don't bugger nd->seq on set_root_rcu() from follow_dotdot_rcu()
[pandora-kernel.git] / fs / ext4 / indirect.c
1 /*
2  *  linux/fs/ext4/indirect.c
3  *
4  *  from
5  *
6  *  linux/fs/ext4/inode.c
7  *
8  * Copyright (C) 1992, 1993, 1994, 1995
9  * Remy Card (card@masi.ibp.fr)
10  * Laboratoire MASI - Institut Blaise Pascal
11  * Universite Pierre et Marie Curie (Paris VI)
12  *
13  *  from
14  *
15  *  linux/fs/minix/inode.c
16  *
17  *  Copyright (C) 1991, 1992  Linus Torvalds
18  *
19  *  Goal-directed block allocation by Stephen Tweedie
20  *      (sct@redhat.com), 1993, 1998
21  */
22
23 #include <linux/module.h>
24 #include "ext4_jbd2.h"
25 #include "truncate.h"
26
27 #include <trace/events/ext4.h>
28
29 typedef struct {
30         __le32  *p;
31         __le32  key;
32         struct buffer_head *bh;
33 } Indirect;
34
35 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
36 {
37         p->key = *(p->p = v);
38         p->bh = bh;
39 }
40
41 /**
42  *      ext4_block_to_path - parse the block number into array of offsets
43  *      @inode: inode in question (we are only interested in its superblock)
44  *      @i_block: block number to be parsed
45  *      @offsets: array to store the offsets in
46  *      @boundary: set this non-zero if the referred-to block is likely to be
47  *             followed (on disk) by an indirect block.
48  *
49  *      To store the locations of file's data ext4 uses a data structure common
50  *      for UNIX filesystems - tree of pointers anchored in the inode, with
51  *      data blocks at leaves and indirect blocks in intermediate nodes.
52  *      This function translates the block number into path in that tree -
53  *      return value is the path length and @offsets[n] is the offset of
54  *      pointer to (n+1)th node in the nth one. If @block is out of range
55  *      (negative or too large) warning is printed and zero returned.
56  *
57  *      Note: function doesn't find node addresses, so no IO is needed. All
58  *      we need to know is the capacity of indirect blocks (taken from the
59  *      inode->i_sb).
60  */
61
62 /*
63  * Portability note: the last comparison (check that we fit into triple
64  * indirect block) is spelled differently, because otherwise on an
65  * architecture with 32-bit longs and 8Kb pages we might get into trouble
66  * if our filesystem had 8Kb blocks. We might use long long, but that would
67  * kill us on x86. Oh, well, at least the sign propagation does not matter -
68  * i_block would have to be negative in the very beginning, so we would not
69  * get there at all.
70  */
71
72 static int ext4_block_to_path(struct inode *inode,
73                               ext4_lblk_t i_block,
74                               ext4_lblk_t offsets[4], int *boundary)
75 {
76         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
77         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
78         const long direct_blocks = EXT4_NDIR_BLOCKS,
79                 indirect_blocks = ptrs,
80                 double_blocks = (1 << (ptrs_bits * 2));
81         int n = 0;
82         int final = 0;
83
84         if (i_block < direct_blocks) {
85                 offsets[n++] = i_block;
86                 final = direct_blocks;
87         } else if ((i_block -= direct_blocks) < indirect_blocks) {
88                 offsets[n++] = EXT4_IND_BLOCK;
89                 offsets[n++] = i_block;
90                 final = ptrs;
91         } else if ((i_block -= indirect_blocks) < double_blocks) {
92                 offsets[n++] = EXT4_DIND_BLOCK;
93                 offsets[n++] = i_block >> ptrs_bits;
94                 offsets[n++] = i_block & (ptrs - 1);
95                 final = ptrs;
96         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
97                 offsets[n++] = EXT4_TIND_BLOCK;
98                 offsets[n++] = i_block >> (ptrs_bits * 2);
99                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
100                 offsets[n++] = i_block & (ptrs - 1);
101                 final = ptrs;
102         } else {
103                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
104                              i_block + direct_blocks +
105                              indirect_blocks + double_blocks, inode->i_ino);
106         }
107         if (boundary)
108                 *boundary = final - 1 - (i_block & (ptrs - 1));
109         return n;
110 }
111
112 /**
113  *      ext4_get_branch - read the chain of indirect blocks leading to data
114  *      @inode: inode in question
115  *      @depth: depth of the chain (1 - direct pointer, etc.)
116  *      @offsets: offsets of pointers in inode/indirect blocks
117  *      @chain: place to store the result
118  *      @err: here we store the error value
119  *
120  *      Function fills the array of triples <key, p, bh> and returns %NULL
121  *      if everything went OK or the pointer to the last filled triple
122  *      (incomplete one) otherwise. Upon the return chain[i].key contains
123  *      the number of (i+1)-th block in the chain (as it is stored in memory,
124  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
125  *      number (it points into struct inode for i==0 and into the bh->b_data
126  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
127  *      block for i>0 and NULL for i==0. In other words, it holds the block
128  *      numbers of the chain, addresses they were taken from (and where we can
129  *      verify that chain did not change) and buffer_heads hosting these
130  *      numbers.
131  *
132  *      Function stops when it stumbles upon zero pointer (absent block)
133  *              (pointer to last triple returned, *@err == 0)
134  *      or when it gets an IO error reading an indirect block
135  *              (ditto, *@err == -EIO)
136  *      or when it reads all @depth-1 indirect blocks successfully and finds
137  *      the whole chain, all way to the data (returns %NULL, *err == 0).
138  *
139  *      Need to be called with
140  *      down_read(&EXT4_I(inode)->i_data_sem)
141  */
142 static Indirect *ext4_get_branch(struct inode *inode, int depth,
143                                  ext4_lblk_t  *offsets,
144                                  Indirect chain[4], int *err)
145 {
146         struct super_block *sb = inode->i_sb;
147         Indirect *p = chain;
148         struct buffer_head *bh;
149         int ret = -EIO;
150
151         *err = 0;
152         /* i_data is not going away, no lock needed */
153         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
154         if (!p->key)
155                 goto no_block;
156         while (--depth) {
157                 bh = sb_getblk(sb, le32_to_cpu(p->key));
158                 if (unlikely(!bh)) {
159                         ret = -ENOMEM;
160                         goto failure;
161                 }
162
163                 if (!bh_uptodate_or_lock(bh)) {
164                         if (bh_submit_read(bh) < 0) {
165                                 put_bh(bh);
166                                 goto failure;
167                         }
168                         /* validate block references */
169                         if (ext4_check_indirect_blockref(inode, bh)) {
170                                 put_bh(bh);
171                                 goto failure;
172                         }
173                 }
174
175                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
176                 /* Reader: end */
177                 if (!p->key)
178                         goto no_block;
179         }
180         return NULL;
181
182 failure:
183         *err = ret;
184 no_block:
185         return p;
186 }
187
188 /**
189  *      ext4_find_near - find a place for allocation with sufficient locality
190  *      @inode: owner
191  *      @ind: descriptor of indirect block.
192  *
193  *      This function returns the preferred place for block allocation.
194  *      It is used when heuristic for sequential allocation fails.
195  *      Rules are:
196  *        + if there is a block to the left of our position - allocate near it.
197  *        + if pointer will live in indirect block - allocate near that block.
198  *        + if pointer will live in inode - allocate in the same
199  *          cylinder group.
200  *
201  * In the latter case we colour the starting block by the callers PID to
202  * prevent it from clashing with concurrent allocations for a different inode
203  * in the same block group.   The PID is used here so that functionally related
204  * files will be close-by on-disk.
205  *
206  *      Caller must make sure that @ind is valid and will stay that way.
207  */
208 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
209 {
210         struct ext4_inode_info *ei = EXT4_I(inode);
211         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
212         __le32 *p;
213
214         /* Try to find previous block */
215         for (p = ind->p - 1; p >= start; p--) {
216                 if (*p)
217                         return le32_to_cpu(*p);
218         }
219
220         /* No such thing, so let's try location of indirect block */
221         if (ind->bh)
222                 return ind->bh->b_blocknr;
223
224         /*
225          * It is going to be referred to from the inode itself? OK, just put it
226          * into the same cylinder group then.
227          */
228         return ext4_inode_to_goal_block(inode);
229 }
230
231 /**
232  *      ext4_find_goal - find a preferred place for allocation.
233  *      @inode: owner
234  *      @block:  block we want
235  *      @partial: pointer to the last triple within a chain
236  *
237  *      Normally this function find the preferred place for block allocation,
238  *      returns it.
239  *      Because this is only used for non-extent files, we limit the block nr
240  *      to 32 bits.
241  */
242 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
243                                    Indirect *partial)
244 {
245         ext4_fsblk_t goal;
246
247         /*
248          * XXX need to get goal block from mballoc's data structures
249          */
250
251         goal = ext4_find_near(inode, partial);
252         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
253         return goal;
254 }
255
256 /**
257  *      ext4_blks_to_allocate - Look up the block map and count the number
258  *      of direct blocks need to be allocated for the given branch.
259  *
260  *      @branch: chain of indirect blocks
261  *      @k: number of blocks need for indirect blocks
262  *      @blks: number of data blocks to be mapped.
263  *      @blocks_to_boundary:  the offset in the indirect block
264  *
265  *      return the total number of blocks to be allocate, including the
266  *      direct and indirect blocks.
267  */
268 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
269                                  int blocks_to_boundary)
270 {
271         unsigned int count = 0;
272
273         /*
274          * Simple case, [t,d]Indirect block(s) has not allocated yet
275          * then it's clear blocks on that path have not allocated
276          */
277         if (k > 0) {
278                 /* right now we don't handle cross boundary allocation */
279                 if (blks < blocks_to_boundary + 1)
280                         count += blks;
281                 else
282                         count += blocks_to_boundary + 1;
283                 return count;
284         }
285
286         count++;
287         while (count < blks && count <= blocks_to_boundary &&
288                 le32_to_cpu(*(branch[0].p + count)) == 0) {
289                 count++;
290         }
291         return count;
292 }
293
294 /**
295  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
296  *      @handle: handle for this transaction
297  *      @inode: inode which needs allocated blocks
298  *      @iblock: the logical block to start allocated at
299  *      @goal: preferred physical block of allocation
300  *      @indirect_blks: the number of blocks need to allocate for indirect
301  *                      blocks
302  *      @blks: number of desired blocks
303  *      @new_blocks: on return it will store the new block numbers for
304  *      the indirect blocks(if needed) and the first direct block,
305  *      @err: on return it will store the error code
306  *
307  *      This function will return the number of blocks allocated as
308  *      requested by the passed-in parameters.
309  */
310 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
311                              ext4_lblk_t iblock, ext4_fsblk_t goal,
312                              int indirect_blks, int blks,
313                              ext4_fsblk_t new_blocks[4], int *err)
314 {
315         struct ext4_allocation_request ar;
316         int target, i;
317         unsigned long count = 0, blk_allocated = 0;
318         int index = 0;
319         ext4_fsblk_t current_block = 0;
320         int ret = 0;
321
322         /*
323          * Here we try to allocate the requested multiple blocks at once,
324          * on a best-effort basis.
325          * To build a branch, we should allocate blocks for
326          * the indirect blocks(if not allocated yet), and at least
327          * the first direct block of this branch.  That's the
328          * minimum number of blocks need to allocate(required)
329          */
330         /* first we try to allocate the indirect blocks */
331         target = indirect_blks;
332         while (target > 0) {
333                 count = target;
334                 /* allocating blocks for indirect blocks and direct blocks */
335                 current_block = ext4_new_meta_blocks(handle, inode, goal,
336                                                      0, &count, err);
337                 if (*err)
338                         goto failed_out;
339
340                 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
341                         EXT4_ERROR_INODE(inode,
342                                          "current_block %llu + count %lu > %d!",
343                                          current_block, count,
344                                          EXT4_MAX_BLOCK_FILE_PHYS);
345                         *err = -EIO;
346                         goto failed_out;
347                 }
348
349                 target -= count;
350                 /* allocate blocks for indirect blocks */
351                 while (index < indirect_blks && count) {
352                         new_blocks[index++] = current_block++;
353                         count--;
354                 }
355                 if (count > 0) {
356                         /*
357                          * save the new block number
358                          * for the first direct block
359                          */
360                         new_blocks[index] = current_block;
361                         printk(KERN_INFO "%s returned more blocks than "
362                                                 "requested\n", __func__);
363                         WARN_ON(1);
364                         break;
365                 }
366         }
367
368         target = blks - count ;
369         blk_allocated = count;
370         if (!target)
371                 goto allocated;
372         /* Now allocate data blocks */
373         memset(&ar, 0, sizeof(ar));
374         ar.inode = inode;
375         ar.goal = goal;
376         ar.len = target;
377         ar.logical = iblock;
378         if (S_ISREG(inode->i_mode))
379                 /* enable in-core preallocation only for regular files */
380                 ar.flags = EXT4_MB_HINT_DATA;
381
382         current_block = ext4_mb_new_blocks(handle, &ar, err);
383         if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
384                 EXT4_ERROR_INODE(inode,
385                                  "current_block %llu + ar.len %d > %d!",
386                                  current_block, ar.len,
387                                  EXT4_MAX_BLOCK_FILE_PHYS);
388                 *err = -EIO;
389                 goto failed_out;
390         }
391
392         if (*err && (target == blks)) {
393                 /*
394                  * if the allocation failed and we didn't allocate
395                  * any blocks before
396                  */
397                 goto failed_out;
398         }
399         if (!*err) {
400                 if (target == blks) {
401                         /*
402                          * save the new block number
403                          * for the first direct block
404                          */
405                         new_blocks[index] = current_block;
406                 }
407                 blk_allocated += ar.len;
408         }
409 allocated:
410         /* total number of blocks allocated for direct blocks */
411         ret = blk_allocated;
412         *err = 0;
413         return ret;
414 failed_out:
415         for (i = 0; i < index; i++)
416                 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
417         return ret;
418 }
419
420 /**
421  *      ext4_alloc_branch - allocate and set up a chain of blocks.
422  *      @handle: handle for this transaction
423  *      @inode: owner
424  *      @indirect_blks: number of allocated indirect blocks
425  *      @blks: number of allocated direct blocks
426  *      @goal: preferred place for allocation
427  *      @offsets: offsets (in the blocks) to store the pointers to next.
428  *      @branch: place to store the chain in.
429  *
430  *      This function allocates blocks, zeroes out all but the last one,
431  *      links them into chain and (if we are synchronous) writes them to disk.
432  *      In other words, it prepares a branch that can be spliced onto the
433  *      inode. It stores the information about that chain in the branch[], in
434  *      the same format as ext4_get_branch() would do. We are calling it after
435  *      we had read the existing part of chain and partial points to the last
436  *      triple of that (one with zero ->key). Upon the exit we have the same
437  *      picture as after the successful ext4_get_block(), except that in one
438  *      place chain is disconnected - *branch->p is still zero (we did not
439  *      set the last link), but branch->key contains the number that should
440  *      be placed into *branch->p to fill that gap.
441  *
442  *      If allocation fails we free all blocks we've allocated (and forget
443  *      their buffer_heads) and return the error value the from failed
444  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
445  *      as described above and return 0.
446  */
447 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
448                              ext4_lblk_t iblock, int indirect_blks,
449                              int *blks, ext4_fsblk_t goal,
450                              ext4_lblk_t *offsets, Indirect *branch)
451 {
452         int blocksize = inode->i_sb->s_blocksize;
453         int i, n = 0;
454         int err = 0;
455         struct buffer_head *bh;
456         int num;
457         ext4_fsblk_t new_blocks[4];
458         ext4_fsblk_t current_block;
459
460         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
461                                 *blks, new_blocks, &err);
462         if (err)
463                 return err;
464
465         branch[0].key = cpu_to_le32(new_blocks[0]);
466         /*
467          * metadata blocks and data blocks are allocated.
468          */
469         for (n = 1; n <= indirect_blks;  n++) {
470                 /*
471                  * Get buffer_head for parent block, zero it out
472                  * and set the pointer to new one, then send
473                  * parent to disk.
474                  */
475                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
476                 if (unlikely(!bh)) {
477                         err = -ENOMEM;
478                         goto failed;
479                 }
480
481                 branch[n].bh = bh;
482                 lock_buffer(bh);
483                 BUFFER_TRACE(bh, "call get_create_access");
484                 err = ext4_journal_get_create_access(handle, bh);
485                 if (err) {
486                         /* Don't brelse(bh) here; it's done in
487                          * ext4_journal_forget() below */
488                         unlock_buffer(bh);
489                         goto failed;
490                 }
491
492                 memset(bh->b_data, 0, blocksize);
493                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
494                 branch[n].key = cpu_to_le32(new_blocks[n]);
495                 *branch[n].p = branch[n].key;
496                 if (n == indirect_blks) {
497                         current_block = new_blocks[n];
498                         /*
499                          * End of chain, update the last new metablock of
500                          * the chain to point to the new allocated
501                          * data blocks numbers
502                          */
503                         for (i = 1; i < num; i++)
504                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
505                 }
506                 BUFFER_TRACE(bh, "marking uptodate");
507                 set_buffer_uptodate(bh);
508                 unlock_buffer(bh);
509
510                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
511                 err = ext4_handle_dirty_metadata(handle, inode, bh);
512                 if (err)
513                         goto failed;
514         }
515         *blks = num;
516         return err;
517 failed:
518         /* Allocation failed, free what we already allocated */
519         ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
520         for (i = 1; i <= n ; i++) {
521                 /*
522                  * branch[i].bh is newly allocated, so there is no
523                  * need to revoke the block, which is why we don't
524                  * need to set EXT4_FREE_BLOCKS_METADATA.
525                  */
526                 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
527                                  EXT4_FREE_BLOCKS_FORGET);
528         }
529         for (i = n+1; i < indirect_blks; i++)
530                 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
531
532         ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
533
534         return err;
535 }
536
537 /**
538  * ext4_splice_branch - splice the allocated branch onto inode.
539  * @handle: handle for this transaction
540  * @inode: owner
541  * @block: (logical) number of block we are adding
542  * @chain: chain of indirect blocks (with a missing link - see
543  *      ext4_alloc_branch)
544  * @where: location of missing link
545  * @num:   number of indirect blocks we are adding
546  * @blks:  number of direct blocks we are adding
547  *
548  * This function fills the missing link and does all housekeeping needed in
549  * inode (->i_blocks, etc.). In case of success we end up with the full
550  * chain to new block and return 0.
551  */
552 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
553                               ext4_lblk_t block, Indirect *where, int num,
554                               int blks)
555 {
556         int i;
557         int err = 0;
558         ext4_fsblk_t current_block;
559
560         /*
561          * If we're splicing into a [td]indirect block (as opposed to the
562          * inode) then we need to get write access to the [td]indirect block
563          * before the splice.
564          */
565         if (where->bh) {
566                 BUFFER_TRACE(where->bh, "get_write_access");
567                 err = ext4_journal_get_write_access(handle, where->bh);
568                 if (err)
569                         goto err_out;
570         }
571         /* That's it */
572
573         *where->p = where->key;
574
575         /*
576          * Update the host buffer_head or inode to point to more just allocated
577          * direct blocks blocks
578          */
579         if (num == 0 && blks > 1) {
580                 current_block = le32_to_cpu(where->key) + 1;
581                 for (i = 1; i < blks; i++)
582                         *(where->p + i) = cpu_to_le32(current_block++);
583         }
584
585         /* We are done with atomic stuff, now do the rest of housekeeping */
586         /* had we spliced it onto indirect block? */
587         if (where->bh) {
588                 /*
589                  * If we spliced it onto an indirect block, we haven't
590                  * altered the inode.  Note however that if it is being spliced
591                  * onto an indirect block at the very end of the file (the
592                  * file is growing) then we *will* alter the inode to reflect
593                  * the new i_size.  But that is not done here - it is done in
594                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
595                  */
596                 jbd_debug(5, "splicing indirect only\n");
597                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
598                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
599                 if (err)
600                         goto err_out;
601         } else {
602                 /*
603                  * OK, we spliced it into the inode itself on a direct block.
604                  */
605                 ext4_mark_inode_dirty(handle, inode);
606                 jbd_debug(5, "splicing direct\n");
607         }
608         return err;
609
610 err_out:
611         for (i = 1; i <= num; i++) {
612                 /*
613                  * branch[i].bh is newly allocated, so there is no
614                  * need to revoke the block, which is why we don't
615                  * need to set EXT4_FREE_BLOCKS_METADATA.
616                  */
617                 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
618                                  EXT4_FREE_BLOCKS_FORGET);
619         }
620         ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
621                          blks, 0);
622
623         return err;
624 }
625
626 /*
627  * The ext4_ind_map_blocks() function handles non-extents inodes
628  * (i.e., using the traditional indirect/double-indirect i_blocks
629  * scheme) for ext4_map_blocks().
630  *
631  * Allocation strategy is simple: if we have to allocate something, we will
632  * have to go the whole way to leaf. So let's do it before attaching anything
633  * to tree, set linkage between the newborn blocks, write them if sync is
634  * required, recheck the path, free and repeat if check fails, otherwise
635  * set the last missing link (that will protect us from any truncate-generated
636  * removals - all blocks on the path are immune now) and possibly force the
637  * write on the parent block.
638  * That has a nice additional property: no special recovery from the failed
639  * allocations is needed - we simply release blocks and do not touch anything
640  * reachable from inode.
641  *
642  * `handle' can be NULL if create == 0.
643  *
644  * return > 0, # of blocks mapped or allocated.
645  * return = 0, if plain lookup failed.
646  * return < 0, error case.
647  *
648  * The ext4_ind_get_blocks() function should be called with
649  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
650  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
651  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
652  * blocks.
653  */
654 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
655                         struct ext4_map_blocks *map,
656                         int flags)
657 {
658         int err = -EIO;
659         ext4_lblk_t offsets[4];
660         Indirect chain[4];
661         Indirect *partial;
662         ext4_fsblk_t goal;
663         int indirect_blks;
664         int blocks_to_boundary = 0;
665         int depth;
666         int count = 0;
667         ext4_fsblk_t first_block = 0;
668
669         trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
670         J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
671         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
672         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
673                                    &blocks_to_boundary);
674
675         if (depth == 0)
676                 goto out;
677
678         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
679
680         /* Simplest case - block found, no allocation needed */
681         if (!partial) {
682                 first_block = le32_to_cpu(chain[depth - 1].key);
683                 count++;
684                 /*map more blocks*/
685                 while (count < map->m_len && count <= blocks_to_boundary) {
686                         ext4_fsblk_t blk;
687
688                         blk = le32_to_cpu(*(chain[depth-1].p + count));
689
690                         if (blk == first_block + count)
691                                 count++;
692                         else
693                                 break;
694                 }
695                 goto got_it;
696         }
697
698         /* Next simple case - plain lookup or failed read of indirect block */
699         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
700                 goto cleanup;
701
702         /*
703          * Okay, we need to do block allocation.
704         */
705         if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
706                                        EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
707                 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
708                                  "non-extent mapped inodes with bigalloc");
709                 return -ENOSPC;
710         }
711
712         goal = ext4_find_goal(inode, map->m_lblk, partial);
713
714         /* the number of blocks need to allocate for [d,t]indirect blocks */
715         indirect_blks = (chain + depth) - partial - 1;
716
717         /*
718          * Next look up the indirect map to count the totoal number of
719          * direct blocks to allocate for this branch.
720          */
721         count = ext4_blks_to_allocate(partial, indirect_blks,
722                                       map->m_len, blocks_to_boundary);
723         /*
724          * Block out ext4_truncate while we alter the tree
725          */
726         err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
727                                 &count, goal,
728                                 offsets + (partial - chain), partial);
729
730         /*
731          * The ext4_splice_branch call will free and forget any buffers
732          * on the new chain if there is a failure, but that risks using
733          * up transaction credits, especially for bitmaps where the
734          * credits cannot be returned.  Can we handle this somehow?  We
735          * may need to return -EAGAIN upwards in the worst case.  --sct
736          */
737         if (!err)
738                 err = ext4_splice_branch(handle, inode, map->m_lblk,
739                                          partial, indirect_blks, count);
740         if (err)
741                 goto cleanup;
742
743         map->m_flags |= EXT4_MAP_NEW;
744
745         ext4_update_inode_fsync_trans(handle, inode, 1);
746 got_it:
747         map->m_flags |= EXT4_MAP_MAPPED;
748         map->m_pblk = le32_to_cpu(chain[depth-1].key);
749         map->m_len = count;
750         if (count > blocks_to_boundary)
751                 map->m_flags |= EXT4_MAP_BOUNDARY;
752         err = count;
753         /* Clean up and exit */
754         partial = chain + depth - 1;    /* the whole chain */
755 cleanup:
756         while (partial > chain) {
757                 BUFFER_TRACE(partial->bh, "call brelse");
758                 brelse(partial->bh);
759                 partial--;
760         }
761 out:
762         trace_ext4_ind_map_blocks_exit(inode, map->m_lblk,
763                                 map->m_pblk, map->m_len, err);
764         return err;
765 }
766
767 /*
768  * O_DIRECT for ext3 (or indirect map) based files
769  *
770  * If the O_DIRECT write will extend the file then add this inode to the
771  * orphan list.  So recovery will truncate it back to the original size
772  * if the machine crashes during the write.
773  *
774  * If the O_DIRECT write is intantiating holes inside i_size and the machine
775  * crashes then stale disk data _may_ be exposed inside the file. But current
776  * VFS code falls back into buffered path in that case so we are safe.
777  */
778 ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
779                            const struct iovec *iov, loff_t offset,
780                            unsigned long nr_segs)
781 {
782         struct file *file = iocb->ki_filp;
783         struct inode *inode = file->f_mapping->host;
784         struct ext4_inode_info *ei = EXT4_I(inode);
785         handle_t *handle;
786         ssize_t ret;
787         int orphan = 0;
788         size_t count = iov_length(iov, nr_segs);
789         int retries = 0;
790
791         if (rw == WRITE) {
792                 loff_t final_size = offset + count;
793
794                 if (final_size > inode->i_size) {
795                         /* Credits for sb + inode write */
796                         handle = ext4_journal_start(inode, 2);
797                         if (IS_ERR(handle)) {
798                                 ret = PTR_ERR(handle);
799                                 goto out;
800                         }
801                         ret = ext4_orphan_add(handle, inode);
802                         if (ret) {
803                                 ext4_journal_stop(handle);
804                                 goto out;
805                         }
806                         orphan = 1;
807                         ei->i_disksize = inode->i_size;
808                         ext4_journal_stop(handle);
809                 }
810         }
811
812 retry:
813         if (rw == READ && ext4_should_dioread_nolock(inode)) {
814                 if (unlikely(!list_empty(&ei->i_completed_io_list))) {
815                         mutex_lock(&inode->i_mutex);
816                         ext4_flush_completed_IO(inode);
817                         mutex_unlock(&inode->i_mutex);
818                 }
819                 ret = __blockdev_direct_IO(rw, iocb, inode,
820                                  inode->i_sb->s_bdev, iov,
821                                  offset, nr_segs,
822                                  ext4_get_block, NULL, NULL, 0);
823         } else {
824                 ret = blockdev_direct_IO(rw, iocb, inode, iov,
825                                  offset, nr_segs, ext4_get_block);
826
827                 if (unlikely((rw & WRITE) && ret < 0)) {
828                         loff_t isize = i_size_read(inode);
829                         loff_t end = offset + iov_length(iov, nr_segs);
830
831                         if (end > isize)
832                                 ext4_truncate_failed_write(inode);
833                 }
834         }
835         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
836                 goto retry;
837
838         if (orphan) {
839                 int err;
840
841                 /* Credits for sb + inode write */
842                 handle = ext4_journal_start(inode, 2);
843                 if (IS_ERR(handle)) {
844                         /* This is really bad luck. We've written the data
845                          * but cannot extend i_size. Bail out and pretend
846                          * the write failed... */
847                         ret = PTR_ERR(handle);
848                         if (inode->i_nlink)
849                                 ext4_orphan_del(NULL, inode);
850
851                         goto out;
852                 }
853                 if (inode->i_nlink)
854                         ext4_orphan_del(handle, inode);
855                 if (ret > 0) {
856                         loff_t end = offset + ret;
857                         if (end > inode->i_size) {
858                                 ei->i_disksize = end;
859                                 i_size_write(inode, end);
860                                 /*
861                                  * We're going to return a positive `ret'
862                                  * here due to non-zero-length I/O, so there's
863                                  * no way of reporting error returns from
864                                  * ext4_mark_inode_dirty() to userspace.  So
865                                  * ignore it.
866                                  */
867                                 ext4_mark_inode_dirty(handle, inode);
868                         }
869                 }
870                 err = ext4_journal_stop(handle);
871                 if (ret == 0)
872                         ret = err;
873         }
874 out:
875         return ret;
876 }
877
878 /*
879  * Calculate the number of metadata blocks need to reserve
880  * to allocate a new block at @lblocks for non extent file based file
881  */
882 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
883 {
884         struct ext4_inode_info *ei = EXT4_I(inode);
885         sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
886         int blk_bits;
887
888         if (lblock < EXT4_NDIR_BLOCKS)
889                 return 0;
890
891         lblock -= EXT4_NDIR_BLOCKS;
892
893         if (ei->i_da_metadata_calc_len &&
894             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
895                 ei->i_da_metadata_calc_len++;
896                 return 0;
897         }
898         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
899         ei->i_da_metadata_calc_len = 1;
900         blk_bits = order_base_2(lblock);
901         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
902 }
903
904 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk)
905 {
906         int indirects;
907
908         /* if nrblocks are contiguous */
909         if (chunk) {
910                 /*
911                  * With N contiguous data blocks, we need at most
912                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
913                  * 2 dindirect blocks, and 1 tindirect block
914                  */
915                 return DIV_ROUND_UP(nrblocks,
916                                     EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
917         }
918         /*
919          * if nrblocks are not contiguous, worse case, each block touch
920          * a indirect block, and each indirect block touch a double indirect
921          * block, plus a triple indirect block
922          */
923         indirects = nrblocks * 2 + 1;
924         return indirects;
925 }
926
927 /*
928  * Truncate transactions can be complex and absolutely huge.  So we need to
929  * be able to restart the transaction at a conventient checkpoint to make
930  * sure we don't overflow the journal.
931  *
932  * start_transaction gets us a new handle for a truncate transaction,
933  * and extend_transaction tries to extend the existing one a bit.  If
934  * extend fails, we need to propagate the failure up and restart the
935  * transaction in the top-level truncate loop. --sct
936  */
937 static handle_t *start_transaction(struct inode *inode)
938 {
939         handle_t *result;
940
941         result = ext4_journal_start(inode, ext4_blocks_for_truncate(inode));
942         if (!IS_ERR(result))
943                 return result;
944
945         ext4_std_error(inode->i_sb, PTR_ERR(result));
946         return result;
947 }
948
949 /*
950  * Try to extend this transaction for the purposes of truncation.
951  *
952  * Returns 0 if we managed to create more room.  If we can't create more
953  * room, and the transaction must be restarted we return 1.
954  */
955 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
956 {
957         if (!ext4_handle_valid(handle))
958                 return 0;
959         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
960                 return 0;
961         if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
962                 return 0;
963         return 1;
964 }
965
966 /*
967  * Probably it should be a library function... search for first non-zero word
968  * or memcmp with zero_page, whatever is better for particular architecture.
969  * Linus?
970  */
971 static inline int all_zeroes(__le32 *p, __le32 *q)
972 {
973         while (p < q)
974                 if (*p++)
975                         return 0;
976         return 1;
977 }
978
979 /**
980  *      ext4_find_shared - find the indirect blocks for partial truncation.
981  *      @inode:   inode in question
982  *      @depth:   depth of the affected branch
983  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
984  *      @chain:   place to store the pointers to partial indirect blocks
985  *      @top:     place to the (detached) top of branch
986  *
987  *      This is a helper function used by ext4_truncate().
988  *
989  *      When we do truncate() we may have to clean the ends of several
990  *      indirect blocks but leave the blocks themselves alive. Block is
991  *      partially truncated if some data below the new i_size is referred
992  *      from it (and it is on the path to the first completely truncated
993  *      data block, indeed).  We have to free the top of that path along
994  *      with everything to the right of the path. Since no allocation
995  *      past the truncation point is possible until ext4_truncate()
996  *      finishes, we may safely do the latter, but top of branch may
997  *      require special attention - pageout below the truncation point
998  *      might try to populate it.
999  *
1000  *      We atomically detach the top of branch from the tree, store the
1001  *      block number of its root in *@top, pointers to buffer_heads of
1002  *      partially truncated blocks - in @chain[].bh and pointers to
1003  *      their last elements that should not be removed - in
1004  *      @chain[].p. Return value is the pointer to last filled element
1005  *      of @chain.
1006  *
1007  *      The work left to caller to do the actual freeing of subtrees:
1008  *              a) free the subtree starting from *@top
1009  *              b) free the subtrees whose roots are stored in
1010  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1011  *              c) free the subtrees growing from the inode past the @chain[0].
1012  *                      (no partially truncated stuff there).  */
1013
1014 static Indirect *ext4_find_shared(struct inode *inode, int depth,
1015                                   ext4_lblk_t offsets[4], Indirect chain[4],
1016                                   __le32 *top)
1017 {
1018         Indirect *partial, *p;
1019         int k, err;
1020
1021         *top = 0;
1022         /* Make k index the deepest non-null offset + 1 */
1023         for (k = depth; k > 1 && !offsets[k-1]; k--)
1024                 ;
1025         partial = ext4_get_branch(inode, k, offsets, chain, &err);
1026         /* Writer: pointers */
1027         if (!partial)
1028                 partial = chain + k-1;
1029         /*
1030          * If the branch acquired continuation since we've looked at it -
1031          * fine, it should all survive and (new) top doesn't belong to us.
1032          */
1033         if (!partial->key && *partial->p)
1034                 /* Writer: end */
1035                 goto no_top;
1036         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
1037                 ;
1038         /*
1039          * OK, we've found the last block that must survive. The rest of our
1040          * branch should be detached before unlocking. However, if that rest
1041          * of branch is all ours and does not grow immediately from the inode
1042          * it's easier to cheat and just decrement partial->p.
1043          */
1044         if (p == chain + k - 1 && p > chain) {
1045                 p->p--;
1046         } else {
1047                 *top = *p->p;
1048                 /* Nope, don't do this in ext4.  Must leave the tree intact */
1049 #if 0
1050                 *p->p = 0;
1051 #endif
1052         }
1053         /* Writer: end */
1054
1055         while (partial > p) {
1056                 brelse(partial->bh);
1057                 partial--;
1058         }
1059 no_top:
1060         return partial;
1061 }
1062
1063 /*
1064  * Zero a number of block pointers in either an inode or an indirect block.
1065  * If we restart the transaction we must again get write access to the
1066  * indirect block for further modification.
1067  *
1068  * We release `count' blocks on disk, but (last - first) may be greater
1069  * than `count' because there can be holes in there.
1070  *
1071  * Return 0 on success, 1 on invalid block range
1072  * and < 0 on fatal error.
1073  */
1074 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
1075                              struct buffer_head *bh,
1076                              ext4_fsblk_t block_to_free,
1077                              unsigned long count, __le32 *first,
1078                              __le32 *last)
1079 {
1080         __le32 *p;
1081         int     flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
1082         int     err;
1083
1084         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1085                 flags |= EXT4_FREE_BLOCKS_METADATA;
1086
1087         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
1088                                    count)) {
1089                 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
1090                                  "blocks %llu len %lu",
1091                                  (unsigned long long) block_to_free, count);
1092                 return 1;
1093         }
1094
1095         if (try_to_extend_transaction(handle, inode)) {
1096                 if (bh) {
1097                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1098                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1099                         if (unlikely(err))
1100                                 goto out_err;
1101                 }
1102                 err = ext4_mark_inode_dirty(handle, inode);
1103                 if (unlikely(err))
1104                         goto out_err;
1105                 err = ext4_truncate_restart_trans(handle, inode,
1106                                         ext4_blocks_for_truncate(inode));
1107                 if (unlikely(err))
1108                         goto out_err;
1109                 if (bh) {
1110                         BUFFER_TRACE(bh, "retaking write access");
1111                         err = ext4_journal_get_write_access(handle, bh);
1112                         if (unlikely(err))
1113                                 goto out_err;
1114                 }
1115         }
1116
1117         for (p = first; p < last; p++)
1118                 *p = 0;
1119
1120         ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
1121         return 0;
1122 out_err:
1123         ext4_std_error(inode->i_sb, err);
1124         return err;
1125 }
1126
1127 /**
1128  * ext4_free_data - free a list of data blocks
1129  * @handle:     handle for this transaction
1130  * @inode:      inode we are dealing with
1131  * @this_bh:    indirect buffer_head which contains *@first and *@last
1132  * @first:      array of block numbers
1133  * @last:       points immediately past the end of array
1134  *
1135  * We are freeing all blocks referred from that array (numbers are stored as
1136  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
1137  *
1138  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
1139  * blocks are contiguous then releasing them at one time will only affect one
1140  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1141  * actually use a lot of journal space.
1142  *
1143  * @this_bh will be %NULL if @first and @last point into the inode's direct
1144  * block pointers.
1145  */
1146 static void ext4_free_data(handle_t *handle, struct inode *inode,
1147                            struct buffer_head *this_bh,
1148                            __le32 *first, __le32 *last)
1149 {
1150         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
1151         unsigned long count = 0;            /* Number of blocks in the run */
1152         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
1153                                                corresponding to
1154                                                block_to_free */
1155         ext4_fsblk_t nr;                    /* Current block # */
1156         __le32 *p;                          /* Pointer into inode/ind
1157                                                for current block */
1158         int err = 0;
1159
1160         if (this_bh) {                          /* For indirect block */
1161                 BUFFER_TRACE(this_bh, "get_write_access");
1162                 err = ext4_journal_get_write_access(handle, this_bh);
1163                 /* Important: if we can't update the indirect pointers
1164                  * to the blocks, we can't free them. */
1165                 if (err)
1166                         return;
1167         }
1168
1169         for (p = first; p < last; p++) {
1170                 nr = le32_to_cpu(*p);
1171                 if (nr) {
1172                         /* accumulate blocks to free if they're contiguous */
1173                         if (count == 0) {
1174                                 block_to_free = nr;
1175                                 block_to_free_p = p;
1176                                 count = 1;
1177                         } else if (nr == block_to_free + count) {
1178                                 count++;
1179                         } else {
1180                                 err = ext4_clear_blocks(handle, inode, this_bh,
1181                                                         block_to_free, count,
1182                                                         block_to_free_p, p);
1183                                 if (err)
1184                                         break;
1185                                 block_to_free = nr;
1186                                 block_to_free_p = p;
1187                                 count = 1;
1188                         }
1189                 }
1190         }
1191
1192         if (!err && count > 0)
1193                 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1194                                         count, block_to_free_p, p);
1195         if (err < 0)
1196                 /* fatal error */
1197                 return;
1198
1199         if (this_bh) {
1200                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1201
1202                 /*
1203                  * The buffer head should have an attached journal head at this
1204                  * point. However, if the data is corrupted and an indirect
1205                  * block pointed to itself, it would have been detached when
1206                  * the block was cleared. Check for this instead of OOPSing.
1207                  */
1208                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1209                         ext4_handle_dirty_metadata(handle, inode, this_bh);
1210                 else
1211                         EXT4_ERROR_INODE(inode,
1212                                          "circular indirect block detected at "
1213                                          "block %llu",
1214                                 (unsigned long long) this_bh->b_blocknr);
1215         }
1216 }
1217
1218 /**
1219  *      ext4_free_branches - free an array of branches
1220  *      @handle: JBD handle for this transaction
1221  *      @inode: inode we are dealing with
1222  *      @parent_bh: the buffer_head which contains *@first and *@last
1223  *      @first: array of block numbers
1224  *      @last:  pointer immediately past the end of array
1225  *      @depth: depth of the branches to free
1226  *
1227  *      We are freeing all blocks referred from these branches (numbers are
1228  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1229  *      appropriately.
1230  */
1231 static void ext4_free_branches(handle_t *handle, struct inode *inode,
1232                                struct buffer_head *parent_bh,
1233                                __le32 *first, __le32 *last, int depth)
1234 {
1235         ext4_fsblk_t nr;
1236         __le32 *p;
1237
1238         if (ext4_handle_is_aborted(handle))
1239                 return;
1240
1241         if (depth--) {
1242                 struct buffer_head *bh;
1243                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1244                 p = last;
1245                 while (--p >= first) {
1246                         nr = le32_to_cpu(*p);
1247                         if (!nr)
1248                                 continue;               /* A hole */
1249
1250                         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1251                                                    nr, 1)) {
1252                                 EXT4_ERROR_INODE(inode,
1253                                                  "invalid indirect mapped "
1254                                                  "block %lu (level %d)",
1255                                                  (unsigned long) nr, depth);
1256                                 break;
1257                         }
1258
1259                         /* Go read the buffer for the next level down */
1260                         bh = sb_bread(inode->i_sb, nr);
1261
1262                         /*
1263                          * A read failure? Report error and clear slot
1264                          * (should be rare).
1265                          */
1266                         if (!bh) {
1267                                 EXT4_ERROR_INODE_BLOCK(inode, nr,
1268                                                        "Read failure");
1269                                 continue;
1270                         }
1271
1272                         /* This zaps the entire block.  Bottom up. */
1273                         BUFFER_TRACE(bh, "free child branches");
1274                         ext4_free_branches(handle, inode, bh,
1275                                         (__le32 *) bh->b_data,
1276                                         (__le32 *) bh->b_data + addr_per_block,
1277                                         depth);
1278                         brelse(bh);
1279
1280                         /*
1281                          * Everything below this this pointer has been
1282                          * released.  Now let this top-of-subtree go.
1283                          *
1284                          * We want the freeing of this indirect block to be
1285                          * atomic in the journal with the updating of the
1286                          * bitmap block which owns it.  So make some room in
1287                          * the journal.
1288                          *
1289                          * We zero the parent pointer *after* freeing its
1290                          * pointee in the bitmaps, so if extend_transaction()
1291                          * for some reason fails to put the bitmap changes and
1292                          * the release into the same transaction, recovery
1293                          * will merely complain about releasing a free block,
1294                          * rather than leaking blocks.
1295                          */
1296                         if (ext4_handle_is_aborted(handle))
1297                                 return;
1298                         if (try_to_extend_transaction(handle, inode)) {
1299                                 ext4_mark_inode_dirty(handle, inode);
1300                                 ext4_truncate_restart_trans(handle, inode,
1301                                             ext4_blocks_for_truncate(inode));
1302                         }
1303
1304                         /*
1305                          * The forget flag here is critical because if
1306                          * we are journaling (and not doing data
1307                          * journaling), we have to make sure a revoke
1308                          * record is written to prevent the journal
1309                          * replay from overwriting the (former)
1310                          * indirect block if it gets reallocated as a
1311                          * data block.  This must happen in the same
1312                          * transaction where the data blocks are
1313                          * actually freed.
1314                          */
1315                         ext4_free_blocks(handle, inode, NULL, nr, 1,
1316                                          EXT4_FREE_BLOCKS_METADATA|
1317                                          EXT4_FREE_BLOCKS_FORGET);
1318
1319                         if (parent_bh) {
1320                                 /*
1321                                  * The block which we have just freed is
1322                                  * pointed to by an indirect block: journal it
1323                                  */
1324                                 BUFFER_TRACE(parent_bh, "get_write_access");
1325                                 if (!ext4_journal_get_write_access(handle,
1326                                                                    parent_bh)){
1327                                         *p = 0;
1328                                         BUFFER_TRACE(parent_bh,
1329                                         "call ext4_handle_dirty_metadata");
1330                                         ext4_handle_dirty_metadata(handle,
1331                                                                    inode,
1332                                                                    parent_bh);
1333                                 }
1334                         }
1335                 }
1336         } else {
1337                 /* We have reached the bottom of the tree. */
1338                 BUFFER_TRACE(parent_bh, "free data blocks");
1339                 ext4_free_data(handle, inode, parent_bh, first, last);
1340         }
1341 }
1342
1343 void ext4_ind_truncate(struct inode *inode)
1344 {
1345         handle_t *handle;
1346         struct ext4_inode_info *ei = EXT4_I(inode);
1347         __le32 *i_data = ei->i_data;
1348         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1349         struct address_space *mapping = inode->i_mapping;
1350         ext4_lblk_t offsets[4];
1351         Indirect chain[4];
1352         Indirect *partial;
1353         __le32 nr = 0;
1354         int n = 0;
1355         ext4_lblk_t last_block, max_block;
1356         loff_t page_len;
1357         unsigned blocksize = inode->i_sb->s_blocksize;
1358         int err;
1359
1360         handle = start_transaction(inode);
1361         if (IS_ERR(handle))
1362                 return;         /* AKPM: return what? */
1363
1364         last_block = (inode->i_size + blocksize-1)
1365                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1366         max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1367                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1368
1369         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
1370                 page_len = PAGE_CACHE_SIZE -
1371                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
1372
1373                 err = ext4_discard_partial_page_buffers(handle,
1374                         mapping, inode->i_size, page_len, 0);
1375
1376                 if (err)
1377                         goto out_stop;
1378         }
1379
1380         if (last_block != max_block) {
1381                 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1382                 if (n == 0)
1383                         goto out_stop;  /* error */
1384         }
1385
1386         /*
1387          * OK.  This truncate is going to happen.  We add the inode to the
1388          * orphan list, so that if this truncate spans multiple transactions,
1389          * and we crash, we will resume the truncate when the filesystem
1390          * recovers.  It also marks the inode dirty, to catch the new size.
1391          *
1392          * Implication: the file must always be in a sane, consistent
1393          * truncatable state while each transaction commits.
1394          */
1395         if (ext4_orphan_add(handle, inode))
1396                 goto out_stop;
1397
1398         /*
1399          * From here we block out all ext4_get_block() callers who want to
1400          * modify the block allocation tree.
1401          */
1402         down_write(&ei->i_data_sem);
1403
1404         ext4_discard_preallocations(inode);
1405
1406         /*
1407          * The orphan list entry will now protect us from any crash which
1408          * occurs before the truncate completes, so it is now safe to propagate
1409          * the new, shorter inode size (held for now in i_size) into the
1410          * on-disk inode. We do this via i_disksize, which is the value which
1411          * ext4 *really* writes onto the disk inode.
1412          */
1413         ei->i_disksize = inode->i_size;
1414
1415         if (last_block == max_block) {
1416                 /*
1417                  * It is unnecessary to free any data blocks if last_block is
1418                  * equal to the indirect block limit.
1419                  */
1420                 goto out_unlock;
1421         } else if (n == 1) {            /* direct blocks */
1422                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1423                                i_data + EXT4_NDIR_BLOCKS);
1424                 goto do_indirects;
1425         }
1426
1427         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1428         /* Kill the top of shared branch (not detached) */
1429         if (nr) {
1430                 if (partial == chain) {
1431                         /* Shared branch grows from the inode */
1432                         ext4_free_branches(handle, inode, NULL,
1433                                            &nr, &nr+1, (chain+n-1) - partial);
1434                         *partial->p = 0;
1435                         /*
1436                          * We mark the inode dirty prior to restart,
1437                          * and prior to stop.  No need for it here.
1438                          */
1439                 } else {
1440                         /* Shared branch grows from an indirect block */
1441                         BUFFER_TRACE(partial->bh, "get_write_access");
1442                         ext4_free_branches(handle, inode, partial->bh,
1443                                         partial->p,
1444                                         partial->p+1, (chain+n-1) - partial);
1445                 }
1446         }
1447         /* Clear the ends of indirect blocks on the shared branch */
1448         while (partial > chain) {
1449                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1450                                    (__le32*)partial->bh->b_data+addr_per_block,
1451                                    (chain+n-1) - partial);
1452                 BUFFER_TRACE(partial->bh, "call brelse");
1453                 brelse(partial->bh);
1454                 partial--;
1455         }
1456 do_indirects:
1457         /* Kill the remaining (whole) subtrees */
1458         switch (offsets[0]) {
1459         default:
1460                 nr = i_data[EXT4_IND_BLOCK];
1461                 if (nr) {
1462                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1463                         i_data[EXT4_IND_BLOCK] = 0;
1464                 }
1465         case EXT4_IND_BLOCK:
1466                 nr = i_data[EXT4_DIND_BLOCK];
1467                 if (nr) {
1468                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1469                         i_data[EXT4_DIND_BLOCK] = 0;
1470                 }
1471         case EXT4_DIND_BLOCK:
1472                 nr = i_data[EXT4_TIND_BLOCK];
1473                 if (nr) {
1474                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1475                         i_data[EXT4_TIND_BLOCK] = 0;
1476                 }
1477         case EXT4_TIND_BLOCK:
1478                 ;
1479         }
1480
1481 out_unlock:
1482         up_write(&ei->i_data_sem);
1483         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
1484         ext4_mark_inode_dirty(handle, inode);
1485
1486         /*
1487          * In a multi-transaction truncate, we only make the final transaction
1488          * synchronous
1489          */
1490         if (IS_SYNC(inode))
1491                 ext4_handle_sync(handle);
1492 out_stop:
1493         /*
1494          * If this was a simple ftruncate(), and the file will remain alive
1495          * then we need to clear up the orphan record which we created above.
1496          * However, if this was a real unlink then we were called by
1497          * ext4_delete_inode(), and we allow that function to clean up the
1498          * orphan info for us.
1499          */
1500         if (inode->i_nlink)
1501                 ext4_orphan_del(handle, inode);
1502
1503         ext4_journal_stop(handle);
1504         trace_ext4_truncate_exit(inode);
1505 }
1506