ext4: call ext4_ioend_wait and ext4_flush_completed_IO in ext4_evict_inode
[pandora-kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/module.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static inline int ext4_begin_ordered_truncate(struct inode *inode,
53                                               loff_t new_size)
54 {
55         trace_ext4_begin_ordered_truncate(inode, new_size);
56         /*
57          * If jinode is zero, then we never opened the file for
58          * writing, so there's no need to call
59          * jbd2_journal_begin_ordered_truncate() since there's no
60          * outstanding writes we need to flush.
61          */
62         if (!EXT4_I(inode)->jinode)
63                 return 0;
64         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
65                                                    EXT4_I(inode)->jinode,
66                                                    new_size);
67 }
68
69 static void ext4_invalidatepage(struct page *page, unsigned long offset);
70 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
71                                    struct buffer_head *bh_result, int create);
72 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
73 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
74 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
75 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
76
77 /*
78  * Test whether an inode is a fast symlink.
79  */
80 static int ext4_inode_is_fast_symlink(struct inode *inode)
81 {
82         int ea_blocks = EXT4_I(inode)->i_file_acl ?
83                 (inode->i_sb->s_blocksize >> 9) : 0;
84
85         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
86 }
87
88 /*
89  * Restart the transaction associated with *handle.  This does a commit,
90  * so before we call here everything must be consistently dirtied against
91  * this transaction.
92  */
93 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
94                                  int nblocks)
95 {
96         int ret;
97
98         /*
99          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
100          * moment, get_block can be called only for blocks inside i_size since
101          * page cache has been already dropped and writes are blocked by
102          * i_mutex. So we can safely drop the i_data_sem here.
103          */
104         BUG_ON(EXT4_JOURNAL(inode) == NULL);
105         jbd_debug(2, "restarting handle %p\n", handle);
106         up_write(&EXT4_I(inode)->i_data_sem);
107         ret = ext4_journal_restart(handle, nblocks);
108         down_write(&EXT4_I(inode)->i_data_sem);
109         ext4_discard_preallocations(inode);
110
111         return ret;
112 }
113
114 /*
115  * Called at the last iput() if i_nlink is zero.
116  */
117 void ext4_evict_inode(struct inode *inode)
118 {
119         handle_t *handle;
120         int err;
121
122         trace_ext4_evict_inode(inode);
123
124         mutex_lock(&inode->i_mutex);
125         ext4_flush_completed_IO(inode);
126         mutex_unlock(&inode->i_mutex);
127         ext4_ioend_wait(inode);
128
129         if (inode->i_nlink) {
130                 /*
131                  * When journalling data dirty buffers are tracked only in the
132                  * journal. So although mm thinks everything is clean and
133                  * ready for reaping the inode might still have some pages to
134                  * write in the running transaction or waiting to be
135                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
136                  * (via truncate_inode_pages()) to discard these buffers can
137                  * cause data loss. Also even if we did not discard these
138                  * buffers, we would have no way to find them after the inode
139                  * is reaped and thus user could see stale data if he tries to
140                  * read them before the transaction is checkpointed. So be
141                  * careful and force everything to disk here... We use
142                  * ei->i_datasync_tid to store the newest transaction
143                  * containing inode's data.
144                  *
145                  * Note that directories do not have this problem because they
146                  * don't use page cache.
147                  */
148                 if (ext4_should_journal_data(inode) &&
149                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
150                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
151                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
152
153                         jbd2_log_start_commit(journal, commit_tid);
154                         jbd2_log_wait_commit(journal, commit_tid);
155                         filemap_write_and_wait(&inode->i_data);
156                 }
157                 truncate_inode_pages(&inode->i_data, 0);
158                 goto no_delete;
159         }
160
161         if (!is_bad_inode(inode))
162                 dquot_initialize(inode);
163
164         if (ext4_should_order_data(inode))
165                 ext4_begin_ordered_truncate(inode, 0);
166         truncate_inode_pages(&inode->i_data, 0);
167
168         if (is_bad_inode(inode))
169                 goto no_delete;
170
171         handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
172         if (IS_ERR(handle)) {
173                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
174                 /*
175                  * If we're going to skip the normal cleanup, we still need to
176                  * make sure that the in-core orphan linked list is properly
177                  * cleaned up.
178                  */
179                 ext4_orphan_del(NULL, inode);
180                 goto no_delete;
181         }
182
183         if (IS_SYNC(inode))
184                 ext4_handle_sync(handle);
185         inode->i_size = 0;
186         err = ext4_mark_inode_dirty(handle, inode);
187         if (err) {
188                 ext4_warning(inode->i_sb,
189                              "couldn't mark inode dirty (err %d)", err);
190                 goto stop_handle;
191         }
192         if (inode->i_blocks)
193                 ext4_truncate(inode);
194
195         /*
196          * ext4_ext_truncate() doesn't reserve any slop when it
197          * restarts journal transactions; therefore there may not be
198          * enough credits left in the handle to remove the inode from
199          * the orphan list and set the dtime field.
200          */
201         if (!ext4_handle_has_enough_credits(handle, 3)) {
202                 err = ext4_journal_extend(handle, 3);
203                 if (err > 0)
204                         err = ext4_journal_restart(handle, 3);
205                 if (err != 0) {
206                         ext4_warning(inode->i_sb,
207                                      "couldn't extend journal (err %d)", err);
208                 stop_handle:
209                         ext4_journal_stop(handle);
210                         ext4_orphan_del(NULL, inode);
211                         goto no_delete;
212                 }
213         }
214
215         /*
216          * Kill off the orphan record which ext4_truncate created.
217          * AKPM: I think this can be inside the above `if'.
218          * Note that ext4_orphan_del() has to be able to cope with the
219          * deletion of a non-existent orphan - this is because we don't
220          * know if ext4_truncate() actually created an orphan record.
221          * (Well, we could do this if we need to, but heck - it works)
222          */
223         ext4_orphan_del(handle, inode);
224         EXT4_I(inode)->i_dtime  = get_seconds();
225
226         /*
227          * One subtle ordering requirement: if anything has gone wrong
228          * (transaction abort, IO errors, whatever), then we can still
229          * do these next steps (the fs will already have been marked as
230          * having errors), but we can't free the inode if the mark_dirty
231          * fails.
232          */
233         if (ext4_mark_inode_dirty(handle, inode))
234                 /* If that failed, just do the required in-core inode clear. */
235                 ext4_clear_inode(inode);
236         else
237                 ext4_free_inode(handle, inode);
238         ext4_journal_stop(handle);
239         return;
240 no_delete:
241         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
242 }
243
244 #ifdef CONFIG_QUOTA
245 qsize_t *ext4_get_reserved_space(struct inode *inode)
246 {
247         return &EXT4_I(inode)->i_reserved_quota;
248 }
249 #endif
250
251 /*
252  * Calculate the number of metadata blocks need to reserve
253  * to allocate a block located at @lblock
254  */
255 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
256 {
257         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
258                 return ext4_ext_calc_metadata_amount(inode, lblock);
259
260         return ext4_ind_calc_metadata_amount(inode, lblock);
261 }
262
263 /*
264  * Called with i_data_sem down, which is important since we can call
265  * ext4_discard_preallocations() from here.
266  */
267 void ext4_da_update_reserve_space(struct inode *inode,
268                                         int used, int quota_claim)
269 {
270         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
271         struct ext4_inode_info *ei = EXT4_I(inode);
272
273         spin_lock(&ei->i_block_reservation_lock);
274         trace_ext4_da_update_reserve_space(inode, used);
275         if (unlikely(used > ei->i_reserved_data_blocks)) {
276                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
277                          "with only %d reserved data blocks\n",
278                          __func__, inode->i_ino, used,
279                          ei->i_reserved_data_blocks);
280                 WARN_ON(1);
281                 used = ei->i_reserved_data_blocks;
282         }
283
284         /* Update per-inode reservations */
285         ei->i_reserved_data_blocks -= used;
286         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
287         percpu_counter_sub(&sbi->s_dirtyblocks_counter,
288                            used + ei->i_allocated_meta_blocks);
289         ei->i_allocated_meta_blocks = 0;
290
291         if (ei->i_reserved_data_blocks == 0) {
292                 /*
293                  * We can release all of the reserved metadata blocks
294                  * only when we have written all of the delayed
295                  * allocation blocks.
296                  */
297                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
298                                    ei->i_reserved_meta_blocks);
299                 ei->i_reserved_meta_blocks = 0;
300                 ei->i_da_metadata_calc_len = 0;
301         }
302         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
303
304         /* Update quota subsystem for data blocks */
305         if (quota_claim)
306                 dquot_claim_block(inode, used);
307         else {
308                 /*
309                  * We did fallocate with an offset that is already delayed
310                  * allocated. So on delayed allocated writeback we should
311                  * not re-claim the quota for fallocated blocks.
312                  */
313                 dquot_release_reservation_block(inode, used);
314         }
315
316         /*
317          * If we have done all the pending block allocations and if
318          * there aren't any writers on the inode, we can discard the
319          * inode's preallocations.
320          */
321         if ((ei->i_reserved_data_blocks == 0) &&
322             (atomic_read(&inode->i_writecount) == 0))
323                 ext4_discard_preallocations(inode);
324 }
325
326 static int __check_block_validity(struct inode *inode, const char *func,
327                                 unsigned int line,
328                                 struct ext4_map_blocks *map)
329 {
330         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
331                                    map->m_len)) {
332                 ext4_error_inode(inode, func, line, map->m_pblk,
333                                  "lblock %lu mapped to illegal pblock "
334                                  "(length %d)", (unsigned long) map->m_lblk,
335                                  map->m_len);
336                 return -EIO;
337         }
338         return 0;
339 }
340
341 #define check_block_validity(inode, map)        \
342         __check_block_validity((inode), __func__, __LINE__, (map))
343
344 /*
345  * Return the number of contiguous dirty pages in a given inode
346  * starting at page frame idx.
347  */
348 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
349                                     unsigned int max_pages)
350 {
351         struct address_space *mapping = inode->i_mapping;
352         pgoff_t index;
353         struct pagevec pvec;
354         pgoff_t num = 0;
355         int i, nr_pages, done = 0;
356
357         if (max_pages == 0)
358                 return 0;
359         pagevec_init(&pvec, 0);
360         while (!done) {
361                 index = idx;
362                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
363                                               PAGECACHE_TAG_DIRTY,
364                                               (pgoff_t)PAGEVEC_SIZE);
365                 if (nr_pages == 0)
366                         break;
367                 for (i = 0; i < nr_pages; i++) {
368                         struct page *page = pvec.pages[i];
369                         struct buffer_head *bh, *head;
370
371                         lock_page(page);
372                         if (unlikely(page->mapping != mapping) ||
373                             !PageDirty(page) ||
374                             PageWriteback(page) ||
375                             page->index != idx) {
376                                 done = 1;
377                                 unlock_page(page);
378                                 break;
379                         }
380                         if (page_has_buffers(page)) {
381                                 bh = head = page_buffers(page);
382                                 do {
383                                         if (!buffer_delay(bh) &&
384                                             !buffer_unwritten(bh))
385                                                 done = 1;
386                                         bh = bh->b_this_page;
387                                 } while (!done && (bh != head));
388                         }
389                         unlock_page(page);
390                         if (done)
391                                 break;
392                         idx++;
393                         num++;
394                         if (num >= max_pages) {
395                                 done = 1;
396                                 break;
397                         }
398                 }
399                 pagevec_release(&pvec);
400         }
401         return num;
402 }
403
404 /*
405  * The ext4_map_blocks() function tries to look up the requested blocks,
406  * and returns if the blocks are already mapped.
407  *
408  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
409  * and store the allocated blocks in the result buffer head and mark it
410  * mapped.
411  *
412  * If file type is extents based, it will call ext4_ext_map_blocks(),
413  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
414  * based files
415  *
416  * On success, it returns the number of blocks being mapped or allocate.
417  * if create==0 and the blocks are pre-allocated and uninitialized block,
418  * the result buffer head is unmapped. If the create ==1, it will make sure
419  * the buffer head is mapped.
420  *
421  * It returns 0 if plain look up failed (blocks have not been allocated), in
422  * that casem, buffer head is unmapped
423  *
424  * It returns the error in case of allocation failure.
425  */
426 int ext4_map_blocks(handle_t *handle, struct inode *inode,
427                     struct ext4_map_blocks *map, int flags)
428 {
429         int retval;
430
431         map->m_flags = 0;
432         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
433                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
434                   (unsigned long) map->m_lblk);
435         /*
436          * Try to see if we can get the block without requesting a new
437          * file system block.
438          */
439         down_read((&EXT4_I(inode)->i_data_sem));
440         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
441                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
442         } else {
443                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
444         }
445         up_read((&EXT4_I(inode)->i_data_sem));
446
447         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
448                 int ret = check_block_validity(inode, map);
449                 if (ret != 0)
450                         return ret;
451         }
452
453         /* If it is only a block(s) look up */
454         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
455                 return retval;
456
457         /*
458          * Returns if the blocks have already allocated
459          *
460          * Note that if blocks have been preallocated
461          * ext4_ext_get_block() returns th create = 0
462          * with buffer head unmapped.
463          */
464         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
465                 return retval;
466
467         /*
468          * When we call get_blocks without the create flag, the
469          * BH_Unwritten flag could have gotten set if the blocks
470          * requested were part of a uninitialized extent.  We need to
471          * clear this flag now that we are committed to convert all or
472          * part of the uninitialized extent to be an initialized
473          * extent.  This is because we need to avoid the combination
474          * of BH_Unwritten and BH_Mapped flags being simultaneously
475          * set on the buffer_head.
476          */
477         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
478
479         /*
480          * New blocks allocate and/or writing to uninitialized extent
481          * will possibly result in updating i_data, so we take
482          * the write lock of i_data_sem, and call get_blocks()
483          * with create == 1 flag.
484          */
485         down_write((&EXT4_I(inode)->i_data_sem));
486
487         /*
488          * if the caller is from delayed allocation writeout path
489          * we have already reserved fs blocks for allocation
490          * let the underlying get_block() function know to
491          * avoid double accounting
492          */
493         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
494                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
495         /*
496          * We need to check for EXT4 here because migrate
497          * could have changed the inode type in between
498          */
499         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
500                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
501         } else {
502                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
503
504                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
505                         /*
506                          * We allocated new blocks which will result in
507                          * i_data's format changing.  Force the migrate
508                          * to fail by clearing migrate flags
509                          */
510                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
511                 }
512
513                 /*
514                  * Update reserved blocks/metadata blocks after successful
515                  * block allocation which had been deferred till now. We don't
516                  * support fallocate for non extent files. So we can update
517                  * reserve space here.
518                  */
519                 if ((retval > 0) &&
520                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
521                         ext4_da_update_reserve_space(inode, retval, 1);
522         }
523         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
524                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
525
526         up_write((&EXT4_I(inode)->i_data_sem));
527         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
528                 int ret = check_block_validity(inode, map);
529                 if (ret != 0)
530                         return ret;
531         }
532         return retval;
533 }
534
535 /* Maximum number of blocks we map for direct IO at once. */
536 #define DIO_MAX_BLOCKS 4096
537
538 static int _ext4_get_block(struct inode *inode, sector_t iblock,
539                            struct buffer_head *bh, int flags)
540 {
541         handle_t *handle = ext4_journal_current_handle();
542         struct ext4_map_blocks map;
543         int ret = 0, started = 0;
544         int dio_credits;
545
546         map.m_lblk = iblock;
547         map.m_len = bh->b_size >> inode->i_blkbits;
548
549         if (flags && !handle) {
550                 /* Direct IO write... */
551                 if (map.m_len > DIO_MAX_BLOCKS)
552                         map.m_len = DIO_MAX_BLOCKS;
553                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
554                 handle = ext4_journal_start(inode, dio_credits);
555                 if (IS_ERR(handle)) {
556                         ret = PTR_ERR(handle);
557                         return ret;
558                 }
559                 started = 1;
560         }
561
562         ret = ext4_map_blocks(handle, inode, &map, flags);
563         if (ret > 0) {
564                 map_bh(bh, inode->i_sb, map.m_pblk);
565                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
566                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
567                 ret = 0;
568         }
569         if (started)
570                 ext4_journal_stop(handle);
571         return ret;
572 }
573
574 int ext4_get_block(struct inode *inode, sector_t iblock,
575                    struct buffer_head *bh, int create)
576 {
577         return _ext4_get_block(inode, iblock, bh,
578                                create ? EXT4_GET_BLOCKS_CREATE : 0);
579 }
580
581 /*
582  * `handle' can be NULL if create is zero
583  */
584 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
585                                 ext4_lblk_t block, int create, int *errp)
586 {
587         struct ext4_map_blocks map;
588         struct buffer_head *bh;
589         int fatal = 0, err;
590
591         J_ASSERT(handle != NULL || create == 0);
592
593         map.m_lblk = block;
594         map.m_len = 1;
595         err = ext4_map_blocks(handle, inode, &map,
596                               create ? EXT4_GET_BLOCKS_CREATE : 0);
597
598         if (err < 0)
599                 *errp = err;
600         if (err <= 0)
601                 return NULL;
602         *errp = 0;
603
604         bh = sb_getblk(inode->i_sb, map.m_pblk);
605         if (!bh) {
606                 *errp = -EIO;
607                 return NULL;
608         }
609         if (map.m_flags & EXT4_MAP_NEW) {
610                 J_ASSERT(create != 0);
611                 J_ASSERT(handle != NULL);
612
613                 /*
614                  * Now that we do not always journal data, we should
615                  * keep in mind whether this should always journal the
616                  * new buffer as metadata.  For now, regular file
617                  * writes use ext4_get_block instead, so it's not a
618                  * problem.
619                  */
620                 lock_buffer(bh);
621                 BUFFER_TRACE(bh, "call get_create_access");
622                 fatal = ext4_journal_get_create_access(handle, bh);
623                 if (!fatal && !buffer_uptodate(bh)) {
624                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
625                         set_buffer_uptodate(bh);
626                 }
627                 unlock_buffer(bh);
628                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
629                 err = ext4_handle_dirty_metadata(handle, inode, bh);
630                 if (!fatal)
631                         fatal = err;
632         } else {
633                 BUFFER_TRACE(bh, "not a new buffer");
634         }
635         if (fatal) {
636                 *errp = fatal;
637                 brelse(bh);
638                 bh = NULL;
639         }
640         return bh;
641 }
642
643 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
644                                ext4_lblk_t block, int create, int *err)
645 {
646         struct buffer_head *bh;
647
648         bh = ext4_getblk(handle, inode, block, create, err);
649         if (!bh)
650                 return bh;
651         if (buffer_uptodate(bh))
652                 return bh;
653         ll_rw_block(READ_META, 1, &bh);
654         wait_on_buffer(bh);
655         if (buffer_uptodate(bh))
656                 return bh;
657         put_bh(bh);
658         *err = -EIO;
659         return NULL;
660 }
661
662 static int walk_page_buffers(handle_t *handle,
663                              struct buffer_head *head,
664                              unsigned from,
665                              unsigned to,
666                              int *partial,
667                              int (*fn)(handle_t *handle,
668                                        struct buffer_head *bh))
669 {
670         struct buffer_head *bh;
671         unsigned block_start, block_end;
672         unsigned blocksize = head->b_size;
673         int err, ret = 0;
674         struct buffer_head *next;
675
676         for (bh = head, block_start = 0;
677              ret == 0 && (bh != head || !block_start);
678              block_start = block_end, bh = next) {
679                 next = bh->b_this_page;
680                 block_end = block_start + blocksize;
681                 if (block_end <= from || block_start >= to) {
682                         if (partial && !buffer_uptodate(bh))
683                                 *partial = 1;
684                         continue;
685                 }
686                 err = (*fn)(handle, bh);
687                 if (!ret)
688                         ret = err;
689         }
690         return ret;
691 }
692
693 /*
694  * To preserve ordering, it is essential that the hole instantiation and
695  * the data write be encapsulated in a single transaction.  We cannot
696  * close off a transaction and start a new one between the ext4_get_block()
697  * and the commit_write().  So doing the jbd2_journal_start at the start of
698  * prepare_write() is the right place.
699  *
700  * Also, this function can nest inside ext4_writepage() ->
701  * block_write_full_page(). In that case, we *know* that ext4_writepage()
702  * has generated enough buffer credits to do the whole page.  So we won't
703  * block on the journal in that case, which is good, because the caller may
704  * be PF_MEMALLOC.
705  *
706  * By accident, ext4 can be reentered when a transaction is open via
707  * quota file writes.  If we were to commit the transaction while thus
708  * reentered, there can be a deadlock - we would be holding a quota
709  * lock, and the commit would never complete if another thread had a
710  * transaction open and was blocking on the quota lock - a ranking
711  * violation.
712  *
713  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
714  * will _not_ run commit under these circumstances because handle->h_ref
715  * is elevated.  We'll still have enough credits for the tiny quotafile
716  * write.
717  */
718 static int do_journal_get_write_access(handle_t *handle,
719                                        struct buffer_head *bh)
720 {
721         int dirty = buffer_dirty(bh);
722         int ret;
723
724         if (!buffer_mapped(bh) || buffer_freed(bh))
725                 return 0;
726         /*
727          * __block_write_begin() could have dirtied some buffers. Clean
728          * the dirty bit as jbd2_journal_get_write_access() could complain
729          * otherwise about fs integrity issues. Setting of the dirty bit
730          * by __block_write_begin() isn't a real problem here as we clear
731          * the bit before releasing a page lock and thus writeback cannot
732          * ever write the buffer.
733          */
734         if (dirty)
735                 clear_buffer_dirty(bh);
736         ret = ext4_journal_get_write_access(handle, bh);
737         if (!ret && dirty)
738                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
739         return ret;
740 }
741
742 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
743                    struct buffer_head *bh_result, int create);
744 static int ext4_write_begin(struct file *file, struct address_space *mapping,
745                             loff_t pos, unsigned len, unsigned flags,
746                             struct page **pagep, void **fsdata)
747 {
748         struct inode *inode = mapping->host;
749         int ret, needed_blocks;
750         handle_t *handle;
751         int retries = 0;
752         struct page *page;
753         pgoff_t index;
754         unsigned from, to;
755
756         trace_ext4_write_begin(inode, pos, len, flags);
757         /*
758          * Reserve one block more for addition to orphan list in case
759          * we allocate blocks but write fails for some reason
760          */
761         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
762         index = pos >> PAGE_CACHE_SHIFT;
763         from = pos & (PAGE_CACHE_SIZE - 1);
764         to = from + len;
765
766 retry:
767         handle = ext4_journal_start(inode, needed_blocks);
768         if (IS_ERR(handle)) {
769                 ret = PTR_ERR(handle);
770                 goto out;
771         }
772
773         /* We cannot recurse into the filesystem as the transaction is already
774          * started */
775         flags |= AOP_FLAG_NOFS;
776
777         page = grab_cache_page_write_begin(mapping, index, flags);
778         if (!page) {
779                 ext4_journal_stop(handle);
780                 ret = -ENOMEM;
781                 goto out;
782         }
783         *pagep = page;
784
785         if (ext4_should_dioread_nolock(inode))
786                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
787         else
788                 ret = __block_write_begin(page, pos, len, ext4_get_block);
789
790         if (!ret && ext4_should_journal_data(inode)) {
791                 ret = walk_page_buffers(handle, page_buffers(page),
792                                 from, to, NULL, do_journal_get_write_access);
793         }
794
795         if (ret) {
796                 unlock_page(page);
797                 page_cache_release(page);
798                 /*
799                  * __block_write_begin may have instantiated a few blocks
800                  * outside i_size.  Trim these off again. Don't need
801                  * i_size_read because we hold i_mutex.
802                  *
803                  * Add inode to orphan list in case we crash before
804                  * truncate finishes
805                  */
806                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
807                         ext4_orphan_add(handle, inode);
808
809                 ext4_journal_stop(handle);
810                 if (pos + len > inode->i_size) {
811                         ext4_truncate_failed_write(inode);
812                         /*
813                          * If truncate failed early the inode might
814                          * still be on the orphan list; we need to
815                          * make sure the inode is removed from the
816                          * orphan list in that case.
817                          */
818                         if (inode->i_nlink)
819                                 ext4_orphan_del(NULL, inode);
820                 }
821         }
822
823         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
824                 goto retry;
825 out:
826         return ret;
827 }
828
829 /* For write_end() in data=journal mode */
830 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
831 {
832         if (!buffer_mapped(bh) || buffer_freed(bh))
833                 return 0;
834         set_buffer_uptodate(bh);
835         return ext4_handle_dirty_metadata(handle, NULL, bh);
836 }
837
838 static int ext4_generic_write_end(struct file *file,
839                                   struct address_space *mapping,
840                                   loff_t pos, unsigned len, unsigned copied,
841                                   struct page *page, void *fsdata)
842 {
843         int i_size_changed = 0;
844         struct inode *inode = mapping->host;
845         handle_t *handle = ext4_journal_current_handle();
846
847         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
848
849         /*
850          * No need to use i_size_read() here, the i_size
851          * cannot change under us because we hold i_mutex.
852          *
853          * But it's important to update i_size while still holding page lock:
854          * page writeout could otherwise come in and zero beyond i_size.
855          */
856         if (pos + copied > inode->i_size) {
857                 i_size_write(inode, pos + copied);
858                 i_size_changed = 1;
859         }
860
861         if (pos + copied >  EXT4_I(inode)->i_disksize) {
862                 /* We need to mark inode dirty even if
863                  * new_i_size is less that inode->i_size
864                  * bu greater than i_disksize.(hint delalloc)
865                  */
866                 ext4_update_i_disksize(inode, (pos + copied));
867                 i_size_changed = 1;
868         }
869         unlock_page(page);
870         page_cache_release(page);
871
872         /*
873          * Don't mark the inode dirty under page lock. First, it unnecessarily
874          * makes the holding time of page lock longer. Second, it forces lock
875          * ordering of page lock and transaction start for journaling
876          * filesystems.
877          */
878         if (i_size_changed)
879                 ext4_mark_inode_dirty(handle, inode);
880
881         return copied;
882 }
883
884 /*
885  * We need to pick up the new inode size which generic_commit_write gave us
886  * `file' can be NULL - eg, when called from page_symlink().
887  *
888  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
889  * buffers are managed internally.
890  */
891 static int ext4_ordered_write_end(struct file *file,
892                                   struct address_space *mapping,
893                                   loff_t pos, unsigned len, unsigned copied,
894                                   struct page *page, void *fsdata)
895 {
896         handle_t *handle = ext4_journal_current_handle();
897         struct inode *inode = mapping->host;
898         int ret = 0, ret2;
899
900         trace_ext4_ordered_write_end(inode, pos, len, copied);
901         ret = ext4_jbd2_file_inode(handle, inode);
902
903         if (ret == 0) {
904                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
905                                                         page, fsdata);
906                 copied = ret2;
907                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
908                         /* if we have allocated more blocks and copied
909                          * less. We will have blocks allocated outside
910                          * inode->i_size. So truncate them
911                          */
912                         ext4_orphan_add(handle, inode);
913                 if (ret2 < 0)
914                         ret = ret2;
915         }
916         ret2 = ext4_journal_stop(handle);
917         if (!ret)
918                 ret = ret2;
919
920         if (pos + len > inode->i_size) {
921                 ext4_truncate_failed_write(inode);
922                 /*
923                  * If truncate failed early the inode might still be
924                  * on the orphan list; we need to make sure the inode
925                  * is removed from the orphan list in that case.
926                  */
927                 if (inode->i_nlink)
928                         ext4_orphan_del(NULL, inode);
929         }
930
931
932         return ret ? ret : copied;
933 }
934
935 static int ext4_writeback_write_end(struct file *file,
936                                     struct address_space *mapping,
937                                     loff_t pos, unsigned len, unsigned copied,
938                                     struct page *page, void *fsdata)
939 {
940         handle_t *handle = ext4_journal_current_handle();
941         struct inode *inode = mapping->host;
942         int ret = 0, ret2;
943
944         trace_ext4_writeback_write_end(inode, pos, len, copied);
945         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
946                                                         page, fsdata);
947         copied = ret2;
948         if (pos + len > inode->i_size && ext4_can_truncate(inode))
949                 /* if we have allocated more blocks and copied
950                  * less. We will have blocks allocated outside
951                  * inode->i_size. So truncate them
952                  */
953                 ext4_orphan_add(handle, inode);
954
955         if (ret2 < 0)
956                 ret = ret2;
957
958         ret2 = ext4_journal_stop(handle);
959         if (!ret)
960                 ret = ret2;
961
962         if (pos + len > inode->i_size) {
963                 ext4_truncate_failed_write(inode);
964                 /*
965                  * If truncate failed early the inode might still be
966                  * on the orphan list; we need to make sure the inode
967                  * is removed from the orphan list in that case.
968                  */
969                 if (inode->i_nlink)
970                         ext4_orphan_del(NULL, inode);
971         }
972
973         return ret ? ret : copied;
974 }
975
976 static int ext4_journalled_write_end(struct file *file,
977                                      struct address_space *mapping,
978                                      loff_t pos, unsigned len, unsigned copied,
979                                      struct page *page, void *fsdata)
980 {
981         handle_t *handle = ext4_journal_current_handle();
982         struct inode *inode = mapping->host;
983         int ret = 0, ret2;
984         int partial = 0;
985         unsigned from, to;
986         loff_t new_i_size;
987
988         trace_ext4_journalled_write_end(inode, pos, len, copied);
989         from = pos & (PAGE_CACHE_SIZE - 1);
990         to = from + len;
991
992         BUG_ON(!ext4_handle_valid(handle));
993
994         if (copied < len) {
995                 if (!PageUptodate(page))
996                         copied = 0;
997                 page_zero_new_buffers(page, from+copied, to);
998         }
999
1000         ret = walk_page_buffers(handle, page_buffers(page), from,
1001                                 to, &partial, write_end_fn);
1002         if (!partial)
1003                 SetPageUptodate(page);
1004         new_i_size = pos + copied;
1005         if (new_i_size > inode->i_size)
1006                 i_size_write(inode, pos+copied);
1007         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1008         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1009         if (new_i_size > EXT4_I(inode)->i_disksize) {
1010                 ext4_update_i_disksize(inode, new_i_size);
1011                 ret2 = ext4_mark_inode_dirty(handle, inode);
1012                 if (!ret)
1013                         ret = ret2;
1014         }
1015
1016         unlock_page(page);
1017         page_cache_release(page);
1018         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1019                 /* if we have allocated more blocks and copied
1020                  * less. We will have blocks allocated outside
1021                  * inode->i_size. So truncate them
1022                  */
1023                 ext4_orphan_add(handle, inode);
1024
1025         ret2 = ext4_journal_stop(handle);
1026         if (!ret)
1027                 ret = ret2;
1028         if (pos + len > inode->i_size) {
1029                 ext4_truncate_failed_write(inode);
1030                 /*
1031                  * If truncate failed early the inode might still be
1032                  * on the orphan list; we need to make sure the inode
1033                  * is removed from the orphan list in that case.
1034                  */
1035                 if (inode->i_nlink)
1036                         ext4_orphan_del(NULL, inode);
1037         }
1038
1039         return ret ? ret : copied;
1040 }
1041
1042 /*
1043  * Reserve a single block located at lblock
1044  */
1045 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1046 {
1047         int retries = 0;
1048         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1049         struct ext4_inode_info *ei = EXT4_I(inode);
1050         unsigned long md_needed;
1051         int ret;
1052
1053         /*
1054          * recalculate the amount of metadata blocks to reserve
1055          * in order to allocate nrblocks
1056          * worse case is one extent per block
1057          */
1058 repeat:
1059         spin_lock(&ei->i_block_reservation_lock);
1060         md_needed = ext4_calc_metadata_amount(inode, lblock);
1061         trace_ext4_da_reserve_space(inode, md_needed);
1062         spin_unlock(&ei->i_block_reservation_lock);
1063
1064         /*
1065          * We will charge metadata quota at writeout time; this saves
1066          * us from metadata over-estimation, though we may go over by
1067          * a small amount in the end.  Here we just reserve for data.
1068          */
1069         ret = dquot_reserve_block(inode, 1);
1070         if (ret)
1071                 return ret;
1072         /*
1073          * We do still charge estimated metadata to the sb though;
1074          * we cannot afford to run out of free blocks.
1075          */
1076         if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1077                 dquot_release_reservation_block(inode, 1);
1078                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1079                         yield();
1080                         goto repeat;
1081                 }
1082                 return -ENOSPC;
1083         }
1084         spin_lock(&ei->i_block_reservation_lock);
1085         ei->i_reserved_data_blocks++;
1086         ei->i_reserved_meta_blocks += md_needed;
1087         spin_unlock(&ei->i_block_reservation_lock);
1088
1089         return 0;       /* success */
1090 }
1091
1092 static void ext4_da_release_space(struct inode *inode, int to_free)
1093 {
1094         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1095         struct ext4_inode_info *ei = EXT4_I(inode);
1096
1097         if (!to_free)
1098                 return;         /* Nothing to release, exit */
1099
1100         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1101
1102         trace_ext4_da_release_space(inode, to_free);
1103         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1104                 /*
1105                  * if there aren't enough reserved blocks, then the
1106                  * counter is messed up somewhere.  Since this
1107                  * function is called from invalidate page, it's
1108                  * harmless to return without any action.
1109                  */
1110                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1111                          "ino %lu, to_free %d with only %d reserved "
1112                          "data blocks\n", inode->i_ino, to_free,
1113                          ei->i_reserved_data_blocks);
1114                 WARN_ON(1);
1115                 to_free = ei->i_reserved_data_blocks;
1116         }
1117         ei->i_reserved_data_blocks -= to_free;
1118
1119         if (ei->i_reserved_data_blocks == 0) {
1120                 /*
1121                  * We can release all of the reserved metadata blocks
1122                  * only when we have written all of the delayed
1123                  * allocation blocks.
1124                  */
1125                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1126                                    ei->i_reserved_meta_blocks);
1127                 ei->i_reserved_meta_blocks = 0;
1128                 ei->i_da_metadata_calc_len = 0;
1129         }
1130
1131         /* update fs dirty data blocks counter */
1132         percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1133
1134         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1135
1136         dquot_release_reservation_block(inode, to_free);
1137 }
1138
1139 static void ext4_da_page_release_reservation(struct page *page,
1140                                              unsigned long offset)
1141 {
1142         int to_release = 0;
1143         struct buffer_head *head, *bh;
1144         unsigned int curr_off = 0;
1145
1146         head = page_buffers(page);
1147         bh = head;
1148         do {
1149                 unsigned int next_off = curr_off + bh->b_size;
1150
1151                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1152                         to_release++;
1153                         clear_buffer_delay(bh);
1154                 }
1155                 curr_off = next_off;
1156         } while ((bh = bh->b_this_page) != head);
1157         ext4_da_release_space(page->mapping->host, to_release);
1158 }
1159
1160 /*
1161  * Delayed allocation stuff
1162  */
1163
1164 /*
1165  * mpage_da_submit_io - walks through extent of pages and try to write
1166  * them with writepage() call back
1167  *
1168  * @mpd->inode: inode
1169  * @mpd->first_page: first page of the extent
1170  * @mpd->next_page: page after the last page of the extent
1171  *
1172  * By the time mpage_da_submit_io() is called we expect all blocks
1173  * to be allocated. this may be wrong if allocation failed.
1174  *
1175  * As pages are already locked by write_cache_pages(), we can't use it
1176  */
1177 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1178                               struct ext4_map_blocks *map)
1179 {
1180         struct pagevec pvec;
1181         unsigned long index, end;
1182         int ret = 0, err, nr_pages, i;
1183         struct inode *inode = mpd->inode;
1184         struct address_space *mapping = inode->i_mapping;
1185         loff_t size = i_size_read(inode);
1186         unsigned int len, block_start;
1187         struct buffer_head *bh, *page_bufs = NULL;
1188         int journal_data = ext4_should_journal_data(inode);
1189         sector_t pblock = 0, cur_logical = 0;
1190         struct ext4_io_submit io_submit;
1191
1192         BUG_ON(mpd->next_page <= mpd->first_page);
1193         memset(&io_submit, 0, sizeof(io_submit));
1194         /*
1195          * We need to start from the first_page to the next_page - 1
1196          * to make sure we also write the mapped dirty buffer_heads.
1197          * If we look at mpd->b_blocknr we would only be looking
1198          * at the currently mapped buffer_heads.
1199          */
1200         index = mpd->first_page;
1201         end = mpd->next_page - 1;
1202
1203         pagevec_init(&pvec, 0);
1204         while (index <= end) {
1205                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1206                 if (nr_pages == 0)
1207                         break;
1208                 for (i = 0; i < nr_pages; i++) {
1209                         int commit_write = 0, skip_page = 0;
1210                         struct page *page = pvec.pages[i];
1211
1212                         index = page->index;
1213                         if (index > end)
1214                                 break;
1215
1216                         if (index == size >> PAGE_CACHE_SHIFT)
1217                                 len = size & ~PAGE_CACHE_MASK;
1218                         else
1219                                 len = PAGE_CACHE_SIZE;
1220                         if (map) {
1221                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1222                                                         inode->i_blkbits);
1223                                 pblock = map->m_pblk + (cur_logical -
1224                                                         map->m_lblk);
1225                         }
1226                         index++;
1227
1228                         BUG_ON(!PageLocked(page));
1229                         BUG_ON(PageWriteback(page));
1230
1231                         /*
1232                          * If the page does not have buffers (for
1233                          * whatever reason), try to create them using
1234                          * __block_write_begin.  If this fails,
1235                          * skip the page and move on.
1236                          */
1237                         if (!page_has_buffers(page)) {
1238                                 if (__block_write_begin(page, 0, len,
1239                                                 noalloc_get_block_write)) {
1240                                 skip_page:
1241                                         unlock_page(page);
1242                                         continue;
1243                                 }
1244                                 commit_write = 1;
1245                         }
1246
1247                         bh = page_bufs = page_buffers(page);
1248                         block_start = 0;
1249                         do {
1250                                 if (!bh)
1251                                         goto skip_page;
1252                                 if (map && (cur_logical >= map->m_lblk) &&
1253                                     (cur_logical <= (map->m_lblk +
1254                                                      (map->m_len - 1)))) {
1255                                         if (buffer_delay(bh)) {
1256                                                 clear_buffer_delay(bh);
1257                                                 bh->b_blocknr = pblock;
1258                                         }
1259                                         if (buffer_unwritten(bh) ||
1260                                             buffer_mapped(bh))
1261                                                 BUG_ON(bh->b_blocknr != pblock);
1262                                         if (map->m_flags & EXT4_MAP_UNINIT)
1263                                                 set_buffer_uninit(bh);
1264                                         clear_buffer_unwritten(bh);
1265                                 }
1266
1267                                 /* skip page if block allocation undone */
1268                                 if (buffer_delay(bh) || buffer_unwritten(bh))
1269                                         skip_page = 1;
1270                                 bh = bh->b_this_page;
1271                                 block_start += bh->b_size;
1272                                 cur_logical++;
1273                                 pblock++;
1274                         } while (bh != page_bufs);
1275
1276                         if (skip_page)
1277                                 goto skip_page;
1278
1279                         if (commit_write)
1280                                 /* mark the buffer_heads as dirty & uptodate */
1281                                 block_commit_write(page, 0, len);
1282
1283                         clear_page_dirty_for_io(page);
1284                         /*
1285                          * Delalloc doesn't support data journalling,
1286                          * but eventually maybe we'll lift this
1287                          * restriction.
1288                          */
1289                         if (unlikely(journal_data && PageChecked(page)))
1290                                 err = __ext4_journalled_writepage(page, len);
1291                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1292                                 err = ext4_bio_write_page(&io_submit, page,
1293                                                           len, mpd->wbc);
1294                         else
1295                                 err = block_write_full_page(page,
1296                                         noalloc_get_block_write, mpd->wbc);
1297
1298                         if (!err)
1299                                 mpd->pages_written++;
1300                         /*
1301                          * In error case, we have to continue because
1302                          * remaining pages are still locked
1303                          */
1304                         if (ret == 0)
1305                                 ret = err;
1306                 }
1307                 pagevec_release(&pvec);
1308         }
1309         ext4_io_submit(&io_submit);
1310         return ret;
1311 }
1312
1313 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1314 {
1315         int nr_pages, i;
1316         pgoff_t index, end;
1317         struct pagevec pvec;
1318         struct inode *inode = mpd->inode;
1319         struct address_space *mapping = inode->i_mapping;
1320
1321         index = mpd->first_page;
1322         end   = mpd->next_page - 1;
1323         while (index <= end) {
1324                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1325                 if (nr_pages == 0)
1326                         break;
1327                 for (i = 0; i < nr_pages; i++) {
1328                         struct page *page = pvec.pages[i];
1329                         if (page->index > end)
1330                                 break;
1331                         BUG_ON(!PageLocked(page));
1332                         BUG_ON(PageWriteback(page));
1333                         block_invalidatepage(page, 0);
1334                         ClearPageUptodate(page);
1335                         unlock_page(page);
1336                 }
1337                 index = pvec.pages[nr_pages - 1]->index + 1;
1338                 pagevec_release(&pvec);
1339         }
1340         return;
1341 }
1342
1343 static void ext4_print_free_blocks(struct inode *inode)
1344 {
1345         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1346         printk(KERN_CRIT "Total free blocks count %lld\n",
1347                ext4_count_free_blocks(inode->i_sb));
1348         printk(KERN_CRIT "Free/Dirty block details\n");
1349         printk(KERN_CRIT "free_blocks=%lld\n",
1350                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
1351         printk(KERN_CRIT "dirty_blocks=%lld\n",
1352                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1353         printk(KERN_CRIT "Block reservation details\n");
1354         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1355                EXT4_I(inode)->i_reserved_data_blocks);
1356         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1357                EXT4_I(inode)->i_reserved_meta_blocks);
1358         return;
1359 }
1360
1361 /*
1362  * mpage_da_map_and_submit - go through given space, map them
1363  *       if necessary, and then submit them for I/O
1364  *
1365  * @mpd - bh describing space
1366  *
1367  * The function skips space we know is already mapped to disk blocks.
1368  *
1369  */
1370 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1371 {
1372         int err, blks, get_blocks_flags;
1373         struct ext4_map_blocks map, *mapp = NULL;
1374         sector_t next = mpd->b_blocknr;
1375         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1376         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1377         handle_t *handle = NULL;
1378
1379         /*
1380          * If the blocks are mapped already, or we couldn't accumulate
1381          * any blocks, then proceed immediately to the submission stage.
1382          */
1383         if ((mpd->b_size == 0) ||
1384             ((mpd->b_state  & (1 << BH_Mapped)) &&
1385              !(mpd->b_state & (1 << BH_Delay)) &&
1386              !(mpd->b_state & (1 << BH_Unwritten))))
1387                 goto submit_io;
1388
1389         handle = ext4_journal_current_handle();
1390         BUG_ON(!handle);
1391
1392         /*
1393          * Call ext4_map_blocks() to allocate any delayed allocation
1394          * blocks, or to convert an uninitialized extent to be
1395          * initialized (in the case where we have written into
1396          * one or more preallocated blocks).
1397          *
1398          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1399          * indicate that we are on the delayed allocation path.  This
1400          * affects functions in many different parts of the allocation
1401          * call path.  This flag exists primarily because we don't
1402          * want to change *many* call functions, so ext4_map_blocks()
1403          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1404          * inode's allocation semaphore is taken.
1405          *
1406          * If the blocks in questions were delalloc blocks, set
1407          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1408          * variables are updated after the blocks have been allocated.
1409          */
1410         map.m_lblk = next;
1411         map.m_len = max_blocks;
1412         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1413         if (ext4_should_dioread_nolock(mpd->inode))
1414                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1415         if (mpd->b_state & (1 << BH_Delay))
1416                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1417
1418         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1419         if (blks < 0) {
1420                 struct super_block *sb = mpd->inode->i_sb;
1421
1422                 err = blks;
1423                 /*
1424                  * If get block returns EAGAIN or ENOSPC and there
1425                  * appears to be free blocks we will just let
1426                  * mpage_da_submit_io() unlock all of the pages.
1427                  */
1428                 if (err == -EAGAIN)
1429                         goto submit_io;
1430
1431                 if (err == -ENOSPC &&
1432                     ext4_count_free_blocks(sb)) {
1433                         mpd->retval = err;
1434                         goto submit_io;
1435                 }
1436
1437                 /*
1438                  * get block failure will cause us to loop in
1439                  * writepages, because a_ops->writepage won't be able
1440                  * to make progress. The page will be redirtied by
1441                  * writepage and writepages will again try to write
1442                  * the same.
1443                  */
1444                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1445                         ext4_msg(sb, KERN_CRIT,
1446                                  "delayed block allocation failed for inode %lu "
1447                                  "at logical offset %llu with max blocks %zd "
1448                                  "with error %d", mpd->inode->i_ino,
1449                                  (unsigned long long) next,
1450                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1451                         ext4_msg(sb, KERN_CRIT,
1452                                 "This should not happen!! Data will be lost\n");
1453                         if (err == -ENOSPC)
1454                                 ext4_print_free_blocks(mpd->inode);
1455                 }
1456                 /* invalidate all the pages */
1457                 ext4_da_block_invalidatepages(mpd);
1458
1459                 /* Mark this page range as having been completed */
1460                 mpd->io_done = 1;
1461                 return;
1462         }
1463         BUG_ON(blks == 0);
1464
1465         mapp = &map;
1466         if (map.m_flags & EXT4_MAP_NEW) {
1467                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1468                 int i;
1469
1470                 for (i = 0; i < map.m_len; i++)
1471                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1472         }
1473
1474         if (ext4_should_order_data(mpd->inode)) {
1475                 err = ext4_jbd2_file_inode(handle, mpd->inode);
1476                 if (err)
1477                         /* This only happens if the journal is aborted */
1478                         return;
1479         }
1480
1481         /*
1482          * Update on-disk size along with block allocation.
1483          */
1484         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1485         if (disksize > i_size_read(mpd->inode))
1486                 disksize = i_size_read(mpd->inode);
1487         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1488                 ext4_update_i_disksize(mpd->inode, disksize);
1489                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1490                 if (err)
1491                         ext4_error(mpd->inode->i_sb,
1492                                    "Failed to mark inode %lu dirty",
1493                                    mpd->inode->i_ino);
1494         }
1495
1496 submit_io:
1497         mpage_da_submit_io(mpd, mapp);
1498         mpd->io_done = 1;
1499 }
1500
1501 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1502                 (1 << BH_Delay) | (1 << BH_Unwritten))
1503
1504 /*
1505  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1506  *
1507  * @mpd->lbh - extent of blocks
1508  * @logical - logical number of the block in the file
1509  * @bh - bh of the block (used to access block's state)
1510  *
1511  * the function is used to collect contig. blocks in same state
1512  */
1513 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1514                                    sector_t logical, size_t b_size,
1515                                    unsigned long b_state)
1516 {
1517         sector_t next;
1518         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1519
1520         /*
1521          * XXX Don't go larger than mballoc is willing to allocate
1522          * This is a stopgap solution.  We eventually need to fold
1523          * mpage_da_submit_io() into this function and then call
1524          * ext4_map_blocks() multiple times in a loop
1525          */
1526         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1527                 goto flush_it;
1528
1529         /* check if thereserved journal credits might overflow */
1530         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1531                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1532                         /*
1533                          * With non-extent format we are limited by the journal
1534                          * credit available.  Total credit needed to insert
1535                          * nrblocks contiguous blocks is dependent on the
1536                          * nrblocks.  So limit nrblocks.
1537                          */
1538                         goto flush_it;
1539                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1540                                 EXT4_MAX_TRANS_DATA) {
1541                         /*
1542                          * Adding the new buffer_head would make it cross the
1543                          * allowed limit for which we have journal credit
1544                          * reserved. So limit the new bh->b_size
1545                          */
1546                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1547                                                 mpd->inode->i_blkbits;
1548                         /* we will do mpage_da_submit_io in the next loop */
1549                 }
1550         }
1551         /*
1552          * First block in the extent
1553          */
1554         if (mpd->b_size == 0) {
1555                 mpd->b_blocknr = logical;
1556                 mpd->b_size = b_size;
1557                 mpd->b_state = b_state & BH_FLAGS;
1558                 return;
1559         }
1560
1561         next = mpd->b_blocknr + nrblocks;
1562         /*
1563          * Can we merge the block to our big extent?
1564          */
1565         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1566                 mpd->b_size += b_size;
1567                 return;
1568         }
1569
1570 flush_it:
1571         /*
1572          * We couldn't merge the block to our extent, so we
1573          * need to flush current  extent and start new one
1574          */
1575         mpage_da_map_and_submit(mpd);
1576         return;
1577 }
1578
1579 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1580 {
1581         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1582 }
1583
1584 /*
1585  * This is a special get_blocks_t callback which is used by
1586  * ext4_da_write_begin().  It will either return mapped block or
1587  * reserve space for a single block.
1588  *
1589  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1590  * We also have b_blocknr = -1 and b_bdev initialized properly
1591  *
1592  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1593  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1594  * initialized properly.
1595  */
1596 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1597                                   struct buffer_head *bh, int create)
1598 {
1599         struct ext4_map_blocks map;
1600         int ret = 0;
1601         sector_t invalid_block = ~((sector_t) 0xffff);
1602
1603         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1604                 invalid_block = ~0;
1605
1606         BUG_ON(create == 0);
1607         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1608
1609         map.m_lblk = iblock;
1610         map.m_len = 1;
1611
1612         /*
1613          * first, we need to know whether the block is allocated already
1614          * preallocated blocks are unmapped but should treated
1615          * the same as allocated blocks.
1616          */
1617         ret = ext4_map_blocks(NULL, inode, &map, 0);
1618         if (ret < 0)
1619                 return ret;
1620         if (ret == 0) {
1621                 if (buffer_delay(bh))
1622                         return 0; /* Not sure this could or should happen */
1623                 /*
1624                  * XXX: __block_write_begin() unmaps passed block, is it OK?
1625                  */
1626                 ret = ext4_da_reserve_space(inode, iblock);
1627                 if (ret)
1628                         /* not enough space to reserve */
1629                         return ret;
1630
1631                 map_bh(bh, inode->i_sb, invalid_block);
1632                 set_buffer_new(bh);
1633                 set_buffer_delay(bh);
1634                 return 0;
1635         }
1636
1637         map_bh(bh, inode->i_sb, map.m_pblk);
1638         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1639
1640         if (buffer_unwritten(bh)) {
1641                 /* A delayed write to unwritten bh should be marked
1642                  * new and mapped.  Mapped ensures that we don't do
1643                  * get_block multiple times when we write to the same
1644                  * offset and new ensures that we do proper zero out
1645                  * for partial write.
1646                  */
1647                 set_buffer_new(bh);
1648                 set_buffer_mapped(bh);
1649         }
1650         return 0;
1651 }
1652
1653 /*
1654  * This function is used as a standard get_block_t calback function
1655  * when there is no desire to allocate any blocks.  It is used as a
1656  * callback function for block_write_begin() and block_write_full_page().
1657  * These functions should only try to map a single block at a time.
1658  *
1659  * Since this function doesn't do block allocations even if the caller
1660  * requests it by passing in create=1, it is critically important that
1661  * any caller checks to make sure that any buffer heads are returned
1662  * by this function are either all already mapped or marked for
1663  * delayed allocation before calling  block_write_full_page().  Otherwise,
1664  * b_blocknr could be left unitialized, and the page write functions will
1665  * be taken by surprise.
1666  */
1667 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1668                                    struct buffer_head *bh_result, int create)
1669 {
1670         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1671         return _ext4_get_block(inode, iblock, bh_result, 0);
1672 }
1673
1674 static int bget_one(handle_t *handle, struct buffer_head *bh)
1675 {
1676         get_bh(bh);
1677         return 0;
1678 }
1679
1680 static int bput_one(handle_t *handle, struct buffer_head *bh)
1681 {
1682         put_bh(bh);
1683         return 0;
1684 }
1685
1686 static int __ext4_journalled_writepage(struct page *page,
1687                                        unsigned int len)
1688 {
1689         struct address_space *mapping = page->mapping;
1690         struct inode *inode = mapping->host;
1691         struct buffer_head *page_bufs;
1692         handle_t *handle = NULL;
1693         int ret = 0;
1694         int err;
1695
1696         ClearPageChecked(page);
1697         page_bufs = page_buffers(page);
1698         BUG_ON(!page_bufs);
1699         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1700         /* As soon as we unlock the page, it can go away, but we have
1701          * references to buffers so we are safe */
1702         unlock_page(page);
1703
1704         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1705         if (IS_ERR(handle)) {
1706                 ret = PTR_ERR(handle);
1707                 goto out;
1708         }
1709
1710         BUG_ON(!ext4_handle_valid(handle));
1711
1712         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1713                                 do_journal_get_write_access);
1714
1715         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1716                                 write_end_fn);
1717         if (ret == 0)
1718                 ret = err;
1719         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1720         err = ext4_journal_stop(handle);
1721         if (!ret)
1722                 ret = err;
1723
1724         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1725         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1726 out:
1727         return ret;
1728 }
1729
1730 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1731 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1732
1733 /*
1734  * Note that we don't need to start a transaction unless we're journaling data
1735  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1736  * need to file the inode to the transaction's list in ordered mode because if
1737  * we are writing back data added by write(), the inode is already there and if
1738  * we are writing back data modified via mmap(), no one guarantees in which
1739  * transaction the data will hit the disk. In case we are journaling data, we
1740  * cannot start transaction directly because transaction start ranks above page
1741  * lock so we have to do some magic.
1742  *
1743  * This function can get called via...
1744  *   - ext4_da_writepages after taking page lock (have journal handle)
1745  *   - journal_submit_inode_data_buffers (no journal handle)
1746  *   - shrink_page_list via pdflush (no journal handle)
1747  *   - grab_page_cache when doing write_begin (have journal handle)
1748  *
1749  * We don't do any block allocation in this function. If we have page with
1750  * multiple blocks we need to write those buffer_heads that are mapped. This
1751  * is important for mmaped based write. So if we do with blocksize 1K
1752  * truncate(f, 1024);
1753  * a = mmap(f, 0, 4096);
1754  * a[0] = 'a';
1755  * truncate(f, 4096);
1756  * we have in the page first buffer_head mapped via page_mkwrite call back
1757  * but other bufer_heads would be unmapped but dirty(dirty done via the
1758  * do_wp_page). So writepage should write the first block. If we modify
1759  * the mmap area beyond 1024 we will again get a page_fault and the
1760  * page_mkwrite callback will do the block allocation and mark the
1761  * buffer_heads mapped.
1762  *
1763  * We redirty the page if we have any buffer_heads that is either delay or
1764  * unwritten in the page.
1765  *
1766  * We can get recursively called as show below.
1767  *
1768  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1769  *              ext4_writepage()
1770  *
1771  * But since we don't do any block allocation we should not deadlock.
1772  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1773  */
1774 static int ext4_writepage(struct page *page,
1775                           struct writeback_control *wbc)
1776 {
1777         int ret = 0, commit_write = 0;
1778         loff_t size;
1779         unsigned int len;
1780         struct buffer_head *page_bufs = NULL;
1781         struct inode *inode = page->mapping->host;
1782
1783         trace_ext4_writepage(page);
1784         size = i_size_read(inode);
1785         if (page->index == size >> PAGE_CACHE_SHIFT)
1786                 len = size & ~PAGE_CACHE_MASK;
1787         else
1788                 len = PAGE_CACHE_SIZE;
1789
1790         /*
1791          * If the page does not have buffers (for whatever reason),
1792          * try to create them using __block_write_begin.  If this
1793          * fails, redirty the page and move on.
1794          */
1795         if (!page_has_buffers(page)) {
1796                 if (__block_write_begin(page, 0, len,
1797                                         noalloc_get_block_write)) {
1798                 redirty_page:
1799                         redirty_page_for_writepage(wbc, page);
1800                         unlock_page(page);
1801                         return 0;
1802                 }
1803                 commit_write = 1;
1804         }
1805         page_bufs = page_buffers(page);
1806         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1807                               ext4_bh_delay_or_unwritten)) {
1808                 /*
1809                  * We don't want to do block allocation, so redirty
1810                  * the page and return.  We may reach here when we do
1811                  * a journal commit via journal_submit_inode_data_buffers.
1812                  * We can also reach here via shrink_page_list
1813                  */
1814                 goto redirty_page;
1815         }
1816         if (commit_write)
1817                 /* now mark the buffer_heads as dirty and uptodate */
1818                 block_commit_write(page, 0, len);
1819
1820         if (PageChecked(page) && ext4_should_journal_data(inode))
1821                 /*
1822                  * It's mmapped pagecache.  Add buffers and journal it.  There
1823                  * doesn't seem much point in redirtying the page here.
1824                  */
1825                 return __ext4_journalled_writepage(page, len);
1826
1827         if (buffer_uninit(page_bufs)) {
1828                 ext4_set_bh_endio(page_bufs, inode);
1829                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1830                                             wbc, ext4_end_io_buffer_write);
1831         } else
1832                 ret = block_write_full_page(page, noalloc_get_block_write,
1833                                             wbc);
1834
1835         return ret;
1836 }
1837
1838 /*
1839  * This is called via ext4_da_writepages() to
1840  * calculate the total number of credits to reserve to fit
1841  * a single extent allocation into a single transaction,
1842  * ext4_da_writpeages() will loop calling this before
1843  * the block allocation.
1844  */
1845
1846 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1847 {
1848         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1849
1850         /*
1851          * With non-extent format the journal credit needed to
1852          * insert nrblocks contiguous block is dependent on
1853          * number of contiguous block. So we will limit
1854          * number of contiguous block to a sane value
1855          */
1856         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1857             (max_blocks > EXT4_MAX_TRANS_DATA))
1858                 max_blocks = EXT4_MAX_TRANS_DATA;
1859
1860         return ext4_chunk_trans_blocks(inode, max_blocks);
1861 }
1862
1863 /*
1864  * write_cache_pages_da - walk the list of dirty pages of the given
1865  * address space and accumulate pages that need writing, and call
1866  * mpage_da_map_and_submit to map a single contiguous memory region
1867  * and then write them.
1868  */
1869 static int write_cache_pages_da(struct address_space *mapping,
1870                                 struct writeback_control *wbc,
1871                                 struct mpage_da_data *mpd,
1872                                 pgoff_t *done_index)
1873 {
1874         struct buffer_head      *bh, *head;
1875         struct inode            *inode = mapping->host;
1876         struct pagevec          pvec;
1877         unsigned int            nr_pages;
1878         sector_t                logical;
1879         pgoff_t                 index, end;
1880         long                    nr_to_write = wbc->nr_to_write;
1881         int                     i, tag, ret = 0;
1882
1883         memset(mpd, 0, sizeof(struct mpage_da_data));
1884         mpd->wbc = wbc;
1885         mpd->inode = inode;
1886         pagevec_init(&pvec, 0);
1887         index = wbc->range_start >> PAGE_CACHE_SHIFT;
1888         end = wbc->range_end >> PAGE_CACHE_SHIFT;
1889
1890         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1891                 tag = PAGECACHE_TAG_TOWRITE;
1892         else
1893                 tag = PAGECACHE_TAG_DIRTY;
1894
1895         *done_index = index;
1896         while (index <= end) {
1897                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1898                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1899                 if (nr_pages == 0)
1900                         return 0;
1901
1902                 for (i = 0; i < nr_pages; i++) {
1903                         struct page *page = pvec.pages[i];
1904
1905                         /*
1906                          * At this point, the page may be truncated or
1907                          * invalidated (changing page->mapping to NULL), or
1908                          * even swizzled back from swapper_space to tmpfs file
1909                          * mapping. However, page->index will not change
1910                          * because we have a reference on the page.
1911                          */
1912                         if (page->index > end)
1913                                 goto out;
1914
1915                         *done_index = page->index + 1;
1916
1917                         /*
1918                          * If we can't merge this page, and we have
1919                          * accumulated an contiguous region, write it
1920                          */
1921                         if ((mpd->next_page != page->index) &&
1922                             (mpd->next_page != mpd->first_page)) {
1923                                 mpage_da_map_and_submit(mpd);
1924                                 goto ret_extent_tail;
1925                         }
1926
1927                         lock_page(page);
1928
1929                         /*
1930                          * If the page is no longer dirty, or its
1931                          * mapping no longer corresponds to inode we
1932                          * are writing (which means it has been
1933                          * truncated or invalidated), or the page is
1934                          * already under writeback and we are not
1935                          * doing a data integrity writeback, skip the page
1936                          */
1937                         if (!PageDirty(page) ||
1938                             (PageWriteback(page) &&
1939                              (wbc->sync_mode == WB_SYNC_NONE)) ||
1940                             unlikely(page->mapping != mapping)) {
1941                                 unlock_page(page);
1942                                 continue;
1943                         }
1944
1945                         wait_on_page_writeback(page);
1946                         BUG_ON(PageWriteback(page));
1947
1948                         if (mpd->next_page != page->index)
1949                                 mpd->first_page = page->index;
1950                         mpd->next_page = page->index + 1;
1951                         logical = (sector_t) page->index <<
1952                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1953
1954                         if (!page_has_buffers(page)) {
1955                                 mpage_add_bh_to_extent(mpd, logical,
1956                                                        PAGE_CACHE_SIZE,
1957                                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
1958                                 if (mpd->io_done)
1959                                         goto ret_extent_tail;
1960                         } else {
1961                                 /*
1962                                  * Page with regular buffer heads,
1963                                  * just add all dirty ones
1964                                  */
1965                                 head = page_buffers(page);
1966                                 bh = head;
1967                                 do {
1968                                         BUG_ON(buffer_locked(bh));
1969                                         /*
1970                                          * We need to try to allocate
1971                                          * unmapped blocks in the same page.
1972                                          * Otherwise we won't make progress
1973                                          * with the page in ext4_writepage
1974                                          */
1975                                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
1976                                                 mpage_add_bh_to_extent(mpd, logical,
1977                                                                        bh->b_size,
1978                                                                        bh->b_state);
1979                                                 if (mpd->io_done)
1980                                                         goto ret_extent_tail;
1981                                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
1982                                                 /*
1983                                                  * mapped dirty buffer. We need
1984                                                  * to update the b_state
1985                                                  * because we look at b_state
1986                                                  * in mpage_da_map_blocks.  We
1987                                                  * don't update b_size because
1988                                                  * if we find an unmapped
1989                                                  * buffer_head later we need to
1990                                                  * use the b_state flag of that
1991                                                  * buffer_head.
1992                                                  */
1993                                                 if (mpd->b_size == 0)
1994                                                         mpd->b_state = bh->b_state & BH_FLAGS;
1995                                         }
1996                                         logical++;
1997                                 } while ((bh = bh->b_this_page) != head);
1998                         }
1999
2000                         if (nr_to_write > 0) {
2001                                 nr_to_write--;
2002                                 if (nr_to_write == 0 &&
2003                                     wbc->sync_mode == WB_SYNC_NONE)
2004                                         /*
2005                                          * We stop writing back only if we are
2006                                          * not doing integrity sync. In case of
2007                                          * integrity sync we have to keep going
2008                                          * because someone may be concurrently
2009                                          * dirtying pages, and we might have
2010                                          * synced a lot of newly appeared dirty
2011                                          * pages, but have not synced all of the
2012                                          * old dirty pages.
2013                                          */
2014                                         goto out;
2015                         }
2016                 }
2017                 pagevec_release(&pvec);
2018                 cond_resched();
2019         }
2020         return 0;
2021 ret_extent_tail:
2022         ret = MPAGE_DA_EXTENT_TAIL;
2023 out:
2024         pagevec_release(&pvec);
2025         cond_resched();
2026         return ret;
2027 }
2028
2029
2030 static int ext4_da_writepages(struct address_space *mapping,
2031                               struct writeback_control *wbc)
2032 {
2033         pgoff_t index;
2034         int range_whole = 0;
2035         handle_t *handle = NULL;
2036         struct mpage_da_data mpd;
2037         struct inode *inode = mapping->host;
2038         int pages_written = 0;
2039         unsigned int max_pages;
2040         int range_cyclic, cycled = 1, io_done = 0;
2041         int needed_blocks, ret = 0;
2042         long desired_nr_to_write, nr_to_writebump = 0;
2043         loff_t range_start = wbc->range_start;
2044         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2045         pgoff_t done_index = 0;
2046         pgoff_t end;
2047
2048         trace_ext4_da_writepages(inode, wbc);
2049
2050         /*
2051          * No pages to write? This is mainly a kludge to avoid starting
2052          * a transaction for special inodes like journal inode on last iput()
2053          * because that could violate lock ordering on umount
2054          */
2055         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2056                 return 0;
2057
2058         /*
2059          * If the filesystem has aborted, it is read-only, so return
2060          * right away instead of dumping stack traces later on that
2061          * will obscure the real source of the problem.  We test
2062          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2063          * the latter could be true if the filesystem is mounted
2064          * read-only, and in that case, ext4_da_writepages should
2065          * *never* be called, so if that ever happens, we would want
2066          * the stack trace.
2067          */
2068         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2069                 return -EROFS;
2070
2071         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2072                 range_whole = 1;
2073
2074         range_cyclic = wbc->range_cyclic;
2075         if (wbc->range_cyclic) {
2076                 index = mapping->writeback_index;
2077                 if (index)
2078                         cycled = 0;
2079                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2080                 wbc->range_end  = LLONG_MAX;
2081                 wbc->range_cyclic = 0;
2082                 end = -1;
2083         } else {
2084                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2085                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2086         }
2087
2088         /*
2089          * This works around two forms of stupidity.  The first is in
2090          * the writeback code, which caps the maximum number of pages
2091          * written to be 1024 pages.  This is wrong on multiple
2092          * levels; different architectues have a different page size,
2093          * which changes the maximum amount of data which gets
2094          * written.  Secondly, 4 megabytes is way too small.  XFS
2095          * forces this value to be 16 megabytes by multiplying
2096          * nr_to_write parameter by four, and then relies on its
2097          * allocator to allocate larger extents to make them
2098          * contiguous.  Unfortunately this brings us to the second
2099          * stupidity, which is that ext4's mballoc code only allocates
2100          * at most 2048 blocks.  So we force contiguous writes up to
2101          * the number of dirty blocks in the inode, or
2102          * sbi->max_writeback_mb_bump whichever is smaller.
2103          */
2104         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2105         if (!range_cyclic && range_whole) {
2106                 if (wbc->nr_to_write == LONG_MAX)
2107                         desired_nr_to_write = wbc->nr_to_write;
2108                 else
2109                         desired_nr_to_write = wbc->nr_to_write * 8;
2110         } else
2111                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2112                                                            max_pages);
2113         if (desired_nr_to_write > max_pages)
2114                 desired_nr_to_write = max_pages;
2115
2116         if (wbc->nr_to_write < desired_nr_to_write) {
2117                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2118                 wbc->nr_to_write = desired_nr_to_write;
2119         }
2120
2121 retry:
2122         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2123                 tag_pages_for_writeback(mapping, index, end);
2124
2125         while (!ret && wbc->nr_to_write > 0) {
2126
2127                 /*
2128                  * we  insert one extent at a time. So we need
2129                  * credit needed for single extent allocation.
2130                  * journalled mode is currently not supported
2131                  * by delalloc
2132                  */
2133                 BUG_ON(ext4_should_journal_data(inode));
2134                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2135
2136                 /* start a new transaction*/
2137                 handle = ext4_journal_start(inode, needed_blocks);
2138                 if (IS_ERR(handle)) {
2139                         ret = PTR_ERR(handle);
2140                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2141                                "%ld pages, ino %lu; err %d", __func__,
2142                                 wbc->nr_to_write, inode->i_ino, ret);
2143                         goto out_writepages;
2144                 }
2145
2146                 /*
2147                  * Now call write_cache_pages_da() to find the next
2148                  * contiguous region of logical blocks that need
2149                  * blocks to be allocated by ext4 and submit them.
2150                  */
2151                 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2152                 /*
2153                  * If we have a contiguous extent of pages and we
2154                  * haven't done the I/O yet, map the blocks and submit
2155                  * them for I/O.
2156                  */
2157                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2158                         mpage_da_map_and_submit(&mpd);
2159                         ret = MPAGE_DA_EXTENT_TAIL;
2160                 }
2161                 trace_ext4_da_write_pages(inode, &mpd);
2162                 wbc->nr_to_write -= mpd.pages_written;
2163
2164                 ext4_journal_stop(handle);
2165
2166                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2167                         /* commit the transaction which would
2168                          * free blocks released in the transaction
2169                          * and try again
2170                          */
2171                         jbd2_journal_force_commit_nested(sbi->s_journal);
2172                         ret = 0;
2173                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2174                         /*
2175                          * got one extent now try with
2176                          * rest of the pages
2177                          */
2178                         pages_written += mpd.pages_written;
2179                         ret = 0;
2180                         io_done = 1;
2181                 } else if (wbc->nr_to_write)
2182                         /*
2183                          * There is no more writeout needed
2184                          * or we requested for a noblocking writeout
2185                          * and we found the device congested
2186                          */
2187                         break;
2188         }
2189         if (!io_done && !cycled) {
2190                 cycled = 1;
2191                 index = 0;
2192                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2193                 wbc->range_end  = mapping->writeback_index - 1;
2194                 goto retry;
2195         }
2196
2197         /* Update index */
2198         wbc->range_cyclic = range_cyclic;
2199         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2200                 /*
2201                  * set the writeback_index so that range_cyclic
2202                  * mode will write it back later
2203                  */
2204                 mapping->writeback_index = done_index;
2205
2206 out_writepages:
2207         wbc->nr_to_write -= nr_to_writebump;
2208         wbc->range_start = range_start;
2209         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2210         return ret;
2211 }
2212
2213 #define FALL_BACK_TO_NONDELALLOC 1
2214 static int ext4_nonda_switch(struct super_block *sb)
2215 {
2216         s64 free_blocks, dirty_blocks;
2217         struct ext4_sb_info *sbi = EXT4_SB(sb);
2218
2219         /*
2220          * switch to non delalloc mode if we are running low
2221          * on free block. The free block accounting via percpu
2222          * counters can get slightly wrong with percpu_counter_batch getting
2223          * accumulated on each CPU without updating global counters
2224          * Delalloc need an accurate free block accounting. So switch
2225          * to non delalloc when we are near to error range.
2226          */
2227         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2228         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2229         if (2 * free_blocks < 3 * dirty_blocks ||
2230                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2231                 /*
2232                  * free block count is less than 150% of dirty blocks
2233                  * or free blocks is less than watermark
2234                  */
2235                 return 1;
2236         }
2237         /*
2238          * Even if we don't switch but are nearing capacity,
2239          * start pushing delalloc when 1/2 of free blocks are dirty.
2240          */
2241         if (free_blocks < 2 * dirty_blocks)
2242                 writeback_inodes_sb_if_idle(sb);
2243
2244         return 0;
2245 }
2246
2247 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2248                                loff_t pos, unsigned len, unsigned flags,
2249                                struct page **pagep, void **fsdata)
2250 {
2251         int ret, retries = 0;
2252         struct page *page;
2253         pgoff_t index;
2254         struct inode *inode = mapping->host;
2255         handle_t *handle;
2256
2257         index = pos >> PAGE_CACHE_SHIFT;
2258
2259         if (ext4_nonda_switch(inode->i_sb)) {
2260                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2261                 return ext4_write_begin(file, mapping, pos,
2262                                         len, flags, pagep, fsdata);
2263         }
2264         *fsdata = (void *)0;
2265         trace_ext4_da_write_begin(inode, pos, len, flags);
2266 retry:
2267         /*
2268          * With delayed allocation, we don't log the i_disksize update
2269          * if there is delayed block allocation. But we still need
2270          * to journalling the i_disksize update if writes to the end
2271          * of file which has an already mapped buffer.
2272          */
2273         handle = ext4_journal_start(inode, 1);
2274         if (IS_ERR(handle)) {
2275                 ret = PTR_ERR(handle);
2276                 goto out;
2277         }
2278         /* We cannot recurse into the filesystem as the transaction is already
2279          * started */
2280         flags |= AOP_FLAG_NOFS;
2281
2282         page = grab_cache_page_write_begin(mapping, index, flags);
2283         if (!page) {
2284                 ext4_journal_stop(handle);
2285                 ret = -ENOMEM;
2286                 goto out;
2287         }
2288         *pagep = page;
2289
2290         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2291         if (ret < 0) {
2292                 unlock_page(page);
2293                 ext4_journal_stop(handle);
2294                 page_cache_release(page);
2295                 /*
2296                  * block_write_begin may have instantiated a few blocks
2297                  * outside i_size.  Trim these off again. Don't need
2298                  * i_size_read because we hold i_mutex.
2299                  */
2300                 if (pos + len > inode->i_size)
2301                         ext4_truncate_failed_write(inode);
2302         }
2303
2304         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2305                 goto retry;
2306 out:
2307         return ret;
2308 }
2309
2310 /*
2311  * Check if we should update i_disksize
2312  * when write to the end of file but not require block allocation
2313  */
2314 static int ext4_da_should_update_i_disksize(struct page *page,
2315                                             unsigned long offset)
2316 {
2317         struct buffer_head *bh;
2318         struct inode *inode = page->mapping->host;
2319         unsigned int idx;
2320         int i;
2321
2322         bh = page_buffers(page);
2323         idx = offset >> inode->i_blkbits;
2324
2325         for (i = 0; i < idx; i++)
2326                 bh = bh->b_this_page;
2327
2328         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2329                 return 0;
2330         return 1;
2331 }
2332
2333 static int ext4_da_write_end(struct file *file,
2334                              struct address_space *mapping,
2335                              loff_t pos, unsigned len, unsigned copied,
2336                              struct page *page, void *fsdata)
2337 {
2338         struct inode *inode = mapping->host;
2339         int ret = 0, ret2;
2340         handle_t *handle = ext4_journal_current_handle();
2341         loff_t new_i_size;
2342         unsigned long start, end;
2343         int write_mode = (int)(unsigned long)fsdata;
2344
2345         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2346                 if (ext4_should_order_data(inode)) {
2347                         return ext4_ordered_write_end(file, mapping, pos,
2348                                         len, copied, page, fsdata);
2349                 } else if (ext4_should_writeback_data(inode)) {
2350                         return ext4_writeback_write_end(file, mapping, pos,
2351                                         len, copied, page, fsdata);
2352                 } else {
2353                         BUG();
2354                 }
2355         }
2356
2357         trace_ext4_da_write_end(inode, pos, len, copied);
2358         start = pos & (PAGE_CACHE_SIZE - 1);
2359         end = start + copied - 1;
2360
2361         /*
2362          * generic_write_end() will run mark_inode_dirty() if i_size
2363          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2364          * into that.
2365          */
2366
2367         new_i_size = pos + copied;
2368         if (new_i_size > EXT4_I(inode)->i_disksize) {
2369                 if (ext4_da_should_update_i_disksize(page, end)) {
2370                         down_write(&EXT4_I(inode)->i_data_sem);
2371                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2372                                 /*
2373                                  * Updating i_disksize when extending file
2374                                  * without needing block allocation
2375                                  */
2376                                 if (ext4_should_order_data(inode))
2377                                         ret = ext4_jbd2_file_inode(handle,
2378                                                                    inode);
2379
2380                                 EXT4_I(inode)->i_disksize = new_i_size;
2381                         }
2382                         up_write(&EXT4_I(inode)->i_data_sem);
2383                         /* We need to mark inode dirty even if
2384                          * new_i_size is less that inode->i_size
2385                          * bu greater than i_disksize.(hint delalloc)
2386                          */
2387                         ext4_mark_inode_dirty(handle, inode);
2388                 }
2389         }
2390         ret2 = generic_write_end(file, mapping, pos, len, copied,
2391                                                         page, fsdata);
2392         copied = ret2;
2393         if (ret2 < 0)
2394                 ret = ret2;
2395         ret2 = ext4_journal_stop(handle);
2396         if (!ret)
2397                 ret = ret2;
2398
2399         return ret ? ret : copied;
2400 }
2401
2402 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2403 {
2404         /*
2405          * Drop reserved blocks
2406          */
2407         BUG_ON(!PageLocked(page));
2408         if (!page_has_buffers(page))
2409                 goto out;
2410
2411         ext4_da_page_release_reservation(page, offset);
2412
2413 out:
2414         ext4_invalidatepage(page, offset);
2415
2416         return;
2417 }
2418
2419 /*
2420  * Force all delayed allocation blocks to be allocated for a given inode.
2421  */
2422 int ext4_alloc_da_blocks(struct inode *inode)
2423 {
2424         trace_ext4_alloc_da_blocks(inode);
2425
2426         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2427             !EXT4_I(inode)->i_reserved_meta_blocks)
2428                 return 0;
2429
2430         /*
2431          * We do something simple for now.  The filemap_flush() will
2432          * also start triggering a write of the data blocks, which is
2433          * not strictly speaking necessary (and for users of
2434          * laptop_mode, not even desirable).  However, to do otherwise
2435          * would require replicating code paths in:
2436          *
2437          * ext4_da_writepages() ->
2438          *    write_cache_pages() ---> (via passed in callback function)
2439          *        __mpage_da_writepage() -->
2440          *           mpage_add_bh_to_extent()
2441          *           mpage_da_map_blocks()
2442          *
2443          * The problem is that write_cache_pages(), located in
2444          * mm/page-writeback.c, marks pages clean in preparation for
2445          * doing I/O, which is not desirable if we're not planning on
2446          * doing I/O at all.
2447          *
2448          * We could call write_cache_pages(), and then redirty all of
2449          * the pages by calling redirty_page_for_writepage() but that
2450          * would be ugly in the extreme.  So instead we would need to
2451          * replicate parts of the code in the above functions,
2452          * simplifying them because we wouldn't actually intend to
2453          * write out the pages, but rather only collect contiguous
2454          * logical block extents, call the multi-block allocator, and
2455          * then update the buffer heads with the block allocations.
2456          *
2457          * For now, though, we'll cheat by calling filemap_flush(),
2458          * which will map the blocks, and start the I/O, but not
2459          * actually wait for the I/O to complete.
2460          */
2461         return filemap_flush(inode->i_mapping);
2462 }
2463
2464 /*
2465  * bmap() is special.  It gets used by applications such as lilo and by
2466  * the swapper to find the on-disk block of a specific piece of data.
2467  *
2468  * Naturally, this is dangerous if the block concerned is still in the
2469  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2470  * filesystem and enables swap, then they may get a nasty shock when the
2471  * data getting swapped to that swapfile suddenly gets overwritten by
2472  * the original zero's written out previously to the journal and
2473  * awaiting writeback in the kernel's buffer cache.
2474  *
2475  * So, if we see any bmap calls here on a modified, data-journaled file,
2476  * take extra steps to flush any blocks which might be in the cache.
2477  */
2478 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2479 {
2480         struct inode *inode = mapping->host;
2481         journal_t *journal;
2482         int err;
2483
2484         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2485                         test_opt(inode->i_sb, DELALLOC)) {
2486                 /*
2487                  * With delalloc we want to sync the file
2488                  * so that we can make sure we allocate
2489                  * blocks for file
2490                  */
2491                 filemap_write_and_wait(mapping);
2492         }
2493
2494         if (EXT4_JOURNAL(inode) &&
2495             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2496                 /*
2497                  * This is a REALLY heavyweight approach, but the use of
2498                  * bmap on dirty files is expected to be extremely rare:
2499                  * only if we run lilo or swapon on a freshly made file
2500                  * do we expect this to happen.
2501                  *
2502                  * (bmap requires CAP_SYS_RAWIO so this does not
2503                  * represent an unprivileged user DOS attack --- we'd be
2504                  * in trouble if mortal users could trigger this path at
2505                  * will.)
2506                  *
2507                  * NB. EXT4_STATE_JDATA is not set on files other than
2508                  * regular files.  If somebody wants to bmap a directory
2509                  * or symlink and gets confused because the buffer
2510                  * hasn't yet been flushed to disk, they deserve
2511                  * everything they get.
2512                  */
2513
2514                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2515                 journal = EXT4_JOURNAL(inode);
2516                 jbd2_journal_lock_updates(journal);
2517                 err = jbd2_journal_flush(journal);
2518                 jbd2_journal_unlock_updates(journal);
2519
2520                 if (err)
2521                         return 0;
2522         }
2523
2524         return generic_block_bmap(mapping, block, ext4_get_block);
2525 }
2526
2527 static int ext4_readpage(struct file *file, struct page *page)
2528 {
2529         trace_ext4_readpage(page);
2530         return mpage_readpage(page, ext4_get_block);
2531 }
2532
2533 static int
2534 ext4_readpages(struct file *file, struct address_space *mapping,
2535                 struct list_head *pages, unsigned nr_pages)
2536 {
2537         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2538 }
2539
2540 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2541 {
2542         struct buffer_head *head, *bh;
2543         unsigned int curr_off = 0;
2544
2545         if (!page_has_buffers(page))
2546                 return;
2547         head = bh = page_buffers(page);
2548         do {
2549                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2550                                         && bh->b_private) {
2551                         ext4_free_io_end(bh->b_private);
2552                         bh->b_private = NULL;
2553                         bh->b_end_io = NULL;
2554                 }
2555                 curr_off = curr_off + bh->b_size;
2556                 bh = bh->b_this_page;
2557         } while (bh != head);
2558 }
2559
2560 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2561 {
2562         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2563
2564         trace_ext4_invalidatepage(page, offset);
2565
2566         /*
2567          * free any io_end structure allocated for buffers to be discarded
2568          */
2569         if (ext4_should_dioread_nolock(page->mapping->host))
2570                 ext4_invalidatepage_free_endio(page, offset);
2571         /*
2572          * If it's a full truncate we just forget about the pending dirtying
2573          */
2574         if (offset == 0)
2575                 ClearPageChecked(page);
2576
2577         if (journal)
2578                 jbd2_journal_invalidatepage(journal, page, offset);
2579         else
2580                 block_invalidatepage(page, offset);
2581 }
2582
2583 static int ext4_releasepage(struct page *page, gfp_t wait)
2584 {
2585         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2586
2587         trace_ext4_releasepage(page);
2588
2589         WARN_ON(PageChecked(page));
2590         if (!page_has_buffers(page))
2591                 return 0;
2592         if (journal)
2593                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2594         else
2595                 return try_to_free_buffers(page);
2596 }
2597
2598 /*
2599  * ext4_get_block used when preparing for a DIO write or buffer write.
2600  * We allocate an uinitialized extent if blocks haven't been allocated.
2601  * The extent will be converted to initialized after the IO is complete.
2602  */
2603 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2604                    struct buffer_head *bh_result, int create)
2605 {
2606         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2607                    inode->i_ino, create);
2608         return _ext4_get_block(inode, iblock, bh_result,
2609                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2610 }
2611
2612 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2613                             ssize_t size, void *private, int ret,
2614                             bool is_async)
2615 {
2616         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2617         ext4_io_end_t *io_end = iocb->private;
2618         struct workqueue_struct *wq;
2619         unsigned long flags;
2620         struct ext4_inode_info *ei;
2621
2622         /* if not async direct IO or dio with 0 bytes write, just return */
2623         if (!io_end || !size)
2624                 goto out;
2625
2626         ext_debug("ext4_end_io_dio(): io_end 0x%p"
2627                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2628                   iocb->private, io_end->inode->i_ino, iocb, offset,
2629                   size);
2630
2631         /* if not aio dio with unwritten extents, just free io and return */
2632         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2633                 ext4_free_io_end(io_end);
2634                 iocb->private = NULL;
2635 out:
2636                 if (is_async)
2637                         aio_complete(iocb, ret, 0);
2638                 inode_dio_done(inode);
2639                 return;
2640         }
2641
2642         io_end->offset = offset;
2643         io_end->size = size;
2644         if (is_async) {
2645                 io_end->iocb = iocb;
2646                 io_end->result = ret;
2647         }
2648         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2649
2650         /* Add the io_end to per-inode completed aio dio list*/
2651         ei = EXT4_I(io_end->inode);
2652         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2653         list_add_tail(&io_end->list, &ei->i_completed_io_list);
2654         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2655
2656         /* queue the work to convert unwritten extents to written */
2657         queue_work(wq, &io_end->work);
2658         iocb->private = NULL;
2659
2660         /* XXX: probably should move into the real I/O completion handler */
2661         inode_dio_done(inode);
2662 }
2663
2664 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2665 {
2666         ext4_io_end_t *io_end = bh->b_private;
2667         struct workqueue_struct *wq;
2668         struct inode *inode;
2669         unsigned long flags;
2670
2671         if (!test_clear_buffer_uninit(bh) || !io_end)
2672                 goto out;
2673
2674         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2675                 printk("sb umounted, discard end_io request for inode %lu\n",
2676                         io_end->inode->i_ino);
2677                 ext4_free_io_end(io_end);
2678                 goto out;
2679         }
2680
2681         io_end->flag = EXT4_IO_END_UNWRITTEN;
2682         inode = io_end->inode;
2683
2684         /* Add the io_end to per-inode completed io list*/
2685         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2686         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2687         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2688
2689         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2690         /* queue the work to convert unwritten extents to written */
2691         queue_work(wq, &io_end->work);
2692 out:
2693         bh->b_private = NULL;
2694         bh->b_end_io = NULL;
2695         clear_buffer_uninit(bh);
2696         end_buffer_async_write(bh, uptodate);
2697 }
2698
2699 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2700 {
2701         ext4_io_end_t *io_end;
2702         struct page *page = bh->b_page;
2703         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2704         size_t size = bh->b_size;
2705
2706 retry:
2707         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2708         if (!io_end) {
2709                 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2710                 schedule();
2711                 goto retry;
2712         }
2713         io_end->offset = offset;
2714         io_end->size = size;
2715         /*
2716          * We need to hold a reference to the page to make sure it
2717          * doesn't get evicted before ext4_end_io_work() has a chance
2718          * to convert the extent from written to unwritten.
2719          */
2720         io_end->page = page;
2721         get_page(io_end->page);
2722
2723         bh->b_private = io_end;
2724         bh->b_end_io = ext4_end_io_buffer_write;
2725         return 0;
2726 }
2727
2728 /*
2729  * For ext4 extent files, ext4 will do direct-io write to holes,
2730  * preallocated extents, and those write extend the file, no need to
2731  * fall back to buffered IO.
2732  *
2733  * For holes, we fallocate those blocks, mark them as uninitialized
2734  * If those blocks were preallocated, we mark sure they are splited, but
2735  * still keep the range to write as uninitialized.
2736  *
2737  * The unwrritten extents will be converted to written when DIO is completed.
2738  * For async direct IO, since the IO may still pending when return, we
2739  * set up an end_io call back function, which will do the conversion
2740  * when async direct IO completed.
2741  *
2742  * If the O_DIRECT write will extend the file then add this inode to the
2743  * orphan list.  So recovery will truncate it back to the original size
2744  * if the machine crashes during the write.
2745  *
2746  */
2747 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2748                               const struct iovec *iov, loff_t offset,
2749                               unsigned long nr_segs)
2750 {
2751         struct file *file = iocb->ki_filp;
2752         struct inode *inode = file->f_mapping->host;
2753         ssize_t ret;
2754         size_t count = iov_length(iov, nr_segs);
2755
2756         loff_t final_size = offset + count;
2757         if (rw == WRITE && final_size <= inode->i_size) {
2758                 /*
2759                  * We could direct write to holes and fallocate.
2760                  *
2761                  * Allocated blocks to fill the hole are marked as uninitialized
2762                  * to prevent parallel buffered read to expose the stale data
2763                  * before DIO complete the data IO.
2764                  *
2765                  * As to previously fallocated extents, ext4 get_block
2766                  * will just simply mark the buffer mapped but still
2767                  * keep the extents uninitialized.
2768                  *
2769                  * for non AIO case, we will convert those unwritten extents
2770                  * to written after return back from blockdev_direct_IO.
2771                  *
2772                  * for async DIO, the conversion needs to be defered when
2773                  * the IO is completed. The ext4 end_io callback function
2774                  * will be called to take care of the conversion work.
2775                  * Here for async case, we allocate an io_end structure to
2776                  * hook to the iocb.
2777                  */
2778                 iocb->private = NULL;
2779                 EXT4_I(inode)->cur_aio_dio = NULL;
2780                 if (!is_sync_kiocb(iocb)) {
2781                         iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2782                         if (!iocb->private)
2783                                 return -ENOMEM;
2784                         /*
2785                          * we save the io structure for current async
2786                          * direct IO, so that later ext4_map_blocks()
2787                          * could flag the io structure whether there
2788                          * is a unwritten extents needs to be converted
2789                          * when IO is completed.
2790                          */
2791                         EXT4_I(inode)->cur_aio_dio = iocb->private;
2792                 }
2793
2794                 ret = __blockdev_direct_IO(rw, iocb, inode,
2795                                          inode->i_sb->s_bdev, iov,
2796                                          offset, nr_segs,
2797                                          ext4_get_block_write,
2798                                          ext4_end_io_dio,
2799                                          NULL,
2800                                          DIO_LOCKING | DIO_SKIP_HOLES);
2801                 if (iocb->private)
2802                         EXT4_I(inode)->cur_aio_dio = NULL;
2803                 /*
2804                  * The io_end structure takes a reference to the inode,
2805                  * that structure needs to be destroyed and the
2806                  * reference to the inode need to be dropped, when IO is
2807                  * complete, even with 0 byte write, or failed.
2808                  *
2809                  * In the successful AIO DIO case, the io_end structure will be
2810                  * desctroyed and the reference to the inode will be dropped
2811                  * after the end_io call back function is called.
2812                  *
2813                  * In the case there is 0 byte write, or error case, since
2814                  * VFS direct IO won't invoke the end_io call back function,
2815                  * we need to free the end_io structure here.
2816                  */
2817                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2818                         ext4_free_io_end(iocb->private);
2819                         iocb->private = NULL;
2820                 } else if (ret > 0 && ext4_test_inode_state(inode,
2821                                                 EXT4_STATE_DIO_UNWRITTEN)) {
2822                         int err;
2823                         /*
2824                          * for non AIO case, since the IO is already
2825                          * completed, we could do the conversion right here
2826                          */
2827                         err = ext4_convert_unwritten_extents(inode,
2828                                                              offset, ret);
2829                         if (err < 0)
2830                                 ret = err;
2831                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2832                 }
2833                 return ret;
2834         }
2835
2836         /* for write the the end of file case, we fall back to old way */
2837         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2838 }
2839
2840 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2841                               const struct iovec *iov, loff_t offset,
2842                               unsigned long nr_segs)
2843 {
2844         struct file *file = iocb->ki_filp;
2845         struct inode *inode = file->f_mapping->host;
2846         ssize_t ret;
2847
2848         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2849         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2850                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
2851         else
2852                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2853         trace_ext4_direct_IO_exit(inode, offset,
2854                                 iov_length(iov, nr_segs), rw, ret);
2855         return ret;
2856 }
2857
2858 /*
2859  * Pages can be marked dirty completely asynchronously from ext4's journalling
2860  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
2861  * much here because ->set_page_dirty is called under VFS locks.  The page is
2862  * not necessarily locked.
2863  *
2864  * We cannot just dirty the page and leave attached buffers clean, because the
2865  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
2866  * or jbddirty because all the journalling code will explode.
2867  *
2868  * So what we do is to mark the page "pending dirty" and next time writepage
2869  * is called, propagate that into the buffers appropriately.
2870  */
2871 static int ext4_journalled_set_page_dirty(struct page *page)
2872 {
2873         SetPageChecked(page);
2874         return __set_page_dirty_nobuffers(page);
2875 }
2876
2877 static const struct address_space_operations ext4_ordered_aops = {
2878         .readpage               = ext4_readpage,
2879         .readpages              = ext4_readpages,
2880         .writepage              = ext4_writepage,
2881         .write_begin            = ext4_write_begin,
2882         .write_end              = ext4_ordered_write_end,
2883         .bmap                   = ext4_bmap,
2884         .invalidatepage         = ext4_invalidatepage,
2885         .releasepage            = ext4_releasepage,
2886         .direct_IO              = ext4_direct_IO,
2887         .migratepage            = buffer_migrate_page,
2888         .is_partially_uptodate  = block_is_partially_uptodate,
2889         .error_remove_page      = generic_error_remove_page,
2890 };
2891
2892 static const struct address_space_operations ext4_writeback_aops = {
2893         .readpage               = ext4_readpage,
2894         .readpages              = ext4_readpages,
2895         .writepage              = ext4_writepage,
2896         .write_begin            = ext4_write_begin,
2897         .write_end              = ext4_writeback_write_end,
2898         .bmap                   = ext4_bmap,
2899         .invalidatepage         = ext4_invalidatepage,
2900         .releasepage            = ext4_releasepage,
2901         .direct_IO              = ext4_direct_IO,
2902         .migratepage            = buffer_migrate_page,
2903         .is_partially_uptodate  = block_is_partially_uptodate,
2904         .error_remove_page      = generic_error_remove_page,
2905 };
2906
2907 static const struct address_space_operations ext4_journalled_aops = {
2908         .readpage               = ext4_readpage,
2909         .readpages              = ext4_readpages,
2910         .writepage              = ext4_writepage,
2911         .write_begin            = ext4_write_begin,
2912         .write_end              = ext4_journalled_write_end,
2913         .set_page_dirty         = ext4_journalled_set_page_dirty,
2914         .bmap                   = ext4_bmap,
2915         .invalidatepage         = ext4_invalidatepage,
2916         .releasepage            = ext4_releasepage,
2917         .is_partially_uptodate  = block_is_partially_uptodate,
2918         .error_remove_page      = generic_error_remove_page,
2919 };
2920
2921 static const struct address_space_operations ext4_da_aops = {
2922         .readpage               = ext4_readpage,
2923         .readpages              = ext4_readpages,
2924         .writepage              = ext4_writepage,
2925         .writepages             = ext4_da_writepages,
2926         .write_begin            = ext4_da_write_begin,
2927         .write_end              = ext4_da_write_end,
2928         .bmap                   = ext4_bmap,
2929         .invalidatepage         = ext4_da_invalidatepage,
2930         .releasepage            = ext4_releasepage,
2931         .direct_IO              = ext4_direct_IO,
2932         .migratepage            = buffer_migrate_page,
2933         .is_partially_uptodate  = block_is_partially_uptodate,
2934         .error_remove_page      = generic_error_remove_page,
2935 };
2936
2937 void ext4_set_aops(struct inode *inode)
2938 {
2939         if (ext4_should_order_data(inode) &&
2940                 test_opt(inode->i_sb, DELALLOC))
2941                 inode->i_mapping->a_ops = &ext4_da_aops;
2942         else if (ext4_should_order_data(inode))
2943                 inode->i_mapping->a_ops = &ext4_ordered_aops;
2944         else if (ext4_should_writeback_data(inode) &&
2945                  test_opt(inode->i_sb, DELALLOC))
2946                 inode->i_mapping->a_ops = &ext4_da_aops;
2947         else if (ext4_should_writeback_data(inode))
2948                 inode->i_mapping->a_ops = &ext4_writeback_aops;
2949         else
2950                 inode->i_mapping->a_ops = &ext4_journalled_aops;
2951 }
2952
2953 /*
2954  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2955  * up to the end of the block which corresponds to `from'.
2956  * This required during truncate. We need to physically zero the tail end
2957  * of that block so it doesn't yield old data if the file is later grown.
2958  */
2959 int ext4_block_truncate_page(handle_t *handle,
2960                 struct address_space *mapping, loff_t from)
2961 {
2962         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2963         unsigned length;
2964         unsigned blocksize;
2965         struct inode *inode = mapping->host;
2966
2967         blocksize = inode->i_sb->s_blocksize;
2968         length = blocksize - (offset & (blocksize - 1));
2969
2970         return ext4_block_zero_page_range(handle, mapping, from, length);
2971 }
2972
2973 /*
2974  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
2975  * starting from file offset 'from'.  The range to be zero'd must
2976  * be contained with in one block.  If the specified range exceeds
2977  * the end of the block it will be shortened to end of the block
2978  * that cooresponds to 'from'
2979  */
2980 int ext4_block_zero_page_range(handle_t *handle,
2981                 struct address_space *mapping, loff_t from, loff_t length)
2982 {
2983         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2984         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2985         unsigned blocksize, max, pos;
2986         ext4_lblk_t iblock;
2987         struct inode *inode = mapping->host;
2988         struct buffer_head *bh;
2989         struct page *page;
2990         int err = 0;
2991
2992         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
2993                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
2994         if (!page)
2995                 return -EINVAL;
2996
2997         blocksize = inode->i_sb->s_blocksize;
2998         max = blocksize - (offset & (blocksize - 1));
2999
3000         /*
3001          * correct length if it does not fall between
3002          * 'from' and the end of the block
3003          */
3004         if (length > max || length < 0)
3005                 length = max;
3006
3007         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3008
3009         if (!page_has_buffers(page))
3010                 create_empty_buffers(page, blocksize, 0);
3011
3012         /* Find the buffer that contains "offset" */
3013         bh = page_buffers(page);
3014         pos = blocksize;
3015         while (offset >= pos) {
3016                 bh = bh->b_this_page;
3017                 iblock++;
3018                 pos += blocksize;
3019         }
3020
3021         err = 0;
3022         if (buffer_freed(bh)) {
3023                 BUFFER_TRACE(bh, "freed: skip");
3024                 goto unlock;
3025         }
3026
3027         if (!buffer_mapped(bh)) {
3028                 BUFFER_TRACE(bh, "unmapped");
3029                 ext4_get_block(inode, iblock, bh, 0);
3030                 /* unmapped? It's a hole - nothing to do */
3031                 if (!buffer_mapped(bh)) {
3032                         BUFFER_TRACE(bh, "still unmapped");
3033                         goto unlock;
3034                 }
3035         }
3036
3037         /* Ok, it's mapped. Make sure it's up-to-date */
3038         if (PageUptodate(page))
3039                 set_buffer_uptodate(bh);
3040
3041         if (!buffer_uptodate(bh)) {
3042                 err = -EIO;
3043                 ll_rw_block(READ, 1, &bh);
3044                 wait_on_buffer(bh);
3045                 /* Uhhuh. Read error. Complain and punt. */
3046                 if (!buffer_uptodate(bh))
3047                         goto unlock;
3048         }
3049
3050         if (ext4_should_journal_data(inode)) {
3051                 BUFFER_TRACE(bh, "get write access");
3052                 err = ext4_journal_get_write_access(handle, bh);
3053                 if (err)
3054                         goto unlock;
3055         }
3056
3057         zero_user(page, offset, length);
3058
3059         BUFFER_TRACE(bh, "zeroed end of block");
3060
3061         err = 0;
3062         if (ext4_should_journal_data(inode)) {
3063                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3064         } else {
3065                 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
3066                         err = ext4_jbd2_file_inode(handle, inode);
3067                 mark_buffer_dirty(bh);
3068         }
3069
3070 unlock:
3071         unlock_page(page);
3072         page_cache_release(page);
3073         return err;
3074 }
3075
3076 int ext4_can_truncate(struct inode *inode)
3077 {
3078         if (S_ISREG(inode->i_mode))
3079                 return 1;
3080         if (S_ISDIR(inode->i_mode))
3081                 return 1;
3082         if (S_ISLNK(inode->i_mode))
3083                 return !ext4_inode_is_fast_symlink(inode);
3084         return 0;
3085 }
3086
3087 /*
3088  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3089  * associated with the given offset and length
3090  *
3091  * @inode:  File inode
3092  * @offset: The offset where the hole will begin
3093  * @len:    The length of the hole
3094  *
3095  * Returns: 0 on sucess or negative on failure
3096  */
3097
3098 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3099 {
3100         struct inode *inode = file->f_path.dentry->d_inode;
3101         if (!S_ISREG(inode->i_mode))
3102                 return -ENOTSUPP;
3103
3104         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3105                 /* TODO: Add support for non extent hole punching */
3106                 return -ENOTSUPP;
3107         }
3108
3109         return ext4_ext_punch_hole(file, offset, length);
3110 }
3111
3112 /*
3113  * ext4_truncate()
3114  *
3115  * We block out ext4_get_block() block instantiations across the entire
3116  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3117  * simultaneously on behalf of the same inode.
3118  *
3119  * As we work through the truncate and commmit bits of it to the journal there
3120  * is one core, guiding principle: the file's tree must always be consistent on
3121  * disk.  We must be able to restart the truncate after a crash.
3122  *
3123  * The file's tree may be transiently inconsistent in memory (although it
3124  * probably isn't), but whenever we close off and commit a journal transaction,
3125  * the contents of (the filesystem + the journal) must be consistent and
3126  * restartable.  It's pretty simple, really: bottom up, right to left (although
3127  * left-to-right works OK too).
3128  *
3129  * Note that at recovery time, journal replay occurs *before* the restart of
3130  * truncate against the orphan inode list.
3131  *
3132  * The committed inode has the new, desired i_size (which is the same as
3133  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3134  * that this inode's truncate did not complete and it will again call
3135  * ext4_truncate() to have another go.  So there will be instantiated blocks
3136  * to the right of the truncation point in a crashed ext4 filesystem.  But
3137  * that's fine - as long as they are linked from the inode, the post-crash
3138  * ext4_truncate() run will find them and release them.
3139  */
3140 void ext4_truncate(struct inode *inode)
3141 {
3142         trace_ext4_truncate_enter(inode);
3143
3144         if (!ext4_can_truncate(inode))
3145                 return;
3146
3147         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3148
3149         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3150                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3151
3152         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3153                 ext4_ext_truncate(inode);
3154         else
3155                 ext4_ind_truncate(inode);
3156
3157         trace_ext4_truncate_exit(inode);
3158 }
3159
3160 /*
3161  * ext4_get_inode_loc returns with an extra refcount against the inode's
3162  * underlying buffer_head on success. If 'in_mem' is true, we have all
3163  * data in memory that is needed to recreate the on-disk version of this
3164  * inode.
3165  */
3166 static int __ext4_get_inode_loc(struct inode *inode,
3167                                 struct ext4_iloc *iloc, int in_mem)
3168 {
3169         struct ext4_group_desc  *gdp;
3170         struct buffer_head      *bh;
3171         struct super_block      *sb = inode->i_sb;
3172         ext4_fsblk_t            block;
3173         int                     inodes_per_block, inode_offset;
3174
3175         iloc->bh = NULL;
3176         if (!ext4_valid_inum(sb, inode->i_ino))
3177                 return -EIO;
3178
3179         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3180         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3181         if (!gdp)
3182                 return -EIO;
3183
3184         /*
3185          * Figure out the offset within the block group inode table
3186          */
3187         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3188         inode_offset = ((inode->i_ino - 1) %
3189                         EXT4_INODES_PER_GROUP(sb));
3190         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3191         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3192
3193         bh = sb_getblk(sb, block);
3194         if (!bh) {
3195                 EXT4_ERROR_INODE_BLOCK(inode, block,
3196                                        "unable to read itable block");
3197                 return -EIO;
3198         }
3199         if (!buffer_uptodate(bh)) {
3200                 lock_buffer(bh);
3201
3202                 /*
3203                  * If the buffer has the write error flag, we have failed
3204                  * to write out another inode in the same block.  In this
3205                  * case, we don't have to read the block because we may
3206                  * read the old inode data successfully.
3207                  */
3208                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3209                         set_buffer_uptodate(bh);
3210
3211                 if (buffer_uptodate(bh)) {
3212                         /* someone brought it uptodate while we waited */
3213                         unlock_buffer(bh);
3214                         goto has_buffer;
3215                 }
3216
3217                 /*
3218                  * If we have all information of the inode in memory and this
3219                  * is the only valid inode in the block, we need not read the
3220                  * block.
3221                  */
3222                 if (in_mem) {
3223                         struct buffer_head *bitmap_bh;
3224                         int i, start;
3225
3226                         start = inode_offset & ~(inodes_per_block - 1);
3227
3228                         /* Is the inode bitmap in cache? */
3229                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3230                         if (!bitmap_bh)
3231                                 goto make_io;
3232
3233                         /*
3234                          * If the inode bitmap isn't in cache then the
3235                          * optimisation may end up performing two reads instead
3236                          * of one, so skip it.
3237                          */
3238                         if (!buffer_uptodate(bitmap_bh)) {
3239                                 brelse(bitmap_bh);
3240                                 goto make_io;
3241                         }
3242                         for (i = start; i < start + inodes_per_block; i++) {
3243                                 if (i == inode_offset)
3244                                         continue;
3245                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3246                                         break;
3247                         }
3248                         brelse(bitmap_bh);
3249                         if (i == start + inodes_per_block) {
3250                                 /* all other inodes are free, so skip I/O */
3251                                 memset(bh->b_data, 0, bh->b_size);
3252                                 set_buffer_uptodate(bh);
3253                                 unlock_buffer(bh);
3254                                 goto has_buffer;
3255                         }
3256                 }
3257
3258 make_io:
3259                 /*
3260                  * If we need to do any I/O, try to pre-readahead extra
3261                  * blocks from the inode table.
3262                  */
3263                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3264                         ext4_fsblk_t b, end, table;
3265                         unsigned num;
3266
3267                         table = ext4_inode_table(sb, gdp);
3268                         /* s_inode_readahead_blks is always a power of 2 */
3269                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3270                         if (table > b)
3271                                 b = table;
3272                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3273                         num = EXT4_INODES_PER_GROUP(sb);
3274                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3275                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3276                                 num -= ext4_itable_unused_count(sb, gdp);
3277                         table += num / inodes_per_block;
3278                         if (end > table)
3279                                 end = table;
3280                         while (b <= end)
3281                                 sb_breadahead(sb, b++);
3282                 }
3283
3284                 /*
3285                  * There are other valid inodes in the buffer, this inode
3286                  * has in-inode xattrs, or we don't have this inode in memory.
3287                  * Read the block from disk.
3288                  */
3289                 trace_ext4_load_inode(inode);
3290                 get_bh(bh);
3291                 bh->b_end_io = end_buffer_read_sync;
3292                 submit_bh(READ_META, bh);
3293                 wait_on_buffer(bh);
3294                 if (!buffer_uptodate(bh)) {
3295                         EXT4_ERROR_INODE_BLOCK(inode, block,
3296                                                "unable to read itable block");
3297                         brelse(bh);
3298                         return -EIO;
3299                 }
3300         }
3301 has_buffer:
3302         iloc->bh = bh;
3303         return 0;
3304 }
3305
3306 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3307 {
3308         /* We have all inode data except xattrs in memory here. */
3309         return __ext4_get_inode_loc(inode, iloc,
3310                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3311 }
3312
3313 void ext4_set_inode_flags(struct inode *inode)
3314 {
3315         unsigned int flags = EXT4_I(inode)->i_flags;
3316
3317         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3318         if (flags & EXT4_SYNC_FL)
3319                 inode->i_flags |= S_SYNC;
3320         if (flags & EXT4_APPEND_FL)
3321                 inode->i_flags |= S_APPEND;
3322         if (flags & EXT4_IMMUTABLE_FL)
3323                 inode->i_flags |= S_IMMUTABLE;
3324         if (flags & EXT4_NOATIME_FL)
3325                 inode->i_flags |= S_NOATIME;
3326         if (flags & EXT4_DIRSYNC_FL)
3327                 inode->i_flags |= S_DIRSYNC;
3328 }
3329
3330 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3331 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3332 {
3333         unsigned int vfs_fl;
3334         unsigned long old_fl, new_fl;
3335
3336         do {
3337                 vfs_fl = ei->vfs_inode.i_flags;
3338                 old_fl = ei->i_flags;
3339                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3340                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3341                                 EXT4_DIRSYNC_FL);
3342                 if (vfs_fl & S_SYNC)
3343                         new_fl |= EXT4_SYNC_FL;
3344                 if (vfs_fl & S_APPEND)
3345                         new_fl |= EXT4_APPEND_FL;
3346                 if (vfs_fl & S_IMMUTABLE)
3347                         new_fl |= EXT4_IMMUTABLE_FL;
3348                 if (vfs_fl & S_NOATIME)
3349                         new_fl |= EXT4_NOATIME_FL;
3350                 if (vfs_fl & S_DIRSYNC)
3351                         new_fl |= EXT4_DIRSYNC_FL;
3352         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3353 }
3354
3355 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3356                                   struct ext4_inode_info *ei)
3357 {
3358         blkcnt_t i_blocks ;
3359         struct inode *inode = &(ei->vfs_inode);
3360         struct super_block *sb = inode->i_sb;
3361
3362         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3363                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3364                 /* we are using combined 48 bit field */
3365                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3366                                         le32_to_cpu(raw_inode->i_blocks_lo);
3367                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3368                         /* i_blocks represent file system block size */
3369                         return i_blocks  << (inode->i_blkbits - 9);
3370                 } else {
3371                         return i_blocks;
3372                 }
3373         } else {
3374                 return le32_to_cpu(raw_inode->i_blocks_lo);
3375         }
3376 }
3377
3378 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3379 {
3380         struct ext4_iloc iloc;
3381         struct ext4_inode *raw_inode;
3382         struct ext4_inode_info *ei;
3383         struct inode *inode;
3384         journal_t *journal = EXT4_SB(sb)->s_journal;
3385         long ret;
3386         int block;
3387
3388         inode = iget_locked(sb, ino);
3389         if (!inode)
3390                 return ERR_PTR(-ENOMEM);
3391         if (!(inode->i_state & I_NEW))
3392                 return inode;
3393
3394         ei = EXT4_I(inode);
3395         iloc.bh = NULL;
3396
3397         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3398         if (ret < 0)
3399                 goto bad_inode;
3400         raw_inode = ext4_raw_inode(&iloc);
3401         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3402         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3403         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3404         if (!(test_opt(inode->i_sb, NO_UID32))) {
3405                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3406                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3407         }
3408         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3409
3410         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3411         ei->i_dir_start_lookup = 0;
3412         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3413         /* We now have enough fields to check if the inode was active or not.
3414          * This is needed because nfsd might try to access dead inodes
3415          * the test is that same one that e2fsck uses
3416          * NeilBrown 1999oct15
3417          */
3418         if (inode->i_nlink == 0) {
3419                 if (inode->i_mode == 0 ||
3420                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3421                         /* this inode is deleted */
3422                         ret = -ESTALE;
3423                         goto bad_inode;
3424                 }
3425                 /* The only unlinked inodes we let through here have
3426                  * valid i_mode and are being read by the orphan
3427                  * recovery code: that's fine, we're about to complete
3428                  * the process of deleting those. */
3429         }
3430         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3431         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3432         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3433         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3434                 ei->i_file_acl |=
3435                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3436         inode->i_size = ext4_isize(raw_inode);
3437         ei->i_disksize = inode->i_size;
3438 #ifdef CONFIG_QUOTA
3439         ei->i_reserved_quota = 0;
3440 #endif
3441         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3442         ei->i_block_group = iloc.block_group;
3443         ei->i_last_alloc_group = ~0;
3444         /*
3445          * NOTE! The in-memory inode i_data array is in little-endian order
3446          * even on big-endian machines: we do NOT byteswap the block numbers!
3447          */
3448         for (block = 0; block < EXT4_N_BLOCKS; block++)
3449                 ei->i_data[block] = raw_inode->i_block[block];
3450         INIT_LIST_HEAD(&ei->i_orphan);
3451
3452         /*
3453          * Set transaction id's of transactions that have to be committed
3454          * to finish f[data]sync. We set them to currently running transaction
3455          * as we cannot be sure that the inode or some of its metadata isn't
3456          * part of the transaction - the inode could have been reclaimed and
3457          * now it is reread from disk.
3458          */
3459         if (journal) {
3460                 transaction_t *transaction;
3461                 tid_t tid;
3462
3463                 read_lock(&journal->j_state_lock);
3464                 if (journal->j_running_transaction)
3465                         transaction = journal->j_running_transaction;
3466                 else
3467                         transaction = journal->j_committing_transaction;
3468                 if (transaction)
3469                         tid = transaction->t_tid;
3470                 else
3471                         tid = journal->j_commit_sequence;
3472                 read_unlock(&journal->j_state_lock);
3473                 ei->i_sync_tid = tid;
3474                 ei->i_datasync_tid = tid;
3475         }
3476
3477         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3478                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3479                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3480                     EXT4_INODE_SIZE(inode->i_sb)) {
3481                         ret = -EIO;
3482                         goto bad_inode;
3483                 }
3484                 if (ei->i_extra_isize == 0) {
3485                         /* The extra space is currently unused. Use it. */
3486                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3487                                             EXT4_GOOD_OLD_INODE_SIZE;
3488                 } else {
3489                         __le32 *magic = (void *)raw_inode +
3490                                         EXT4_GOOD_OLD_INODE_SIZE +
3491                                         ei->i_extra_isize;
3492                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3493                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3494                 }
3495         } else
3496                 ei->i_extra_isize = 0;
3497
3498         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3499         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3500         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3501         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3502
3503         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3504         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3505                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3506                         inode->i_version |=
3507                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3508         }
3509
3510         ret = 0;
3511         if (ei->i_file_acl &&
3512             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3513                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3514                                  ei->i_file_acl);
3515                 ret = -EIO;
3516                 goto bad_inode;
3517         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3518                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3519                     (S_ISLNK(inode->i_mode) &&
3520                      !ext4_inode_is_fast_symlink(inode)))
3521                         /* Validate extent which is part of inode */
3522                         ret = ext4_ext_check_inode(inode);
3523         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3524                    (S_ISLNK(inode->i_mode) &&
3525                     !ext4_inode_is_fast_symlink(inode))) {
3526                 /* Validate block references which are part of inode */
3527                 ret = ext4_ind_check_inode(inode);
3528         }
3529         if (ret)
3530                 goto bad_inode;
3531
3532         if (S_ISREG(inode->i_mode)) {
3533                 inode->i_op = &ext4_file_inode_operations;
3534                 inode->i_fop = &ext4_file_operations;
3535                 ext4_set_aops(inode);
3536         } else if (S_ISDIR(inode->i_mode)) {
3537                 inode->i_op = &ext4_dir_inode_operations;
3538                 inode->i_fop = &ext4_dir_operations;
3539         } else if (S_ISLNK(inode->i_mode)) {
3540                 if (ext4_inode_is_fast_symlink(inode)) {
3541                         inode->i_op = &ext4_fast_symlink_inode_operations;
3542                         nd_terminate_link(ei->i_data, inode->i_size,
3543                                 sizeof(ei->i_data) - 1);
3544                 } else {
3545                         inode->i_op = &ext4_symlink_inode_operations;
3546                         ext4_set_aops(inode);
3547                 }
3548         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3549               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3550                 inode->i_op = &ext4_special_inode_operations;
3551                 if (raw_inode->i_block[0])
3552                         init_special_inode(inode, inode->i_mode,
3553                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3554                 else
3555                         init_special_inode(inode, inode->i_mode,
3556                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3557         } else {
3558                 ret = -EIO;
3559                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3560                 goto bad_inode;
3561         }
3562         brelse(iloc.bh);
3563         ext4_set_inode_flags(inode);
3564         unlock_new_inode(inode);
3565         return inode;
3566
3567 bad_inode:
3568         brelse(iloc.bh);
3569         iget_failed(inode);
3570         return ERR_PTR(ret);
3571 }
3572
3573 static int ext4_inode_blocks_set(handle_t *handle,
3574                                 struct ext4_inode *raw_inode,
3575                                 struct ext4_inode_info *ei)
3576 {
3577         struct inode *inode = &(ei->vfs_inode);
3578         u64 i_blocks = inode->i_blocks;
3579         struct super_block *sb = inode->i_sb;
3580
3581         if (i_blocks <= ~0U) {
3582                 /*
3583                  * i_blocks can be represnted in a 32 bit variable
3584                  * as multiple of 512 bytes
3585                  */
3586                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3587                 raw_inode->i_blocks_high = 0;
3588                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3589                 return 0;
3590         }
3591         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3592                 return -EFBIG;
3593
3594         if (i_blocks <= 0xffffffffffffULL) {
3595                 /*
3596                  * i_blocks can be represented in a 48 bit variable
3597                  * as multiple of 512 bytes
3598                  */
3599                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3600                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3601                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3602         } else {
3603                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3604                 /* i_block is stored in file system block size */
3605                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3606                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3607                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3608         }
3609         return 0;
3610 }
3611
3612 /*
3613  * Post the struct inode info into an on-disk inode location in the
3614  * buffer-cache.  This gobbles the caller's reference to the
3615  * buffer_head in the inode location struct.
3616  *
3617  * The caller must have write access to iloc->bh.
3618  */
3619 static int ext4_do_update_inode(handle_t *handle,
3620                                 struct inode *inode,
3621                                 struct ext4_iloc *iloc)
3622 {
3623         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3624         struct ext4_inode_info *ei = EXT4_I(inode);
3625         struct buffer_head *bh = iloc->bh;
3626         int err = 0, rc, block;
3627
3628         /* For fields not not tracking in the in-memory inode,
3629          * initialise them to zero for new inodes. */
3630         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3631                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3632
3633         ext4_get_inode_flags(ei);
3634         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3635         if (!(test_opt(inode->i_sb, NO_UID32))) {
3636                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3637                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3638 /*
3639  * Fix up interoperability with old kernels. Otherwise, old inodes get
3640  * re-used with the upper 16 bits of the uid/gid intact
3641  */
3642                 if (!ei->i_dtime) {
3643                         raw_inode->i_uid_high =
3644                                 cpu_to_le16(high_16_bits(inode->i_uid));
3645                         raw_inode->i_gid_high =
3646                                 cpu_to_le16(high_16_bits(inode->i_gid));
3647                 } else {
3648                         raw_inode->i_uid_high = 0;
3649                         raw_inode->i_gid_high = 0;
3650                 }
3651         } else {
3652                 raw_inode->i_uid_low =
3653                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
3654                 raw_inode->i_gid_low =
3655                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
3656                 raw_inode->i_uid_high = 0;
3657                 raw_inode->i_gid_high = 0;
3658         }
3659         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3660
3661         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3662         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3663         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3664         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3665
3666         if (ext4_inode_blocks_set(handle, raw_inode, ei))
3667                 goto out_brelse;
3668         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3669         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3670         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3671             cpu_to_le32(EXT4_OS_HURD))
3672                 raw_inode->i_file_acl_high =
3673                         cpu_to_le16(ei->i_file_acl >> 32);
3674         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3675         ext4_isize_set(raw_inode, ei->i_disksize);
3676         if (ei->i_disksize > 0x7fffffffULL) {
3677                 struct super_block *sb = inode->i_sb;
3678                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3679                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3680                                 EXT4_SB(sb)->s_es->s_rev_level ==
3681                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3682                         /* If this is the first large file
3683                          * created, add a flag to the superblock.
3684                          */
3685                         err = ext4_journal_get_write_access(handle,
3686                                         EXT4_SB(sb)->s_sbh);
3687                         if (err)
3688                                 goto out_brelse;
3689                         ext4_update_dynamic_rev(sb);
3690                         EXT4_SET_RO_COMPAT_FEATURE(sb,
3691                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3692                         sb->s_dirt = 1;
3693                         ext4_handle_sync(handle);
3694                         err = ext4_handle_dirty_metadata(handle, NULL,
3695                                         EXT4_SB(sb)->s_sbh);
3696                 }
3697         }
3698         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3699         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3700                 if (old_valid_dev(inode->i_rdev)) {
3701                         raw_inode->i_block[0] =
3702                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
3703                         raw_inode->i_block[1] = 0;
3704                 } else {
3705                         raw_inode->i_block[0] = 0;
3706                         raw_inode->i_block[1] =
3707                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
3708                         raw_inode->i_block[2] = 0;
3709                 }
3710         } else
3711                 for (block = 0; block < EXT4_N_BLOCKS; block++)
3712                         raw_inode->i_block[block] = ei->i_data[block];
3713
3714         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3715         if (ei->i_extra_isize) {
3716                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3717                         raw_inode->i_version_hi =
3718                         cpu_to_le32(inode->i_version >> 32);
3719                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3720         }
3721
3722         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3723         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
3724         if (!err)
3725                 err = rc;
3726         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
3727
3728         ext4_update_inode_fsync_trans(handle, inode, 0);
3729 out_brelse:
3730         brelse(bh);
3731         ext4_std_error(inode->i_sb, err);
3732         return err;
3733 }
3734
3735 /*
3736  * ext4_write_inode()
3737  *
3738  * We are called from a few places:
3739  *
3740  * - Within generic_file_write() for O_SYNC files.
3741  *   Here, there will be no transaction running. We wait for any running
3742  *   trasnaction to commit.
3743  *
3744  * - Within sys_sync(), kupdate and such.
3745  *   We wait on commit, if tol to.
3746  *
3747  * - Within prune_icache() (PF_MEMALLOC == true)
3748  *   Here we simply return.  We can't afford to block kswapd on the
3749  *   journal commit.
3750  *
3751  * In all cases it is actually safe for us to return without doing anything,
3752  * because the inode has been copied into a raw inode buffer in
3753  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3754  * knfsd.
3755  *
3756  * Note that we are absolutely dependent upon all inode dirtiers doing the
3757  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3758  * which we are interested.
3759  *
3760  * It would be a bug for them to not do this.  The code:
3761  *
3762  *      mark_inode_dirty(inode)
3763  *      stuff();
3764  *      inode->i_size = expr;
3765  *
3766  * is in error because a kswapd-driven write_inode() could occur while
3767  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3768  * will no longer be on the superblock's dirty inode list.
3769  */
3770 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
3771 {
3772         int err;
3773
3774         if (current->flags & PF_MEMALLOC)
3775                 return 0;
3776
3777         if (EXT4_SB(inode->i_sb)->s_journal) {
3778                 if (ext4_journal_current_handle()) {
3779                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3780                         dump_stack();
3781                         return -EIO;
3782                 }
3783
3784                 if (wbc->sync_mode != WB_SYNC_ALL)
3785                         return 0;
3786
3787                 err = ext4_force_commit(inode->i_sb);
3788         } else {
3789                 struct ext4_iloc iloc;
3790
3791                 err = __ext4_get_inode_loc(inode, &iloc, 0);
3792                 if (err)
3793                         return err;
3794                 if (wbc->sync_mode == WB_SYNC_ALL)
3795                         sync_dirty_buffer(iloc.bh);
3796                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
3797                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
3798                                          "IO error syncing inode");
3799                         err = -EIO;
3800                 }
3801                 brelse(iloc.bh);
3802         }
3803         return err;
3804 }
3805
3806 /*
3807  * ext4_setattr()
3808  *
3809  * Called from notify_change.
3810  *
3811  * We want to trap VFS attempts to truncate the file as soon as
3812  * possible.  In particular, we want to make sure that when the VFS
3813  * shrinks i_size, we put the inode on the orphan list and modify
3814  * i_disksize immediately, so that during the subsequent flushing of
3815  * dirty pages and freeing of disk blocks, we can guarantee that any
3816  * commit will leave the blocks being flushed in an unused state on
3817  * disk.  (On recovery, the inode will get truncated and the blocks will
3818  * be freed, so we have a strong guarantee that no future commit will
3819  * leave these blocks visible to the user.)
3820  *
3821  * Another thing we have to assure is that if we are in ordered mode
3822  * and inode is still attached to the committing transaction, we must
3823  * we start writeout of all the dirty pages which are being truncated.
3824  * This way we are sure that all the data written in the previous
3825  * transaction are already on disk (truncate waits for pages under
3826  * writeback).
3827  *
3828  * Called with inode->i_mutex down.
3829  */
3830 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3831 {
3832         struct inode *inode = dentry->d_inode;
3833         int error, rc = 0;
3834         int orphan = 0;
3835         const unsigned int ia_valid = attr->ia_valid;
3836
3837         error = inode_change_ok(inode, attr);
3838         if (error)
3839                 return error;
3840
3841         if (is_quota_modification(inode, attr))
3842                 dquot_initialize(inode);
3843         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3844                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3845                 handle_t *handle;
3846
3847                 /* (user+group)*(old+new) structure, inode write (sb,
3848                  * inode block, ? - but truncate inode update has it) */
3849                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3850                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
3851                 if (IS_ERR(handle)) {
3852                         error = PTR_ERR(handle);
3853                         goto err_out;
3854                 }
3855                 error = dquot_transfer(inode, attr);
3856                 if (error) {
3857                         ext4_journal_stop(handle);
3858                         return error;
3859                 }
3860                 /* Update corresponding info in inode so that everything is in
3861                  * one transaction */
3862                 if (attr->ia_valid & ATTR_UID)
3863                         inode->i_uid = attr->ia_uid;
3864                 if (attr->ia_valid & ATTR_GID)
3865                         inode->i_gid = attr->ia_gid;
3866                 error = ext4_mark_inode_dirty(handle, inode);
3867                 ext4_journal_stop(handle);
3868         }
3869
3870         if (attr->ia_valid & ATTR_SIZE) {
3871                 inode_dio_wait(inode);
3872
3873                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3874                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3875
3876                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
3877                                 return -EFBIG;
3878                 }
3879         }
3880
3881         if (S_ISREG(inode->i_mode) &&
3882             attr->ia_valid & ATTR_SIZE &&
3883             (attr->ia_size < inode->i_size)) {
3884                 handle_t *handle;
3885
3886                 handle = ext4_journal_start(inode, 3);
3887                 if (IS_ERR(handle)) {
3888                         error = PTR_ERR(handle);
3889                         goto err_out;
3890                 }
3891                 if (ext4_handle_valid(handle)) {
3892                         error = ext4_orphan_add(handle, inode);
3893                         orphan = 1;
3894                 }
3895                 EXT4_I(inode)->i_disksize = attr->ia_size;
3896                 rc = ext4_mark_inode_dirty(handle, inode);
3897                 if (!error)
3898                         error = rc;
3899                 ext4_journal_stop(handle);
3900
3901                 if (ext4_should_order_data(inode)) {
3902                         error = ext4_begin_ordered_truncate(inode,
3903                                                             attr->ia_size);
3904                         if (error) {
3905                                 /* Do as much error cleanup as possible */
3906                                 handle = ext4_journal_start(inode, 3);
3907                                 if (IS_ERR(handle)) {
3908                                         ext4_orphan_del(NULL, inode);
3909                                         goto err_out;
3910                                 }
3911                                 ext4_orphan_del(handle, inode);
3912                                 orphan = 0;
3913                                 ext4_journal_stop(handle);
3914                                 goto err_out;
3915                         }
3916                 }
3917         }
3918
3919         if (attr->ia_valid & ATTR_SIZE) {
3920                 if (attr->ia_size != i_size_read(inode)) {
3921                         truncate_setsize(inode, attr->ia_size);
3922                         ext4_truncate(inode);
3923                 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3924                         ext4_truncate(inode);
3925         }
3926
3927         if (!rc) {
3928                 setattr_copy(inode, attr);
3929                 mark_inode_dirty(inode);
3930         }
3931
3932         /*
3933          * If the call to ext4_truncate failed to get a transaction handle at
3934          * all, we need to clean up the in-core orphan list manually.
3935          */
3936         if (orphan && inode->i_nlink)
3937                 ext4_orphan_del(NULL, inode);
3938
3939         if (!rc && (ia_valid & ATTR_MODE))
3940                 rc = ext4_acl_chmod(inode);
3941
3942 err_out:
3943         ext4_std_error(inode->i_sb, error);
3944         if (!error)
3945                 error = rc;
3946         return error;
3947 }
3948
3949 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
3950                  struct kstat *stat)
3951 {
3952         struct inode *inode;
3953         unsigned long delalloc_blocks;
3954
3955         inode = dentry->d_inode;
3956         generic_fillattr(inode, stat);
3957
3958         /*
3959          * We can't update i_blocks if the block allocation is delayed
3960          * otherwise in the case of system crash before the real block
3961          * allocation is done, we will have i_blocks inconsistent with
3962          * on-disk file blocks.
3963          * We always keep i_blocks updated together with real
3964          * allocation. But to not confuse with user, stat
3965          * will return the blocks that include the delayed allocation
3966          * blocks for this file.
3967          */
3968         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
3969
3970         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
3971         return 0;
3972 }
3973
3974 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
3975 {
3976         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3977                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
3978         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
3979 }
3980
3981 /*
3982  * Account for index blocks, block groups bitmaps and block group
3983  * descriptor blocks if modify datablocks and index blocks
3984  * worse case, the indexs blocks spread over different block groups
3985  *
3986  * If datablocks are discontiguous, they are possible to spread over
3987  * different block groups too. If they are contiuguous, with flexbg,
3988  * they could still across block group boundary.
3989  *
3990  * Also account for superblock, inode, quota and xattr blocks
3991  */
3992 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
3993 {
3994         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
3995         int gdpblocks;
3996         int idxblocks;
3997         int ret = 0;
3998
3999         /*
4000          * How many index blocks need to touch to modify nrblocks?
4001          * The "Chunk" flag indicating whether the nrblocks is
4002          * physically contiguous on disk
4003          *
4004          * For Direct IO and fallocate, they calls get_block to allocate
4005          * one single extent at a time, so they could set the "Chunk" flag
4006          */
4007         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4008
4009         ret = idxblocks;
4010
4011         /*
4012          * Now let's see how many group bitmaps and group descriptors need
4013          * to account
4014          */
4015         groups = idxblocks;
4016         if (chunk)
4017                 groups += 1;
4018         else
4019                 groups += nrblocks;
4020
4021         gdpblocks = groups;
4022         if (groups > ngroups)
4023                 groups = ngroups;
4024         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4025                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4026
4027         /* bitmaps and block group descriptor blocks */
4028         ret += groups + gdpblocks;
4029
4030         /* Blocks for super block, inode, quota and xattr blocks */
4031         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4032
4033         return ret;
4034 }
4035
4036 /*
4037  * Calculate the total number of credits to reserve to fit
4038  * the modification of a single pages into a single transaction,
4039  * which may include multiple chunks of block allocations.
4040  *
4041  * This could be called via ext4_write_begin()
4042  *
4043  * We need to consider the worse case, when
4044  * one new block per extent.
4045  */
4046 int ext4_writepage_trans_blocks(struct inode *inode)
4047 {
4048         int bpp = ext4_journal_blocks_per_page(inode);
4049         int ret;
4050
4051         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4052
4053         /* Account for data blocks for journalled mode */
4054         if (ext4_should_journal_data(inode))
4055                 ret += bpp;
4056         return ret;
4057 }
4058
4059 /*
4060  * Calculate the journal credits for a chunk of data modification.
4061  *
4062  * This is called from DIO, fallocate or whoever calling
4063  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4064  *
4065  * journal buffers for data blocks are not included here, as DIO
4066  * and fallocate do no need to journal data buffers.
4067  */
4068 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4069 {
4070         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4071 }
4072
4073 /*
4074  * The caller must have previously called ext4_reserve_inode_write().
4075  * Give this, we know that the caller already has write access to iloc->bh.
4076  */
4077 int ext4_mark_iloc_dirty(handle_t *handle,
4078                          struct inode *inode, struct ext4_iloc *iloc)
4079 {
4080         int err = 0;
4081
4082         if (test_opt(inode->i_sb, I_VERSION))
4083                 inode_inc_iversion(inode);
4084
4085         /* the do_update_inode consumes one bh->b_count */
4086         get_bh(iloc->bh);
4087
4088         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4089         err = ext4_do_update_inode(handle, inode, iloc);
4090         put_bh(iloc->bh);
4091         return err;
4092 }
4093
4094 /*
4095  * On success, We end up with an outstanding reference count against
4096  * iloc->bh.  This _must_ be cleaned up later.
4097  */
4098
4099 int
4100 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4101                          struct ext4_iloc *iloc)
4102 {
4103         int err;
4104
4105         err = ext4_get_inode_loc(inode, iloc);
4106         if (!err) {
4107                 BUFFER_TRACE(iloc->bh, "get_write_access");
4108                 err = ext4_journal_get_write_access(handle, iloc->bh);
4109                 if (err) {
4110                         brelse(iloc->bh);
4111                         iloc->bh = NULL;
4112                 }
4113         }
4114         ext4_std_error(inode->i_sb, err);
4115         return err;
4116 }
4117
4118 /*
4119  * Expand an inode by new_extra_isize bytes.
4120  * Returns 0 on success or negative error number on failure.
4121  */
4122 static int ext4_expand_extra_isize(struct inode *inode,
4123                                    unsigned int new_extra_isize,
4124                                    struct ext4_iloc iloc,
4125                                    handle_t *handle)
4126 {
4127         struct ext4_inode *raw_inode;
4128         struct ext4_xattr_ibody_header *header;
4129
4130         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4131                 return 0;
4132
4133         raw_inode = ext4_raw_inode(&iloc);
4134
4135         header = IHDR(inode, raw_inode);
4136
4137         /* No extended attributes present */
4138         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4139             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4140                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4141                         new_extra_isize);
4142                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4143                 return 0;
4144         }
4145
4146         /* try to expand with EAs present */
4147         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4148                                           raw_inode, handle);
4149 }
4150
4151 /*
4152  * What we do here is to mark the in-core inode as clean with respect to inode
4153  * dirtiness (it may still be data-dirty).
4154  * This means that the in-core inode may be reaped by prune_icache
4155  * without having to perform any I/O.  This is a very good thing,
4156  * because *any* task may call prune_icache - even ones which
4157  * have a transaction open against a different journal.
4158  *
4159  * Is this cheating?  Not really.  Sure, we haven't written the
4160  * inode out, but prune_icache isn't a user-visible syncing function.
4161  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4162  * we start and wait on commits.
4163  *
4164  * Is this efficient/effective?  Well, we're being nice to the system
4165  * by cleaning up our inodes proactively so they can be reaped
4166  * without I/O.  But we are potentially leaving up to five seconds'
4167  * worth of inodes floating about which prune_icache wants us to
4168  * write out.  One way to fix that would be to get prune_icache()
4169  * to do a write_super() to free up some memory.  It has the desired
4170  * effect.
4171  */
4172 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4173 {
4174         struct ext4_iloc iloc;
4175         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4176         static unsigned int mnt_count;
4177         int err, ret;
4178
4179         might_sleep();
4180         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4181         err = ext4_reserve_inode_write(handle, inode, &iloc);
4182         if (ext4_handle_valid(handle) &&
4183             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4184             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4185                 /*
4186                  * We need extra buffer credits since we may write into EA block
4187                  * with this same handle. If journal_extend fails, then it will
4188                  * only result in a minor loss of functionality for that inode.
4189                  * If this is felt to be critical, then e2fsck should be run to
4190                  * force a large enough s_min_extra_isize.
4191                  */
4192                 if ((jbd2_journal_extend(handle,
4193                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4194                         ret = ext4_expand_extra_isize(inode,
4195                                                       sbi->s_want_extra_isize,
4196                                                       iloc, handle);
4197                         if (ret) {
4198                                 ext4_set_inode_state(inode,
4199                                                      EXT4_STATE_NO_EXPAND);
4200                                 if (mnt_count !=
4201                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4202                                         ext4_warning(inode->i_sb,
4203                                         "Unable to expand inode %lu. Delete"
4204                                         " some EAs or run e2fsck.",
4205                                         inode->i_ino);
4206                                         mnt_count =
4207                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4208                                 }
4209                         }
4210                 }
4211         }
4212         if (!err)
4213                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4214         return err;
4215 }
4216
4217 /*
4218  * ext4_dirty_inode() is called from __mark_inode_dirty()
4219  *
4220  * We're really interested in the case where a file is being extended.
4221  * i_size has been changed by generic_commit_write() and we thus need
4222  * to include the updated inode in the current transaction.
4223  *
4224  * Also, dquot_alloc_block() will always dirty the inode when blocks
4225  * are allocated to the file.
4226  *
4227  * If the inode is marked synchronous, we don't honour that here - doing
4228  * so would cause a commit on atime updates, which we don't bother doing.
4229  * We handle synchronous inodes at the highest possible level.
4230  */
4231 void ext4_dirty_inode(struct inode *inode, int flags)
4232 {
4233         handle_t *handle;
4234
4235         handle = ext4_journal_start(inode, 2);
4236         if (IS_ERR(handle))
4237                 goto out;
4238
4239         ext4_mark_inode_dirty(handle, inode);
4240
4241         ext4_journal_stop(handle);
4242 out:
4243         return;
4244 }
4245
4246 #if 0
4247 /*
4248  * Bind an inode's backing buffer_head into this transaction, to prevent
4249  * it from being flushed to disk early.  Unlike
4250  * ext4_reserve_inode_write, this leaves behind no bh reference and
4251  * returns no iloc structure, so the caller needs to repeat the iloc
4252  * lookup to mark the inode dirty later.
4253  */
4254 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4255 {
4256         struct ext4_iloc iloc;
4257
4258         int err = 0;
4259         if (handle) {
4260                 err = ext4_get_inode_loc(inode, &iloc);
4261                 if (!err) {
4262                         BUFFER_TRACE(iloc.bh, "get_write_access");
4263                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4264                         if (!err)
4265                                 err = ext4_handle_dirty_metadata(handle,
4266                                                                  NULL,
4267                                                                  iloc.bh);
4268                         brelse(iloc.bh);
4269                 }
4270         }
4271         ext4_std_error(inode->i_sb, err);
4272         return err;
4273 }
4274 #endif
4275
4276 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4277 {
4278         journal_t *journal;
4279         handle_t *handle;
4280         int err;
4281
4282         /*
4283          * We have to be very careful here: changing a data block's
4284          * journaling status dynamically is dangerous.  If we write a
4285          * data block to the journal, change the status and then delete
4286          * that block, we risk forgetting to revoke the old log record
4287          * from the journal and so a subsequent replay can corrupt data.
4288          * So, first we make sure that the journal is empty and that
4289          * nobody is changing anything.
4290          */
4291
4292         journal = EXT4_JOURNAL(inode);
4293         if (!journal)
4294                 return 0;
4295         if (is_journal_aborted(journal))
4296                 return -EROFS;
4297
4298         jbd2_journal_lock_updates(journal);
4299         jbd2_journal_flush(journal);
4300
4301         /*
4302          * OK, there are no updates running now, and all cached data is
4303          * synced to disk.  We are now in a completely consistent state
4304          * which doesn't have anything in the journal, and we know that
4305          * no filesystem updates are running, so it is safe to modify
4306          * the inode's in-core data-journaling state flag now.
4307          */
4308
4309         if (val)
4310                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4311         else
4312                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4313         ext4_set_aops(inode);
4314
4315         jbd2_journal_unlock_updates(journal);
4316
4317         /* Finally we can mark the inode as dirty. */
4318
4319         handle = ext4_journal_start(inode, 1);
4320         if (IS_ERR(handle))
4321                 return PTR_ERR(handle);
4322
4323         err = ext4_mark_inode_dirty(handle, inode);
4324         ext4_handle_sync(handle);
4325         ext4_journal_stop(handle);
4326         ext4_std_error(inode->i_sb, err);
4327
4328         return err;
4329 }
4330
4331 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4332 {
4333         return !buffer_mapped(bh);
4334 }
4335
4336 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4337 {
4338         struct page *page = vmf->page;
4339         loff_t size;
4340         unsigned long len;
4341         int ret;
4342         struct file *file = vma->vm_file;
4343         struct inode *inode = file->f_path.dentry->d_inode;
4344         struct address_space *mapping = inode->i_mapping;
4345         handle_t *handle;
4346         get_block_t *get_block;
4347         int retries = 0;
4348
4349         /*
4350          * This check is racy but catches the common case. We rely on
4351          * __block_page_mkwrite() to do a reliable check.
4352          */
4353         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4354         /* Delalloc case is easy... */
4355         if (test_opt(inode->i_sb, DELALLOC) &&
4356             !ext4_should_journal_data(inode) &&
4357             !ext4_nonda_switch(inode->i_sb)) {
4358                 do {
4359                         ret = __block_page_mkwrite(vma, vmf,
4360                                                    ext4_da_get_block_prep);
4361                 } while (ret == -ENOSPC &&
4362                        ext4_should_retry_alloc(inode->i_sb, &retries));
4363                 goto out_ret;
4364         }
4365
4366         lock_page(page);
4367         size = i_size_read(inode);
4368         /* Page got truncated from under us? */
4369         if (page->mapping != mapping || page_offset(page) > size) {
4370                 unlock_page(page);
4371                 ret = VM_FAULT_NOPAGE;
4372                 goto out;
4373         }
4374
4375         if (page->index == size >> PAGE_CACHE_SHIFT)
4376                 len = size & ~PAGE_CACHE_MASK;
4377         else
4378                 len = PAGE_CACHE_SIZE;
4379         /*
4380          * Return if we have all the buffers mapped. This avoids the need to do
4381          * journal_start/journal_stop which can block and take a long time
4382          */
4383         if (page_has_buffers(page)) {
4384                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4385                                         ext4_bh_unmapped)) {
4386                         /* Wait so that we don't change page under IO */
4387                         wait_on_page_writeback(page);
4388                         ret = VM_FAULT_LOCKED;
4389                         goto out;
4390                 }
4391         }
4392         unlock_page(page);
4393         /* OK, we need to fill the hole... */
4394         if (ext4_should_dioread_nolock(inode))
4395                 get_block = ext4_get_block_write;
4396         else
4397                 get_block = ext4_get_block;
4398 retry_alloc:
4399         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4400         if (IS_ERR(handle)) {
4401                 ret = VM_FAULT_SIGBUS;
4402                 goto out;
4403         }
4404         ret = __block_page_mkwrite(vma, vmf, get_block);
4405         if (!ret && ext4_should_journal_data(inode)) {
4406                 if (walk_page_buffers(handle, page_buffers(page), 0,
4407                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4408                         unlock_page(page);
4409                         ret = VM_FAULT_SIGBUS;
4410                         goto out;
4411                 }
4412                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4413         }
4414         ext4_journal_stop(handle);
4415         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4416                 goto retry_alloc;
4417 out_ret:
4418         ret = block_page_mkwrite_return(ret);
4419 out:
4420         return ret;
4421 }