_readpage(page);
2742
2743         if (ext4_has_inline_data(inode))
2744                 ret = ext4_readpage_inline(inode, page);
2745
2746         if (ret == -EAGAIN)
2747                 return mpage_readpage(page, ext4_get_block);
2748
2749         return ret;
2750 }
2751
2752 static int
2753 ext4_readpages(struct file *file, struct address_space *mapping,
2754                 struct list_head *pages, unsigned nr_pages)
2755 {
2756         struct inode *inode = mapping->host;
2757
2758         /* If the file has inline data, no need to do readpages. */
2759         if (ext4_has_inline_data(inode))
2760                 return 0;
2761
2762         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2763 }
2764
2765 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2766 {
2767         trace_ext4_invalidatepage(page, offset);
2768
2769         /* No journalling happens on data buffers when this function is used */
2770         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2771
2772         block_invalidatepage(page, offset);
2773 }
2774
2775 static int __ext4_journalled_invalidatepage(struct page *page,
2776                                             unsigned long offset)
2777 {
2778         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2779
2780         trace_ext4_journalled_invalidatepage(page, offset);
2781
2782         /*
2783          * If it's a full truncate we just forget about the pending dirtying
2784          */
2785         if (offset == 0)
2786                 ClearPageChecked(page);
2787
2788         return jbd2_journal_invalidatepage(journal, page, offset);
2789 }
2790
2791 /* Wrapper for aops... */
2792 static void ext4_journalled_invalidatepage(struct page *page,
2793                                            unsigned long offset)
2794 {
2795         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
2796 }
2797
2798 static int ext4_releasepage(struct page *page, gfp_t wait)
2799 {
2800         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2801
2802         trace_ext4_releasepage(page);
2803
2804         WARN_ON(PageChecked(page));
2805         if (!page_has_buffers(page))
2806                 return 0;
2807         if (journal)
2808                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2809         else
2810                 return try_to_free_buffers(page);
2811 }
2812
2813 /*
2814  * ext4_get_block used when preparing for a DIO write or buffer write.
2815  * We allocate an uinitialized extent if blocks haven't been allocated.
2816  * The extent will be converted to initialized after the IO is complete.
2817  */
2818 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2819                    struct buffer_head *bh_result, int create)
2820 {
2821         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2822                    inode->i_ino, create);
2823         return _ext4_get_block(inode, iblock, bh_result,
2824                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2825 }
2826
2827 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2828                    struct buffer_head *bh_result, int create)
2829 {
2830         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2831                    inode->i_ino, create);
2832         return _ext4_get_block(inode, iblock, bh_result,
2833                                EXT4_GET_BLOCKS_NO_LOCK);
2834 }
2835
2836 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2837                             ssize_t size, void *private, int ret,
2838                             bool is_async)
2839 {
2840         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2841         ext4_io_end_t *io_end = iocb->private;
2842
2843         /* if not async direct IO or dio with 0 bytes write, just return */
2844         if (!io_end || !size)
2845                 goto out;
2846
2847         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2848                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2849                   iocb->private, io_end->inode->i_ino, iocb, offset,
2850                   size);
2851
2852         iocb->private = NULL;
2853
2854         /* if not aio dio with unwritten extents, just free io and return */
2855         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2856                 ext4_free_io_end(io_end);
2857 out:
2858                 if (is_async)
2859                         aio_complete(iocb, ret, 0);
2860                 inode_dio_done(inode);
2861                 return;
2862         }
2863
2864         io_end->offset = offset;
2865         io_end->size = size;
2866         if (is_async) {
2867                 io_end->iocb = iocb;
2868                 io_end->result = ret;
2869         }
2870
2871         ext4_add_complete_io(io_end);
2872 }
2873
2874 /*
2875  * For ext4 extent files, ext4 will do direct-io write to holes,
2876  * preallocated extents, and those write extend the file, no need to
2877  * fall back to buffered IO.
2878  *
2879  * For holes, we fallocate those blocks, mark them as uninitialized
2880  * If those blocks were preallocated, we mark sure they are split, but
2881  * still keep the range to write as uninitialized.
2882  *
2883  * The unwritten extents will be converted to written when DIO is completed.
2884  * For async direct IO, since the IO may still pending when return, we
2885  * set up an end_io call back function, which will do the conversion
2886  * when async direct IO completed.
2887  *
2888  * If the O_DIRECT write will extend the file then add this inode to the
2889  * orphan list.  So recovery will truncate it back to the original size
2890  * if the machine crashes during the write.
2891  *
2892  */
2893 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2894                               const struct iovec *iov, loff_t offset,
2895                               unsigned long nr_segs)
2896 {
2897         struct file *file = iocb->ki_filp;
2898         struct inode *inode = file->f_mapping->host;
2899         ssize_t ret;
2900         size_t count = iov_length(iov, nr_segs);
2901         int overwrite = 0;
2902         get_block_t *get_block_func = NULL;
2903         int dio_flags = 0;
2904         loff_t final_size = offset + count;
2905
2906         /* Use the old path for reads and writes beyond i_size. */
2907         if (rw != WRITE || final_size > inode->i_size)
2908                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2909
2910         BUG_ON(iocb->private == NULL);
2911
2912         /* If we do a overwrite dio, i_mutex locking can be released */
2913         overwrite = *((int *)iocb->private);
2914
2915         if (overwrite) {
2916                 atomic_inc(&inode->i_dio_count);
2917                 down_read(&EXT4_I(inode)->i_data_sem);
2918                 mutex_unlock(&inode->i_mutex);
2919         }
2920
2921         /*
2922          * We could direct write to holes and fallocate.
2923          *
2924          * Allocated blocks to fill the hole are marked as
2925          * uninitialized to prevent parallel buffered read to expose
2926          * the stale data before DIO complete the data IO.
2927          *
2928          * As to previously fallocated extents, ext4 get_block will
2929          * just simply mark the buffer mapped but still keep the
2930          * extents uninitialized.
2931          *
2932          * For non AIO case, we will convert those unwritten extents
2933          * to written after return back from blockdev_direct_IO.
2934          *
2935          * For async DIO, the conversion needs to be deferred when the
2936          * IO is completed. The ext4 end_io callback function will be
2937          * called to take care of the conversion work.  Here for async
2938          * case, we allocate an io_end structure to hook to the iocb.
2939          */
2940         iocb->private = NULL;
2941         ext4_inode_aio_set(inode, NULL);
2942         if (!is_sync_kiocb(iocb)) {
2943                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
2944                 if (!io_end) {
2945                         ret = -ENOMEM;
2946                         goto retake_lock;
2947                 }
2948                 io_end->flag |= EXT4_IO_END_DIRECT;
2949                 iocb->private = io_end;
2950                 /*
2951                  * we save the io structure for current async direct
2952                  * IO, so that later ext4_map_blocks() could flag the
2953                  * io structure whether there is a unwritten extents
2954                  * needs to be converted when IO is completed.
2955                  */
2956                 ext4_inode_aio_set(inode, io_end);
2957         }
2958
2959         if (overwrite) {
2960                 get_block_func = ext4_get_block_write_nolock;
2961         } else {
2962                 get_block_func = ext4_get_block_write;
2963                 dio_flags = DIO_LOCKING;
2964         }
2965         ret = __blockdev_direct_IO(rw, iocb, inode,
2966                                    inode->i_sb->s_bdev, iov,
2967                                    offset, nr_segs,
2968                                    get_block_func,
2969                                    ext4_end_io_dio,
2970                                    NULL,
2971                                    dio_flags);
2972
2973         if (iocb->private)
2974                 ext4_inode_aio_set(inode, NULL);
2975         /*
2976          * The io_end structure takes a reference to the inode, that
2977          * structure needs to be destroyed and the reference to the
2978          * inode need to be dropped, when IO is complete, even with 0
2979          * byte write, or failed.
2980          *
2981          * In the successful AIO DIO case, the io_end structure will
2982          * be destroyed and the reference to the inode will be dropped
2983          * after the end_io call back function is called.
2984          *
2985          * In the case there is 0 byte write, or error case, since VFS
2986          * direct IO won't invoke the end_io call back function, we
2987          * need to free the end_io structure here.
2988          */
2989         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2990                 ext4_free_io_end(iocb->private);
2991                 iocb->private = NULL;
2992         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
2993                                                 EXT4_STATE_DIO_UNWRITTEN)) {
2994                 int err;
2995                 /*
2996                  * for non AIO case, since the IO is already
2997                  * completed, we could do the conversion right here
2998                  */
2999                 err = ext4_convert_unwritten_extents(inode,
3000                                                      offset, ret);
3001                 if (err < 0)
3002                         ret = err;
3003                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3004         }
3005
3006 retake_lock:
3007         /* take i_mutex locking again if we do a ovewrite dio */
3008         if (overwrite) {
3009                 inode_dio_done(inode);
3010                 up_read(&EXT4_I(inode)->i_data_sem);
3011                 mutex_lock(&inode->i_mutex);
3012         }
3013
3014         return ret;
3015 }
3016
3017 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3018                               const struct iovec *iov, loff_t offset,
3019                               unsigned long nr_segs)
3020 {
3021         struct file *file = iocb->ki_filp;
3022         struct inode *inode = file->f_mapping->host;
3023         ssize_t ret;
3024
3025         /*
3026          * If we are doing data journalling we don't support O_DIRECT
3027          */
3028         if (ext4_should_journal_data(inode))
3029                 return 0;
3030
3031         /* Let buffer I/O handle the inline data case. */
3032         if (ext4_has_inline_data(inode))
3033                 return 0;
3034
3035         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3036         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3037                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3038         else
3039                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3040         trace_ext4_direct_IO_exit(inode, offset,
3041                                 iov_length(iov, nr_segs), rw, ret);
3042         return ret;
3043 }
3044
3045 /*
3046  * Pages can be marked dirty completely asynchronously from ext4's journalling
3047  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3048  * much here because ->set_page_dirty is called under VFS locks.  The page is
3049  * not necessarily locked.
3050  *
3051  * We cannot just dirty the page and leave attached buffers clean, because the
3052  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3053  * or jbddirty because all the journalling code will explode.
3054  *
3055  * So what we do is to mark the page "pending dirty" and next time writepage
3056  * is called, propagate that into the buffers appropriately.
3057  */
3058 static int ext4_journalled_set_page_dirty(struct page *page)
3059 {
3060         SetPageChecked(page);
3061         return __set_page_dirty_nobuffers(page);
3062 }
3063
3064 static const struct address_space_operations ext4_ordered_aops = {
3065         .readpage               = ext4_readpage,
3066         .readpages              = ext4_readpages,
3067         .writepage              = ext4_writepage,
3068         .write_begin            = ext4_write_begin,
3069         .write_end              = ext4_ordered_write_end,
3070         .bmap                   = ext4_bmap,
3071         .invalidatepage         = ext4_invalidatepage,
3072         .releasepage            = ext4_releasepage,
3073         .direct_IO              = ext4_direct_IO,
3074         .migratepage            = buffer_migrate_page,
3075         .is_partially_uptodate  = block_is_partially_uptodate,
3076         .error_remove_page      = generic_error_remove_page,
3077 };
3078
3079 static const struct address_space_operations ext4_writeback_aops = {
3080         .readpage               = ext4_readpage,
3081         .readpages              = ext4_readpages,
3082         .writepage              = ext4_writepage,
3083         .write_begin            = ext4_write_begin,
3084         .write_end              = ext4_writeback_write_end,
3085         .bmap                   = ext4_bmap,
3086         .invalidatepage         = ext4_invalidatepage,
3087         .releasepage            = ext4_releasepage,
3088         .direct_IO              = ext4_direct_IO,
3089         .migratepage            = buffer_migrate_page,
3090         .is_partially_uptodate  = block_is_partially_uptodate,
3091         .error_remove_page      = generic_error_remove_page,
3092 };
3093
3094 static const struct address_space_operations ext4_journalled_aops = {
3095         .readpage               = ext4_readpage,
3096         .readpages              = ext4_readpages,
3097         .writepage              = ext4_writepage,
3098         .write_begin            = ext4_write_begin,
3099         .write_end              = ext4_journalled_write_end,
3100         .set_page_dirty         = ext4_journalled_set_page_dirty,
3101         .bmap                   = ext4_bmap,
3102         .invalidatepage         = ext4_journalled_invalidatepage,
3103         .releasepage            = ext4_releasepage,
3104         .direct_IO              = ext4_direct_IO,
3105         .is_partially_uptodate  = block_is_partially_uptodate,
3106         .error_remove_page      = generic_error_remove_page,
3107 };
3108
3109 static const struct address_space_operations ext4_da_aops = {
3110         .readpage               = ext4_readpage,
3111         .readpages              = ext4_readpages,
3112         .writepage              = ext4_writepage,
3113         .writepages             = ext4_da_writepages,
3114         .write_begin            = ext4_da_write_begin,
3115         .write_end              = ext4_da_write_end,
3116         .bmap                   = ext4_bmap,
3117         .invalidatepage         = ext4_da_invalidatepage,
3118         .releasepage            = ext4_releasepage,
3119         .direct_IO              = ext4_direct_IO,
3120         .migratepage            = buffer_migrate_page,
3121         .is_partially_uptodate  = block_is_partially_uptodate,
3122         .error_remove_page      = generic_error_remove_page,
3123 };
3124
3125 void ext4_set_aops(struct inode *inode)
3126 {
3127         switch (ext4_inode_journal_mode(inode)) {
3128         case EXT4_INODE_ORDERED_DATA_MODE:
3129                 if (test_opt(inode->i_sb, DELALLOC))
3130                         inode->i_mapping->a_ops = &ext4_da_aops;
3131                 else
3132                         inode->i_mapping->a_ops = &ext4_ordered_aops;
3133                 break;
3134         case EXT4_INODE_WRITEBACK_DATA_MODE:
3135                 if (test_opt(inode->i_sb, DELALLOC))
3136                         inode->i_mapping->a_ops = &ext4_da_aops;
3137                 else
3138                         inode->i_mapping->a_ops = &ext4_writeback_aops;
3139                 break;
3140         case EXT4_INODE_JOURNAL_DATA_MODE:
3141                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3142                 break;
3143         default:
3144                 BUG();
3145         }
3146 }
3147
3148
3149 /*
3150  * ext4_discard_partial_page_buffers()
3151  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3152  * This function finds and locks the page containing the offset
3153  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3154  * Calling functions that already have the page locked should call
3155  * ext4_discard_partial_page_buffers_no_lock directly.
3156  */
3157 int ext4_discard_partial_page_buffers(handle_t *handle,
3158                 struct address_space *mapping, loff_t from,
3159                 loff_t length, int flags)
3160 {
3161         struct inode *inode = mapping->host;
3162         struct page *page;
3163         int err = 0;
3164
3165         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3166                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3167         if (!page)
3168                 return -ENOMEM;
3169
3170         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3171                 from, length, flags);
3172
3173         unlock_page(page);
3174         page_cache_release(page);
3175         return err;
3176 }
3177
3178 /*
3179  * ext4_discard_partial_page_buffers_no_lock()
3180  * Zeros a page range of length 'length' starting from offset 'from'.
3181  * Buffer heads that correspond to the block aligned regions of the
3182  * zeroed range will be unmapped.  Unblock aligned regions
3183  * will have the corresponding buffer head mapped if needed so that
3184  * that region of the page can be updated with the partial zero out.
3185  *
3186  * This function assumes that the page has already been  locked.  The
3187  * The range to be discarded must be contained with in the given page.
3188  * If the specified range exceeds the end of the page it will be shortened
3189  * to the end of the page that corresponds to 'from'.  This function is
3190  * appropriate for updating a page and it buffer heads to be unmapped and
3191  * zeroed for blocks that have been either released, or are going to be
3192  * released.
3193  *
3194  * handle: The journal handle
3195  * inode:  The files inode
3196  * page:   A locked page that contains the offset "from"
3197  * from:   The starting byte offset (from the beginning of the file)
3198  *         to begin discarding
3199  * len:    The length of bytes to discard
3200  * flags:  Optional flags that may be used:
3201  *
3202  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3203  *         Only zero the regions of the page whose buffer heads
3204  *         have already been unmapped.  This flag is appropriate
3205  *         for updating the contents of a page whose blocks may
3206  *         have already been released, and we only want to zero
3207  *         out the regions that correspond to those released blocks.
3208  *
3209  * Returns zero on success or negative on failure.
3210  */
3211 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3212                 struct inode *inode, struct page *page, loff_t from,
3213                 loff_t length, int flags)
3214 {
3215         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3216         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3217         unsigned int blocksize, max, pos;
3218         ext4_lblk_t iblock;
3219         struct buffer_head *bh;
3220         int err = 0;
3221
3222         blocksize = inode->i_sb->s_blocksize;
3223         max = PAGE_CACHE_SIZE - offset;
3224
3225         if (index != page->index)
3226                 return -EINVAL;
3227
3228         /*
3229          * correct length if it does not fall between
3230          * 'from' and the end of the page
3231          */
3232         if (length > max || length < 0)
3233                 length = max;
3234
3235         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3236
3237         if (!page_has_buffers(page))
3238                 create_empty_buffers(page, blocksize, 0);
3239
3240         /* Find the buffer that contains "offset" */
3241         bh = page_buffers(page);
3242         pos = blocksize;
3243         while (offset >= pos) {
3244                 bh = bh->b_this_page;
3245                 iblock++;
3246                 pos += blocksize;
3247         }
3248
3249         pos = offset;
3250         while (pos < offset + length) {
3251                 unsigned int end_of_block, range_to_discard;
3252
3253                 err = 0;
3254
3255                 /* The length of space left to zero and unmap */
3256                 range_to_discard = offset + length - pos;
3257
3258                 /* The length of space until the end of the block */
3259                 end_of_block = blocksize - (pos & (blocksize-1));
3260
3261                 /*
3262                  * Do not unmap or zero past end of block
3263                  * for this buffer head
3264                  */
3265                 if (range_to_discard > end_of_block)
3266                         range_to_discard = end_of_block;
3267
3268
3269                 /*
3270                  * Skip this buffer head if we are only zeroing unampped
3271                  * regions of the page
3272                  */
3273                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3274                         buffer_mapped(bh))
3275                                 goto next;
3276
3277                 /* If the range is block aligned, unmap */
3278                 if (range_to_discard == blocksize) {
3279                         clear_buffer_dirty(bh);
3280                         bh->b_bdev = NULL;
3281                         clear_buffer_mapped(bh);
3282                         clear_buffer_req(bh);
3283                         clear_buffer_new(bh);
3284                         clear_buffer_delay(bh);
3285                         clear_buffer_unwritten(bh);
3286                         clear_buffer_uptodate(bh);
3287                         zero_user(page, pos, range_to_discard);
3288                         BUFFER_TRACE(bh, "Buffer discarded");
3289                         goto next;
3290                 }
3291
3292                 /*
3293                  * If this block is not completely contained in the range
3294                  * to be discarded, then it is not going to be released. Because
3295                  * we need to keep this block, we need to make sure this part
3296                  * of the page is uptodate before we modify it by writeing
3297                  * partial zeros on it.
3298                  */
3299                 if (!buffer_mapped(bh)) {
3300                         /*
3301                          * Buffer head must be mapped before we can read
3302                          * from the block
3303                          */
3304                         BUFFER_TRACE(bh, "unmapped");
3305                         ext4_get_block(inode, iblock, bh, 0);
3306                         /* unmapped? It's a hole - nothing to do */
3307                         if (!buffer_mapped(bh)) {
3308                                 BUFFER_TRACE(bh, "still unmapped");
3309                                 goto next;
3310                         }
3311                 }
3312
3313                 /* Ok, it's mapped. Make sure it's up-to-date */
3314                 if (PageUptodate(page))
3315                         set_buffer_uptodate(bh);
3316
3317                 if (!buffer_uptodate(bh)) {
3318                         err = -EIO;
3319                         ll_rw_block(READ, 1, &bh);
3320                         wait_on_buffer(bh);
3321                         /* Uhhuh. Read error. Complain and punt.*/
3322                         if (!buffer_uptodate(bh))
3323                                 goto next;
3324                 }
3325
3326                 if (ext4_should_journal_data(inode)) {
3327                         BUFFER_TRACE(bh, "get write access");
3328                         err = ext4_journal_get_write_access(handle, bh);
3329                         if (err)
3330                                 goto next;
3331                 }
3332
3333                 zero_user(page, pos, range_to_discard);
3334
3335                 err = 0;
3336                 if (ext4_should_journal_data(inode)) {
3337                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3338                 } else
3339                         mark_buffer_dirty(bh);
3340
3341                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3342 next:
3343                 bh = bh->b_this_page;
3344                 iblock++;
3345                 pos += range_to_discard;
3346         }
3347
3348         return err;
3349 }
3350
3351 int ext4_can_truncate(struct inode *inode)
3352 {
3353         if (S_ISREG(inode->i_mode))
3354                 return 1;
3355         if (S_ISDIR(inode->i_mode))
3356                 return 1;
3357         if (S_ISLNK(inode->i_mode))
3358                 return !ext4_inode_is_fast_symlink(inode);
3359         return 0;
3360 }
3361
3362 /*
3363  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3364  * associated with the given offset and length
3365  *
3366  * @inode:  File inode
3367  * @offset: The offset where the hole will begin
3368  * @len:    The length of the hole
3369  *
3370  * Returns: 0 on success or negative on failure
3371  */
3372
3373 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3374 {
3375         struct inode *inode = file->f_path.dentry->d_inode;
3376         if (!S_ISREG(inode->i_mode))
3377                 return -EOPNOTSUPP;
3378
3379         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3380                 return ext4_ind_punch_hole(file, offset, length);
3381
3382         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3383                 /* TODO: Add support for bigalloc file systems */
3384                 return -EOPNOTSUPP;
3385         }
3386
3387         trace_ext4_punch_hole(inode, offset, length);
3388
3389         return ext4_ext_punch_hole(file, offset, length);
3390 }
3391
3392 /*
3393  * ext4_truncate()
3394  *
3395  * We block out ext4_get_block() block instantiations across the entire
3396  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3397  * simultaneously on behalf of the same inode.
3398  *
3399  * As we work through the truncate and commit bits of it to the journal there
3400  * is one core, guiding principle: the file's tree must always be consistent on
3401  * disk.  We must be able to restart the truncate after a crash.
3402  *
3403  * The file's tree may be transiently inconsistent in memory (although it
3404  * probably isn't), but whenever we close off and commit a journal transaction,
3405  * the contents of (the filesystem + the journal) must be consistent and
3406  * restartable.  It's pretty simple, really: bottom up, right to left (although
3407  * left-to-right works OK too).
3408  *
3409  * Note that at recovery time, journal replay occurs *before* the restart of
3410  * truncate against the orphan inode list.
3411  *
3412  * The committed inode has the new, desired i_size (which is the same as
3413  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3414  * that this inode's truncate did not complete and it will again call
3415  * ext4_truncate() to have another go.  So there will be instantiated blocks
3416  * to the right of the truncation point in a crashed ext4 filesystem.  But
3417  * that's fine - as long as they are linked from the inode, the post-crash
3418  * ext4_truncate() run will find them and release them.
3419  */
3420 void ext4_truncate(struct inode *inode)
3421 {
3422         trace_ext4_truncate_enter(inode);
3423
3424         if (!ext4_can_truncate(inode))
3425                 return;
3426
3427         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3428
3429         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3430                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3431
3432         if (ext4_has_inline_data(inode)) {
3433                 int has_inline = 1;
3434
3435                 ext4_inline_data_truncate(inode, &has_inline);
3436                 if (has_inline)
3437                         return;
3438         }
3439
3440         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3441                 ext4_ext_truncate(inode);
3442         else
3443                 ext4_ind_truncate(inode);
3444
3445         trace_ext4_truncate_exit(inode);
3446 }
3447
3448 /*
3449  * ext4_get_inode_loc returns with an extra refcount against the inode's
3450  * underlying buffer_head on success. If 'in_mem' is true, we have all
3451  * data in memory that is needed to recreate the on-disk version of this
3452  * inode.
3453  */
3454 static int __ext4_get_inode_loc(struct inode *inode,
3455                                 struct ext4_iloc *iloc, int in_mem)
3456 {
3457         struct ext4_group_desc  *gdp;
3458         struct buffer_head      *bh;
3459         struct super_block      *sb = inode->i_sb;
3460         ext4_fsblk_t            block;
3461         int                     inodes_per_block, inode_offset;
3462
3463         iloc->bh = NULL;
3464         if (!ext4_valid_inum(sb, inode->i_ino))
3465                 return -EIO;
3466
3467         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3468         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3469         if (!gdp)
3470                 return -EIO;
3471
3472         /*
3473          * Figure out the offset within the block group inode table
3474          */
3475         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3476         inode_offset = ((inode->i_ino - 1) %
3477                         EXT4_INODES_PER_GROUP(sb));
3478         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3479         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3480
3481         bh = sb_getblk(sb, block);
3482         if (unlikely(!bh))
3483                 return -ENOMEM;
3484         if (!buffer_uptodate(bh)) {
3485                 lock_buffer(bh);
3486
3487                 /*
3488                  * If the buffer has the write error flag, we have failed
3489                  * to write out another inode in the same block.  In this
3490                  * case, we don't have to read the block because we may
3491                  * read the old inode data successfully.
3492                  */
3493                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3494                         set_buffer_uptodate(bh);
3495
3496                 if (buffer_uptodate(bh)) {
3497                         /* someone brought it uptodate while we waited */
3498                         unlock_buffer(bh);
3499                         goto has_buffer;
3500                 }
3501
3502                 /*
3503                  * If we have all information of the inode in memory and this
3504                  * is the only valid inode in the block, we need not read the
3505                  * block.
3506                  */
3507                 if (in_mem) {
3508                         struct buffer_head *bitmap_bh;
3509                         int i, start;
3510
3511                         start = inode_offset & ~(inodes_per_block - 1);
3512
3513                         /* Is the inode bitmap in cache? */
3514                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3515                         if (unlikely(!bitmap_bh))
3516                                 goto make_io;
3517
3518                         /*
3519                          * If the inode bitmap isn't in cache then the
3520                          * optimisation may end up performing two reads instead
3521                          * of one, so skip it.
3522                          */
3523                         if (!buffer_uptodate(bitmap_bh)) {
3524                                 brelse(bitmap_bh);
3525                                 goto make_io;
3526                         }
3527                         for (i = start; i < start + inodes_per_block; i++) {
3528                                 if (i == inode_offset)
3529                                         continue;
3530                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3531                                         break;
3532                         }
3533                         brelse(bitmap_bh);
3534                         if (i == start + inodes_per_block) {
3535                                 /* all other inodes are free, so skip I/O */
3536                                 memset(bh->b_data, 0, bh->b_size);
3537                                 set_buffer_uptodate(bh);
3538                                 unlock_buffer(bh);
3539                                 goto has_buffer;
3540                         }
3541                 }
3542
3543 make_io:
3544                 /*
3545                  * If we need to do any I/O, try to pre-readahead extra
3546                  * blocks from the inode table.
3547                  */
3548                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3549                         ext4_fsblk_t b, end, table;
3550                         unsigned num;
3551
3552                         table = ext4_inode_table(sb, gdp);
3553                         /* s_inode_readahead_blks is always a power of 2 */
3554                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3555                         if (table > b)
3556                                 b = table;
3557                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3558                         num = EXT4_INODES_PER_GROUP(sb);
3559                         if (ext4_has_group_desc_csum(sb))
3560                                 num -= ext4_itable_unused_count(sb, gdp);
3561                         table += num / inodes_per_block;
3562                         if (end > table)
3563                                 end = table;
3564                         while (b <= end)
3565                                 sb_breadahead(sb, b++);
3566                 }
3567
3568                 /*
3569                  * There are other valid inodes in the buffer, this inode
3570                  * has in-inode xattrs, or we don't have this inode in memory.
3571                  * Read the block from disk.
3572                  */
3573                 trace_ext4_load_inode(inode);
3574                 get_bh(bh);
3575                 bh->b_end_io = end_buffer_read_sync;
3576                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3577                 wait_on_buffer(bh);
3578                 if (!buffer_uptodate(bh)) {
3579                         EXT4_ERROR_INODE_BLOCK(inode, block,
3580                                                "unable to read itable block");
3581                         brelse(bh);
3582                         return -EIO;
3583                 }
3584         }
3585 has_buffer:
3586         iloc->bh = bh;
3587         return 0;
3588 }
3589
3590 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3591 {
3592         /* We have all inode data except xattrs in memory here. */
3593         return __ext4_get_inode_loc(inode, iloc,
3594                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3595 }
3596
3597 void ext4_set_inode_flags(struct inode *inode)
3598 {
3599         unsigned int flags = EXT4_I(inode)->i_flags;
3600
3601         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3602         if (flags & EXT4_SYNC_FL)
3603                 inode->i_flags |= S_SYNC;
3604         if (flags & EXT4_APPEND_FL)
3605                 inode->i_flags |= S_APPEND;
3606         if (flags & EXT4_IMMUTABLE_FL)
3607                 inode->i_flags |= S_IMMUTABLE;
3608         if (flags & EXT4_NOATIME_FL)
3609                 inode->i_flags |= S_NOATIME;
3610         if (flags & EXT4_DIRSYNC_FL)
3611                 inode->i_flags |= S_DIRSYNC;
3612 }
3613
3614 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3615 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3616 {
3617         unsigned int vfs_fl;
3618         unsigned long old_fl, new_fl;
3619
3620         do {
3621                 vfs_fl = ei->vfs_inode.i_flags;
3622                 old_fl = ei->i_flags;
3623                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3624                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3625                                 EXT4_DIRSYNC_FL);
3626                 if (vfs_fl & S_SYNC)
3627                         new_fl |= EXT4_SYNC_FL;
3628                 if (vfs_fl & S_APPEND)
3629                         new_fl |= EXT4_APPEND_FL;
3630                 if (vfs_fl & S_IMMUTABLE)
3631                         new_fl |= EXT4_IMMUTABLE_FL;
3632                 if (vfs_fl & S_NOATIME)
3633                         new_fl |= EXT4_NOATIME_FL;
3634                 if (vfs_fl & S_DIRSYNC)
3635                         new_fl |= EXT4_DIRSYNC_FL;
3636         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3637 }
3638
3639 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3640                                   struct ext4_inode_info *ei)
3641 {
3642         blkcnt_t i_blocks ;
3643         struct inode *inode = &(ei->vfs_inode);
3644         struct super_block *sb = inode->i_sb;
3645
3646         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3647                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3648                 /* we are using combined 48 bit field */
3649                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3650                                         le32_to_cpu(raw_inode->i_blocks_lo);
3651                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3652                         /* i_blocks represent file system block size */
3653                         return i_blocks  << (inode->i_blkbits - 9);
3654                 } else {
3655                         return i_blocks;
3656                 }
3657         } else {
3658                 return le32_to_cpu(raw_inode->i_blocks_lo);
3659         }
3660 }
3661
3662 static inline void ext4_iget_extra_inode(struct inode *inode,
3663                                          struct ext4_inode *raw_inode,
3664                                          struct ext4_inode_info *ei)
3665 {
3666         __le32 *magic = (void *)raw_inode +
3667                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3668         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3669                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3670                 ext4_find_inline_data_nolock(inode);
3671         } else
3672                 EXT4_I(inode)->i_inline_off = 0;
3673 }
3674
3675 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3676 {
3677         struct ext4_iloc iloc;
3678         struct ext4_inode *raw_inode;
3679         struct ext4_inode_info *ei;
3680         struct inode *inode;
3681         journal_t *journal = EXT4_SB(sb)->s_journal;
3682         long ret;
3683         int block;
3684         uid_t i_uid;
3685         gid_t i_gid;
3686
3687         inode = iget_locked(sb, ino);
3688         if (!inode)
3689                 return ERR_PTR(-ENOMEM);
3690         if (!(inode->i_state & I_NEW))
3691                 return inode;
3692
3693         ei = EXT4_I(inode);
3694         iloc.bh = NULL;
3695
3696         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3697         if (ret < 0)
3698                 goto bad_inode;
3699         raw_inode = ext4_raw_inode(&iloc);
3700
3701         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3702                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3703                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3704                     EXT4_INODE_SIZE(inode->i_sb)) {
3705                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3706                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3707                                 EXT4_INODE_SIZE(inode->i_sb));
3708                         ret = -EIO;
3709                         goto bad_inode;
3710                 }
3711         } else
3712                 ei->i_extra_isize = 0;
3713
3714         /* Precompute checksum seed for inode metadata */
3715         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3716                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3717                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3718                 __u32 csum;
3719                 __le32 inum = cpu_to_le32(inode->i_ino);
3720                 __le32 gen = raw_inode->i_generation;
3721                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3722                                    sizeof(inum));
3723                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3724                                               sizeof(gen));
3725         }
3726
3727         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3728                 EXT4_ERROR_INODE(inode, "checksum invalid");
3729                 ret = -EIO;
3730                 goto bad_inode;
3731         }
3732
3733         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3734         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3735         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3736         if (!(test_opt(inode->i_sb, NO_UID32))) {
3737                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3738                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3739         }
3740         i_uid_write(inode, i_uid);
3741         i_gid_write(inode, i_gid);
3742         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3743
3744         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3745         ei->i_inline_off = 0;
3746         ei->i_dir_start_lookup = 0;
3747         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3748         /* We now have enough fields to check if the inode was active or not.
3749          * This is needed because nfsd might try to access dead inodes
3750          * the test is that same one that e2fsck uses
3751          * NeilBrown 1999oct15
3752          */
3753         if (inode->i_nlink == 0) {
3754                 if (inode->i_mode == 0 ||
3755                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3756                         /* this inode is deleted */
3757                         ret = -ESTALE;
3758                         goto bad_inode;
3759                 }
3760                 /* The only unlinked inodes we let through here have
3761                  * valid i_mode and are being read by the orphan
3762                  * recovery code: that's fine, we're about to complete
3763                  * the process of deleting those. */
3764         }
3765         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3766         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3767         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3768         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3769                 ei->i_file_acl |=
3770                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3771         inode->i_size = ext4_isize(raw_inode);
3772         ei->i_disksize = inode->i_size;
3773 #ifdef CONFIG_QUOTA
3774         ei->i_reserved_quota = 0;
3775 #endif
3776         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3777         ei->i_block_group = iloc.block_group;
3778         ei->i_last_alloc_group = ~0;
3779         /*
3780          * NOTE! The in-memory inode i_data array is in little-endian order
3781          * even on big-endian machines: we do NOT byteswap the block numbers!
3782          */
3783         for (block = 0; block < EXT4_N_BLOCKS; block++)
3784                 ei->i_data[block] = raw_inode->i_block[block];
3785         INIT_LIST_HEAD(&ei->i_orphan);
3786
3787         /*
3788          * Set transaction id's of transactions that have to be committed
3789          * to finish f[data]sync. We set them to currently running transaction
3790          * as we cannot be sure that the inode or some of its metadata isn't
3791          * part of the transaction - the inode could have been reclaimed and
3792          * now it is reread from disk.
3793          */
3794         if (journal) {
3795                 transaction_t *transaction;
3796                 tid_t tid;
3797
3798                 read_lock(&journal->j_state_lock);
3799                 if (journal->j_running_transaction)
3800                         transaction = journal->j_running_transaction;
3801                 else
3802                         transaction = journal->j_committing_transaction;
3803                 if (transaction)
3804                         tid = transaction->t_tid;
3805                 else
3806                         tid = journal->j_commit_sequence;
3807                 read_unlock(&journal->j_state_lock);
3808                 ei->i_sync_tid = tid;
3809                 ei->i_datasync_tid = tid;
3810         }
3811
3812         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3813                 if (ei->i_extra_isize == 0) {
3814                         /* The extra space is currently unused. Use it. */
3815                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3816                                             EXT4_GOOD_OLD_INODE_SIZE;
3817                 } else {
3818                         ext4_iget_extra_inode(inode, raw_inode, ei);
3819                 }
3820         }
3821
3822         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3823         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3824         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3825         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3826
3827         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3828         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3829                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3830                         inode->i_version |=
3831                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3832         }
3833
3834         ret = 0;
3835         if (ei->i_file_acl &&
3836             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3837                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3838                                  ei->i_file_acl);
3839                 ret = -EIO;
3840                 goto bad_inode;
3841         } else if (!ext4_has_inline_data(inode)) {
3842                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3843                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3844                             (S_ISLNK(inode->i_mode) &&
3845                              !ext4_inode_is_fast_symlink(inode))))
3846                                 /* Validate extent which is part of inode */
3847                                 ret = ext4_ext_check_inode(inode);
3848                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3849                            (S_ISLNK(inode->i_mode) &&
3850                             !ext4_inode_is_fast_symlink(inode))) {
3851                         /* Validate block references which are part of inode */
3852                         ret = ext4_ind_check_inode(inode);
3853                 }
3854         }
3855         if (ret)
3856                 goto bad_inode;
3857
3858         if (S_ISREG(inode->i_mode)) {
3859                 inode->i_op = &ext4_file_inode_operations;
3860                 inode->i_fop = &ext4_file_operations;
3861                 ext4_set_aops(inode);
3862         } else if (S_ISDIR(inode->i_mode)) {
3863                 inode->i_op = &ext4_dir_inode_operations;
3864                 inode->i_fop = &ext4_dir_operations;
3865         } else if (S_ISLNK(inode->i_mode)) {
3866                 if (ext4_inode_is_fast_symlink(inode)) {
3867                         inode->i_op = &ext4_fast_symlink_inode_operations;
3868                         nd_terminate_link(ei->i_data, inode->i_size,
3869                                 sizeof(ei->i_data) - 1);
3870                 } else {
3871                         inode->i_op = &ext4_symlink_inode_operations;
3872                         ext4_set_aops(inode);
3873                 }
3874         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3875               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3876                 inode->i_op = &ext4_special_inode_operations;
3877                 if (raw_inode->i_block[0])
3878                         init_special_inode(inode, inode->i_mode,
3879                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3880                 else
3881                         init_special_inode(inode, inode->i_mode,
3882                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3883         } else {
3884                 ret = -EIO;
3885                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3886                 goto bad_inode;
3887         }
3888         brelse(iloc.bh);
3889         ext4_set_inode_flags(inode);
3890         unlock_new_inode(inode);
3891         return inode;
3892
3893 bad_inode:
3894         brelse(iloc.bh);
3895         iget_failed(inode);
3896         return ERR_PTR(ret);
3897 }
3898
3899 static int ext4_inode_blocks_set(handle_t *handle,
3900                                 struct ext4_inode *raw_inode,
3901                                 struct ext4_inode_info *ei)
3902 {
3903         struct inode *inode = &(ei->vfs_inode);
3904         u64 i_blocks = inode->i_blocks;
3905         struct super_block *sb = inode->i_sb;
3906
3907         if (i_blocks <= ~0U) {
3908                 /*
3909                  * i_blocks can be represented in a 32 bit variable
3910                  * as multiple of 512 bytes
3911                  */
3912                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3913                 raw_inode->i_blocks_high = 0;
3914                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3915                 return 0;
3916         }
3917         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3918                 return -EFBIG;
3919
3920         if (i_blocks <= 0xffffffffffffULL) {
3921                 /*
3922                  * i_blocks can be represented in a 48 bit variable
3923                  * as multiple of 512 bytes
3924                  */
3925                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3926                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3927                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3928         } else {
3929                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3930                 /* i_block is stored in file system block size */
3931                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3932                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3933                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3934         }
3935         return 0;
3936 }
3937
3938 /*
3939  * Post the struct inode info into an on-disk inode location in the
3940  * buffer-cache.  This gobbles the caller's reference to the
3941  * buffer_head in the inode location struct.
3942  *
3943  * The caller must have write access to iloc->bh.
3944  */
3945 static int ext4_do_update_inode(handle_t *handle,
3946                                 struct inode *inode,
3947                                 struct ext4_iloc *iloc)
3948 {
3949         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3950         struct ext4_inode_info *ei = EXT4_I(inode);
3951         struct buffer_head *bh = iloc->bh;
3952         int err = 0, rc, block;
3953         int need_datasync = 0;
3954         uid_t i_uid;
3955         gid_t i_gid;
3956
3957         /* For fields not not tracking in the in-memory inode,
3958          * initialise them to zero for new inodes. */
3959         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3960                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3961
3962         ext4_get_inode_flags(ei);
3963         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3964         i_uid = i_uid_read(inode);
3965         i_gid = i_gid_read(inode);
3966         if (!(test_opt(inode->i_sb, NO_UID32))) {
3967                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
3968                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
3969 /*
3970  * Fix up interoperability with old kernels. Otherwise, old inodes get
3971  * re-used with the upper 16 bits of the uid/gid intact
3972  */
3973                 if (!ei->i_dtime) {
3974                         raw_inode->i_uid_high =
3975                                 cpu_to_le16(high_16_bits(i_uid));
3976                         raw_inode->i_gid_high =
3977                                 cpu_to_le16(high_16_bits(i_gid));
3978                 } else {
3979                         raw_inode->i_uid_high = 0;
3980                         raw_inode->i_gid_high = 0;
3981                 }
3982         } else {
3983                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
3984                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
3985                 raw_inode->i_uid_high = 0;
3986                 raw_inode->i_gid_high = 0;
3987         }
3988         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3989
3990         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3991         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3992         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3993         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3994
3995         if (ext4_inode_blocks_set(handle, raw_inode, ei))
3996                 goto out_brelse;
3997         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3998         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3999         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4000             cpu_to_le32(EXT4_OS_HURD))
4001                 raw_inode->i_file_acl_high =
4002                         cpu_to_le16(ei->i_file_acl >> 32);
4003         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4004         if (ei->i_disksize != ext4_isize(raw_inode)) {
4005                 ext4_isize_set(raw_inode, ei->i_disksize);
4006                 need_datasync = 1;
4007         }
4008         if (ei->i_disksize > 0x7fffffffULL) {
4009                 struct super_block *sb = inode->i_sb;
4010                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4011                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4012                                 EXT4_SB(sb)->s_es->s_rev_level ==
4013                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4014                         /* If this is the first large file
4015                          * created, add a flag to the superblock.
4016                          */
4017                         err = ext4_journal_get_write_access(handle,
4018                                         EXT4_SB(sb)->s_sbh);
4019                         if (err)
4020                                 goto out_brelse;
4021                         ext4_update_dynamic_rev(sb);
4022                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4023                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4024                         ext4_handle_sync(handle);
4025                         err = ext4_handle_dirty_super(handle, sb);
4026                 }
4027         }
4028         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4029         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4030                 if (old_valid_dev(inode->i_rdev)) {
4031                         raw_inode->i_block[0] =
4032                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4033                         raw_inode->i_block[1] = 0;
4034                 } else {
4035                         raw_inode->i_block[0] = 0;
4036                         raw_inode->i_block[1] =
4037                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4038                         raw_inode->i_block[2] = 0;
4039                 }
4040         } else if (!ext4_has_inline_data(inode)) {
4041                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4042                         raw_inode->i_block[block] = ei->i_data[block];
4043         }
4044
4045         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4046         if (ei->i_extra_isize) {
4047                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4048                         raw_inode->i_version_hi =
4049                         cpu_to_le32(inode->i_version >> 32);
4050                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4051         }
4052
4053         ext4_inode_csum_set(inode, raw_inode, ei);
4054
4055         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4056         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4057         if (!err)
4058                 err = rc;
4059         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4060
4061         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4062 out_brelse:
4063         brelse(bh);
4064         ext4_std_error(inode->i_sb, err);
4065         return err;
4066 }
4067
4068 /*
4069  * ext4_write_inode()
4070  *
4071  * We are called from a few places:
4072  *
4073  * - Within generic_file_write() for O_SYNC files.
4074  *   Here, there will be no transaction running. We wait for any running
4075  *   transaction to commit.
4076  *
4077  * - Within sys_sync(), kupdate and such.
4078  *   We wait on commit, if tol to.
4079  *
4080  * - Within prune_icache() (PF_MEMALLOC == true)
4081  *   Here we simply return.  We can't afford to block kswapd on the
4082  *   journal commit.
4083  *
4084  * In all cases it is actually safe for us to return without doing anything,
4085  * because the inode has been copied into a raw inode buffer in
4086  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4087  * knfsd.
4088  *
4089  * Note that we are absolutely dependent upon all inode dirtiers doing the
4090  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4091  * which we are interested.
4092  *
4093  * It would be a bug for them to not do this.  The code:
4094  *
4095  *      mark_inode_dirty(inode)
4096  *      stuff();
4097  *      inode->i_size = expr;
4098  *
4099  * is in error because a kswapd-driven write_inode() could occur while
4100  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4101  * will no longer be on the superblock's dirty inode list.
4102  */
4103 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4104 {
4105         int err;
4106
4107         if (current->flags & PF_MEMALLOC)
4108                 return 0;
4109
4110         if (EXT4_SB(inode->i_sb)->s_journal) {
4111                 if (ext4_journal_current_handle()) {
4112                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4113                         dump_stack();
4114                         return -EIO;
4115                 }
4116
4117                 if (wbc->sync_mode != WB_SYNC_ALL)
4118                         return 0;
4119
4120                 err = ext4_force_commit(inode->i_sb);
4121         } else {
4122                 struct ext4_iloc iloc;
4123
4124                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4125                 if (err)
4126                         return err;
4127                 if (wbc->sync_mode == WB_SYNC_ALL)
4128                         sync_dirty_buffer(iloc.bh);
4129                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4130                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4131                                          "IO error syncing inode");
4132                         err = -EIO;
4133                 }
4134                 brelse(iloc.bh);
4135         }
4136         return err;
4137 }
4138
4139 /*
4140  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4141  * buffers that are attached to a page stradding i_size and are undergoing
4142  * commit. In that case we have to wait for commit to finish and try again.
4143  */
4144 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4145 {
4146         struct page *page;
4147         unsigned offset;
4148         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4149         tid_t commit_tid = 0;
4150         int ret;
4151
4152         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4153         /*
4154          * All buffers in the last page remain valid? Then there's nothing to
4155          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4156          * blocksize case
4157          */
4158         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4159                 return;
4160         while (1) {
4161                 page = find_lock_page(inode->i_mapping,
4162                                       inode->i_size >> PAGE_CACHE_SHIFT);
4163                 if (!page)
4164                         return;
4165                 ret = __ext4_journalled_invalidatepage(page, offset);
4166                 unlock_page(page);
4167                 page_cache_release(page);
4168                 if (ret != -EBUSY)
4169                         return;
4170                 commit_tid = 0;
4171                 read_lock(&journal->j_state_lock);
4172                 if (journal->j_committing_transaction)
4173                         commit_tid = journal->j_committing_transaction->t_tid;
4174                 read_unlock(&journal->j_state_lock);
4175                 if (commit_tid)
4176                         jbd2_log_wait_commit(journal, commit_tid);
4177         }
4178 }
4179
4180 /*
4181  * ext4_setattr()
4182  *
4183  * Called from notify_change.
4184  *
4185  * We want to trap VFS attempts to truncate the file as soon as
4186  * possible.  In particular, we want to make sure that when the VFS
4187  * shrinks i_size, we put the inode on the orphan list and modify
4188  * i_disksize immediately, so that during the subsequent flushing of
4189  * dirty pages and freeing of disk blocks, we can guarantee that any
4190  * commit will leave the blocks being flushed in an unused state on
4191  * disk.  (On recovery, the inode will get truncated and the blocks will
4192  * be freed, so we have a strong guarantee that no future commit will
4193  * leave these blocks visible to the user.)
4194  *
4195  * Another thing we have to assure is that if we are in ordered mode
4196  * and inode is still attached to the committing transaction, we must
4197  * we start writeout of all the dirty pages which are being truncated.
4198  * This way we are sure that all the data written in the previous
4199  * transaction are already on disk (truncate waits for pages under
4200  * writeback).
4201  *
4202  * Called with inode->i_mutex down.
4203  */
4204 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4205 {
4206         struct inode *inode = dentry->d_inode;
4207         int error, rc = 0;
4208         int orphan = 0;
4209         const unsigned int ia_valid = attr->ia_valid;
4210
4211         error = inode_change_ok(inode, attr);
4212         if (error)
4213                 return error;
4214
4215         if (is_quota_modification(inode, attr))
4216                 dquot_initialize(inode);
4217         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4218             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4219                 handle_t *handle;
4220
4221                 /* (user+group)*(old+new) structure, inode write (sb,
4222                  * inode block, ? - but truncate inode update has it) */
4223                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4224                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4225                 if (IS_ERR(handle)) {
4226                         error = PTR_ERR(handle);
4227                         goto err_out;
4228                 }
4229                 error = dquot_transfer(inode, attr);
4230                 if (error) {
4231                         ext4_journal_stop(handle);
4232                         return error;
4233                 }
4234                 /* Update corresponding info in inode so that everything is in
4235                  * one transaction */
4236                 if (attr->ia_valid & ATTR_UID)
4237                         inode->i_uid = attr->ia_uid;
4238                 if (attr->ia_valid & ATTR_GID)
4239                         inode->i_gid = attr->ia_gid;
4240                 error = ext4_mark_inode_dirty(handle, inode);
4241                 ext4_journal_stop(handle);
4242         }
4243
4244         if (attr->ia_valid & ATTR_SIZE) {
4245
4246                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4247                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4248
4249                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4250                                 return -EFBIG;
4251                 }
4252         }
4253
4254         if (S_ISREG(inode->i_mode) &&
4255             attr->ia_valid & ATTR_SIZE &&
4256             (attr->ia_size < inode->i_size)) {
4257                 handle_t *handle;
4258
4259                 handle = ext4_journal_start(inode, 3);
4260                 if (IS_ERR(handle)) {
4261                         error = PTR_ERR(handle);
4262                         goto err_out;
4263                 }
4264                 if (ext4_handle_valid(handle)) {
4265                         error = ext4_orphan_add(handle, inode);
4266                         orphan = 1;
4267                 }
4268                 EXT4_I(inode)->i_disksize = attr->ia_size;
4269                 rc = ext4_mark_inode_dirty(handle, inode);
4270                 if (!error)
4271                         error = rc;
4272                 ext4_journal_stop(handle);
4273
4274                 if (ext4_should_order_data(inode)) {
4275                         error = ext4_begin_ordered_truncate(inode,
4276                                                             attr->ia_size);
4277                         if (error) {
4278                                 /* Do as much error cleanup as possible */
4279                                 handle = ext4_journal_start(inode, 3);
4280                                 if (IS_ERR(handle)) {
4281                                         ext4_orphan_del(NULL, inode);
4282                                         goto err_out;
4283                                 }
4284                                 ext4_orphan_del(handle, inode);
4285                                 orphan = 0;
4286                                 ext4_journal_stop(handle);
4287                                 goto err_out;
4288                         }
4289                 }
4290         }
4291
4292         if (attr->ia_valid & ATTR_SIZE) {
4293                 if (attr->ia_size != inode->i_size) {
4294                         loff_t oldsize = inode->i_size;
4295
4296                         i_size_write(inode, attr->ia_size);
4297                         /*
4298                          * Blocks are going to be removed from the inode. Wait
4299                          * for dio in flight.  Temporarily disable
4300                          * dioread_nolock to prevent livelock.
4301                          */
4302                         if (orphan) {
4303                                 if (!ext4_should_journal_data(inode)) {
4304                                         ext4_inode_block_unlocked_dio(inode);
4305                                         inode_dio_wait(inode);
4306                                         ext4_inode_resume_unlocked_dio(inode);
4307                                 } else
4308                                         ext4_wait_for_tail_page_commit(inode);
4309                         }
4310                         /*
4311                          * Truncate pagecache after we've waited for commit
4312                          * in data=journal mode to make pages freeable.
4313                          */
4314                         truncate_pagecache(inode, oldsize, inode->i_size);
4315                 }
4316                 ext4_truncate(inode);
4317         }
4318
4319         if (!rc) {
4320                 setattr_copy(inode, attr);
4321                 mark_inode_dirty(inode);
4322         }
4323
4324         /*
4325          * If the call to ext4_truncate failed to get a transaction handle at
4326          * all, we need to clean up the in-core orphan list manually.
4327          */
4328         if (orphan && inode->i_nlink)
4329                 ext4_orphan_del(NULL, inode);
4330
4331         if (!rc && (ia_valid & ATTR_MODE))
4332                 rc = ext4_acl_chmod(inode);
4333
4334 err_out:
4335         ext4_std_error(inode->i_sb, error);
4336         if (!error)
4337                 error = rc;
4338         return error;
4339 }
4340
4341 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4342                  struct kstat *stat)
4343 {
4344         struct inode *inode;
4345         unsigned long delalloc_blocks;
4346
4347         inode = dentry->d_inode;
4348         generic_fillattr(inode, stat);
4349
4350         /*
4351          * We can't update i_blocks if the block allocation is delayed
4352          * otherwise in the case of system crash before the real block
4353          * allocation is done, we will have i_blocks inconsistent with
4354          * on-disk file blocks.
4355          * We always keep i_blocks updated together with real
4356          * allocation. But to not confuse with user, stat
4357          * will return the blocks that include the delayed allocation
4358          * blocks for this file.
4359          */
4360         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4361                                 EXT4_I(inode)->i_reserved_data_blocks);
4362
4363         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4364         return 0;
4365 }
4366
4367 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4368 {
4369         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4370                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4371         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4372 }
4373
4374 /*
4375  * Account for index blocks, block groups bitmaps and block group
4376  * descriptor blocks if modify datablocks and index blocks
4377  * worse case, the indexs blocks spread over different block groups
4378  *
4379  * If datablocks are discontiguous, they are possible to spread over
4380  * different block groups too. If they are contiguous, with flexbg,
4381  * they could still across block group boundary.
4382  *
4383  * Also account for superblock, inode, quota and xattr blocks
4384  */
4385 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4386 {
4387         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4388         int gdpblocks;
4389         int idxblocks;
4390         int ret = 0;
4391
4392         /*
4393          * How many index blocks need to touch to modify nrblocks?
4394          * The "Chunk" flag indicating whether the nrblocks is
4395          * physically contiguous on disk
4396          *
4397          * For Direct IO and fallocate, they calls get_block to allocate
4398          * one single extent at a time, so they could set the "Chunk" flag
4399          */
4400         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4401
4402         ret = idxblocks;
4403
4404         /*
4405          * Now let's see how many group bitmaps and group descriptors need
4406          * to account
4407          */
4408         groups = idxblocks;
4409         if (chunk)
4410                 groups += 1;
4411         else
4412                 groups += nrblocks;
4413
4414         gdpblocks = groups;
4415         if (groups > ngroups)
4416                 groups = ngroups;
4417         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4418                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4419
4420         /* bitmaps and block group descriptor blocks */
4421         ret += groups + gdpblocks;
4422
4423         /* Blocks for super block, inode, quota and xattr blocks */
4424         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4425
4426         return ret;
4427 }
4428
4429 /*
4430  * Calculate the total number of credits to reserve to fit
4431  * the modification of a single pages into a single transaction,
4432  * which may include multiple chunks of block allocations.
4433  *
4434  * This could be called via ext4_write_begin()
4435  *
4436  * We need to consider the worse case, when
4437  * one new block per extent.
4438  */
4439 int ext4_writepage_trans_blocks(struct inode *inode)
4440 {
4441         int bpp = ext4_journal_blocks_per_page(inode);
4442         int ret;
4443
4444         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4445
4446         /* Account for data blocks for journalled mode */
4447         if (ext4_should_journal_data(inode))
4448                 ret += bpp;
4449         return ret;
4450 }
4451
4452 /*
4453  * Calculate the journal credits for a chunk of data modification.
4454  *
4455  * This is called from DIO, fallocate or whoever calling
4456  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4457  *
4458  * journal buffers for data blocks are not included here, as DIO
4459  * and fallocate do no need to journal data buffers.
4460  */
4461 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4462 {
4463         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4464 }
4465
4466 /*
4467  * The caller must have previously called ext4_reserve_inode_write().
4468  * Give this, we know that the caller already has write access to iloc->bh.
4469  */
4470 int ext4_mark_iloc_dirty(handle_t *handle,
4471                          struct inode *inode, struct ext4_iloc *iloc)
4472 {
4473         int err = 0;
4474
4475         if (IS_I_VERSION(inode))
4476                 inode_inc_iversion(inode);
4477
4478         /* the do_update_inode consumes one bh->b_count */
4479         get_bh(iloc->bh);
4480
4481         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4482         err = ext4_do_update_inode(handle, inode, iloc);
4483         put_bh(iloc->bh);
4484         return err;
4485 }
4486
4487 /*
4488  * On success, We end up with an outstanding reference count against
4489  * iloc->bh.  This _must_ be cleaned up later.
4490  */
4491
4492 int
4493 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4494                          struct ext4_iloc *iloc)
4495 {
4496         int err;
4497
4498         err = ext4_get_inode_loc(inode, iloc);
4499         if (!err) {
4500                 BUFFER_TRACE(iloc->bh, "get_write_access");
4501                 err = ext4_journal_get_write_access(handle, iloc->bh);
4502                 if (err) {
4503                         brelse(iloc->bh);
4504                         iloc->bh = NULL;
4505                 }
4506         }
4507         ext4_std_error(inode->i_sb, err);
4508         return err;
4509 }
4510
4511 /*
4512  * Expand an inode by new_extra_isize bytes.
4513  * Returns 0 on success or negative error number on failure.
4514  */
4515 static int ext4_expand_extra_isize(struct inode *inode,
4516                                    unsigned int new_extra_isize,
4517                                    struct ext4_iloc iloc,
4518                                    handle_t *handle)
4519 {
4520         struct ext4_inode *raw_inode;
4521         struct ext4_xattr_ibody_header *header;
4522
4523         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4524                 return 0;
4525
4526         raw_inode = ext4_raw_inode(&iloc);
4527
4528         header = IHDR(inode, raw_inode);
4529
4530         /* No extended attributes present */
4531         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4532             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4533                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4534                         new_extra_isize);
4535                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4536                 return 0;
4537         }
4538
4539         /* try to expand with EAs present */
4540         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4541                                           raw_inode, handle);
4542 }
4543
4544 /*
4545  * What we do here is to mark the in-core inode as clean with respect to inode
4546  * dirtiness (it may still be data-dirty).
4547  * This means that the in-core inode may be reaped by prune_icache
4548  * without having to perform any I/O.  This is a very good thing,
4549  * because *any* task may call prune_icache - even ones which
4550  * have a transaction open against a different journal.
4551  *
4552  * Is this cheating?  Not really.  Sure, we haven't written the
4553  * inode out, but prune_icache isn't a user-visible syncing function.
4554  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4555  * we start and wait on commits.
4556  */
4557 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4558 {
4559         struct ext4_iloc iloc;
4560         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4561         static unsigned int mnt_count;
4562         int err, ret;
4563
4564         might_sleep();
4565         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4566         err = ext4_reserve_inode_write(handle, inode, &iloc);
4567         if (ext4_handle_valid(handle) &&
4568             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4569             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4570                 /*
4571                  * We need extra buffer credits since we may write into EA block
4572                  * with this same handle. If journal_extend fails, then it will
4573                  * only result in a minor loss of functionality for that inode.
4574                  * If this is felt to be critical, then e2fsck should be run to
4575                  * force a large enough s_min_extra_isize.
4576                  */
4577                 if ((jbd2_journal_extend(handle,
4578                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4579                         ret = ext4_expand_extra_isize(inode,
4580                                                       sbi->s_want_extra_isize,
4581                                                       iloc, handle);
4582                         if (ret) {
4583                                 ext4_set_inode_state(inode,
4584                                                      EXT4_STATE_NO_EXPAND);
4585                                 if (mnt_count !=
4586                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4587                                         ext4_warning(inode->i_sb,
4588                                         "Unable to expand inode %lu. Delete"
4589                                         " some EAs or run e2fsck.",
4590                                         inode->i_ino);
4591                                         mnt_count =
4592                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4593                                 }
4594                         }
4595                 }
4596         }
4597         if (!err)
4598                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4599         return err;
4600 }
4601
4602 /*
4603  * ext4_dirty_inode() is called from __mark_inode_dirty()
4604  *
4605  * We're really interested in the case where a file is being extended.
4606  * i_size has been changed by generic_commit_write() and we thus need
4607  * to include the updated inode in the current transaction.
4608  *
4609  * Also, dquot_alloc_block() will always dirty the inode when blocks
4610  * are allocated to the file.
4611  *
4612  * If the inode is marked synchronous, we don't honour that here - doing
4613  * so would cause a commit on atime updates, which we don't bother doing.
4614  * We handle synchronous inodes at the highest possible level.
4615  */
4616 void ext4_dirty_inode(struct inode *inode, int flags)
4617 {
4618         handle_t *handle;
4619
4620         handle = ext4_journal_start(inode, 2);
4621         if (IS_ERR(handle))
4622                 goto out;
4623
4624         ext4_mark_inode_dirty(handle, inode);
4625
4626         ext4_journal_stop(handle);
4627 out:
4628         return;
4629 }
4630
4631 #if 0
4632 /*
4633  * Bind an inode's backing buffer_head into this transaction, to prevent
4634  * it from being flushed to disk early.  Unlike
4635  * ext4_reserve_inode_write, this leaves behind no bh reference and
4636  * returns no iloc structure, so the caller needs to repeat the iloc
4637  * lookup to mark the inode dirty later.
4638  */
4639 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4640 {
4641         struct ext4_iloc iloc;
4642
4643         int err = 0;
4644         if (handle) {
4645                 err = ext4_get_inode_loc(inode, &iloc);
4646                 if (!err) {
4647                         BUFFER_TRACE(iloc.bh, "get_write_access");
4648                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4649                         if (!err)
4650                                 err = ext4_handle_dirty_metadata(handle,
4651                                                                  NULL,
4652                                                                  iloc.bh);
4653                         brelse(iloc.bh);
4654                 }
4655         }
4656         ext4_std_error(inode->i_sb, err);
4657         return err;
4658 }
4659 #endif
4660
4661 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4662 {
4663         journal_t *journal;
4664         handle_t *handle;
4665         int err;
4666
4667         /*
4668          * We have to be very careful here: changing a data block's
4669          * journaling status dynamically is dangerous.  If we write a
4670          * data block to the journal, change the status and then delete
4671          * that block, we risk forgetting to revoke the old log record
4672          * from the journal and so a subsequent replay can corrupt data.
4673          * So, first we make sure that the journal is empty and that
4674          * nobody is changing anything.
4675          */
4676
4677         journal = EXT4_JOURNAL(inode);
4678         if (!journal)
4679                 return 0;
4680         if (is_journal_aborted(journal))
4681                 return -EROFS;
4682         /* We have to allocate physical blocks for delalloc blocks
4683          * before flushing journal. otherwise delalloc blocks can not
4684          * be allocated any more. even more truncate on delalloc blocks
4685          * could trigger BUG by flushing delalloc blocks in journal.
4686          * There is no delalloc block in non-journal data mode.
4687          */
4688         if (val && test_opt(inode->i_sb, DELALLOC)) {
4689                 err = ext4_alloc_da_blocks(inode);
4690                 if (err < 0)
4691                         return err;
4692         }
4693
4694         /* Wait for all existing dio workers */
4695         ext4_inode_block_unlocked_dio(inode);
4696         inode_dio_wait(inode);
4697
4698         jbd2_journal_lock_updates(journal);
4699
4700         /*
4701          * OK, there are no updates running now, and all cached data is
4702          * synced to disk.  We are now in a completely consistent state
4703          * which doesn't have anything in the journal, and we know that
4704          * no filesystem updates are running, so it is safe to modify
4705          * the inode's in-core data-journaling state flag now.
4706          */
4707
4708         if (val)
4709                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4710         else {
4711                 jbd2_journal_flush(journal);
4712                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4713         }
4714         ext4_set_aops(inode);
4715
4716         jbd2_journal_unlock_updates(journal);
4717         ext4_inode_resume_unlocked_dio(inode);
4718
4719         /* Finally we can mark the inode as dirty. */
4720
4721         handle = ext4_journal_start(inode, 1);
4722         if (IS_ERR(handle))
4723                 return PTR_ERR(handle);
4724
4725         err = ext4_mark_inode_dirty(handle, inode);
4726         ext4_handle_sync(handle);
4727         ext4_journal_stop(handle);
4728         ext4_std_error(inode->i_sb, err);
4729
4730         return err;
4731 }
4732
4733 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4734 {
4735         return !buffer_mapped(bh);
4736 }
4737
4738 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4739 {
4740         struct page *page = vmf->page;
4741         loff_t size;
4742         unsigned long len;
4743         int ret;
4744         struct file *file = vma->vm_file;
4745         struct inode *inode = file->f_path.dentry->d_inode;
4746         struct address_space *mapping = inode->i_mapping;
4747         handle_t *handle;
4748         get_block_t *get_block;
4749         int retries = 0;
4750
4751         sb_start_pagefault(inode->i_sb);
4752         file_update_time(vma->vm_file);
4753         /* Delalloc case is easy... */
4754         if (test_opt(inode->i_sb, DELALLOC) &&
4755             !ext4_should_journal_data(inode) &&
4756             !ext4_nonda_switch(inode->i_sb)) {
4757                 do {
4758                         ret = __block_page_mkwrite(vma, vmf,
4759                                                    ext4_da_get_block_prep);
4760                 } while (ret == -ENOSPC &&
4761                        ext4_should_retry_alloc(inode->i_sb, &retries));
4762                 goto out_ret;
4763         }
4764
4765         lock_page(page);
4766         size = i_size_read(inode);
4767         /* Page got truncated from under us? */
4768         if (page->mapping != mapping || page_offset(page) > size) {
4769                 unlock_page(page);
4770                 ret = VM_FAULT_NOPAGE;
4771                 goto out;
4772         }
4773
4774         if (page->index == size >> PAGE_CACHE_SHIFT)
4775                 len = size & ~PAGE_CACHE_MASK;
4776         else
4777                 len = PAGE_CACHE_SIZE;
4778         /*
4779          * Return if we have all the buffers mapped. This avoids the need to do
4780          * journal_start/journal_stop which can block and take a long time
4781          */
4782         if (page_has_buffers(page)) {
4783                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
4784                                             0, len, NULL,
4785                                             ext4_bh_unmapped)) {
4786                         /* Wait so that we don't change page under IO */
4787                         wait_on_page_writeback(page);
4788                         ret = VM_FAULT_LOCKED;
4789                         goto out;
4790                 }
4791         }
4792         unlock_page(page);
4793         /* OK, we need to fill the hole... */
4794         if (ext4_should_dioread_nolock(inode))
4795                 get_block = ext4_get_block_write;
4796         else
4797                 get_block = ext4_get_block;
4798 retry_alloc:
4799         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4800         if (IS_ERR(handle)) {
4801                 ret = VM_FAULT_SIGBUS;
4802                 goto out;
4803         }
4804         ret = __block_page_mkwrite(vma, vmf, get_block);
4805         if (!ret && ext4_should_journal_data(inode)) {
4806                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
4807                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4808                         unlock_page(page);
4809                         ret = VM_FAULT_SIGBUS;
4810                         ext4_journal_stop(handle);
4811                         goto out;
4812                 }
4813                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4814         }
4815         ext4_journal_stop(handle);
4816         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4817                 goto retry_alloc;
4818 out_ret:
4819         ret = block_page_mkwrite_return(ret);
4820 out:
4821         sb_end_pagefault(inode->i_sb);
4822         return ret;
4823 }