ext4: clear buffer_uninit flag when submitting IO
[pandora-kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = le16_to_cpu(raw->i_checksum_lo);
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = cpu_to_le16(csum_lo);
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138                 struct inode *inode, struct page *page, loff_t from,
139                 loff_t length, int flags);
140
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146         int ea_blocks = EXT4_I(inode)->i_file_acl ?
147                 (inode->i_sb->s_blocksize >> 9) : 0;
148
149         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158                                  int nblocks)
159 {
160         int ret;
161
162         /*
163          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164          * moment, get_block can be called only for blocks inside i_size since
165          * page cache has been already dropped and writes are blocked by
166          * i_mutex. So we can safely drop the i_data_sem here.
167          */
168         BUG_ON(EXT4_JOURNAL(inode) == NULL);
169         jbd_debug(2, "restarting handle %p\n", handle);
170         up_write(&EXT4_I(inode)->i_data_sem);
171         ret = ext4_journal_restart(handle, nblocks);
172         down_write(&EXT4_I(inode)->i_data_sem);
173         ext4_discard_preallocations(inode);
174
175         return ret;
176 }
177
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183         handle_t *handle;
184         int err;
185
186         trace_ext4_evict_inode(inode);
187
188         if (inode->i_nlink) {
189                 /*
190                  * When journalling data dirty buffers are tracked only in the
191                  * journal. So although mm thinks everything is clean and
192                  * ready for reaping the inode might still have some pages to
193                  * write in the running transaction or waiting to be
194                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
195                  * (via truncate_inode_pages()) to discard these buffers can
196                  * cause data loss. Also even if we did not discard these
197                  * buffers, we would have no way to find them after the inode
198                  * is reaped and thus user could see stale data if he tries to
199                  * read them before the transaction is checkpointed. So be
200                  * careful and force everything to disk here... We use
201                  * ei->i_datasync_tid to store the newest transaction
202                  * containing inode's data.
203                  *
204                  * Note that directories do not have this problem because they
205                  * don't use page cache.
206                  */
207                 if (ext4_should_journal_data(inode) &&
208                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209                     inode->i_ino != EXT4_JOURNAL_INO) {
210                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212
213                         jbd2_complete_transaction(journal, commit_tid);
214                         filemap_write_and_wait(&inode->i_data);
215                 }
216                 truncate_inode_pages(&inode->i_data, 0);
217                 ext4_ioend_shutdown(inode);
218                 goto no_delete;
219         }
220
221         if (!is_bad_inode(inode))
222                 dquot_initialize(inode);
223
224         if (ext4_should_order_data(inode))
225                 ext4_begin_ordered_truncate(inode, 0);
226         truncate_inode_pages(&inode->i_data, 0);
227         ext4_ioend_shutdown(inode);
228
229         if (is_bad_inode(inode))
230                 goto no_delete;
231
232         /*
233          * Protect us against freezing - iput() caller didn't have to have any
234          * protection against it
235          */
236         sb_start_intwrite(inode->i_sb);
237         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238                                     ext4_blocks_for_truncate(inode)+3);
239         if (IS_ERR(handle)) {
240                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
241                 /*
242                  * If we're going to skip the normal cleanup, we still need to
243                  * make sure that the in-core orphan linked list is properly
244                  * cleaned up.
245                  */
246                 ext4_orphan_del(NULL, inode);
247                 sb_end_intwrite(inode->i_sb);
248                 goto no_delete;
249         }
250
251         if (IS_SYNC(inode))
252                 ext4_handle_sync(handle);
253         inode->i_size = 0;
254         err = ext4_mark_inode_dirty(handle, inode);
255         if (err) {
256                 ext4_warning(inode->i_sb,
257                              "couldn't mark inode dirty (err %d)", err);
258                 goto stop_handle;
259         }
260         if (inode->i_blocks)
261                 ext4_truncate(inode);
262
263         /*
264          * ext4_ext_truncate() doesn't reserve any slop when it
265          * restarts journal transactions; therefore there may not be
266          * enough credits left in the handle to remove the inode from
267          * the orphan list and set the dtime field.
268          */
269         if (!ext4_handle_has_enough_credits(handle, 3)) {
270                 err = ext4_journal_extend(handle, 3);
271                 if (err > 0)
272                         err = ext4_journal_restart(handle, 3);
273                 if (err != 0) {
274                         ext4_warning(inode->i_sb,
275                                      "couldn't extend journal (err %d)", err);
276                 stop_handle:
277                         ext4_journal_stop(handle);
278                         ext4_orphan_del(NULL, inode);
279                         sb_end_intwrite(inode->i_sb);
280                         goto no_delete;
281                 }
282         }
283
284         /*
285          * Kill off the orphan record which ext4_truncate created.
286          * AKPM: I think this can be inside the above `if'.
287          * Note that ext4_orphan_del() has to be able to cope with the
288          * deletion of a non-existent orphan - this is because we don't
289          * know if ext4_truncate() actually created an orphan record.
290          * (Well, we could do this if we need to, but heck - it works)
291          */
292         ext4_orphan_del(handle, inode);
293         EXT4_I(inode)->i_dtime  = get_seconds();
294
295         /*
296          * One subtle ordering requirement: if anything has gone wrong
297          * (transaction abort, IO errors, whatever), then we can still
298          * do these next steps (the fs will already have been marked as
299          * having errors), but we can't free the inode if the mark_dirty
300          * fails.
301          */
302         if (ext4_mark_inode_dirty(handle, inode))
303                 /* If that failed, just do the required in-core inode clear. */
304                 ext4_clear_inode(inode);
305         else
306                 ext4_free_inode(handle, inode);
307         ext4_journal_stop(handle);
308         sb_end_intwrite(inode->i_sb);
309         return;
310 no_delete:
311         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
312 }
313
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317         return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320
321 /*
322  * Calculate the number of metadata blocks need to reserve
323  * to allocate a block located at @lblock
324  */
325 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326 {
327         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328                 return ext4_ext_calc_metadata_amount(inode, lblock);
329
330         return ext4_ind_calc_metadata_amount(inode, lblock);
331 }
332
333 /*
334  * Called with i_data_sem down, which is important since we can call
335  * ext4_discard_preallocations() from here.
336  */
337 void ext4_da_update_reserve_space(struct inode *inode,
338                                         int used, int quota_claim)
339 {
340         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341         struct ext4_inode_info *ei = EXT4_I(inode);
342
343         spin_lock(&ei->i_block_reservation_lock);
344         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345         if (unlikely(used > ei->i_reserved_data_blocks)) {
346                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347                          "with only %d reserved data blocks",
348                          __func__, inode->i_ino, used,
349                          ei->i_reserved_data_blocks);
350                 WARN_ON(1);
351                 used = ei->i_reserved_data_blocks;
352         }
353
354         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
356                         "with only %d reserved metadata blocks "
357                         "(releasing %d blocks with reserved %d data blocks)",
358                         inode->i_ino, ei->i_allocated_meta_blocks,
359                              ei->i_reserved_meta_blocks, used,
360                              ei->i_reserved_data_blocks);
361                 WARN_ON(1);
362                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
363         }
364
365         /* Update per-inode reservations */
366         ei->i_reserved_data_blocks -= used;
367         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369                            used + ei->i_allocated_meta_blocks);
370         ei->i_allocated_meta_blocks = 0;
371
372         if (ei->i_reserved_data_blocks == 0) {
373                 /*
374                  * We can release all of the reserved metadata blocks
375                  * only when we have written all of the delayed
376                  * allocation blocks.
377                  */
378                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379                                    ei->i_reserved_meta_blocks);
380                 ei->i_reserved_meta_blocks = 0;
381                 ei->i_da_metadata_calc_len = 0;
382         }
383         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384
385         /* Update quota subsystem for data blocks */
386         if (quota_claim)
387                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
388         else {
389                 /*
390                  * We did fallocate with an offset that is already delayed
391                  * allocated. So on delayed allocated writeback we should
392                  * not re-claim the quota for fallocated blocks.
393                  */
394                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395         }
396
397         /*
398          * If we have done all the pending block allocations and if
399          * there aren't any writers on the inode, we can discard the
400          * inode's preallocations.
401          */
402         if ((ei->i_reserved_data_blocks == 0) &&
403             (atomic_read(&inode->i_writecount) == 0))
404                 ext4_discard_preallocations(inode);
405 }
406
407 static int __check_block_validity(struct inode *inode, const char *func,
408                                 unsigned int line,
409                                 struct ext4_map_blocks *map)
410 {
411         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
412                                    map->m_len)) {
413                 ext4_error_inode(inode, func, line, map->m_pblk,
414                                  "lblock %lu mapped to illegal pblock "
415                                  "(length %d)", (unsigned long) map->m_lblk,
416                                  map->m_len);
417                 return -EIO;
418         }
419         return 0;
420 }
421
422 #define check_block_validity(inode, map)        \
423         __check_block_validity((inode), __func__, __LINE__, (map))
424
425 /*
426  * Return the number of contiguous dirty pages in a given inode
427  * starting at page frame idx.
428  */
429 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
430                                     unsigned int max_pages)
431 {
432         struct address_space *mapping = inode->i_mapping;
433         pgoff_t index;
434         struct pagevec pvec;
435         pgoff_t num = 0;
436         int i, nr_pages, done = 0;
437
438         if (max_pages == 0)
439                 return 0;
440         pagevec_init(&pvec, 0);
441         while (!done) {
442                 index = idx;
443                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
444                                               PAGECACHE_TAG_DIRTY,
445                                               (pgoff_t)PAGEVEC_SIZE);
446                 if (nr_pages == 0)
447                         break;
448                 for (i = 0; i < nr_pages; i++) {
449                         struct page *page = pvec.pages[i];
450                         struct buffer_head *bh, *head;
451
452                         lock_page(page);
453                         if (unlikely(page->mapping != mapping) ||
454                             !PageDirty(page) ||
455                             PageWriteback(page) ||
456                             page->index != idx) {
457                                 done = 1;
458                                 unlock_page(page);
459                                 break;
460                         }
461                         if (page_has_buffers(page)) {
462                                 bh = head = page_buffers(page);
463                                 do {
464                                         if (!buffer_delay(bh) &&
465                                             !buffer_unwritten(bh))
466                                                 done = 1;
467                                         bh = bh->b_this_page;
468                                 } while (!done && (bh != head));
469                         }
470                         unlock_page(page);
471                         if (done)
472                                 break;
473                         idx++;
474                         num++;
475                         if (num >= max_pages) {
476                                 done = 1;
477                                 break;
478                         }
479                 }
480                 pagevec_release(&pvec);
481         }
482         return num;
483 }
484
485 #ifdef ES_AGGRESSIVE_TEST
486 static void ext4_map_blocks_es_recheck(handle_t *handle,
487                                        struct inode *inode,
488                                        struct ext4_map_blocks *es_map,
489                                        struct ext4_map_blocks *map,
490                                        int flags)
491 {
492         int retval;
493
494         map->m_flags = 0;
495         /*
496          * There is a race window that the result is not the same.
497          * e.g. xfstests #223 when dioread_nolock enables.  The reason
498          * is that we lookup a block mapping in extent status tree with
499          * out taking i_data_sem.  So at the time the unwritten extent
500          * could be converted.
501          */
502         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
503                 down_read((&EXT4_I(inode)->i_data_sem));
504         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
505                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
506                                              EXT4_GET_BLOCKS_KEEP_SIZE);
507         } else {
508                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
509                                              EXT4_GET_BLOCKS_KEEP_SIZE);
510         }
511         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512                 up_read((&EXT4_I(inode)->i_data_sem));
513         /*
514          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
515          * because it shouldn't be marked in es_map->m_flags.
516          */
517         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
518
519         /*
520          * We don't check m_len because extent will be collpased in status
521          * tree.  So the m_len might not equal.
522          */
523         if (es_map->m_lblk != map->m_lblk ||
524             es_map->m_flags != map->m_flags ||
525             es_map->m_pblk != map->m_pblk) {
526                 printk("ES cache assertation failed for inode: %lu "
527                        "es_cached ex [%d/%d/%llu/%x] != "
528                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
529                        inode->i_ino, es_map->m_lblk, es_map->m_len,
530                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
531                        map->m_len, map->m_pblk, map->m_flags,
532                        retval, flags);
533         }
534 }
535 #endif /* ES_AGGRESSIVE_TEST */
536
537 /*
538  * The ext4_map_blocks() function tries to look up the requested blocks,
539  * and returns if the blocks are already mapped.
540  *
541  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
542  * and store the allocated blocks in the result buffer head and mark it
543  * mapped.
544  *
545  * If file type is extents based, it will call ext4_ext_map_blocks(),
546  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
547  * based files
548  *
549  * On success, it returns the number of blocks being mapped or allocate.
550  * if create==0 and the blocks are pre-allocated and uninitialized block,
551  * the result buffer head is unmapped. If the create ==1, it will make sure
552  * the buffer head is mapped.
553  *
554  * It returns 0 if plain look up failed (blocks have not been allocated), in
555  * that case, buffer head is unmapped
556  *
557  * It returns the error in case of allocation failure.
558  */
559 int ext4_map_blocks(handle_t *handle, struct inode *inode,
560                     struct ext4_map_blocks *map, int flags)
561 {
562         struct extent_status es;
563         int retval;
564 #ifdef ES_AGGRESSIVE_TEST
565         struct ext4_map_blocks orig_map;
566
567         memcpy(&orig_map, map, sizeof(*map));
568 #endif
569
570         map->m_flags = 0;
571         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
572                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
573                   (unsigned long) map->m_lblk);
574
575         /* Lookup extent status tree firstly */
576         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
577                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
578                         map->m_pblk = ext4_es_pblock(&es) +
579                                         map->m_lblk - es.es_lblk;
580                         map->m_flags |= ext4_es_is_written(&es) ?
581                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
582                         retval = es.es_len - (map->m_lblk - es.es_lblk);
583                         if (retval > map->m_len)
584                                 retval = map->m_len;
585                         map->m_len = retval;
586                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
587                         retval = 0;
588                 } else {
589                         BUG_ON(1);
590                 }
591 #ifdef ES_AGGRESSIVE_TEST
592                 ext4_map_blocks_es_recheck(handle, inode, map,
593                                            &orig_map, flags);
594 #endif
595                 goto found;
596         }
597
598         /*
599          * Try to see if we can get the block without requesting a new
600          * file system block.
601          */
602         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
603                 down_read((&EXT4_I(inode)->i_data_sem));
604         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
605                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
606                                              EXT4_GET_BLOCKS_KEEP_SIZE);
607         } else {
608                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
609                                              EXT4_GET_BLOCKS_KEEP_SIZE);
610         }
611         if (retval > 0) {
612                 int ret;
613                 unsigned long long status;
614
615 #ifdef ES_AGGRESSIVE_TEST
616                 if (retval != map->m_len) {
617                         printk("ES len assertation failed for inode: %lu "
618                                "retval %d != map->m_len %d "
619                                "in %s (lookup)\n", inode->i_ino, retval,
620                                map->m_len, __func__);
621                 }
622 #endif
623
624                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
625                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
626                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
627                     ext4_find_delalloc_range(inode, map->m_lblk,
628                                              map->m_lblk + map->m_len - 1))
629                         status |= EXTENT_STATUS_DELAYED;
630                 ret = ext4_es_insert_extent(inode, map->m_lblk,
631                                             map->m_len, map->m_pblk, status);
632                 if (ret < 0)
633                         retval = ret;
634         }
635         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
636                 up_read((&EXT4_I(inode)->i_data_sem));
637
638 found:
639         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
640                 int ret = check_block_validity(inode, map);
641                 if (ret != 0)
642                         return ret;
643         }
644
645         /* If it is only a block(s) look up */
646         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
647                 return retval;
648
649         /*
650          * Returns if the blocks have already allocated
651          *
652          * Note that if blocks have been preallocated
653          * ext4_ext_get_block() returns the create = 0
654          * with buffer head unmapped.
655          */
656         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
657                 return retval;
658
659         /*
660          * Here we clear m_flags because after allocating an new extent,
661          * it will be set again.
662          */
663         map->m_flags &= ~EXT4_MAP_FLAGS;
664
665         /*
666          * New blocks allocate and/or writing to uninitialized extent
667          * will possibly result in updating i_data, so we take
668          * the write lock of i_data_sem, and call get_blocks()
669          * with create == 1 flag.
670          */
671         down_write((&EXT4_I(inode)->i_data_sem));
672
673         /*
674          * if the caller is from delayed allocation writeout path
675          * we have already reserved fs blocks for allocation
676          * let the underlying get_block() function know to
677          * avoid double accounting
678          */
679         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
680                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
681         /*
682          * We need to check for EXT4 here because migrate
683          * could have changed the inode type in between
684          */
685         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
686                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
687         } else {
688                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
689
690                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
691                         /*
692                          * We allocated new blocks which will result in
693                          * i_data's format changing.  Force the migrate
694                          * to fail by clearing migrate flags
695                          */
696                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
697                 }
698
699                 /*
700                  * Update reserved blocks/metadata blocks after successful
701                  * block allocation which had been deferred till now. We don't
702                  * support fallocate for non extent files. So we can update
703                  * reserve space here.
704                  */
705                 if ((retval > 0) &&
706                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
707                         ext4_da_update_reserve_space(inode, retval, 1);
708         }
709         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
710                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
711
712         if (retval > 0) {
713                 int ret;
714                 unsigned long long status;
715
716 #ifdef ES_AGGRESSIVE_TEST
717                 if (retval != map->m_len) {
718                         printk("ES len assertation failed for inode: %lu "
719                                "retval %d != map->m_len %d "
720                                "in %s (allocation)\n", inode->i_ino, retval,
721                                map->m_len, __func__);
722                 }
723 #endif
724
725                 /*
726                  * If the extent has been zeroed out, we don't need to update
727                  * extent status tree.
728                  */
729                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
730                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
731                         if (ext4_es_is_written(&es))
732                                 goto has_zeroout;
733                 }
734                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
735                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
736                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
737                     ext4_find_delalloc_range(inode, map->m_lblk,
738                                              map->m_lblk + map->m_len - 1))
739                         status |= EXTENT_STATUS_DELAYED;
740                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
741                                             map->m_pblk, status);
742                 if (ret < 0)
743                         retval = ret;
744         }
745
746 has_zeroout:
747         up_write((&EXT4_I(inode)->i_data_sem));
748         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
749                 int ret = check_block_validity(inode, map);
750                 if (ret != 0)
751                         return ret;
752         }
753         return retval;
754 }
755
756 /* Maximum number of blocks we map for direct IO at once. */
757 #define DIO_MAX_BLOCKS 4096
758
759 static int _ext4_get_block(struct inode *inode, sector_t iblock,
760                            struct buffer_head *bh, int flags)
761 {
762         handle_t *handle = ext4_journal_current_handle();
763         struct ext4_map_blocks map;
764         int ret = 0, started = 0;
765         int dio_credits;
766
767         if (ext4_has_inline_data(inode))
768                 return -ERANGE;
769
770         map.m_lblk = iblock;
771         map.m_len = bh->b_size >> inode->i_blkbits;
772
773         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
774                 /* Direct IO write... */
775                 if (map.m_len > DIO_MAX_BLOCKS)
776                         map.m_len = DIO_MAX_BLOCKS;
777                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
778                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
779                                             dio_credits);
780                 if (IS_ERR(handle)) {
781                         ret = PTR_ERR(handle);
782                         return ret;
783                 }
784                 started = 1;
785         }
786
787         ret = ext4_map_blocks(handle, inode, &map, flags);
788         if (ret > 0) {
789                 map_bh(bh, inode->i_sb, map.m_pblk);
790                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
791                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
792                 ret = 0;
793         }
794         if (started)
795                 ext4_journal_stop(handle);
796         return ret;
797 }
798
799 int ext4_get_block(struct inode *inode, sector_t iblock,
800                    struct buffer_head *bh, int create)
801 {
802         return _ext4_get_block(inode, iblock, bh,
803                                create ? EXT4_GET_BLOCKS_CREATE : 0);
804 }
805
806 /*
807  * `handle' can be NULL if create is zero
808  */
809 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
810                                 ext4_lblk_t block, int create, int *errp)
811 {
812         struct ext4_map_blocks map;
813         struct buffer_head *bh;
814         int fatal = 0, err;
815
816         J_ASSERT(handle != NULL || create == 0);
817
818         map.m_lblk = block;
819         map.m_len = 1;
820         err = ext4_map_blocks(handle, inode, &map,
821                               create ? EXT4_GET_BLOCKS_CREATE : 0);
822
823         /* ensure we send some value back into *errp */
824         *errp = 0;
825
826         if (create && err == 0)
827                 err = -ENOSPC;  /* should never happen */
828         if (err < 0)
829                 *errp = err;
830         if (err <= 0)
831                 return NULL;
832
833         bh = sb_getblk(inode->i_sb, map.m_pblk);
834         if (unlikely(!bh)) {
835                 *errp = -ENOMEM;
836                 return NULL;
837         }
838         if (map.m_flags & EXT4_MAP_NEW) {
839                 J_ASSERT(create != 0);
840                 J_ASSERT(handle != NULL);
841
842                 /*
843                  * Now that we do not always journal data, we should
844                  * keep in mind whether this should always journal the
845                  * new buffer as metadata.  For now, regular file
846                  * writes use ext4_get_block instead, so it's not a
847                  * problem.
848                  */
849                 lock_buffer(bh);
850                 BUFFER_TRACE(bh, "call get_create_access");
851                 fatal = ext4_journal_get_create_access(handle, bh);
852                 if (!fatal && !buffer_uptodate(bh)) {
853                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
854                         set_buffer_uptodate(bh);
855                 }
856                 unlock_buffer(bh);
857                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
858                 err = ext4_handle_dirty_metadata(handle, inode, bh);
859                 if (!fatal)
860                         fatal = err;
861         } else {
862                 BUFFER_TRACE(bh, "not a new buffer");
863         }
864         if (fatal) {
865                 *errp = fatal;
866                 brelse(bh);
867                 bh = NULL;
868         }
869         return bh;
870 }
871
872 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
873                                ext4_lblk_t block, int create, int *err)
874 {
875         struct buffer_head *bh;
876
877         bh = ext4_getblk(handle, inode, block, create, err);
878         if (!bh)
879                 return bh;
880         if (buffer_uptodate(bh))
881                 return bh;
882         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
883         wait_on_buffer(bh);
884         if (buffer_uptodate(bh))
885                 return bh;
886         put_bh(bh);
887         *err = -EIO;
888         return NULL;
889 }
890
891 int ext4_walk_page_buffers(handle_t *handle,
892                            struct buffer_head *head,
893                            unsigned from,
894                            unsigned to,
895                            int *partial,
896                            int (*fn)(handle_t *handle,
897                                      struct buffer_head *bh))
898 {
899         struct buffer_head *bh;
900         unsigned block_start, block_end;
901         unsigned blocksize = head->b_size;
902         int err, ret = 0;
903         struct buffer_head *next;
904
905         for (bh = head, block_start = 0;
906              ret == 0 && (bh != head || !block_start);
907              block_start = block_end, bh = next) {
908                 next = bh->b_this_page;
909                 block_end = block_start + blocksize;
910                 if (block_end <= from || block_start >= to) {
911                         if (partial && !buffer_uptodate(bh))
912                                 *partial = 1;
913                         continue;
914                 }
915                 err = (*fn)(handle, bh);
916                 if (!ret)
917                         ret = err;
918         }
919         return ret;
920 }
921
922 /*
923  * To preserve ordering, it is essential that the hole instantiation and
924  * the data write be encapsulated in a single transaction.  We cannot
925  * close off a transaction and start a new one between the ext4_get_block()
926  * and the commit_write().  So doing the jbd2_journal_start at the start of
927  * prepare_write() is the right place.
928  *
929  * Also, this function can nest inside ext4_writepage().  In that case, we
930  * *know* that ext4_writepage() has generated enough buffer credits to do the
931  * whole page.  So we won't block on the journal in that case, which is good,
932  * because the caller may be PF_MEMALLOC.
933  *
934  * By accident, ext4 can be reentered when a transaction is open via
935  * quota file writes.  If we were to commit the transaction while thus
936  * reentered, there can be a deadlock - we would be holding a quota
937  * lock, and the commit would never complete if another thread had a
938  * transaction open and was blocking on the quota lock - a ranking
939  * violation.
940  *
941  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
942  * will _not_ run commit under these circumstances because handle->h_ref
943  * is elevated.  We'll still have enough credits for the tiny quotafile
944  * write.
945  */
946 int do_journal_get_write_access(handle_t *handle,
947                                 struct buffer_head *bh)
948 {
949         int dirty = buffer_dirty(bh);
950         int ret;
951
952         if (!buffer_mapped(bh) || buffer_freed(bh))
953                 return 0;
954         /*
955          * __block_write_begin() could have dirtied some buffers. Clean
956          * the dirty bit as jbd2_journal_get_write_access() could complain
957          * otherwise about fs integrity issues. Setting of the dirty bit
958          * by __block_write_begin() isn't a real problem here as we clear
959          * the bit before releasing a page lock and thus writeback cannot
960          * ever write the buffer.
961          */
962         if (dirty)
963                 clear_buffer_dirty(bh);
964         ret = ext4_journal_get_write_access(handle, bh);
965         if (!ret && dirty)
966                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
967         return ret;
968 }
969
970 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
971                    struct buffer_head *bh_result, int create);
972 static int ext4_write_begin(struct file *file, struct address_space *mapping,
973                             loff_t pos, unsigned len, unsigned flags,
974                             struct page **pagep, void **fsdata)
975 {
976         struct inode *inode = mapping->host;
977         int ret, needed_blocks;
978         handle_t *handle;
979         int retries = 0;
980         struct page *page;
981         pgoff_t index;
982         unsigned from, to;
983
984         trace_ext4_write_begin(inode, pos, len, flags);
985         /*
986          * Reserve one block more for addition to orphan list in case
987          * we allocate blocks but write fails for some reason
988          */
989         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
990         index = pos >> PAGE_CACHE_SHIFT;
991         from = pos & (PAGE_CACHE_SIZE - 1);
992         to = from + len;
993
994         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
995                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
996                                                     flags, pagep);
997                 if (ret < 0)
998                         return ret;
999                 if (ret == 1)
1000                         return 0;
1001         }
1002
1003         /*
1004          * grab_cache_page_write_begin() can take a long time if the
1005          * system is thrashing due to memory pressure, or if the page
1006          * is being written back.  So grab it first before we start
1007          * the transaction handle.  This also allows us to allocate
1008          * the page (if needed) without using GFP_NOFS.
1009          */
1010 retry_grab:
1011         page = grab_cache_page_write_begin(mapping, index, flags);
1012         if (!page)
1013                 return -ENOMEM;
1014         unlock_page(page);
1015
1016 retry_journal:
1017         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1018         if (IS_ERR(handle)) {
1019                 page_cache_release(page);
1020                 return PTR_ERR(handle);
1021         }
1022
1023         lock_page(page);
1024         if (page->mapping != mapping) {
1025                 /* The page got truncated from under us */
1026                 unlock_page(page);
1027                 page_cache_release(page);
1028                 ext4_journal_stop(handle);
1029                 goto retry_grab;
1030         }
1031         wait_on_page_writeback(page);
1032
1033         if (ext4_should_dioread_nolock(inode))
1034                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1035         else
1036                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1037
1038         if (!ret && ext4_should_journal_data(inode)) {
1039                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1040                                              from, to, NULL,
1041                                              do_journal_get_write_access);
1042         }
1043
1044         if (ret) {
1045                 unlock_page(page);
1046                 /*
1047                  * __block_write_begin may have instantiated a few blocks
1048                  * outside i_size.  Trim these off again. Don't need
1049                  * i_size_read because we hold i_mutex.
1050                  *
1051                  * Add inode to orphan list in case we crash before
1052                  * truncate finishes
1053                  */
1054                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1055                         ext4_orphan_add(handle, inode);
1056
1057                 ext4_journal_stop(handle);
1058                 if (pos + len > inode->i_size) {
1059                         ext4_truncate_failed_write(inode);
1060                         /*
1061                          * If truncate failed early the inode might
1062                          * still be on the orphan list; we need to
1063                          * make sure the inode is removed from the
1064                          * orphan list in that case.
1065                          */
1066                         if (inode->i_nlink)
1067                                 ext4_orphan_del(NULL, inode);
1068                 }
1069
1070                 if (ret == -ENOSPC &&
1071                     ext4_should_retry_alloc(inode->i_sb, &retries))
1072                         goto retry_journal;
1073                 page_cache_release(page);
1074                 return ret;
1075         }
1076         *pagep = page;
1077         return ret;
1078 }
1079
1080 /* For write_end() in data=journal mode */
1081 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1082 {
1083         if (!buffer_mapped(bh) || buffer_freed(bh))
1084                 return 0;
1085         set_buffer_uptodate(bh);
1086         return ext4_handle_dirty_metadata(handle, NULL, bh);
1087 }
1088
1089 /*
1090  * We need to pick up the new inode size which generic_commit_write gave us
1091  * `file' can be NULL - eg, when called from page_symlink().
1092  *
1093  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1094  * buffers are managed internally.
1095  */
1096 static int ext4_write_end(struct file *file,
1097                           struct address_space *mapping,
1098                           loff_t pos, unsigned len, unsigned copied,
1099                           struct page *page, void *fsdata)
1100 {
1101         handle_t *handle = ext4_journal_current_handle();
1102         struct inode *inode = mapping->host;
1103         int ret = 0, ret2;
1104         int i_size_changed = 0;
1105
1106         trace_ext4_write_end(inode, pos, len, copied);
1107         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1108                 ret = ext4_jbd2_file_inode(handle, inode);
1109                 if (ret) {
1110                         unlock_page(page);
1111                         page_cache_release(page);
1112                         goto errout;
1113                 }
1114         }
1115
1116         if (ext4_has_inline_data(inode))
1117                 copied = ext4_write_inline_data_end(inode, pos, len,
1118                                                     copied, page);
1119         else
1120                 copied = block_write_end(file, mapping, pos,
1121                                          len, copied, page, fsdata);
1122
1123         /*
1124          * No need to use i_size_read() here, the i_size
1125          * cannot change under us because we hole i_mutex.
1126          *
1127          * But it's important to update i_size while still holding page lock:
1128          * page writeout could otherwise come in and zero beyond i_size.
1129          */
1130         if (pos + copied > inode->i_size) {
1131                 i_size_write(inode, pos + copied);
1132                 i_size_changed = 1;
1133         }
1134
1135         if (pos + copied > EXT4_I(inode)->i_disksize) {
1136                 /* We need to mark inode dirty even if
1137                  * new_i_size is less that inode->i_size
1138                  * but greater than i_disksize. (hint delalloc)
1139                  */
1140                 ext4_update_i_disksize(inode, (pos + copied));
1141                 i_size_changed = 1;
1142         }
1143         unlock_page(page);
1144         page_cache_release(page);
1145
1146         /*
1147          * Don't mark the inode dirty under page lock. First, it unnecessarily
1148          * makes the holding time of page lock longer. Second, it forces lock
1149          * ordering of page lock and transaction start for journaling
1150          * filesystems.
1151          */
1152         if (i_size_changed)
1153                 ext4_mark_inode_dirty(handle, inode);
1154
1155         if (copied < 0)
1156                 ret = copied;
1157         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1158                 /* if we have allocated more blocks and copied
1159                  * less. We will have blocks allocated outside
1160                  * inode->i_size. So truncate them
1161                  */
1162                 ext4_orphan_add(handle, inode);
1163 errout:
1164         ret2 = ext4_journal_stop(handle);
1165         if (!ret)
1166                 ret = ret2;
1167
1168         if (pos + len > inode->i_size) {
1169                 ext4_truncate_failed_write(inode);
1170                 /*
1171                  * If truncate failed early the inode might still be
1172                  * on the orphan list; we need to make sure the inode
1173                  * is removed from the orphan list in that case.
1174                  */
1175                 if (inode->i_nlink)
1176                         ext4_orphan_del(NULL, inode);
1177         }
1178
1179         return ret ? ret : copied;
1180 }
1181
1182 static int ext4_journalled_write_end(struct file *file,
1183                                      struct address_space *mapping,
1184                                      loff_t pos, unsigned len, unsigned copied,
1185                                      struct page *page, void *fsdata)
1186 {
1187         handle_t *handle = ext4_journal_current_handle();
1188         struct inode *inode = mapping->host;
1189         int ret = 0, ret2;
1190         int partial = 0;
1191         unsigned from, to;
1192         loff_t new_i_size;
1193
1194         trace_ext4_journalled_write_end(inode, pos, len, copied);
1195         from = pos & (PAGE_CACHE_SIZE - 1);
1196         to = from + len;
1197
1198         BUG_ON(!ext4_handle_valid(handle));
1199
1200         if (ext4_has_inline_data(inode))
1201                 copied = ext4_write_inline_data_end(inode, pos, len,
1202                                                     copied, page);
1203         else {
1204                 if (copied < len) {
1205                         if (!PageUptodate(page))
1206                                 copied = 0;
1207                         page_zero_new_buffers(page, from+copied, to);
1208                 }
1209
1210                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1211                                              to, &partial, write_end_fn);
1212                 if (!partial)
1213                         SetPageUptodate(page);
1214         }
1215         new_i_size = pos + copied;
1216         if (new_i_size > inode->i_size)
1217                 i_size_write(inode, pos+copied);
1218         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1219         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1220         if (new_i_size > EXT4_I(inode)->i_disksize) {
1221                 ext4_update_i_disksize(inode, new_i_size);
1222                 ret2 = ext4_mark_inode_dirty(handle, inode);
1223                 if (!ret)
1224                         ret = ret2;
1225         }
1226
1227         unlock_page(page);
1228         page_cache_release(page);
1229         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1230                 /* if we have allocated more blocks and copied
1231                  * less. We will have blocks allocated outside
1232                  * inode->i_size. So truncate them
1233                  */
1234                 ext4_orphan_add(handle, inode);
1235
1236         ret2 = ext4_journal_stop(handle);
1237         if (!ret)
1238                 ret = ret2;
1239         if (pos + len > inode->i_size) {
1240                 ext4_truncate_failed_write(inode);
1241                 /*
1242                  * If truncate failed early the inode might still be
1243                  * on the orphan list; we need to make sure the inode
1244                  * is removed from the orphan list in that case.
1245                  */
1246                 if (inode->i_nlink)
1247                         ext4_orphan_del(NULL, inode);
1248         }
1249
1250         return ret ? ret : copied;
1251 }
1252
1253 /*
1254  * Reserve a metadata for a single block located at lblock
1255  */
1256 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1257 {
1258         int retries = 0;
1259         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1260         struct ext4_inode_info *ei = EXT4_I(inode);
1261         unsigned int md_needed;
1262         ext4_lblk_t save_last_lblock;
1263         int save_len;
1264
1265         /*
1266          * recalculate the amount of metadata blocks to reserve
1267          * in order to allocate nrblocks
1268          * worse case is one extent per block
1269          */
1270 repeat:
1271         spin_lock(&ei->i_block_reservation_lock);
1272         /*
1273          * ext4_calc_metadata_amount() has side effects, which we have
1274          * to be prepared undo if we fail to claim space.
1275          */
1276         save_len = ei->i_da_metadata_calc_len;
1277         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1278         md_needed = EXT4_NUM_B2C(sbi,
1279                                  ext4_calc_metadata_amount(inode, lblock));
1280         trace_ext4_da_reserve_space(inode, md_needed);
1281
1282         /*
1283          * We do still charge estimated metadata to the sb though;
1284          * we cannot afford to run out of free blocks.
1285          */
1286         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1287                 ei->i_da_metadata_calc_len = save_len;
1288                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1289                 spin_unlock(&ei->i_block_reservation_lock);
1290                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1291                         cond_resched();
1292                         goto repeat;
1293                 }
1294                 return -ENOSPC;
1295         }
1296         ei->i_reserved_meta_blocks += md_needed;
1297         spin_unlock(&ei->i_block_reservation_lock);
1298
1299         return 0;       /* success */
1300 }
1301
1302 /*
1303  * Reserve a single cluster located at lblock
1304  */
1305 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1306 {
1307         int retries = 0;
1308         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1309         struct ext4_inode_info *ei = EXT4_I(inode);
1310         unsigned int md_needed;
1311         int ret;
1312         ext4_lblk_t save_last_lblock;
1313         int save_len;
1314
1315         /*
1316          * We will charge metadata quota at writeout time; this saves
1317          * us from metadata over-estimation, though we may go over by
1318          * a small amount in the end.  Here we just reserve for data.
1319          */
1320         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1321         if (ret)
1322                 return ret;
1323
1324         /*
1325          * recalculate the amount of metadata blocks to reserve
1326          * in order to allocate nrblocks
1327          * worse case is one extent per block
1328          */
1329 repeat:
1330         spin_lock(&ei->i_block_reservation_lock);
1331         /*
1332          * ext4_calc_metadata_amount() has side effects, which we have
1333          * to be prepared undo if we fail to claim space.
1334          */
1335         save_len = ei->i_da_metadata_calc_len;
1336         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1337         md_needed = EXT4_NUM_B2C(sbi,
1338                                  ext4_calc_metadata_amount(inode, lblock));
1339         trace_ext4_da_reserve_space(inode, md_needed);
1340
1341         /*
1342          * We do still charge estimated metadata to the sb though;
1343          * we cannot afford to run out of free blocks.
1344          */
1345         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1346                 ei->i_da_metadata_calc_len = save_len;
1347                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1348                 spin_unlock(&ei->i_block_reservation_lock);
1349                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1350                         cond_resched();
1351                         goto repeat;
1352                 }
1353                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1354                 return -ENOSPC;
1355         }
1356         ei->i_reserved_data_blocks++;
1357         ei->i_reserved_meta_blocks += md_needed;
1358         spin_unlock(&ei->i_block_reservation_lock);
1359
1360         return 0;       /* success */
1361 }
1362
1363 static void ext4_da_release_space(struct inode *inode, int to_free)
1364 {
1365         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1366         struct ext4_inode_info *ei = EXT4_I(inode);
1367
1368         if (!to_free)
1369                 return;         /* Nothing to release, exit */
1370
1371         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1372
1373         trace_ext4_da_release_space(inode, to_free);
1374         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1375                 /*
1376                  * if there aren't enough reserved blocks, then the
1377                  * counter is messed up somewhere.  Since this
1378                  * function is called from invalidate page, it's
1379                  * harmless to return without any action.
1380                  */
1381                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1382                          "ino %lu, to_free %d with only %d reserved "
1383                          "data blocks", inode->i_ino, to_free,
1384                          ei->i_reserved_data_blocks);
1385                 WARN_ON(1);
1386                 to_free = ei->i_reserved_data_blocks;
1387         }
1388         ei->i_reserved_data_blocks -= to_free;
1389
1390         if (ei->i_reserved_data_blocks == 0) {
1391                 /*
1392                  * We can release all of the reserved metadata blocks
1393                  * only when we have written all of the delayed
1394                  * allocation blocks.
1395                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1396                  * i_reserved_data_blocks, etc. refer to number of clusters.
1397                  */
1398                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1399                                    ei->i_reserved_meta_blocks);
1400                 ei->i_reserved_meta_blocks = 0;
1401                 ei->i_da_metadata_calc_len = 0;
1402         }
1403
1404         /* update fs dirty data blocks counter */
1405         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1406
1407         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1408
1409         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1410 }
1411
1412 static void ext4_da_page_release_reservation(struct page *page,
1413                                              unsigned long offset)
1414 {
1415         int to_release = 0;
1416         struct buffer_head *head, *bh;
1417         unsigned int curr_off = 0;
1418         struct inode *inode = page->mapping->host;
1419         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1420         int num_clusters;
1421         ext4_fsblk_t lblk;
1422
1423         head = page_buffers(page);
1424         bh = head;
1425         do {
1426                 unsigned int next_off = curr_off + bh->b_size;
1427
1428                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1429                         to_release++;
1430                         clear_buffer_delay(bh);
1431                 }
1432                 curr_off = next_off;
1433         } while ((bh = bh->b_this_page) != head);
1434
1435         if (to_release) {
1436                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1437                 ext4_es_remove_extent(inode, lblk, to_release);
1438         }
1439
1440         /* If we have released all the blocks belonging to a cluster, then we
1441          * need to release the reserved space for that cluster. */
1442         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1443         while (num_clusters > 0) {
1444                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1445                         ((num_clusters - 1) << sbi->s_cluster_bits);
1446                 if (sbi->s_cluster_ratio == 1 ||
1447                     !ext4_find_delalloc_cluster(inode, lblk))
1448                         ext4_da_release_space(inode, 1);
1449
1450                 num_clusters--;
1451         }
1452 }
1453
1454 /*
1455  * Delayed allocation stuff
1456  */
1457
1458 /*
1459  * mpage_da_submit_io - walks through extent of pages and try to write
1460  * them with writepage() call back
1461  *
1462  * @mpd->inode: inode
1463  * @mpd->first_page: first page of the extent
1464  * @mpd->next_page: page after the last page of the extent
1465  *
1466  * By the time mpage_da_submit_io() is called we expect all blocks
1467  * to be allocated. this may be wrong if allocation failed.
1468  *
1469  * As pages are already locked by write_cache_pages(), we can't use it
1470  */
1471 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1472                               struct ext4_map_blocks *map)
1473 {
1474         struct pagevec pvec;
1475         unsigned long index, end;
1476         int ret = 0, err, nr_pages, i;
1477         struct inode *inode = mpd->inode;
1478         struct address_space *mapping = inode->i_mapping;
1479         loff_t size = i_size_read(inode);
1480         unsigned int len, block_start;
1481         struct buffer_head *bh, *page_bufs = NULL;
1482         sector_t pblock = 0, cur_logical = 0;
1483         struct ext4_io_submit io_submit;
1484
1485         BUG_ON(mpd->next_page <= mpd->first_page);
1486         ext4_io_submit_init(&io_submit, mpd->wbc);
1487         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1488         if (!io_submit.io_end)
1489                 return -ENOMEM;
1490         /*
1491          * We need to start from the first_page to the next_page - 1
1492          * to make sure we also write the mapped dirty buffer_heads.
1493          * If we look at mpd->b_blocknr we would only be looking
1494          * at the currently mapped buffer_heads.
1495          */
1496         index = mpd->first_page;
1497         end = mpd->next_page - 1;
1498
1499         pagevec_init(&pvec, 0);
1500         while (index <= end) {
1501                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1502                 if (nr_pages == 0)
1503                         break;
1504                 for (i = 0; i < nr_pages; i++) {
1505                         int skip_page = 0;
1506                         struct page *page = pvec.pages[i];
1507
1508                         index = page->index;
1509                         if (index > end)
1510                                 break;
1511
1512                         if (index == size >> PAGE_CACHE_SHIFT)
1513                                 len = size & ~PAGE_CACHE_MASK;
1514                         else
1515                                 len = PAGE_CACHE_SIZE;
1516                         if (map) {
1517                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1518                                                         inode->i_blkbits);
1519                                 pblock = map->m_pblk + (cur_logical -
1520                                                         map->m_lblk);
1521                         }
1522                         index++;
1523
1524                         BUG_ON(!PageLocked(page));
1525                         BUG_ON(PageWriteback(page));
1526
1527                         bh = page_bufs = page_buffers(page);
1528                         block_start = 0;
1529                         do {
1530                                 if (map && (cur_logical >= map->m_lblk) &&
1531                                     (cur_logical <= (map->m_lblk +
1532                                                      (map->m_len - 1)))) {
1533                                         if (buffer_delay(bh)) {
1534                                                 clear_buffer_delay(bh);
1535                                                 bh->b_blocknr = pblock;
1536                                         }
1537                                         if (buffer_unwritten(bh) ||
1538                                             buffer_mapped(bh))
1539                                                 BUG_ON(bh->b_blocknr != pblock);
1540                                         if (map->m_flags & EXT4_MAP_UNINIT)
1541                                                 set_buffer_uninit(bh);
1542                                         clear_buffer_unwritten(bh);
1543                                 }
1544
1545                                 /*
1546                                  * skip page if block allocation undone and
1547                                  * block is dirty
1548                                  */
1549                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1550                                         skip_page = 1;
1551                                 bh = bh->b_this_page;
1552                                 block_start += bh->b_size;
1553                                 cur_logical++;
1554                                 pblock++;
1555                         } while (bh != page_bufs);
1556
1557                         if (skip_page) {
1558                                 unlock_page(page);
1559                                 continue;
1560                         }
1561
1562                         clear_page_dirty_for_io(page);
1563                         err = ext4_bio_write_page(&io_submit, page, len,
1564                                                   mpd->wbc);
1565                         if (!err)
1566                                 mpd->pages_written++;
1567                         /*
1568                          * In error case, we have to continue because
1569                          * remaining pages are still locked
1570                          */
1571                         if (ret == 0)
1572                                 ret = err;
1573                 }
1574                 pagevec_release(&pvec);
1575         }
1576         ext4_io_submit(&io_submit);
1577         /* Drop io_end reference we got from init */
1578         ext4_put_io_end_defer(io_submit.io_end);
1579         return ret;
1580 }
1581
1582 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1583 {
1584         int nr_pages, i;
1585         pgoff_t index, end;
1586         struct pagevec pvec;
1587         struct inode *inode = mpd->inode;
1588         struct address_space *mapping = inode->i_mapping;
1589         ext4_lblk_t start, last;
1590
1591         index = mpd->first_page;
1592         end   = mpd->next_page - 1;
1593
1594         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1595         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1596         ext4_es_remove_extent(inode, start, last - start + 1);
1597
1598         pagevec_init(&pvec, 0);
1599         while (index <= end) {
1600                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1601                 if (nr_pages == 0)
1602                         break;
1603                 for (i = 0; i < nr_pages; i++) {
1604                         struct page *page = pvec.pages[i];
1605                         if (page->index > end)
1606                                 break;
1607                         BUG_ON(!PageLocked(page));
1608                         BUG_ON(PageWriteback(page));
1609                         block_invalidatepage(page, 0);
1610                         ClearPageUptodate(page);
1611                         unlock_page(page);
1612                 }
1613                 index = pvec.pages[nr_pages - 1]->index + 1;
1614                 pagevec_release(&pvec);
1615         }
1616         return;
1617 }
1618
1619 static void ext4_print_free_blocks(struct inode *inode)
1620 {
1621         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1622         struct super_block *sb = inode->i_sb;
1623         struct ext4_inode_info *ei = EXT4_I(inode);
1624
1625         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1626                EXT4_C2B(EXT4_SB(inode->i_sb),
1627                         ext4_count_free_clusters(sb)));
1628         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1629         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1630                (long long) EXT4_C2B(EXT4_SB(sb),
1631                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1632         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1633                (long long) EXT4_C2B(EXT4_SB(sb),
1634                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1635         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1636         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1637                  ei->i_reserved_data_blocks);
1638         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1639                ei->i_reserved_meta_blocks);
1640         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1641                ei->i_allocated_meta_blocks);
1642         return;
1643 }
1644
1645 /*
1646  * mpage_da_map_and_submit - go through given space, map them
1647  *       if necessary, and then submit them for I/O
1648  *
1649  * @mpd - bh describing space
1650  *
1651  * The function skips space we know is already mapped to disk blocks.
1652  *
1653  */
1654 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1655 {
1656         int err, blks, get_blocks_flags;
1657         struct ext4_map_blocks map, *mapp = NULL;
1658         sector_t next = mpd->b_blocknr;
1659         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1660         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1661         handle_t *handle = NULL;
1662
1663         /*
1664          * If the blocks are mapped already, or we couldn't accumulate
1665          * any blocks, then proceed immediately to the submission stage.
1666          */
1667         if ((mpd->b_size == 0) ||
1668             ((mpd->b_state  & (1 << BH_Mapped)) &&
1669              !(mpd->b_state & (1 << BH_Delay)) &&
1670              !(mpd->b_state & (1 << BH_Unwritten))))
1671                 goto submit_io;
1672
1673         handle = ext4_journal_current_handle();
1674         BUG_ON(!handle);
1675
1676         /*
1677          * Call ext4_map_blocks() to allocate any delayed allocation
1678          * blocks, or to convert an uninitialized extent to be
1679          * initialized (in the case where we have written into
1680          * one or more preallocated blocks).
1681          *
1682          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1683          * indicate that we are on the delayed allocation path.  This
1684          * affects functions in many different parts of the allocation
1685          * call path.  This flag exists primarily because we don't
1686          * want to change *many* call functions, so ext4_map_blocks()
1687          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1688          * inode's allocation semaphore is taken.
1689          *
1690          * If the blocks in questions were delalloc blocks, set
1691          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1692          * variables are updated after the blocks have been allocated.
1693          */
1694         map.m_lblk = next;
1695         map.m_len = max_blocks;
1696         /*
1697          * We're in delalloc path and it is possible that we're going to
1698          * need more metadata blocks than previously reserved. However
1699          * we must not fail because we're in writeback and there is
1700          * nothing we can do about it so it might result in data loss.
1701          * So use reserved blocks to allocate metadata if possible.
1702          */
1703         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1704                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
1705         if (ext4_should_dioread_nolock(mpd->inode))
1706                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1707         if (mpd->b_state & (1 << BH_Delay))
1708                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1709
1710
1711         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1712         if (blks < 0) {
1713                 struct super_block *sb = mpd->inode->i_sb;
1714
1715                 err = blks;
1716                 /*
1717                  * If get block returns EAGAIN or ENOSPC and there
1718                  * appears to be free blocks we will just let
1719                  * mpage_da_submit_io() unlock all of the pages.
1720                  */
1721                 if (err == -EAGAIN)
1722                         goto submit_io;
1723
1724                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1725                         mpd->retval = err;
1726                         goto submit_io;
1727                 }
1728
1729                 /*
1730                  * get block failure will cause us to loop in
1731                  * writepages, because a_ops->writepage won't be able
1732                  * to make progress. The page will be redirtied by
1733                  * writepage and writepages will again try to write
1734                  * the same.
1735                  */
1736                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1737                         ext4_msg(sb, KERN_CRIT,
1738                                  "delayed block allocation failed for inode %lu "
1739                                  "at logical offset %llu with max blocks %zd "
1740                                  "with error %d", mpd->inode->i_ino,
1741                                  (unsigned long long) next,
1742                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1743                         ext4_msg(sb, KERN_CRIT,
1744                                 "This should not happen!! Data will be lost");
1745                         if (err == -ENOSPC)
1746                                 ext4_print_free_blocks(mpd->inode);
1747                 }
1748                 /* invalidate all the pages */
1749                 ext4_da_block_invalidatepages(mpd);
1750
1751                 /* Mark this page range as having been completed */
1752                 mpd->io_done = 1;
1753                 return;
1754         }
1755         BUG_ON(blks == 0);
1756
1757         mapp = &map;
1758         if (map.m_flags & EXT4_MAP_NEW) {
1759                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1760                 int i;
1761
1762                 for (i = 0; i < map.m_len; i++)
1763                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1764         }
1765
1766         /*
1767          * Update on-disk size along with block allocation.
1768          */
1769         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1770         if (disksize > i_size_read(mpd->inode))
1771                 disksize = i_size_read(mpd->inode);
1772         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1773                 ext4_update_i_disksize(mpd->inode, disksize);
1774                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1775                 if (err)
1776                         ext4_error(mpd->inode->i_sb,
1777                                    "Failed to mark inode %lu dirty",
1778                                    mpd->inode->i_ino);
1779         }
1780
1781 submit_io:
1782         mpage_da_submit_io(mpd, mapp);
1783         mpd->io_done = 1;
1784 }
1785
1786 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1787                 (1 << BH_Delay) | (1 << BH_Unwritten))
1788
1789 /*
1790  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1791  *
1792  * @mpd->lbh - extent of blocks
1793  * @logical - logical number of the block in the file
1794  * @b_state - b_state of the buffer head added
1795  *
1796  * the function is used to collect contig. blocks in same state
1797  */
1798 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1799                                    unsigned long b_state)
1800 {
1801         sector_t next;
1802         int blkbits = mpd->inode->i_blkbits;
1803         int nrblocks = mpd->b_size >> blkbits;
1804
1805         /*
1806          * XXX Don't go larger than mballoc is willing to allocate
1807          * This is a stopgap solution.  We eventually need to fold
1808          * mpage_da_submit_io() into this function and then call
1809          * ext4_map_blocks() multiple times in a loop
1810          */
1811         if (nrblocks >= (8*1024*1024 >> blkbits))
1812                 goto flush_it;
1813
1814         /* check if the reserved journal credits might overflow */
1815         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1816                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1817                         /*
1818                          * With non-extent format we are limited by the journal
1819                          * credit available.  Total credit needed to insert
1820                          * nrblocks contiguous blocks is dependent on the
1821                          * nrblocks.  So limit nrblocks.
1822                          */
1823                         goto flush_it;
1824                 }
1825         }
1826         /*
1827          * First block in the extent
1828          */
1829         if (mpd->b_size == 0) {
1830                 mpd->b_blocknr = logical;
1831                 mpd->b_size = 1 << blkbits;
1832                 mpd->b_state = b_state & BH_FLAGS;
1833                 return;
1834         }
1835
1836         next = mpd->b_blocknr + nrblocks;
1837         /*
1838          * Can we merge the block to our big extent?
1839          */
1840         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1841                 mpd->b_size += 1 << blkbits;
1842                 return;
1843         }
1844
1845 flush_it:
1846         /*
1847          * We couldn't merge the block to our extent, so we
1848          * need to flush current  extent and start new one
1849          */
1850         mpage_da_map_and_submit(mpd);
1851         return;
1852 }
1853
1854 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1855 {
1856         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1857 }
1858
1859 /*
1860  * This function is grabs code from the very beginning of
1861  * ext4_map_blocks, but assumes that the caller is from delayed write
1862  * time. This function looks up the requested blocks and sets the
1863  * buffer delay bit under the protection of i_data_sem.
1864  */
1865 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1866                               struct ext4_map_blocks *map,
1867                               struct buffer_head *bh)
1868 {
1869         struct extent_status es;
1870         int retval;
1871         sector_t invalid_block = ~((sector_t) 0xffff);
1872 #ifdef ES_AGGRESSIVE_TEST
1873         struct ext4_map_blocks orig_map;
1874
1875         memcpy(&orig_map, map, sizeof(*map));
1876 #endif
1877
1878         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1879                 invalid_block = ~0;
1880
1881         map->m_flags = 0;
1882         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1883                   "logical block %lu\n", inode->i_ino, map->m_len,
1884                   (unsigned long) map->m_lblk);
1885
1886         /* Lookup extent status tree firstly */
1887         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1888
1889                 if (ext4_es_is_hole(&es)) {
1890                         retval = 0;
1891                         down_read((&EXT4_I(inode)->i_data_sem));
1892                         goto add_delayed;
1893                 }
1894
1895                 /*
1896                  * Delayed extent could be allocated by fallocate.
1897                  * So we need to check it.
1898                  */
1899                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1900                         map_bh(bh, inode->i_sb, invalid_block);
1901                         set_buffer_new(bh);
1902                         set_buffer_delay(bh);
1903                         return 0;
1904                 }
1905
1906                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1907                 retval = es.es_len - (iblock - es.es_lblk);
1908                 if (retval > map->m_len)
1909                         retval = map->m_len;
1910                 map->m_len = retval;
1911                 if (ext4_es_is_written(&es))
1912                         map->m_flags |= EXT4_MAP_MAPPED;
1913                 else if (ext4_es_is_unwritten(&es))
1914                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1915                 else
1916                         BUG_ON(1);
1917
1918 #ifdef ES_AGGRESSIVE_TEST
1919                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1920 #endif
1921                 return retval;
1922         }
1923
1924         /*
1925          * Try to see if we can get the block without requesting a new
1926          * file system block.
1927          */
1928         down_read((&EXT4_I(inode)->i_data_sem));
1929         if (ext4_has_inline_data(inode)) {
1930                 /*
1931                  * We will soon create blocks for this page, and let
1932                  * us pretend as if the blocks aren't allocated yet.
1933                  * In case of clusters, we have to handle the work
1934                  * of mapping from cluster so that the reserved space
1935                  * is calculated properly.
1936                  */
1937                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1938                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1939                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1940                 retval = 0;
1941         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1942                 retval = ext4_ext_map_blocks(NULL, inode, map,
1943                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1944         else
1945                 retval = ext4_ind_map_blocks(NULL, inode, map,
1946                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1947
1948 add_delayed:
1949         if (retval == 0) {
1950                 int ret;
1951                 /*
1952                  * XXX: __block_prepare_write() unmaps passed block,
1953                  * is it OK?
1954                  */
1955                 /*
1956                  * If the block was allocated from previously allocated cluster,
1957                  * then we don't need to reserve it again. However we still need
1958                  * to reserve metadata for every block we're going to write.
1959                  */
1960                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1961                         ret = ext4_da_reserve_space(inode, iblock);
1962                         if (ret) {
1963                                 /* not enough space to reserve */
1964                                 retval = ret;
1965                                 goto out_unlock;
1966                         }
1967                 } else {
1968                         ret = ext4_da_reserve_metadata(inode, iblock);
1969                         if (ret) {
1970                                 /* not enough space to reserve */
1971                                 retval = ret;
1972                                 goto out_unlock;
1973                         }
1974                 }
1975
1976                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1977                                             ~0, EXTENT_STATUS_DELAYED);
1978                 if (ret) {
1979                         retval = ret;
1980                         goto out_unlock;
1981                 }
1982
1983                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1984                  * and it should not appear on the bh->b_state.
1985                  */
1986                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1987
1988                 map_bh(bh, inode->i_sb, invalid_block);
1989                 set_buffer_new(bh);
1990                 set_buffer_delay(bh);
1991         } else if (retval > 0) {
1992                 int ret;
1993                 unsigned long long status;
1994
1995 #ifdef ES_AGGRESSIVE_TEST
1996                 if (retval != map->m_len) {
1997                         printk("ES len assertation failed for inode: %lu "
1998                                "retval %d != map->m_len %d "
1999                                "in %s (lookup)\n", inode->i_ino, retval,
2000                                map->m_len, __func__);
2001                 }
2002 #endif
2003
2004                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2005                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2006                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2007                                             map->m_pblk, status);
2008                 if (ret != 0)
2009                         retval = ret;
2010         }
2011
2012 out_unlock:
2013         up_read((&EXT4_I(inode)->i_data_sem));
2014
2015         return retval;
2016 }
2017
2018 /*
2019  * This is a special get_blocks_t callback which is used by
2020  * ext4_da_write_begin().  It will either return mapped block or
2021  * reserve space for a single block.
2022  *
2023  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2024  * We also have b_blocknr = -1 and b_bdev initialized properly
2025  *
2026  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2027  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2028  * initialized properly.
2029  */
2030 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2031                            struct buffer_head *bh, int create)
2032 {
2033         struct ext4_map_blocks map;
2034         int ret = 0;
2035
2036         BUG_ON(create == 0);
2037         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2038
2039         map.m_lblk = iblock;
2040         map.m_len = 1;
2041
2042         /*
2043          * first, we need to know whether the block is allocated already
2044          * preallocated blocks are unmapped but should treated
2045          * the same as allocated blocks.
2046          */
2047         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2048         if (ret <= 0)
2049                 return ret;
2050
2051         map_bh(bh, inode->i_sb, map.m_pblk);
2052         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2053
2054         if (buffer_unwritten(bh)) {
2055                 /* A delayed write to unwritten bh should be marked
2056                  * new and mapped.  Mapped ensures that we don't do
2057                  * get_block multiple times when we write to the same
2058                  * offset and new ensures that we do proper zero out
2059                  * for partial write.
2060                  */
2061                 set_buffer_new(bh);
2062                 set_buffer_mapped(bh);
2063         }
2064         return 0;
2065 }
2066
2067 static int bget_one(handle_t *handle, struct buffer_head *bh)
2068 {
2069         get_bh(bh);
2070         return 0;
2071 }
2072
2073 static int bput_one(handle_t *handle, struct buffer_head *bh)
2074 {
2075         put_bh(bh);
2076         return 0;
2077 }
2078
2079 static int __ext4_journalled_writepage(struct page *page,
2080                                        unsigned int len)
2081 {
2082         struct address_space *mapping = page->mapping;
2083         struct inode *inode = mapping->host;
2084         struct buffer_head *page_bufs = NULL;
2085         handle_t *handle = NULL;
2086         int ret = 0, err = 0;
2087         int inline_data = ext4_has_inline_data(inode);
2088         struct buffer_head *inode_bh = NULL;
2089
2090         ClearPageChecked(page);
2091
2092         if (inline_data) {
2093                 BUG_ON(page->index != 0);
2094                 BUG_ON(len > ext4_get_max_inline_size(inode));
2095                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2096                 if (inode_bh == NULL)
2097                         goto out;
2098         } else {
2099                 page_bufs = page_buffers(page);
2100                 if (!page_bufs) {
2101                         BUG();
2102                         goto out;
2103                 }
2104                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2105                                        NULL, bget_one);
2106         }
2107         /* As soon as we unlock the page, it can go away, but we have
2108          * references to buffers so we are safe */
2109         unlock_page(page);
2110
2111         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2112                                     ext4_writepage_trans_blocks(inode));
2113         if (IS_ERR(handle)) {
2114                 ret = PTR_ERR(handle);
2115                 goto out;
2116         }
2117
2118         BUG_ON(!ext4_handle_valid(handle));
2119
2120         if (inline_data) {
2121                 ret = ext4_journal_get_write_access(handle, inode_bh);
2122
2123                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2124
2125         } else {
2126                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2127                                              do_journal_get_write_access);
2128
2129                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2130                                              write_end_fn);
2131         }
2132         if (ret == 0)
2133                 ret = err;
2134         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2135         err = ext4_journal_stop(handle);
2136         if (!ret)
2137                 ret = err;
2138
2139         if (!ext4_has_inline_data(inode))
2140                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2141                                        NULL, bput_one);
2142         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2143 out:
2144         brelse(inode_bh);
2145         return ret;
2146 }
2147
2148 /*
2149  * Note that we don't need to start a transaction unless we're journaling data
2150  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2151  * need to file the inode to the transaction's list in ordered mode because if
2152  * we are writing back data added by write(), the inode is already there and if
2153  * we are writing back data modified via mmap(), no one guarantees in which
2154  * transaction the data will hit the disk. In case we are journaling data, we
2155  * cannot start transaction directly because transaction start ranks above page
2156  * lock so we have to do some magic.
2157  *
2158  * This function can get called via...
2159  *   - ext4_da_writepages after taking page lock (have journal handle)
2160  *   - journal_submit_inode_data_buffers (no journal handle)
2161  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2162  *   - grab_page_cache when doing write_begin (have journal handle)
2163  *
2164  * We don't do any block allocation in this function. If we have page with
2165  * multiple blocks we need to write those buffer_heads that are mapped. This
2166  * is important for mmaped based write. So if we do with blocksize 1K
2167  * truncate(f, 1024);
2168  * a = mmap(f, 0, 4096);
2169  * a[0] = 'a';
2170  * truncate(f, 4096);
2171  * we have in the page first buffer_head mapped via page_mkwrite call back
2172  * but other buffer_heads would be unmapped but dirty (dirty done via the
2173  * do_wp_page). So writepage should write the first block. If we modify
2174  * the mmap area beyond 1024 we will again get a page_fault and the
2175  * page_mkwrite callback will do the block allocation and mark the
2176  * buffer_heads mapped.
2177  *
2178  * We redirty the page if we have any buffer_heads that is either delay or
2179  * unwritten in the page.
2180  *
2181  * We can get recursively called as show below.
2182  *
2183  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2184  *              ext4_writepage()
2185  *
2186  * But since we don't do any block allocation we should not deadlock.
2187  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2188  */
2189 static int ext4_writepage(struct page *page,
2190                           struct writeback_control *wbc)
2191 {
2192         int ret = 0;
2193         loff_t size;
2194         unsigned int len;
2195         struct buffer_head *page_bufs = NULL;
2196         struct inode *inode = page->mapping->host;
2197         struct ext4_io_submit io_submit;
2198
2199         trace_ext4_writepage(page);
2200         size = i_size_read(inode);
2201         if (page->index == size >> PAGE_CACHE_SHIFT)
2202                 len = size & ~PAGE_CACHE_MASK;
2203         else
2204                 len = PAGE_CACHE_SIZE;
2205
2206         page_bufs = page_buffers(page);
2207         /*
2208          * We cannot do block allocation or other extent handling in this
2209          * function. If there are buffers needing that, we have to redirty
2210          * the page. But we may reach here when we do a journal commit via
2211          * journal_submit_inode_data_buffers() and in that case we must write
2212          * allocated buffers to achieve data=ordered mode guarantees.
2213          */
2214         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2215                                    ext4_bh_delay_or_unwritten)) {
2216                 redirty_page_for_writepage(wbc, page);
2217                 if (current->flags & PF_MEMALLOC) {
2218                         /*
2219                          * For memory cleaning there's no point in writing only
2220                          * some buffers. So just bail out. Warn if we came here
2221                          * from direct reclaim.
2222                          */
2223                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2224                                                         == PF_MEMALLOC);
2225                         unlock_page(page);
2226                         return 0;
2227                 }
2228         }
2229
2230         if (PageChecked(page) && ext4_should_journal_data(inode))
2231                 /*
2232                  * It's mmapped pagecache.  Add buffers and journal it.  There
2233                  * doesn't seem much point in redirtying the page here.
2234                  */
2235                 return __ext4_journalled_writepage(page, len);
2236
2237         ext4_io_submit_init(&io_submit, wbc);
2238         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2239         if (!io_submit.io_end) {
2240                 redirty_page_for_writepage(wbc, page);
2241                 return -ENOMEM;
2242         }
2243         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2244         ext4_io_submit(&io_submit);
2245         /* Drop io_end reference we got from init */
2246         ext4_put_io_end_defer(io_submit.io_end);
2247         return ret;
2248 }
2249
2250 /*
2251  * This is called via ext4_da_writepages() to
2252  * calculate the total number of credits to reserve to fit
2253  * a single extent allocation into a single transaction,
2254  * ext4_da_writpeages() will loop calling this before
2255  * the block allocation.
2256  */
2257
2258 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2259 {
2260         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2261
2262         /*
2263          * With non-extent format the journal credit needed to
2264          * insert nrblocks contiguous block is dependent on
2265          * number of contiguous block. So we will limit
2266          * number of contiguous block to a sane value
2267          */
2268         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2269             (max_blocks > EXT4_MAX_TRANS_DATA))
2270                 max_blocks = EXT4_MAX_TRANS_DATA;
2271
2272         return ext4_chunk_trans_blocks(inode, max_blocks);
2273 }
2274
2275 /*
2276  * write_cache_pages_da - walk the list of dirty pages of the given
2277  * address space and accumulate pages that need writing, and call
2278  * mpage_da_map_and_submit to map a single contiguous memory region
2279  * and then write them.
2280  */
2281 static int write_cache_pages_da(handle_t *handle,
2282                                 struct address_space *mapping,
2283                                 struct writeback_control *wbc,
2284                                 struct mpage_da_data *mpd,
2285                                 pgoff_t *done_index)
2286 {
2287         struct buffer_head      *bh, *head;
2288         struct inode            *inode = mapping->host;
2289         struct pagevec          pvec;
2290         unsigned int            nr_pages;
2291         sector_t                logical;
2292         pgoff_t                 index, end;
2293         long                    nr_to_write = wbc->nr_to_write;
2294         int                     i, tag, ret = 0;
2295
2296         memset(mpd, 0, sizeof(struct mpage_da_data));
2297         mpd->wbc = wbc;
2298         mpd->inode = inode;
2299         pagevec_init(&pvec, 0);
2300         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2301         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2302
2303         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2304                 tag = PAGECACHE_TAG_TOWRITE;
2305         else
2306                 tag = PAGECACHE_TAG_DIRTY;
2307
2308         *done_index = index;
2309         while (index <= end) {
2310                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2311                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2312                 if (nr_pages == 0)
2313                         return 0;
2314
2315                 for (i = 0; i < nr_pages; i++) {
2316                         struct page *page = pvec.pages[i];
2317
2318                         /*
2319                          * At this point, the page may be truncated or
2320                          * invalidated (changing page->mapping to NULL), or
2321                          * even swizzled back from swapper_space to tmpfs file
2322                          * mapping. However, page->index will not change
2323                          * because we have a reference on the page.
2324                          */
2325                         if (page->index > end)
2326                                 goto out;
2327
2328                         *done_index = page->index + 1;
2329
2330                         /*
2331                          * If we can't merge this page, and we have
2332                          * accumulated an contiguous region, write it
2333                          */
2334                         if ((mpd->next_page != page->index) &&
2335                             (mpd->next_page != mpd->first_page)) {
2336                                 mpage_da_map_and_submit(mpd);
2337                                 goto ret_extent_tail;
2338                         }
2339
2340                         lock_page(page);
2341
2342                         /*
2343                          * If the page is no longer dirty, or its
2344                          * mapping no longer corresponds to inode we
2345                          * are writing (which means it has been
2346                          * truncated or invalidated), or the page is
2347                          * already under writeback and we are not
2348                          * doing a data integrity writeback, skip the page
2349                          */
2350                         if (!PageDirty(page) ||
2351                             (PageWriteback(page) &&
2352                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2353                             unlikely(page->mapping != mapping)) {
2354                                 unlock_page(page);
2355                                 continue;
2356                         }
2357
2358                         wait_on_page_writeback(page);
2359                         BUG_ON(PageWriteback(page));
2360
2361                         /*
2362                          * If we have inline data and arrive here, it means that
2363                          * we will soon create the block for the 1st page, so
2364                          * we'd better clear the inline data here.
2365                          */
2366                         if (ext4_has_inline_data(inode)) {
2367                                 BUG_ON(ext4_test_inode_state(inode,
2368                                                 EXT4_STATE_MAY_INLINE_DATA));
2369                                 ext4_destroy_inline_data(handle, inode);
2370                         }
2371
2372                         if (mpd->next_page != page->index)
2373                                 mpd->first_page = page->index;
2374                         mpd->next_page = page->index + 1;
2375                         logical = (sector_t) page->index <<
2376                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2377
2378                         /* Add all dirty buffers to mpd */
2379                         head = page_buffers(page);
2380                         bh = head;
2381                         do {
2382                                 BUG_ON(buffer_locked(bh));
2383                                 /*
2384                                  * We need to try to allocate unmapped blocks
2385                                  * in the same page.  Otherwise we won't make
2386                                  * progress with the page in ext4_writepage
2387                                  */
2388                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2389                                         mpage_add_bh_to_extent(mpd, logical,
2390                                                                bh->b_state);
2391                                         if (mpd->io_done)
2392                                                 goto ret_extent_tail;
2393                                 } else if (buffer_dirty(bh) &&
2394                                            buffer_mapped(bh)) {
2395                                         /*
2396                                          * mapped dirty buffer. We need to
2397                                          * update the b_state because we look
2398                                          * at b_state in mpage_da_map_blocks.
2399                                          * We don't update b_size because if we
2400                                          * find an unmapped buffer_head later
2401                                          * we need to use the b_state flag of
2402                                          * that buffer_head.
2403                                          */
2404                                         if (mpd->b_size == 0)
2405                                                 mpd->b_state =
2406                                                         bh->b_state & BH_FLAGS;
2407                                 }
2408                                 logical++;
2409                         } while ((bh = bh->b_this_page) != head);
2410
2411                         if (nr_to_write > 0) {
2412                                 nr_to_write--;
2413                                 if (nr_to_write == 0 &&
2414                                     wbc->sync_mode == WB_SYNC_NONE)
2415                                         /*
2416                                          * We stop writing back only if we are
2417                                          * not doing integrity sync. In case of
2418                                          * integrity sync we have to keep going
2419                                          * because someone may be concurrently
2420                                          * dirtying pages, and we might have
2421                                          * synced a lot of newly appeared dirty
2422                                          * pages, but have not synced all of the
2423                                          * old dirty pages.
2424                                          */
2425                                         goto out;
2426                         }
2427                 }
2428                 pagevec_release(&pvec);
2429                 cond_resched();
2430         }
2431         return 0;
2432 ret_extent_tail:
2433         ret = MPAGE_DA_EXTENT_TAIL;
2434 out:
2435         pagevec_release(&pvec);
2436         cond_resched();
2437         return ret;
2438 }
2439
2440
2441 static int ext4_da_writepages(struct address_space *mapping,
2442                               struct writeback_control *wbc)
2443 {
2444         pgoff_t index;
2445         int range_whole = 0;
2446         handle_t *handle = NULL;
2447         struct mpage_da_data mpd;
2448         struct inode *inode = mapping->host;
2449         int pages_written = 0;
2450         unsigned int max_pages;
2451         int range_cyclic, cycled = 1, io_done = 0;
2452         int needed_blocks, ret = 0;
2453         long desired_nr_to_write, nr_to_writebump = 0;
2454         loff_t range_start = wbc->range_start;
2455         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2456         pgoff_t done_index = 0;
2457         pgoff_t end;
2458         struct blk_plug plug;
2459
2460         trace_ext4_da_writepages(inode, wbc);
2461
2462         /*
2463          * No pages to write? This is mainly a kludge to avoid starting
2464          * a transaction for special inodes like journal inode on last iput()
2465          * because that could violate lock ordering on umount
2466          */
2467         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2468                 return 0;
2469
2470         /*
2471          * If the filesystem has aborted, it is read-only, so return
2472          * right away instead of dumping stack traces later on that
2473          * will obscure the real source of the problem.  We test
2474          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2475          * the latter could be true if the filesystem is mounted
2476          * read-only, and in that case, ext4_da_writepages should
2477          * *never* be called, so if that ever happens, we would want
2478          * the stack trace.
2479          */
2480         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2481                 return -EROFS;
2482
2483         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2484                 range_whole = 1;
2485
2486         range_cyclic = wbc->range_cyclic;
2487         if (wbc->range_cyclic) {
2488                 index = mapping->writeback_index;
2489                 if (index)
2490                         cycled = 0;
2491                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2492                 wbc->range_end  = LLONG_MAX;
2493                 wbc->range_cyclic = 0;
2494                 end = -1;
2495         } else {
2496                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2497                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2498         }
2499
2500         /*
2501          * This works around two forms of stupidity.  The first is in
2502          * the writeback code, which caps the maximum number of pages
2503          * written to be 1024 pages.  This is wrong on multiple
2504          * levels; different architectues have a different page size,
2505          * which changes the maximum amount of data which gets
2506          * written.  Secondly, 4 megabytes is way too small.  XFS
2507          * forces this value to be 16 megabytes by multiplying
2508          * nr_to_write parameter by four, and then relies on its
2509          * allocator to allocate larger extents to make them
2510          * contiguous.  Unfortunately this brings us to the second
2511          * stupidity, which is that ext4's mballoc code only allocates
2512          * at most 2048 blocks.  So we force contiguous writes up to
2513          * the number of dirty blocks in the inode, or
2514          * sbi->max_writeback_mb_bump whichever is smaller.
2515          */
2516         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2517         if (!range_cyclic && range_whole) {
2518                 if (wbc->nr_to_write == LONG_MAX)
2519                         desired_nr_to_write = wbc->nr_to_write;
2520                 else
2521                         desired_nr_to_write = wbc->nr_to_write * 8;
2522         } else
2523                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2524                                                            max_pages);
2525         if (desired_nr_to_write > max_pages)
2526                 desired_nr_to_write = max_pages;
2527
2528         if (wbc->nr_to_write < desired_nr_to_write) {
2529                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2530                 wbc->nr_to_write = desired_nr_to_write;
2531         }
2532
2533 retry:
2534         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2535                 tag_pages_for_writeback(mapping, index, end);
2536
2537         blk_start_plug(&plug);
2538         while (!ret && wbc->nr_to_write > 0) {
2539
2540                 /*
2541                  * we  insert one extent at a time. So we need
2542                  * credit needed for single extent allocation.
2543                  * journalled mode is currently not supported
2544                  * by delalloc
2545                  */
2546                 BUG_ON(ext4_should_journal_data(inode));
2547                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2548
2549                 /* start a new transaction*/
2550                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2551                                             needed_blocks);
2552                 if (IS_ERR(handle)) {
2553                         ret = PTR_ERR(handle);
2554                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2555                                "%ld pages, ino %lu; err %d", __func__,
2556                                 wbc->nr_to_write, inode->i_ino, ret);
2557                         blk_finish_plug(&plug);
2558                         goto out_writepages;
2559                 }
2560
2561                 /*
2562                  * Now call write_cache_pages_da() to find the next
2563                  * contiguous region of logical blocks that need
2564                  * blocks to be allocated by ext4 and submit them.
2565                  */
2566                 ret = write_cache_pages_da(handle, mapping,
2567                                            wbc, &mpd, &done_index);
2568                 /*
2569                  * If we have a contiguous extent of pages and we
2570                  * haven't done the I/O yet, map the blocks and submit
2571                  * them for I/O.
2572                  */
2573                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2574                         mpage_da_map_and_submit(&mpd);
2575                         ret = MPAGE_DA_EXTENT_TAIL;
2576                 }
2577                 trace_ext4_da_write_pages(inode, &mpd);
2578                 wbc->nr_to_write -= mpd.pages_written;
2579
2580                 ext4_journal_stop(handle);
2581
2582                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2583                         /* commit the transaction which would
2584                          * free blocks released in the transaction
2585                          * and try again
2586                          */
2587                         jbd2_journal_force_commit_nested(sbi->s_journal);
2588                         ret = 0;
2589                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2590                         /*
2591                          * Got one extent now try with rest of the pages.
2592                          * If mpd.retval is set -EIO, journal is aborted.
2593                          * So we don't need to write any more.
2594                          */
2595                         pages_written += mpd.pages_written;
2596                         ret = mpd.retval;
2597                         io_done = 1;
2598                 } else if (wbc->nr_to_write)
2599                         /*
2600                          * There is no more writeout needed
2601                          * or we requested for a noblocking writeout
2602                          * and we found the device congested
2603                          */
2604                         break;
2605         }
2606         blk_finish_plug(&plug);
2607         if (!io_done && !cycled) {
2608                 cycled = 1;
2609                 index = 0;
2610                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2611                 wbc->range_end  = mapping->writeback_index - 1;
2612                 goto retry;
2613         }
2614
2615         /* Update index */
2616         wbc->range_cyclic = range_cyclic;
2617         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2618                 /*
2619                  * set the writeback_index so that range_cyclic
2620                  * mode will write it back later
2621                  */
2622                 mapping->writeback_index = done_index;
2623
2624 out_writepages:
2625         wbc->nr_to_write -= nr_to_writebump;
2626         wbc->range_start = range_start;
2627         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2628         return ret;
2629 }
2630
2631 static int ext4_nonda_switch(struct super_block *sb)
2632 {
2633         s64 free_clusters, dirty_clusters;
2634         struct ext4_sb_info *sbi = EXT4_SB(sb);
2635
2636         /*
2637          * switch to non delalloc mode if we are running low
2638          * on free block. The free block accounting via percpu
2639          * counters can get slightly wrong with percpu_counter_batch getting
2640          * accumulated on each CPU without updating global counters
2641          * Delalloc need an accurate free block accounting. So switch
2642          * to non delalloc when we are near to error range.
2643          */
2644         free_clusters =
2645                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2646         dirty_clusters =
2647                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2648         /*
2649          * Start pushing delalloc when 1/2 of free blocks are dirty.
2650          */
2651         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2652                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2653
2654         if (2 * free_clusters < 3 * dirty_clusters ||
2655             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2656                 /*
2657                  * free block count is less than 150% of dirty blocks
2658                  * or free blocks is less than watermark
2659                  */
2660                 return 1;
2661         }
2662         return 0;
2663 }
2664
2665 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2666                                loff_t pos, unsigned len, unsigned flags,
2667                                struct page **pagep, void **fsdata)
2668 {
2669         int ret, retries = 0;
2670         struct page *page;
2671         pgoff_t index;
2672         struct inode *inode = mapping->host;
2673         handle_t *handle;
2674
2675         index = pos >> PAGE_CACHE_SHIFT;
2676
2677         if (ext4_nonda_switch(inode->i_sb)) {
2678                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2679                 return ext4_write_begin(file, mapping, pos,
2680                                         len, flags, pagep, fsdata);
2681         }
2682         *fsdata = (void *)0;
2683         trace_ext4_da_write_begin(inode, pos, len, flags);
2684
2685         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2686                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2687                                                       pos, len, flags,
2688                                                       pagep, fsdata);
2689                 if (ret < 0)
2690                         return ret;
2691                 if (ret == 1)
2692                         return 0;
2693         }
2694
2695         /*
2696          * grab_cache_page_write_begin() can take a long time if the
2697          * system is thrashing due to memory pressure, or if the page
2698          * is being written back.  So grab it first before we start
2699          * the transaction handle.  This also allows us to allocate
2700          * the page (if needed) without using GFP_NOFS.
2701          */
2702 retry_grab:
2703         page = grab_cache_page_write_begin(mapping, index, flags);
2704         if (!page)
2705                 return -ENOMEM;
2706         unlock_page(page);
2707
2708         /*
2709          * With delayed allocation, we don't log the i_disksize update
2710          * if there is delayed block allocation. But we still need
2711          * to journalling the i_disksize update if writes to the end
2712          * of file which has an already mapped buffer.
2713          */
2714 retry_journal:
2715         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2716         if (IS_ERR(handle)) {
2717                 page_cache_release(page);
2718                 return PTR_ERR(handle);
2719         }
2720
2721         lock_page(page);
2722         if (page->mapping != mapping) {
2723                 /* The page got truncated from under us */
2724                 unlock_page(page);
2725                 page_cache_release(page);
2726                 ext4_journal_stop(handle);
2727                 goto retry_grab;
2728         }
2729         /* In case writeback began while the page was unlocked */
2730         wait_on_page_writeback(page);
2731
2732         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2733         if (ret < 0) {
2734                 unlock_page(page);
2735                 ext4_journal_stop(handle);
2736                 /*
2737                  * block_write_begin may have instantiated a few blocks
2738                  * outside i_size.  Trim these off again. Don't need
2739                  * i_size_read because we hold i_mutex.
2740                  */
2741                 if (pos + len > inode->i_size)
2742                         ext4_truncate_failed_write(inode);
2743
2744                 if (ret == -ENOSPC &&
2745                     ext4_should_retry_alloc(inode->i_sb, &retries))
2746                         goto retry_journal;
2747
2748                 page_cache_release(page);
2749                 return ret;
2750         }
2751
2752         *pagep = page;
2753         return ret;
2754 }
2755
2756 /*
2757  * Check if we should update i_disksize
2758  * when write to the end of file but not require block allocation
2759  */
2760 static int ext4_da_should_update_i_disksize(struct page *page,
2761                                             unsigned long offset)
2762 {
2763         struct buffer_head *bh;
2764         struct inode *inode = page->mapping->host;
2765         unsigned int idx;
2766         int i;
2767
2768         bh = page_buffers(page);
2769         idx = offset >> inode->i_blkbits;
2770
2771         for (i = 0; i < idx; i++)
2772                 bh = bh->b_this_page;
2773
2774         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2775                 return 0;
2776         return 1;
2777 }
2778
2779 static int ext4_da_write_end(struct file *file,
2780                              struct address_space *mapping,
2781                              loff_t pos, unsigned len, unsigned copied,
2782                              struct page *page, void *fsdata)
2783 {
2784         struct inode *inode = mapping->host;
2785         int ret = 0, ret2;
2786         handle_t *handle = ext4_journal_current_handle();
2787         loff_t new_i_size;
2788         unsigned long start, end;
2789         int write_mode = (int)(unsigned long)fsdata;
2790
2791         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2792                 return ext4_write_end(file, mapping, pos,
2793                                       len, copied, page, fsdata);
2794
2795         trace_ext4_da_write_end(inode, pos, len, copied);
2796         start = pos & (PAGE_CACHE_SIZE - 1);
2797         end = start + copied - 1;
2798
2799         /*
2800          * generic_write_end() will run mark_inode_dirty() if i_size
2801          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2802          * into that.
2803          */
2804         new_i_size = pos + copied;
2805         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2806                 if (ext4_has_inline_data(inode) ||
2807                     ext4_da_should_update_i_disksize(page, end)) {
2808                         down_write(&EXT4_I(inode)->i_data_sem);
2809                         if (new_i_size > EXT4_I(inode)->i_disksize)
2810                                 EXT4_I(inode)->i_disksize = new_i_size;
2811                         up_write(&EXT4_I(inode)->i_data_sem);
2812                         /* We need to mark inode dirty even if
2813                          * new_i_size is less that inode->i_size
2814                          * bu greater than i_disksize.(hint delalloc)
2815                          */
2816                         ext4_mark_inode_dirty(handle, inode);
2817                 }
2818         }
2819
2820         if (write_mode != CONVERT_INLINE_DATA &&
2821             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2822             ext4_has_inline_data(inode))
2823                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2824                                                      page);
2825         else
2826                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2827                                                         page, fsdata);
2828
2829         copied = ret2;
2830         if (ret2 < 0)
2831                 ret = ret2;
2832         ret2 = ext4_journal_stop(handle);
2833         if (!ret)
2834                 ret = ret2;
2835
2836         return ret ? ret : copied;
2837 }
2838
2839 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2840 {
2841         /*
2842          * Drop reserved blocks
2843          */
2844         BUG_ON(!PageLocked(page));
2845         if (!page_has_buffers(page))
2846                 goto out;
2847
2848         ext4_da_page_release_reservation(page, offset);
2849
2850 out:
2851         ext4_invalidatepage(page, offset);
2852
2853         return;
2854 }
2855
2856 /*
2857  * Force all delayed allocation blocks to be allocated for a given inode.
2858  */
2859 int ext4_alloc_da_blocks(struct inode *inode)
2860 {
2861         trace_ext4_alloc_da_blocks(inode);
2862
2863         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2864             !EXT4_I(inode)->i_reserved_meta_blocks)
2865                 return 0;
2866
2867         /*
2868          * We do something simple for now.  The filemap_flush() will
2869          * also start triggering a write of the data blocks, which is
2870          * not strictly speaking necessary (and for users of
2871          * laptop_mode, not even desirable).  However, to do otherwise
2872          * would require replicating code paths in:
2873          *
2874          * ext4_da_writepages() ->
2875          *    write_cache_pages() ---> (via passed in callback function)
2876          *        __mpage_da_writepage() -->
2877          *           mpage_add_bh_to_extent()
2878          *           mpage_da_map_blocks()
2879          *
2880          * The problem is that write_cache_pages(), located in
2881          * mm/page-writeback.c, marks pages clean in preparation for
2882          * doing I/O, which is not desirable if we're not planning on
2883          * doing I/O at all.
2884          *
2885          * We could call write_cache_pages(), and then redirty all of
2886          * the pages by calling redirty_page_for_writepage() but that
2887          * would be ugly in the extreme.  So instead we would need to
2888          * replicate parts of the code in the above functions,
2889          * simplifying them because we wouldn't actually intend to
2890          * write out the pages, but rather only collect contiguous
2891          * logical block extents, call the multi-block allocator, and
2892          * then update the buffer heads with the block allocations.
2893          *
2894          * For now, though, we'll cheat by calling filemap_flush(),
2895          * which will map the blocks, and start the I/O, but not
2896          * actually wait for the I/O to complete.
2897          */
2898         return filemap_flush(inode->i_mapping);
2899 }
2900
2901 /*
2902  * bmap() is special.  It gets used by applications such as lilo and by
2903  * the swapper to find the on-disk block of a specific piece of data.
2904  *
2905  * Naturally, this is dangerous if the block concerned is still in the
2906  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2907  * filesystem and enables swap, then they may get a nasty shock when the
2908  * data getting swapped to that swapfile suddenly gets overwritten by
2909  * the original zero's written out previously to the journal and
2910  * awaiting writeback in the kernel's buffer cache.
2911  *
2912  * So, if we see any bmap calls here on a modified, data-journaled file,
2913  * take extra steps to flush any blocks which might be in the cache.
2914  */
2915 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2916 {
2917         struct inode *inode = mapping->host;
2918         journal_t *journal;
2919         int err;
2920
2921         /*
2922          * We can get here for an inline file via the FIBMAP ioctl
2923          */
2924         if (ext4_has_inline_data(inode))
2925                 return 0;
2926
2927         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2928                         test_opt(inode->i_sb, DELALLOC)) {
2929                 /*
2930                  * With delalloc we want to sync the file
2931                  * so that we can make sure we allocate
2932                  * blocks for file
2933                  */
2934                 filemap_write_and_wait(mapping);
2935         }
2936
2937         if (EXT4_JOURNAL(inode) &&
2938             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2939                 /*
2940                  * This is a REALLY heavyweight approach, but the use of
2941                  * bmap on dirty files is expected to be extremely rare:
2942                  * only if we run lilo or swapon on a freshly made file
2943                  * do we expect this to happen.
2944                  *
2945                  * (bmap requires CAP_SYS_RAWIO so this does not
2946                  * represent an unprivileged user DOS attack --- we'd be
2947                  * in trouble if mortal users could trigger this path at
2948                  * will.)
2949                  *
2950                  * NB. EXT4_STATE_JDATA is not set on files other than
2951                  * regular files.  If somebody wants to bmap a directory
2952                  * or symlink and gets confused because the buffer
2953                  * hasn't yet been flushed to disk, they deserve
2954                  * everything they get.
2955                  */
2956
2957                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2958                 journal = EXT4_JOURNAL(inode);
2959                 jbd2_journal_lock_updates(journal);
2960                 err = jbd2_journal_flush(journal);
2961                 jbd2_journal_unlock_updates(journal);
2962
2963                 if (err)
2964                         return 0;
2965         }
2966
2967         return generic_block_bmap(mapping, block, ext4_get_block);
2968 }
2969
2970 static int ext4_readpage(struct file *file, struct page *page)
2971 {
2972         int ret = -EAGAIN;
2973         struct inode *inode = page->mapping->host;
2974
2975         trace_ext4_readpage(page);
2976
2977         if (ext4_has_inline_data(inode))
2978                 ret = ext4_readpage_inline(inode, page);
2979
2980         if (ret == -EAGAIN)
2981                 return mpage_readpage(page, ext4_get_block);
2982
2983         return ret;
2984 }
2985
2986 static int
2987 ext4_readpages(struct file *file, struct address_space *mapping,
2988                 struct list_head *pages, unsigned nr_pages)
2989 {
2990         struct inode *inode = mapping->host;
2991
2992         /* If the file has inline data, no need to do readpages. */
2993         if (ext4_has_inline_data(inode))
2994                 return 0;
2995
2996         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2997 }
2998
2999 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3000 {
3001         trace_ext4_invalidatepage(page, offset);
3002
3003         /* No journalling happens on data buffers when this function is used */
3004         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3005
3006         block_invalidatepage(page, offset);
3007 }
3008
3009 static int __ext4_journalled_invalidatepage(struct page *page,
3010                                             unsigned long offset)
3011 {
3012         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3013
3014         trace_ext4_journalled_invalidatepage(page, offset);
3015
3016         /*
3017          * If it's a full truncate we just forget about the pending dirtying
3018          */
3019         if (offset == 0)
3020                 ClearPageChecked(page);
3021
3022         return jbd2_journal_invalidatepage(journal, page, offset);
3023 }
3024
3025 /* Wrapper for aops... */
3026 static void ext4_journalled_invalidatepage(struct page *page,
3027                                            unsigned long offset)
3028 {
3029         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3030 }
3031
3032 static int ext4_releasepage(struct page *page, gfp_t wait)
3033 {
3034         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3035
3036         trace_ext4_releasepage(page);
3037
3038         /* Page has dirty journalled data -> cannot release */
3039         if (PageChecked(page))
3040                 return 0;
3041         if (journal)
3042                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3043         else
3044                 return try_to_free_buffers(page);
3045 }
3046
3047 /*
3048  * ext4_get_block used when preparing for a DIO write or buffer write.
3049  * We allocate an uinitialized extent if blocks haven't been allocated.
3050  * The extent will be converted to initialized after the IO is complete.
3051  */
3052 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3053                    struct buffer_head *bh_result, int create)
3054 {
3055         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3056                    inode->i_ino, create);
3057         return _ext4_get_block(inode, iblock, bh_result,
3058                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3059 }
3060
3061 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3062                    struct buffer_head *bh_result, int create)
3063 {
3064         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3065                    inode->i_ino, create);
3066         return _ext4_get_block(inode, iblock, bh_result,
3067                                EXT4_GET_BLOCKS_NO_LOCK);
3068 }
3069
3070 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3071                             ssize_t size, void *private, int ret,
3072                             bool is_async)
3073 {
3074         struct inode *inode = file_inode(iocb->ki_filp);
3075         ext4_io_end_t *io_end = iocb->private;
3076
3077         /* if not async direct IO just return */
3078         if (!io_end) {
3079                 inode_dio_done(inode);
3080                 if (is_async)
3081                         aio_complete(iocb, ret, 0);
3082                 return;
3083         }
3084
3085         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3086                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3087                   iocb->private, io_end->inode->i_ino, iocb, offset,
3088                   size);
3089
3090         iocb->private = NULL;
3091         io_end->offset = offset;
3092         io_end->size = size;
3093         if (is_async) {
3094                 io_end->iocb = iocb;
3095                 io_end->result = ret;
3096         }
3097         ext4_put_io_end_defer(io_end);
3098 }
3099
3100 /*
3101  * For ext4 extent files, ext4 will do direct-io write to holes,
3102  * preallocated extents, and those write extend the file, no need to
3103  * fall back to buffered IO.
3104  *
3105  * For holes, we fallocate those blocks, mark them as uninitialized
3106  * If those blocks were preallocated, we mark sure they are split, but
3107  * still keep the range to write as uninitialized.
3108  *
3109  * The unwritten extents will be converted to written when DIO is completed.
3110  * For async direct IO, since the IO may still pending when return, we
3111  * set up an end_io call back function, which will do the conversion
3112  * when async direct IO completed.
3113  *
3114  * If the O_DIRECT write will extend the file then add this inode to the
3115  * orphan list.  So recovery will truncate it back to the original size
3116  * if the machine crashes during the write.
3117  *
3118  */
3119 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3120                               const struct iovec *iov, loff_t offset,
3121                               unsigned long nr_segs)
3122 {
3123         struct file *file = iocb->ki_filp;
3124         struct inode *inode = file->f_mapping->host;
3125         ssize_t ret;
3126         size_t count = iov_length(iov, nr_segs);
3127         int overwrite = 0;
3128         get_block_t *get_block_func = NULL;
3129         int dio_flags = 0;
3130         loff_t final_size = offset + count;
3131         ext4_io_end_t *io_end = NULL;
3132
3133         /* Use the old path for reads and writes beyond i_size. */
3134         if (rw != WRITE || final_size > inode->i_size)
3135                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3136
3137         BUG_ON(iocb->private == NULL);
3138
3139         /* If we do a overwrite dio, i_mutex locking can be released */
3140         overwrite = *((int *)iocb->private);
3141
3142         if (overwrite) {
3143                 atomic_inc(&inode->i_dio_count);
3144                 down_read(&EXT4_I(inode)->i_data_sem);
3145                 mutex_unlock(&inode->i_mutex);
3146         }
3147
3148         /*
3149          * We could direct write to holes and fallocate.
3150          *
3151          * Allocated blocks to fill the hole are marked as
3152          * uninitialized to prevent parallel buffered read to expose
3153          * the stale data before DIO complete the data IO.
3154          *
3155          * As to previously fallocated extents, ext4 get_block will
3156          * just simply mark the buffer mapped but still keep the
3157          * extents uninitialized.
3158          *
3159          * For non AIO case, we will convert those unwritten extents
3160          * to written after return back from blockdev_direct_IO.
3161          *
3162          * For async DIO, the conversion needs to be deferred when the
3163          * IO is completed. The ext4 end_io callback function will be
3164          * called to take care of the conversion work.  Here for async
3165          * case, we allocate an io_end structure to hook to the iocb.
3166          */
3167         iocb->private = NULL;
3168         ext4_inode_aio_set(inode, NULL);
3169         if (!is_sync_kiocb(iocb)) {
3170                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3171                 if (!io_end) {
3172                         ret = -ENOMEM;
3173                         goto retake_lock;
3174                 }
3175                 io_end->flag |= EXT4_IO_END_DIRECT;
3176                 /*
3177                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3178                  */
3179                 iocb->private = ext4_get_io_end(io_end);
3180                 /*
3181                  * we save the io structure for current async direct
3182                  * IO, so that later ext4_map_blocks() could flag the
3183                  * io structure whether there is a unwritten extents
3184                  * needs to be converted when IO is completed.
3185                  */
3186                 ext4_inode_aio_set(inode, io_end);
3187         }
3188
3189         if (overwrite) {
3190                 get_block_func = ext4_get_block_write_nolock;
3191         } else {
3192                 get_block_func = ext4_get_block_write;
3193                 dio_flags = DIO_LOCKING;
3194         }
3195         ret = __blockdev_direct_IO(rw, iocb, inode,
3196                                    inode->i_sb->s_bdev, iov,
3197                                    offset, nr_segs,
3198                                    get_block_func,
3199                                    ext4_end_io_dio,
3200                                    NULL,
3201                                    dio_flags);
3202
3203         /*
3204          * Put our reference to io_end. This can free the io_end structure e.g.
3205          * in sync IO case or in case of error. It can even perform extent
3206          * conversion if all bios we submitted finished before we got here.
3207          * Note that in that case iocb->private can be already set to NULL
3208          * here.
3209          */
3210         if (io_end) {
3211                 ext4_inode_aio_set(inode, NULL);
3212                 ext4_put_io_end(io_end);
3213                 /*
3214                  * In case of error or no write ext4_end_io_dio() was not
3215                  * called so we have to put iocb's reference.
3216                  */
3217                 if (ret <= 0 && ret != -EIOCBQUEUED) {
3218                         WARN_ON(iocb->private != io_end);
3219                         ext4_put_io_end(io_end);
3220                         iocb->private = NULL;
3221                 }
3222         }
3223         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3224                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3225                 int err;
3226                 /*
3227                  * for non AIO case, since the IO is already
3228                  * completed, we could do the conversion right here
3229                  */
3230                 err = ext4_convert_unwritten_extents(inode,
3231                                                      offset, ret);
3232                 if (err < 0)
3233                         ret = err;
3234                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3235         }
3236
3237 retake_lock:
3238         /* take i_mutex locking again if we do a ovewrite dio */
3239         if (overwrite) {
3240                 inode_dio_done(inode);
3241                 up_read(&EXT4_I(inode)->i_data_sem);
3242                 mutex_lock(&inode->i_mutex);
3243         }
3244
3245         return ret;
3246 }
3247
3248 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3249                               const struct iovec *iov, loff_t offset,
3250                               unsigned long nr_segs)
3251 {
3252         struct file *file = iocb->ki_filp;
3253         struct inode *inode = file->f_mapping->host;
3254         ssize_t ret;
3255
3256         /*
3257          * If we are doing data journalling we don't support O_DIRECT
3258          */
3259         if (ext4_should_journal_data(inode))
3260                 return 0;
3261
3262         /* Let buffer I/O handle the inline data case. */
3263         if (ext4_has_inline_data(inode))
3264                 return 0;
3265
3266         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3267         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3268                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3269         else
3270                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3271         trace_ext4_direct_IO_exit(inode, offset,
3272                                 iov_length(iov, nr_segs), rw, ret);
3273         return ret;
3274 }
3275
3276 /*
3277  * Pages can be marked dirty completely asynchronously from ext4's journalling
3278  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3279  * much here because ->set_page_dirty is called under VFS locks.  The page is
3280  * not necessarily locked.
3281  *
3282  * We cannot just dirty the page and leave attached buffers clean, because the
3283  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3284  * or jbddirty because all the journalling code will explode.
3285  *
3286  * So what we do is to mark the page "pending dirty" and next time writepage
3287  * is called, propagate that into the buffers appropriately.
3288  */
3289 static int ext4_journalled_set_page_dirty(struct page *page)
3290 {
3291         SetPageChecked(page);
3292         return __set_page_dirty_nobuffers(page);
3293 }
3294
3295 static const struct address_space_operations ext4_aops = {
3296         .readpage               = ext4_readpage,
3297         .readpages              = ext4_readpages,
3298         .writepage              = ext4_writepage,
3299         .write_begin            = ext4_write_begin,
3300         .write_end              = ext4_write_end,
3301         .bmap                   = ext4_bmap,
3302         .invalidatepage         = ext4_invalidatepage,
3303         .releasepage            = ext4_releasepage,
3304         .direct_IO              = ext4_direct_IO,
3305         .migratepage            = buffer_migrate_page,
3306         .is_partially_uptodate  = block_is_partially_uptodate,
3307         .error_remove_page      = generic_error_remove_page,
3308 };
3309
3310 static const struct address_space_operations ext4_journalled_aops = {
3311         .readpage               = ext4_readpage,
3312         .readpages              = ext4_readpages,
3313         .writepage              = ext4_writepage,
3314         .write_begin            = ext4_write_begin,
3315         .write_end              = ext4_journalled_write_end,
3316         .set_page_dirty         = ext4_journalled_set_page_dirty,
3317         .bmap                   = ext4_bmap,
3318         .invalidatepage         = ext4_journalled_invalidatepage,
3319         .releasepage            = ext4_releasepage,
3320         .direct_IO              = ext4_direct_IO,
3321         .is_partially_uptodate  = block_is_partially_uptodate,
3322         .error_remove_page      = generic_error_remove_page,
3323 };
3324
3325 static const struct address_space_operations ext4_da_aops = {
3326         .readpage               = ext4_readpage,
3327         .readpages              = ext4_readpages,
3328         .writepage              = ext4_writepage,
3329         .writepages             = ext4_da_writepages,
3330         .write_begin            = ext4_da_write_begin,
3331         .write_end              = ext4_da_write_end,
3332         .bmap                   = ext4_bmap,
3333         .invalidatepage         = ext4_da_invalidatepage,
3334         .releasepage            = ext4_releasepage,
3335         .direct_IO              = ext4_direct_IO,
3336         .migratepage            = buffer_migrate_page,
3337         .is_partially_uptodate  = block_is_partially_uptodate,
3338         .error_remove_page      = generic_error_remove_page,
3339 };
3340
3341 void ext4_set_aops(struct inode *inode)
3342 {
3343         switch (ext4_inode_journal_mode(inode)) {
3344         case EXT4_INODE_ORDERED_DATA_MODE:
3345                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3346                 break;
3347         case EXT4_INODE_WRITEBACK_DATA_MODE:
3348                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3349                 break;
3350         case EXT4_INODE_JOURNAL_DATA_MODE:
3351                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3352                 return;
3353         default:
3354                 BUG();
3355         }
3356         if (test_opt(inode->i_sb, DELALLOC))
3357                 inode->i_mapping->a_ops = &ext4_da_aops;
3358         else
3359                 inode->i_mapping->a_ops = &ext4_aops;
3360 }
3361
3362
3363 /*
3364  * ext4_discard_partial_page_buffers()
3365  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3366  * This function finds and locks the page containing the offset
3367  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3368  * Calling functions that already have the page locked should call
3369  * ext4_discard_partial_page_buffers_no_lock directly.
3370  */
3371 int ext4_discard_partial_page_buffers(handle_t *handle,
3372                 struct address_space *mapping, loff_t from,
3373                 loff_t length, int flags)
3374 {
3375         struct inode *inode = mapping->host;
3376         struct page *page;
3377         int err = 0;
3378
3379         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3380                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3381         if (!page)
3382                 return -ENOMEM;
3383
3384         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3385                 from, length, flags);
3386
3387         unlock_page(page);
3388         page_cache_release(page);
3389         return err;
3390 }
3391
3392 /*
3393  * ext4_discard_partial_page_buffers_no_lock()
3394  * Zeros a page range of length 'length' starting from offset 'from'.
3395  * Buffer heads that correspond to the block aligned regions of the
3396  * zeroed range will be unmapped.  Unblock aligned regions
3397  * will have the corresponding buffer head mapped if needed so that
3398  * that region of the page can be updated with the partial zero out.
3399  *
3400  * This function assumes that the page has already been  locked.  The
3401  * The range to be discarded must be contained with in the given page.
3402  * If the specified range exceeds the end of the page it will be shortened
3403  * to the end of the page that corresponds to 'from'.  This function is
3404  * appropriate for updating a page and it buffer heads to be unmapped and
3405  * zeroed for blocks that have been either released, or are going to be
3406  * released.
3407  *
3408  * handle: The journal handle
3409  * inode:  The files inode
3410  * page:   A locked page that contains the offset "from"
3411  * from:   The starting byte offset (from the beginning of the file)
3412  *         to begin discarding
3413  * len:    The length of bytes to discard
3414  * flags:  Optional flags that may be used:
3415  *
3416  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3417  *         Only zero the regions of the page whose buffer heads
3418  *         have already been unmapped.  This flag is appropriate
3419  *         for updating the contents of a page whose blocks may
3420  *         have already been released, and we only want to zero
3421  *         out the regions that correspond to those released blocks.
3422  *
3423  * Returns zero on success or negative on failure.
3424  */
3425 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3426                 struct inode *inode, struct page *page, loff_t from,
3427                 loff_t length, int flags)
3428 {
3429         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3430         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3431         unsigned int blocksize, max, pos;
3432         ext4_lblk_t iblock;
3433         struct buffer_head *bh;
3434         int err = 0;
3435
3436         blocksize = inode->i_sb->s_blocksize;
3437         max = PAGE_CACHE_SIZE - offset;
3438
3439         if (index != page->index)
3440                 return -EINVAL;
3441
3442         /*
3443          * correct length if it does not fall between
3444          * 'from' and the end of the page
3445          */
3446         if (length > max || length < 0)
3447                 length = max;
3448
3449         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3450
3451         if (!page_has_buffers(page))
3452                 create_empty_buffers(page, blocksize, 0);
3453
3454         /* Find the buffer that contains "offset" */
3455         bh = page_buffers(page);
3456         pos = blocksize;
3457         while (offset >= pos) {
3458                 bh = bh->b_this_page;
3459                 iblock++;
3460                 pos += blocksize;
3461         }
3462
3463         pos = offset;
3464         while (pos < offset + length) {
3465                 unsigned int end_of_block, range_to_discard;
3466
3467                 err = 0;
3468
3469                 /* The length of space left to zero and unmap */
3470                 range_to_discard = offset + length - pos;
3471
3472                 /* The length of space until the end of the block */
3473                 end_of_block = blocksize - (pos & (blocksize-1));
3474
3475                 /*
3476                  * Do not unmap or zero past end of block
3477                  * for this buffer head
3478                  */
3479                 if (range_to_discard > end_of_block)
3480                         range_to_discard = end_of_block;
3481
3482
3483                 /*
3484                  * Skip this buffer head if we are only zeroing unampped
3485                  * regions of the page
3486                  */
3487                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3488                         buffer_mapped(bh))
3489                                 goto next;
3490
3491                 /* If the range is block aligned, unmap */
3492                 if (range_to_discard == blocksize) {
3493                         clear_buffer_dirty(bh);
3494                         bh->b_bdev = NULL;
3495                         clear_buffer_mapped(bh);
3496                         clear_buffer_req(bh);
3497                         clear_buffer_new(bh);
3498                         clear_buffer_delay(bh);
3499                         clear_buffer_unwritten(bh);
3500                         clear_buffer_uptodate(bh);
3501                         zero_user(page, pos, range_to_discard);
3502                         BUFFER_TRACE(bh, "Buffer discarded");
3503                         goto next;
3504                 }
3505
3506                 /*
3507                  * If this block is not completely contained in the range
3508                  * to be discarded, then it is not going to be released. Because
3509                  * we need to keep this block, we need to make sure this part
3510                  * of the page is uptodate before we modify it by writeing
3511                  * partial zeros on it.
3512                  */
3513                 if (!buffer_mapped(bh)) {
3514                         /*
3515                          * Buffer head must be mapped before we can read
3516                          * from the block
3517                          */
3518                         BUFFER_TRACE(bh, "unmapped");
3519                         ext4_get_block(inode, iblock, bh, 0);
3520                         /* unmapped? It's a hole - nothing to do */
3521                         if (!buffer_mapped(bh)) {
3522                                 BUFFER_TRACE(bh, "still unmapped");
3523                                 goto next;
3524                         }
3525                 }
3526
3527                 /* Ok, it's mapped. Make sure it's up-to-date */
3528                 if (PageUptodate(page))
3529                         set_buffer_uptodate(bh);
3530
3531                 if (!buffer_uptodate(bh)) {
3532                         err = -EIO;
3533                         ll_rw_block(READ, 1, &bh);
3534                         wait_on_buffer(bh);
3535                         /* Uhhuh. Read error. Complain and punt.*/
3536                         if (!buffer_uptodate(bh))
3537                                 goto next;
3538                 }
3539
3540                 if (ext4_should_journal_data(inode)) {
3541                         BUFFER_TRACE(bh, "get write access");
3542                         err = ext4_journal_get_write_access(handle, bh);
3543                         if (err)
3544                                 goto next;
3545                 }
3546
3547                 zero_user(page, pos, range_to_discard);
3548
3549                 err = 0;
3550                 if (ext4_should_journal_data(inode)) {
3551                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3552                 } else
3553                         mark_buffer_dirty(bh);
3554
3555                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3556 next:
3557                 bh = bh->b_this_page;
3558                 iblock++;
3559                 pos += range_to_discard;
3560         }
3561
3562         return err;
3563 }
3564
3565 int ext4_can_truncate(struct inode *inode)
3566 {
3567         if (S_ISREG(inode->i_mode))
3568                 return 1;
3569         if (S_ISDIR(inode->i_mode))
3570                 return 1;
3571         if (S_ISLNK(inode->i_mode))
3572                 return !ext4_inode_is_fast_symlink(inode);
3573         return 0;
3574 }
3575
3576 /*
3577  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3578  * associated with the given offset and length
3579  *
3580  * @inode:  File inode
3581  * @offset: The offset where the hole will begin
3582  * @len:    The length of the hole
3583  *
3584  * Returns: 0 on success or negative on failure
3585  */
3586
3587 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3588 {
3589         struct inode *inode = file_inode(file);
3590         struct super_block *sb = inode->i_sb;
3591         ext4_lblk_t first_block, stop_block;
3592         struct address_space *mapping = inode->i_mapping;
3593         loff_t first_page, last_page, page_len;
3594         loff_t first_page_offset, last_page_offset;
3595         handle_t *handle;
3596         unsigned int credits;
3597         int ret = 0;
3598
3599         if (!S_ISREG(inode->i_mode))
3600                 return -EOPNOTSUPP;
3601
3602         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3603                 /* TODO: Add support for bigalloc file systems */
3604                 return -EOPNOTSUPP;
3605         }
3606
3607         trace_ext4_punch_hole(inode, offset, length);
3608
3609         /*
3610          * Write out all dirty pages to avoid race conditions
3611          * Then release them.
3612          */
3613         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3614                 ret = filemap_write_and_wait_range(mapping, offset,
3615                                                    offset + length - 1);
3616                 if (ret)
3617                         return ret;
3618         }
3619
3620         mutex_lock(&inode->i_mutex);
3621         /* It's not possible punch hole on append only file */
3622         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3623                 ret = -EPERM;
3624                 goto out_mutex;
3625         }
3626         if (IS_SWAPFILE(inode)) {
3627                 ret = -ETXTBSY;
3628                 goto out_mutex;
3629         }
3630
3631         /* No need to punch hole beyond i_size */
3632         if (offset >= inode->i_size)
3633                 goto out_mutex;
3634
3635         /*
3636          * If the hole extends beyond i_size, set the hole
3637          * to end after the page that contains i_size
3638          */
3639         if (offset + length > inode->i_size) {
3640                 length = inode->i_size +
3641                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3642                    offset;
3643         }
3644
3645         first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3646         last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3647
3648         first_page_offset = first_page << PAGE_CACHE_SHIFT;
3649         last_page_offset = last_page << PAGE_CACHE_SHIFT;
3650
3651         /* Now release the pages */
3652         if (last_page_offset > first_page_offset) {
3653                 truncate_pagecache_range(inode, first_page_offset,
3654                                          last_page_offset - 1);
3655         }
3656
3657         /* Wait all existing dio workers, newcomers will block on i_mutex */
3658         ext4_inode_block_unlocked_dio(inode);
3659         ret = ext4_flush_unwritten_io(inode);
3660         if (ret)
3661                 goto out_dio;
3662         inode_dio_wait(inode);
3663
3664         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3665                 credits = ext4_writepage_trans_blocks(inode);
3666         else
3667                 credits = ext4_blocks_for_truncate(inode);
3668         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3669         if (IS_ERR(handle)) {
3670                 ret = PTR_ERR(handle);
3671                 ext4_std_error(sb, ret);
3672                 goto out_dio;
3673         }
3674
3675         /*
3676          * Now we need to zero out the non-page-aligned data in the
3677          * pages at the start and tail of the hole, and unmap the
3678          * buffer heads for the block aligned regions of the page that
3679          * were completely zeroed.
3680          */
3681         if (first_page > last_page) {
3682                 /*
3683                  * If the file space being truncated is contained
3684                  * within a page just zero out and unmap the middle of
3685                  * that page
3686                  */
3687                 ret = ext4_discard_partial_page_buffers(handle,
3688                         mapping, offset, length, 0);
3689
3690                 if (ret)
3691                         goto out_stop;
3692         } else {
3693                 /*
3694                  * zero out and unmap the partial page that contains
3695                  * the start of the hole
3696                  */
3697                 page_len = first_page_offset - offset;
3698                 if (page_len > 0) {
3699                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3700                                                 offset, page_len, 0);
3701                         if (ret)
3702                                 goto out_stop;
3703                 }
3704
3705                 /*
3706                  * zero out and unmap the partial page that contains
3707                  * the end of the hole
3708                  */
3709                 page_len = offset + length - last_page_offset;
3710                 if (page_len > 0) {
3711                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3712                                         last_page_offset, page_len, 0);
3713                         if (ret)
3714                                 goto out_stop;
3715                 }
3716         }
3717
3718         /*
3719          * If i_size is contained in the last page, we need to
3720          * unmap and zero the partial page after i_size
3721          */
3722         if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3723            inode->i_size % PAGE_CACHE_SIZE != 0) {
3724                 page_len = PAGE_CACHE_SIZE -
3725                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3726
3727                 if (page_len > 0) {
3728                         ret = ext4_discard_partial_page_buffers(handle,
3729                                         mapping, inode->i_size, page_len, 0);
3730
3731                         if (ret)
3732                                 goto out_stop;
3733                 }
3734         }
3735
3736         first_block = (offset + sb->s_blocksize - 1) >>
3737                 EXT4_BLOCK_SIZE_BITS(sb);
3738         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3739
3740         /* If there are no blocks to remove, return now */
3741         if (first_block >= stop_block)
3742                 goto out_stop;
3743
3744         down_write(&EXT4_I(inode)->i_data_sem);
3745         ext4_discard_preallocations(inode);
3746
3747         ret = ext4_es_remove_extent(inode, first_block,
3748                                     stop_block - first_block);
3749         if (ret) {
3750                 up_write(&EXT4_I(inode)->i_data_sem);
3751                 goto out_stop;
3752         }
3753
3754         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3755                 ret = ext4_ext_remove_space(inode, first_block,
3756                                             stop_block - 1);
3757         else
3758                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3759                                             stop_block);
3760
3761         ext4_discard_preallocations(inode);
3762         up_write(&EXT4_I(inode)->i_data_sem);
3763         if (IS_SYNC(inode))
3764                 ext4_handle_sync(handle);
3765         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3766         ext4_mark_inode_dirty(handle, inode);
3767 out_stop:
3768         ext4_journal_stop(handle);
3769 out_dio:
3770         ext4_inode_resume_unlocked_dio(inode);
3771 out_mutex:
3772         mutex_unlock(&inode->i_mutex);
3773         return ret;
3774 }
3775
3776 /*
3777  * ext4_truncate()
3778  *
3779  * We block out ext4_get_block() block instantiations across the entire
3780  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3781  * simultaneously on behalf of the same inode.
3782  *
3783  * As we work through the truncate and commit bits of it to the journal there
3784  * is one core, guiding principle: the file's tree must always be consistent on
3785  * disk.  We must be able to restart the truncate after a crash.
3786  *
3787  * The file's tree may be transiently inconsistent in memory (although it
3788  * probably isn't), but whenever we close off and commit a journal transaction,
3789  * the contents of (the filesystem + the journal) must be consistent and
3790  * restartable.  It's pretty simple, really: bottom up, right to left (although
3791  * left-to-right works OK too).
3792  *
3793  * Note that at recovery time, journal replay occurs *before* the restart of
3794  * truncate against the orphan inode list.
3795  *
3796  * The committed inode has the new, desired i_size (which is the same as
3797  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3798  * that this inode's truncate did not complete and it will again call
3799  * ext4_truncate() to have another go.  So there will be instantiated blocks
3800  * to the right of the truncation point in a crashed ext4 filesystem.  But
3801  * that's fine - as long as they are linked from the inode, the post-crash
3802  * ext4_truncate() run will find them and release them.
3803  */
3804 void ext4_truncate(struct inode *inode)
3805 {
3806         struct ext4_inode_info *ei = EXT4_I(inode);
3807         unsigned int credits;
3808         handle_t *handle;
3809         struct address_space *mapping = inode->i_mapping;
3810         loff_t page_len;
3811
3812         /*
3813          * There is a possibility that we're either freeing the inode
3814          * or it completely new indode. In those cases we might not
3815          * have i_mutex locked because it's not necessary.
3816          */
3817         if (!(inode->i_state & (I_NEW|I_FREEING)))
3818                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3819         trace_ext4_truncate_enter(inode);
3820
3821         if (!ext4_can_truncate(inode))
3822                 return;
3823
3824         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3825
3826         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3827                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3828
3829         if (ext4_has_inline_data(inode)) {
3830                 int has_inline = 1;
3831
3832                 ext4_inline_data_truncate(inode, &has_inline);
3833                 if (has_inline)
3834                         return;
3835         }
3836
3837         /*
3838          * finish any pending end_io work so we won't run the risk of
3839          * converting any truncated blocks to initialized later
3840          */
3841         ext4_flush_unwritten_io(inode);
3842
3843         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3844                 credits = ext4_writepage_trans_blocks(inode);
3845         else
3846                 credits = ext4_blocks_for_truncate(inode);
3847
3848         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3849         if (IS_ERR(handle)) {
3850                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3851                 return;
3852         }
3853
3854         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3855                 page_len = PAGE_CACHE_SIZE -
3856                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3857
3858                 if (ext4_discard_partial_page_buffers(handle,
3859                                 mapping, inode->i_size, page_len, 0))
3860                         goto out_stop;
3861         }
3862
3863         /*
3864          * We add the inode to the orphan list, so that if this
3865          * truncate spans multiple transactions, and we crash, we will
3866          * resume the truncate when the filesystem recovers.  It also
3867          * marks the inode dirty, to catch the new size.
3868          *
3869          * Implication: the file must always be in a sane, consistent
3870          * truncatable state while each transaction commits.
3871          */
3872         if (ext4_orphan_add(handle, inode))
3873                 goto out_stop;
3874
3875         down_write(&EXT4_I(inode)->i_data_sem);
3876
3877         ext4_discard_preallocations(inode);
3878
3879         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3880                 ext4_ext_truncate(handle, inode);
3881         else
3882                 ext4_ind_truncate(handle, inode);
3883
3884         up_write(&ei->i_data_sem);
3885
3886         if (IS_SYNC(inode))
3887                 ext4_handle_sync(handle);
3888
3889 out_stop:
3890         /*
3891          * If this was a simple ftruncate() and the file will remain alive,
3892          * then we need to clear up the orphan record which we created above.
3893          * However, if this was a real unlink then we were called by
3894          * ext4_delete_inode(), and we allow that function to clean up the
3895          * orphan info for us.
3896          */
3897         if (inode->i_nlink)
3898                 ext4_orphan_del(handle, inode);
3899
3900         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3901         ext4_mark_inode_dirty(handle, inode);
3902         ext4_journal_stop(handle);
3903
3904         trace_ext4_truncate_exit(inode);
3905 }
3906
3907 /*
3908  * ext4_get_inode_loc returns with an extra refcount against the inode's
3909  * underlying buffer_head on success. If 'in_mem' is true, we have all
3910  * data in memory that is needed to recreate the on-disk version of this
3911  * inode.
3912  */
3913 static int __ext4_get_inode_loc(struct inode *inode,
3914                                 struct ext4_iloc *iloc, int in_mem)
3915 {
3916         struct ext4_group_desc  *gdp;
3917         struct buffer_head      *bh;
3918         struct super_block      *sb = inode->i_sb;
3919         ext4_fsblk_t            block;
3920         int                     inodes_per_block, inode_offset;
3921
3922         iloc->bh = NULL;
3923         if (!ext4_valid_inum(sb, inode->i_ino))
3924                 return -EIO;
3925
3926         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3927         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3928         if (!gdp)
3929                 return -EIO;
3930
3931         /*
3932          * Figure out the offset within the block group inode table
3933          */
3934         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3935         inode_offset = ((inode->i_ino - 1) %
3936                         EXT4_INODES_PER_GROUP(sb));
3937         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3938         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3939
3940         bh = sb_getblk(sb, block);
3941         if (unlikely(!bh))
3942                 return -ENOMEM;
3943         if (!buffer_uptodate(bh)) {
3944                 lock_buffer(bh);
3945
3946                 /*
3947                  * If the buffer has the write error flag, we have failed
3948                  * to write out another inode in the same block.  In this
3949                  * case, we don't have to read the block because we may
3950                  * read the old inode data successfully.
3951                  */
3952                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3953                         set_buffer_uptodate(bh);
3954
3955                 if (buffer_uptodate(bh)) {
3956                         /* someone brought it uptodate while we waited */
3957                         unlock_buffer(bh);
3958                         goto has_buffer;
3959                 }
3960
3961                 /*
3962                  * If we have all information of the inode in memory and this
3963                  * is the only valid inode in the block, we need not read the
3964                  * block.
3965                  */
3966                 if (in_mem) {
3967                         struct buffer_head *bitmap_bh;
3968                         int i, start;
3969
3970                         start = inode_offset & ~(inodes_per_block - 1);
3971
3972                         /* Is the inode bitmap in cache? */
3973                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3974                         if (unlikely(!bitmap_bh))
3975                                 goto make_io;
3976
3977                         /*
3978                          * If the inode bitmap isn't in cache then the
3979                          * optimisation may end up performing two reads instead
3980                          * of one, so skip it.
3981                          */
3982                         if (!buffer_uptodate(bitmap_bh)) {
3983                                 brelse(bitmap_bh);
3984                                 goto make_io;
3985                         }
3986                         for (i = start; i < start + inodes_per_block; i++) {
3987                                 if (i == inode_offset)
3988                                         continue;
3989                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3990                                         break;
3991                         }
3992                         brelse(bitmap_bh);
3993                         if (i == start + inodes_per_block) {
3994                                 /* all other inodes are free, so skip I/O */
3995                                 memset(bh->b_data, 0, bh->b_size);
3996                                 set_buffer_uptodate(bh);
3997                                 unlock_buffer(bh);
3998                                 goto has_buffer;
3999                         }
4000                 }
4001
4002 make_io:
4003                 /*
4004                  * If we need to do any I/O, try to pre-readahead extra
4005                  * blocks from the inode table.
4006                  */
4007                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4008                         ext4_fsblk_t b, end, table;
4009                         unsigned num;
4010
4011                         table = ext4_inode_table(sb, gdp);
4012                         /* s_inode_readahead_blks is always a power of 2 */
4013                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4014                         if (table > b)
4015                                 b = table;
4016                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4017                         num = EXT4_INODES_PER_GROUP(sb);
4018                         if (ext4_has_group_desc_csum(sb))
4019                                 num -= ext4_itable_unused_count(sb, gdp);
4020                         table += num / inodes_per_block;
4021                         if (end > table)
4022                                 end = table;
4023                         while (b <= end)
4024                                 sb_breadahead(sb, b++);
4025                 }
4026
4027                 /*
4028                  * There are other valid inodes in the buffer, this inode
4029                  * has in-inode xattrs, or we don't have this inode in memory.
4030                  * Read the block from disk.
4031                  */
4032                 trace_ext4_load_inode(inode);
4033                 get_bh(bh);
4034                 bh->b_end_io = end_buffer_read_sync;
4035                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4036                 wait_on_buffer(bh);
4037                 if (!buffer_uptodate(bh)) {
4038                         EXT4_ERROR_INODE_BLOCK(inode, block,
4039                                                "unable to read itable block");
4040                         brelse(bh);
4041                         return -EIO;
4042                 }
4043         }
4044 has_buffer:
4045         iloc->bh = bh;
4046         return 0;
4047 }
4048
4049 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4050 {
4051         /* We have all inode data except xattrs in memory here. */
4052         return __ext4_get_inode_loc(inode, iloc,
4053                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4054 }
4055
4056 void ext4_set_inode_flags(struct inode *inode)
4057 {
4058         unsigned int flags = EXT4_I(inode)->i_flags;
4059
4060         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4061         if (flags & EXT4_SYNC_FL)
4062                 inode->i_flags |= S_SYNC;
4063         if (flags & EXT4_APPEND_FL)
4064                 inode->i_flags |= S_APPEND;
4065         if (flags & EXT4_IMMUTABLE_FL)
4066                 inode->i_flags |= S_IMMUTABLE;
4067         if (flags & EXT4_NOATIME_FL)
4068                 inode->i_flags |= S_NOATIME;
4069         if (flags & EXT4_DIRSYNC_FL)
4070                 inode->i_flags |= S_DIRSYNC;
4071 }
4072
4073 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4074 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4075 {
4076         unsigned int vfs_fl;
4077         unsigned long old_fl, new_fl;
4078
4079         do {
4080                 vfs_fl = ei->vfs_inode.i_flags;
4081                 old_fl = ei->i_flags;
4082                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4083                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4084                                 EXT4_DIRSYNC_FL);
4085                 if (vfs_fl & S_SYNC)
4086                         new_fl |= EXT4_SYNC_FL;
4087                 if (vfs_fl & S_APPEND)
4088                         new_fl |= EXT4_APPEND_FL;
4089                 if (vfs_fl & S_IMMUTABLE)
4090                         new_fl |= EXT4_IMMUTABLE_FL;
4091                 if (vfs_fl & S_NOATIME)
4092                         new_fl |= EXT4_NOATIME_FL;
4093                 if (vfs_fl & S_DIRSYNC)
4094                         new_fl |= EXT4_DIRSYNC_FL;
4095         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4096 }
4097
4098 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4099                                   struct ext4_inode_info *ei)
4100 {
4101         blkcnt_t i_blocks ;
4102         struct inode *inode = &(ei->vfs_inode);
4103         struct super_block *sb = inode->i_sb;
4104
4105         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4106                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4107                 /* we are using combined 48 bit field */
4108                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4109                                         le32_to_cpu(raw_inode->i_blocks_lo);
4110                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4111                         /* i_blocks represent file system block size */
4112                         return i_blocks  << (inode->i_blkbits - 9);
4113                 } else {
4114                         return i_blocks;
4115                 }
4116         } else {
4117                 return le32_to_cpu(raw_inode->i_blocks_lo);
4118         }
4119 }
4120
4121 static inline void ext4_iget_extra_inode(struct inode *inode,
4122                                          struct ext4_inode *raw_inode,
4123                                          struct ext4_inode_info *ei)
4124 {
4125         __le32 *magic = (void *)raw_inode +
4126                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4127         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4128                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4129                 ext4_find_inline_data_nolock(inode);
4130         } else
4131                 EXT4_I(inode)->i_inline_off = 0;
4132 }
4133
4134 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4135 {
4136         struct ext4_iloc iloc;
4137         struct ext4_inode *raw_inode;
4138         struct ext4_inode_info *ei;
4139         struct inode *inode;
4140         journal_t *journal = EXT4_SB(sb)->s_journal;
4141         long ret;
4142         int block;
4143         uid_t i_uid;
4144         gid_t i_gid;
4145
4146         inode = iget_locked(sb, ino);
4147         if (!inode)
4148                 return ERR_PTR(-ENOMEM);
4149         if (!(inode->i_state & I_NEW))
4150                 return inode;
4151
4152         ei = EXT4_I(inode);
4153         iloc.bh = NULL;
4154
4155         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4156         if (ret < 0)
4157                 goto bad_inode;
4158         raw_inode = ext4_raw_inode(&iloc);
4159
4160         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4161                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4162                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4163                     EXT4_INODE_SIZE(inode->i_sb)) {
4164                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4165                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4166                                 EXT4_INODE_SIZE(inode->i_sb));
4167                         ret = -EIO;
4168                         goto bad_inode;
4169                 }
4170         } else
4171                 ei->i_extra_isize = 0;
4172
4173         /* Precompute checksum seed for inode metadata */
4174         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4175                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4176                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4177                 __u32 csum;
4178                 __le32 inum = cpu_to_le32(inode->i_ino);
4179                 __le32 gen = raw_inode->i_generation;
4180                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4181                                    sizeof(inum));
4182                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4183                                               sizeof(gen));
4184         }
4185
4186         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4187                 EXT4_ERROR_INODE(inode, "checksum invalid");
4188                 ret = -EIO;
4189                 goto bad_inode;
4190         }
4191
4192         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4193         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4194         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4195         if (!(test_opt(inode->i_sb, NO_UID32))) {
4196                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4197                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4198         }
4199         i_uid_write(inode, i_uid);
4200         i_gid_write(inode, i_gid);
4201         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4202
4203         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4204         ei->i_inline_off = 0;
4205         ei->i_dir_start_lookup = 0;
4206         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4207         /* We now have enough fields to check if the inode was active or not.
4208          * This is needed because nfsd might try to access dead inodes
4209          * the test is that same one that e2fsck uses
4210          * NeilBrown 1999oct15
4211          */
4212         if (inode->i_nlink == 0) {
4213                 if ((inode->i_mode == 0 ||
4214                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4215                     ino != EXT4_BOOT_LOADER_INO) {
4216                         /* this inode is deleted */
4217                         ret = -ESTALE;
4218                         goto bad_inode;
4219                 }
4220                 /* The only unlinked inodes we let through here have
4221                  * valid i_mode and are being read by the orphan
4222                  * recovery code: that's fine, we're about to complete
4223                  * the process of deleting those.
4224                  * OR it is the EXT4_BOOT_LOADER_INO which is
4225                  * not initialized on a new filesystem. */
4226         }
4227         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4228         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4229         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4230         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4231                 ei->i_file_acl |=
4232                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4233         inode->i_size = ext4_isize(raw_inode);
4234         ei->i_disksize = inode->i_size;
4235 #ifdef CONFIG_QUOTA
4236         ei->i_reserved_quota = 0;
4237 #endif
4238         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4239         ei->i_block_group = iloc.block_group;
4240         ei->i_last_alloc_group = ~0;
4241         /*
4242          * NOTE! The in-memory inode i_data array is in little-endian order
4243          * even on big-endian machines: we do NOT byteswap the block numbers!
4244          */
4245         for (block = 0; block < EXT4_N_BLOCKS; block++)
4246                 ei->i_data[block] = raw_inode->i_block[block];
4247         INIT_LIST_HEAD(&ei->i_orphan);
4248
4249         /*
4250          * Set transaction id's of transactions that have to be committed
4251          * to finish f[data]sync. We set them to currently running transaction
4252          * as we cannot be sure that the inode or some of its metadata isn't
4253          * part of the transaction - the inode could have been reclaimed and
4254          * now it is reread from disk.
4255          */
4256         if (journal) {
4257                 transaction_t *transaction;
4258                 tid_t tid;
4259
4260                 read_lock(&journal->j_state_lock);
4261                 if (journal->j_running_transaction)
4262                         transaction = journal->j_running_transaction;
4263                 else
4264                         transaction = journal->j_committing_transaction;
4265                 if (transaction)
4266                         tid = transaction->t_tid;
4267                 else
4268                         tid = journal->j_commit_sequence;
4269                 read_unlock(&journal->j_state_lock);
4270                 ei->i_sync_tid = tid;
4271                 ei->i_datasync_tid = tid;
4272         }
4273
4274         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4275                 if (ei->i_extra_isize == 0) {
4276                         /* The extra space is currently unused. Use it. */
4277                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4278                                             EXT4_GOOD_OLD_INODE_SIZE;
4279                 } else {
4280                         ext4_iget_extra_inode(inode, raw_inode, ei);
4281                 }
4282         }
4283
4284         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4285         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4286         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4287         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4288
4289         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4290         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4291                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4292                         inode->i_version |=
4293                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4294         }
4295
4296         ret = 0;
4297         if (ei->i_file_acl &&
4298             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4299                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4300                                  ei->i_file_acl);
4301                 ret = -EIO;
4302                 goto bad_inode;
4303         } else if (!ext4_has_inline_data(inode)) {
4304                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4305                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4306                             (S_ISLNK(inode->i_mode) &&
4307                              !ext4_inode_is_fast_symlink(inode))))
4308                                 /* Validate extent which is part of inode */
4309                                 ret = ext4_ext_check_inode(inode);
4310                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4311                            (S_ISLNK(inode->i_mode) &&
4312                             !ext4_inode_is_fast_symlink(inode))) {
4313                         /* Validate block references which are part of inode */
4314                         ret = ext4_ind_check_inode(inode);
4315                 }
4316         }
4317         if (ret)
4318                 goto bad_inode;
4319
4320         if (S_ISREG(inode->i_mode)) {
4321                 inode->i_op = &ext4_file_inode_operations;
4322                 inode->i_fop = &ext4_file_operations;
4323                 ext4_set_aops(inode);
4324         } else if (S_ISDIR(inode->i_mode)) {
4325                 inode->i_op = &ext4_dir_inode_operations;
4326                 inode->i_fop = &ext4_dir_operations;
4327         } else if (S_ISLNK(inode->i_mode)) {
4328                 if (ext4_inode_is_fast_symlink(inode)) {
4329                         inode->i_op = &ext4_fast_symlink_inode_operations;
4330                         nd_terminate_link(ei->i_data, inode->i_size,
4331                                 sizeof(ei->i_data) - 1);
4332                 } else {
4333                         inode->i_op = &ext4_symlink_inode_operations;
4334                         ext4_set_aops(inode);
4335                 }
4336         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4337               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4338                 inode->i_op = &ext4_special_inode_operations;
4339                 if (raw_inode->i_block[0])
4340                         init_special_inode(inode, inode->i_mode,
4341                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4342                 else
4343                         init_special_inode(inode, inode->i_mode,
4344                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4345         } else if (ino == EXT4_BOOT_LOADER_INO) {
4346                 make_bad_inode(inode);
4347         } else {
4348                 ret = -EIO;
4349                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4350                 goto bad_inode;
4351         }
4352         brelse(iloc.bh);
4353         ext4_set_inode_flags(inode);
4354         unlock_new_inode(inode);
4355         return inode;
4356
4357 bad_inode:
4358         brelse(iloc.bh);
4359         iget_failed(inode);
4360         return ERR_PTR(ret);
4361 }
4362
4363 static int ext4_inode_blocks_set(handle_t *handle,
4364                                 struct ext4_inode *raw_inode,
4365                                 struct ext4_inode_info *ei)
4366 {
4367         struct inode *inode = &(ei->vfs_inode);
4368         u64 i_blocks = inode->i_blocks;
4369         struct super_block *sb = inode->i_sb;
4370
4371         if (i_blocks <= ~0U) {
4372                 /*
4373                  * i_blocks can be represented in a 32 bit variable
4374                  * as multiple of 512 bytes
4375                  */
4376                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4377                 raw_inode->i_blocks_high = 0;
4378                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4379                 return 0;
4380         }
4381         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4382                 return -EFBIG;
4383
4384         if (i_blocks <= 0xffffffffffffULL) {
4385                 /*
4386                  * i_blocks can be represented in a 48 bit variable
4387                  * as multiple of 512 bytes
4388                  */
4389                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4390                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4391                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4392         } else {
4393                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4394                 /* i_block is stored in file system block size */
4395                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4396                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4397                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4398         }
4399         return 0;
4400 }
4401
4402 /*
4403  * Post the struct inode info into an on-disk inode location in the
4404  * buffer-cache.  This gobbles the caller's reference to the
4405  * buffer_head in the inode location struct.
4406  *
4407  * The caller must have write access to iloc->bh.
4408  */
4409 static int ext4_do_update_inode(handle_t *handle,
4410                                 struct inode *inode,
4411                                 struct ext4_iloc *iloc)
4412 {
4413         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4414         struct ext4_inode_info *ei = EXT4_I(inode);
4415         struct buffer_head *bh = iloc->bh;
4416         int err = 0, rc, block;
4417         int need_datasync = 0;
4418         uid_t i_uid;
4419         gid_t i_gid;
4420
4421         /* For fields not not tracking in the in-memory inode,
4422          * initialise them to zero for new inodes. */
4423         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4424                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4425
4426         ext4_get_inode_flags(ei);
4427         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4428         i_uid = i_uid_read(inode);
4429         i_gid = i_gid_read(inode);
4430         if (!(test_opt(inode->i_sb, NO_UID32))) {
4431                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4432                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4433 /*
4434  * Fix up interoperability with old kernels. Otherwise, old inodes get
4435  * re-used with the upper 16 bits of the uid/gid intact
4436  */
4437                 if (!ei->i_dtime) {
4438                         raw_inode->i_uid_high =
4439                                 cpu_to_le16(high_16_bits(i_uid));
4440                         raw_inode->i_gid_high =
4441                                 cpu_to_le16(high_16_bits(i_gid));
4442                 } else {
4443                         raw_inode->i_uid_high = 0;
4444                         raw_inode->i_gid_high = 0;
4445                 }
4446         } else {
4447                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4448                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4449                 raw_inode->i_uid_high = 0;
4450                 raw_inode->i_gid_high = 0;
4451         }
4452         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4453
4454         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4455         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4456         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4457         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4458
4459         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4460                 goto out_brelse;
4461         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4462         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4463         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4464             cpu_to_le32(EXT4_OS_HURD))
4465                 raw_inode->i_file_acl_high =
4466                         cpu_to_le16(ei->i_file_acl >> 32);
4467         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4468         if (ei->i_disksize != ext4_isize(raw_inode)) {
4469                 ext4_isize_set(raw_inode, ei->i_disksize);
4470                 need_datasync = 1;
4471         }
4472         if (ei->i_disksize > 0x7fffffffULL) {
4473                 struct super_block *sb = inode->i_sb;
4474                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4475                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4476                                 EXT4_SB(sb)->s_es->s_rev_level ==
4477                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4478                         /* If this is the first large file
4479                          * created, add a flag to the superblock.
4480                          */
4481                         err = ext4_journal_get_write_access(handle,
4482                                         EXT4_SB(sb)->s_sbh);
4483                         if (err)
4484                                 goto out_brelse;
4485                         ext4_update_dynamic_rev(sb);
4486                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4487                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4488                         ext4_handle_sync(handle);
4489                         err = ext4_handle_dirty_super(handle, sb);
4490                 }
4491         }
4492         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4493         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4494                 if (old_valid_dev(inode->i_rdev)) {
4495                         raw_inode->i_block[0] =
4496                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4497                         raw_inode->i_block[1] = 0;
4498                 } else {
4499                         raw_inode->i_block[0] = 0;
4500                         raw_inode->i_block[1] =
4501                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4502                         raw_inode->i_block[2] = 0;
4503                 }
4504         } else if (!ext4_has_inline_data(inode)) {
4505                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4506                         raw_inode->i_block[block] = ei->i_data[block];
4507         }
4508
4509         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4510         if (ei->i_extra_isize) {
4511                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4512                         raw_inode->i_version_hi =
4513                         cpu_to_le32(inode->i_version >> 32);
4514                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4515         }
4516
4517         ext4_inode_csum_set(inode, raw_inode, ei);
4518
4519         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4520         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4521         if (!err)
4522                 err = rc;
4523         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4524
4525         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4526 out_brelse:
4527         brelse(bh);
4528         ext4_std_error(inode->i_sb, err);
4529         return err;
4530 }
4531
4532 /*
4533  * ext4_write_inode()
4534  *
4535  * We are called from a few places:
4536  *
4537  * - Within generic_file_write() for O_SYNC files.
4538  *   Here, there will be no transaction running. We wait for any running
4539  *   transaction to commit.
4540  *
4541  * - Within sys_sync(), kupdate and such.
4542  *   We wait on commit, if tol to.
4543  *
4544  * - Within prune_icache() (PF_MEMALLOC == true)
4545  *   Here we simply return.  We can't afford to block kswapd on the
4546  *   journal commit.
4547  *
4548  * In all cases it is actually safe for us to return without doing anything,
4549  * because the inode has been copied into a raw inode buffer in
4550  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4551  * knfsd.
4552  *
4553  * Note that we are absolutely dependent upon all inode dirtiers doing the
4554  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4555  * which we are interested.
4556  *
4557  * It would be a bug for them to not do this.  The code:
4558  *
4559  *      mark_inode_dirty(inode)
4560  *      stuff();
4561  *      inode->i_size = expr;
4562  *
4563  * is in error because a kswapd-driven write_inode() could occur while
4564  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4565  * will no longer be on the superblock's dirty inode list.
4566  */
4567 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4568 {
4569         int err;
4570
4571         if (current->flags & PF_MEMALLOC)
4572                 return 0;
4573
4574         if (EXT4_SB(inode->i_sb)->s_journal) {
4575                 if (ext4_journal_current_handle()) {
4576                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4577                         dump_stack();
4578                         return -EIO;
4579                 }
4580
4581                 if (wbc->sync_mode != WB_SYNC_ALL)
4582                         return 0;
4583
4584                 err = ext4_force_commit(inode->i_sb);
4585         } else {
4586                 struct ext4_iloc iloc;
4587
4588                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4589                 if (err)
4590                         return err;
4591                 if (wbc->sync_mode == WB_SYNC_ALL)
4592                         sync_dirty_buffer(iloc.bh);
4593                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4594                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4595                                          "IO error syncing inode");
4596                         err = -EIO;
4597                 }
4598                 brelse(iloc.bh);
4599         }
4600         return err;
4601 }
4602
4603 /*
4604  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4605  * buffers that are attached to a page stradding i_size and are undergoing
4606  * commit. In that case we have to wait for commit to finish and try again.
4607  */
4608 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4609 {
4610         struct page *page;
4611         unsigned offset;
4612         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4613         tid_t commit_tid = 0;
4614         int ret;
4615
4616         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4617         /*
4618          * All buffers in the last page remain valid? Then there's nothing to
4619          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4620          * blocksize case
4621          */
4622         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4623                 return;
4624         while (1) {
4625                 page = find_lock_page(inode->i_mapping,
4626                                       inode->i_size >> PAGE_CACHE_SHIFT);
4627                 if (!page)
4628                         return;
4629                 ret = __ext4_journalled_invalidatepage(page, offset);
4630                 unlock_page(page);
4631                 page_cache_release(page);
4632                 if (ret != -EBUSY)
4633                         return;
4634                 commit_tid = 0;
4635                 read_lock(&journal->j_state_lock);
4636                 if (journal->j_committing_transaction)
4637                         commit_tid = journal->j_committing_transaction->t_tid;
4638                 read_unlock(&journal->j_state_lock);
4639                 if (commit_tid)
4640                         jbd2_log_wait_commit(journal, commit_tid);
4641         }
4642 }
4643
4644 /*
4645  * ext4_setattr()
4646  *
4647  * Called from notify_change.
4648  *
4649  * We want to trap VFS attempts to truncate the file as soon as
4650  * possible.  In particular, we want to make sure that when the VFS
4651  * shrinks i_size, we put the inode on the orphan list and modify
4652  * i_disksize immediately, so that during the subsequent flushing of
4653  * dirty pages and freeing of disk blocks, we can guarantee that any
4654  * commit will leave the blocks being flushed in an unused state on
4655  * disk.  (On recovery, the inode will get truncated and the blocks will
4656  * be freed, so we have a strong guarantee that no future commit will
4657  * leave these blocks visible to the user.)
4658  *
4659  * Another thing we have to assure is that if we are in ordered mode
4660  * and inode is still attached to the committing transaction, we must
4661  * we start writeout of all the dirty pages which are being truncated.
4662  * This way we are sure that all the data written in the previous
4663  * transaction are already on disk (truncate waits for pages under
4664  * writeback).
4665  *
4666  * Called with inode->i_mutex down.
4667  */
4668 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4669 {
4670         struct inode *inode = dentry->d_inode;
4671         int error, rc = 0;
4672         int orphan = 0;
4673         const unsigned int ia_valid = attr->ia_valid;
4674
4675         error = inode_change_ok(inode, attr);
4676         if (error)
4677                 return error;
4678
4679         if (is_quota_modification(inode, attr))
4680                 dquot_initialize(inode);
4681         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4682             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4683                 handle_t *handle;
4684
4685                 /* (user+group)*(old+new) structure, inode write (sb,
4686                  * inode block, ? - but truncate inode update has it) */
4687                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4688                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4689                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4690                 if (IS_ERR(handle)) {
4691                         error = PTR_ERR(handle);
4692                         goto err_out;
4693                 }
4694                 error = dquot_transfer(inode, attr);
4695                 if (error) {
4696                         ext4_journal_stop(handle);
4697                         return error;
4698                 }
4699                 /* Update corresponding info in inode so that everything is in
4700                  * one transaction */
4701                 if (attr->ia_valid & ATTR_UID)
4702                         inode->i_uid = attr->ia_uid;
4703                 if (attr->ia_valid & ATTR_GID)
4704                         inode->i_gid = attr->ia_gid;
4705                 error = ext4_mark_inode_dirty(handle, inode);
4706                 ext4_journal_stop(handle);
4707         }
4708
4709         if (attr->ia_valid & ATTR_SIZE) {
4710
4711                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4712                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4713
4714                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4715                                 return -EFBIG;
4716                 }
4717         }
4718
4719         if (S_ISREG(inode->i_mode) &&
4720             attr->ia_valid & ATTR_SIZE &&
4721             (attr->ia_size < inode->i_size)) {
4722                 handle_t *handle;
4723
4724                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4725                 if (IS_ERR(handle)) {
4726                         error = PTR_ERR(handle);
4727                         goto err_out;
4728                 }
4729                 if (ext4_handle_valid(handle)) {
4730                         error = ext4_orphan_add(handle, inode);
4731                         orphan = 1;
4732                 }
4733                 EXT4_I(inode)->i_disksize = attr->ia_size;
4734                 rc = ext4_mark_inode_dirty(handle, inode);
4735                 if (!error)
4736                         error = rc;
4737                 ext4_journal_stop(handle);
4738
4739                 if (ext4_should_order_data(inode)) {
4740                         error = ext4_begin_ordered_truncate(inode,
4741                                                             attr->ia_size);
4742                         if (error) {
4743                                 /* Do as much error cleanup as possible */
4744                                 handle = ext4_journal_start(inode,
4745                                                             EXT4_HT_INODE, 3);
4746                                 if (IS_ERR(handle)) {
4747                                         ext4_orphan_del(NULL, inode);
4748                                         goto err_out;
4749                                 }
4750                                 ext4_orphan_del(handle, inode);
4751                                 orphan = 0;
4752                                 ext4_journal_stop(handle);
4753                                 goto err_out;
4754                         }
4755                 }
4756         }
4757
4758         if (attr->ia_valid & ATTR_SIZE) {
4759                 if (attr->ia_size != inode->i_size) {
4760                         loff_t oldsize = inode->i_size;
4761
4762                         i_size_write(inode, attr->ia_size);
4763                         /*
4764                          * Blocks are going to be removed from the inode. Wait
4765                          * for dio in flight.  Temporarily disable
4766                          * dioread_nolock to prevent livelock.
4767                          */
4768                         if (orphan) {
4769                                 if (!ext4_should_journal_data(inode)) {
4770                                         ext4_inode_block_unlocked_dio(inode);
4771                                         inode_dio_wait(inode);
4772                                         ext4_inode_resume_unlocked_dio(inode);
4773                                 } else
4774                                         ext4_wait_for_tail_page_commit(inode);
4775                         }
4776                         /*
4777                          * Truncate pagecache after we've waited for commit
4778                          * in data=journal mode to make pages freeable.
4779                          */
4780                         truncate_pagecache(inode, oldsize, inode->i_size);
4781                 }
4782                 ext4_truncate(inode);
4783         }
4784
4785         if (!rc) {
4786                 setattr_copy(inode, attr);
4787                 mark_inode_dirty(inode);
4788         }
4789
4790         /*
4791          * If the call to ext4_truncate failed to get a transaction handle at
4792          * all, we need to clean up the in-core orphan list manually.
4793          */
4794         if (orphan && inode->i_nlink)
4795                 ext4_orphan_del(NULL, inode);
4796
4797         if (!rc && (ia_valid & ATTR_MODE))
4798                 rc = ext4_acl_chmod(inode);
4799
4800 err_out:
4801         ext4_std_error(inode->i_sb, error);
4802         if (!error)
4803                 error = rc;
4804         return error;
4805 }
4806
4807 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4808                  struct kstat *stat)
4809 {
4810         struct inode *inode;
4811         unsigned long delalloc_blocks;
4812
4813         inode = dentry->d_inode;
4814         generic_fillattr(inode, stat);
4815
4816         /*
4817          * We can't update i_blocks if the block allocation is delayed
4818          * otherwise in the case of system crash before the real block
4819          * allocation is done, we will have i_blocks inconsistent with
4820          * on-disk file blocks.
4821          * We always keep i_blocks updated together with real
4822          * allocation. But to not confuse with user, stat
4823          * will return the blocks that include the delayed allocation
4824          * blocks for this file.
4825          */
4826         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4827                                 EXT4_I(inode)->i_reserved_data_blocks);
4828
4829         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4830         return 0;
4831 }
4832
4833 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4834 {
4835         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4836                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4837         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4838 }
4839
4840 /*
4841  * Account for index blocks, block groups bitmaps and block group
4842  * descriptor blocks if modify datablocks and index blocks
4843  * worse case, the indexs blocks spread over different block groups
4844  *
4845  * If datablocks are discontiguous, they are possible to spread over
4846  * different block groups too. If they are contiguous, with flexbg,
4847  * they could still across block group boundary.
4848  *
4849  * Also account for superblock, inode, quota and xattr blocks
4850  */
4851 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4852 {
4853         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4854         int gdpblocks;
4855         int idxblocks;
4856         int ret = 0;
4857
4858         /*
4859          * How many index blocks need to touch to modify nrblocks?
4860          * The "Chunk" flag indicating whether the nrblocks is
4861          * physically contiguous on disk
4862          *
4863          * For Direct IO and fallocate, they calls get_block to allocate
4864          * one single extent at a time, so they could set the "Chunk" flag
4865          */
4866         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4867
4868         ret = idxblocks;
4869
4870         /*
4871          * Now let's see how many group bitmaps and group descriptors need
4872          * to account
4873          */
4874         groups = idxblocks;
4875         if (chunk)
4876                 groups += 1;
4877         else
4878                 groups += nrblocks;
4879
4880         gdpblocks = groups;
4881         if (groups > ngroups)
4882                 groups = ngroups;
4883         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4884                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4885
4886         /* bitmaps and block group descriptor blocks */
4887         ret += groups + gdpblocks;
4888
4889         /* Blocks for super block, inode, quota and xattr blocks */
4890         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4891
4892         return ret;
4893 }
4894
4895 /*
4896  * Calculate the total number of credits to reserve to fit
4897  * the modification of a single pages into a single transaction,
4898  * which may include multiple chunks of block allocations.
4899  *
4900  * This could be called via ext4_write_begin()
4901  *
4902  * We need to consider the worse case, when
4903  * one new block per extent.
4904  */
4905 int ext4_writepage_trans_blocks(struct inode *inode)
4906 {
4907         int bpp = ext4_journal_blocks_per_page(inode);
4908         int ret;
4909
4910         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4911
4912         /* Account for data blocks for journalled mode */
4913         if (ext4_should_journal_data(inode))
4914                 ret += bpp;
4915         return ret;
4916 }
4917
4918 /*
4919  * Calculate the journal credits for a chunk of data modification.
4920  *
4921  * This is called from DIO, fallocate or whoever calling
4922  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4923  *
4924  * journal buffers for data blocks are not included here, as DIO
4925  * and fallocate do no need to journal data buffers.
4926  */
4927 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4928 {
4929         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4930 }
4931
4932 /*
4933  * The caller must have previously called ext4_reserve_inode_write().
4934  * Give this, we know that the caller already has write access to iloc->bh.
4935  */
4936 int ext4_mark_iloc_dirty(handle_t *handle,
4937                          struct inode *inode, struct ext4_iloc *iloc)
4938 {
4939         int err = 0;
4940
4941         if (IS_I_VERSION(inode))
4942                 inode_inc_iversion(inode);
4943
4944         /* the do_update_inode consumes one bh->b_count */
4945         get_bh(iloc->bh);
4946
4947         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4948         err = ext4_do_update_inode(handle, inode, iloc);
4949         put_bh(iloc->bh);
4950         return err;
4951 }
4952
4953 /*
4954  * On success, We end up with an outstanding reference count against
4955  * iloc->bh.  This _must_ be cleaned up later.
4956  */
4957
4958 int
4959 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4960                          struct ext4_iloc *iloc)
4961 {
4962         int err;
4963
4964         err = ext4_get_inode_loc(inode, iloc);
4965         if (!err) {
4966                 BUFFER_TRACE(iloc->bh, "get_write_access");
4967                 err = ext4_journal_get_write_access(handle, iloc->bh);
4968                 if (err) {
4969                         brelse(iloc->bh);
4970                         iloc->bh = NULL;
4971                 }
4972         }
4973         ext4_std_error(inode->i_sb, err);
4974         return err;
4975 }
4976
4977 /*
4978  * Expand an inode by new_extra_isize bytes.
4979  * Returns 0 on success or negative error number on failure.
4980  */
4981 static int ext4_expand_extra_isize(struct inode *inode,
4982                                    unsigned int new_extra_isize,
4983                                    struct ext4_iloc iloc,
4984                                    handle_t *handle)
4985 {
4986         struct ext4_inode *raw_inode;
4987         struct ext4_xattr_ibody_header *header;
4988
4989         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4990                 return 0;
4991
4992         raw_inode = ext4_raw_inode(&iloc);
4993
4994         header = IHDR(inode, raw_inode);
4995
4996         /* No extended attributes present */
4997         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4998             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4999                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5000                         new_extra_isize);
5001                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5002                 return 0;
5003         }
5004
5005         /* try to expand with EAs present */
5006         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5007                                           raw_inode, handle);
5008 }
5009
5010 /*
5011  * What we do here is to mark the in-core inode as clean with respect to inode
5012  * dirtiness (it may still be data-dirty).
5013  * This means that the in-core inode may be reaped by prune_icache
5014  * without having to perform any I/O.  This is a very good thing,
5015  * because *any* task may call prune_icache - even ones which
5016  * have a transaction open against a different journal.
5017  *
5018  * Is this cheating?  Not really.  Sure, we haven't written the
5019  * inode out, but prune_icache isn't a user-visible syncing function.
5020  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5021  * we start and wait on commits.
5022  */
5023 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5024 {
5025         struct ext4_iloc iloc;
5026         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5027         static unsigned int mnt_count;
5028         int err, ret;
5029
5030         might_sleep();
5031         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5032         err = ext4_reserve_inode_write(handle, inode, &iloc);
5033         if (ext4_handle_valid(handle) &&
5034             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5035             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5036                 /*
5037                  * We need extra buffer credits since we may write into EA block
5038                  * with this same handle. If journal_extend fails, then it will
5039                  * only result in a minor loss of functionality for that inode.
5040                  * If this is felt to be critical, then e2fsck should be run to
5041                  * force a large enough s_min_extra_isize.
5042                  */
5043                 if ((jbd2_journal_extend(handle,
5044                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5045                         ret = ext4_expand_extra_isize(inode,
5046                                                       sbi->s_want_extra_isize,
5047                                                       iloc, handle);
5048                         if (ret) {
5049                                 ext4_set_inode_state(inode,
5050                                                      EXT4_STATE_NO_EXPAND);
5051                                 if (mnt_count !=
5052                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5053                                         ext4_warning(inode->i_sb,
5054                                         "Unable to expand inode %lu. Delete"
5055                                         " some EAs or run e2fsck.",
5056                                         inode->i_ino);
5057                                         mnt_count =
5058                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5059                                 }
5060                         }
5061                 }
5062         }
5063         if (!err)
5064                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5065         return err;
5066 }
5067
5068 /*
5069  * ext4_dirty_inode() is called from __mark_inode_dirty()
5070  *
5071  * We're really interested in the case where a file is being extended.
5072  * i_size has been changed by generic_commit_write() and we thus need
5073  * to include the updated inode in the current transaction.
5074  *
5075  * Also, dquot_alloc_block() will always dirty the inode when blocks
5076  * are allocated to the file.
5077  *
5078  * If the inode is marked synchronous, we don't honour that here - doing
5079  * so would cause a commit on atime updates, which we don't bother doing.
5080  * We handle synchronous inodes at the highest possible level.
5081  */
5082 void ext4_dirty_inode(struct inode *inode, int flags)
5083 {
5084         handle_t *handle;
5085
5086         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5087         if (IS_ERR(handle))
5088                 goto out;
5089
5090         ext4_mark_inode_dirty(handle, inode);
5091
5092         ext4_journal_stop(handle);
5093 out:
5094         return;
5095 }
5096
5097 #if 0
5098 /*
5099  * Bind an inode's backing buffer_head into this transaction, to prevent
5100  * it from being flushed to disk early.  Unlike
5101  * ext4_reserve_inode_write, this leaves behind no bh reference and
5102  * returns no iloc structure, so the caller needs to repeat the iloc
5103  * lookup to mark the inode dirty later.
5104  */
5105 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5106 {
5107         struct ext4_iloc iloc;
5108
5109         int err = 0;
5110         if (handle) {
5111                 err = ext4_get_inode_loc(inode, &iloc);
5112                 if (!err) {
5113                         BUFFER_TRACE(iloc.bh, "get_write_access");
5114                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5115                         if (!err)
5116                                 err = ext4_handle_dirty_metadata(handle,
5117                                                                  NULL,
5118                                                                  iloc.bh);
5119                         brelse(iloc.bh);
5120                 }
5121         }
5122         ext4_std_error(inode->i_sb, err);
5123         return err;
5124 }
5125 #endif
5126
5127 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5128 {
5129         journal_t *journal;
5130         handle_t *handle;
5131         int err;
5132
5133         /*
5134          * We have to be very careful here: changing a data block's
5135          * journaling status dynamically is dangerous.  If we write a
5136          * data block to the journal, change the status and then delete
5137          * that block, we risk forgetting to revoke the old log record
5138          * from the journal and so a subsequent replay can corrupt data.
5139          * So, first we make sure that the journal is empty and that
5140          * nobody is changing anything.
5141          */
5142
5143         journal = EXT4_JOURNAL(inode);
5144         if (!journal)
5145                 return 0;
5146         if (is_journal_aborted(journal))
5147                 return -EROFS;
5148         /* We have to allocate physical blocks for delalloc blocks
5149          * before flushing journal. otherwise delalloc blocks can not
5150          * be allocated any more. even more truncate on delalloc blocks
5151          * could trigger BUG by flushing delalloc blocks in journal.
5152          * There is no delalloc block in non-journal data mode.
5153          */
5154         if (val && test_opt(inode->i_sb, DELALLOC)) {
5155                 err = ext4_alloc_da_blocks(inode);
5156                 if (err < 0)
5157                         return err;
5158         }
5159
5160         /* Wait for all existing dio workers */
5161         ext4_inode_block_unlocked_dio(inode);
5162         inode_dio_wait(inode);
5163
5164         jbd2_journal_lock_updates(journal);
5165
5166         /*
5167          * OK, there are no updates running now, and all cached data is
5168          * synced to disk.  We are now in a completely consistent state
5169          * which doesn't have anything in the journal, and we know that
5170          * no filesystem updates are running, so it is safe to modify
5171          * the inode's in-core data-journaling state flag now.
5172          */
5173
5174         if (val)
5175                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5176         else {
5177                 jbd2_journal_flush(journal);
5178                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5179         }
5180         ext4_set_aops(inode);
5181
5182         jbd2_journal_unlock_updates(journal);
5183         ext4_inode_resume_unlocked_dio(inode);
5184
5185         /* Finally we can mark the inode as dirty. */
5186
5187         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5188         if (IS_ERR(handle))
5189                 return PTR_ERR(handle);
5190
5191         err = ext4_mark_inode_dirty(handle, inode);
5192         ext4_handle_sync(handle);
5193         ext4_journal_stop(handle);
5194         ext4_std_error(inode->i_sb, err);
5195
5196         return err;
5197 }
5198
5199 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5200 {
5201         return !buffer_mapped(bh);
5202 }
5203
5204 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5205 {
5206         struct page *page = vmf->page;
5207         loff_t size;
5208         unsigned long len;
5209         int ret;
5210         struct file *file = vma->vm_file;
5211         struct inode *inode = file_inode(file);
5212         struct address_space *mapping = inode->i_mapping;
5213         handle_t *handle;
5214         get_block_t *get_block;
5215         int retries = 0;
5216
5217         sb_start_pagefault(inode->i_sb);
5218         file_update_time(vma->vm_file);
5219         /* Delalloc case is easy... */
5220         if (test_opt(inode->i_sb, DELALLOC) &&
5221             !ext4_should_journal_data(inode) &&
5222             !ext4_nonda_switch(inode->i_sb)) {
5223                 do {
5224                         ret = __block_page_mkwrite(vma, vmf,
5225                                                    ext4_da_get_block_prep);
5226                 } while (ret == -ENOSPC &&
5227                        ext4_should_retry_alloc(inode->i_sb, &retries));
5228                 goto out_ret;
5229         }
5230
5231         lock_page(page);
5232         size = i_size_read(inode);
5233         /* Page got truncated from under us? */
5234         if (page->mapping != mapping || page_offset(page) > size) {
5235                 unlock_page(page);
5236                 ret = VM_FAULT_NOPAGE;
5237                 goto out;
5238         }
5239
5240         if (page->index == size >> PAGE_CACHE_SHIFT)
5241                 len = size & ~PAGE_CACHE_MASK;
5242         else
5243                 len = PAGE_CACHE_SIZE;
5244         /*
5245          * Return if we have all the buffers mapped. This avoids the need to do
5246          * journal_start/journal_stop which can block and take a long time
5247          */
5248         if (page_has_buffers(page)) {
5249                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5250                                             0, len, NULL,
5251                                             ext4_bh_unmapped)) {
5252                         /* Wait so that we don't change page under IO */
5253                         wait_for_stable_page(page);
5254                         ret = VM_FAULT_LOCKED;
5255                         goto out;
5256                 }
5257         }
5258         unlock_page(page);
5259         /* OK, we need to fill the hole... */
5260         if (ext4_should_dioread_nolock(inode))
5261                 get_block = ext4_get_block_write;
5262         else
5263                 get_block = ext4_get_block;
5264 retry_alloc:
5265         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5266                                     ext4_writepage_trans_blocks(inode));
5267         if (IS_ERR(handle)) {
5268                 ret = VM_FAULT_SIGBUS;
5269                 goto out;
5270         }
5271         ret = __block_page_mkwrite(vma, vmf, get_block);
5272         if (!ret && ext4_should_journal_data(inode)) {
5273                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5274                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5275                         unlock_page(page);
5276                         ret = VM_FAULT_SIGBUS;
5277                         ext4_journal_stop(handle);
5278                         goto out;
5279                 }
5280                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5281         }
5282         ext4_journal_stop(handle);
5283         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5284                 goto retry_alloc;
5285 out_ret:
5286         ret = block_page_mkwrite_return(ret);
5287 out:
5288         sb_end_pagefault(inode->i_sb);
5289         return ret;
5290 }