2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
47 #include <trace/events/ext4.h>
50 * used by extent splitting.
52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
54 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
55 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
60 static __le32 ext4_extent_block_csum(struct inode *inode,
61 struct ext4_extent_header *eh)
63 struct ext4_inode_info *ei = EXT4_I(inode);
64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68 EXT4_EXTENT_TAIL_OFFSET(eh));
69 return cpu_to_le32(csum);
72 static int ext4_extent_block_csum_verify(struct inode *inode,
73 struct ext4_extent_header *eh)
75 struct ext4_extent_tail *et;
77 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
81 et = find_ext4_extent_tail(eh);
82 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
87 static void ext4_extent_block_csum_set(struct inode *inode,
88 struct ext4_extent_header *eh)
90 struct ext4_extent_tail *et;
92 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
96 et = find_ext4_extent_tail(eh);
97 et->et_checksum = ext4_extent_block_csum(inode, eh);
100 static int ext4_split_extent(handle_t *handle,
102 struct ext4_ext_path *path,
103 struct ext4_map_blocks *map,
107 static int ext4_split_extent_at(handle_t *handle,
109 struct ext4_ext_path *path,
114 static int ext4_find_delayed_extent(struct inode *inode,
115 struct ext4_ext_cache *newex);
117 static int ext4_ext_truncate_extend_restart(handle_t *handle,
123 if (!ext4_handle_valid(handle))
125 if (handle->h_buffer_credits > needed)
127 err = ext4_journal_extend(handle, needed);
130 err = ext4_truncate_restart_trans(handle, inode, needed);
142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143 struct ext4_ext_path *path)
146 /* path points to block */
147 return ext4_journal_get_write_access(handle, path->p_bh);
149 /* path points to leaf/index in inode body */
150 /* we use in-core data, no need to protect them */
160 #define ext4_ext_dirty(handle, inode, path) \
161 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
162 static int __ext4_ext_dirty(const char *where, unsigned int line,
163 handle_t *handle, struct inode *inode,
164 struct ext4_ext_path *path)
168 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
169 /* path points to block */
170 err = __ext4_handle_dirty_metadata(where, line, handle,
173 /* path points to leaf/index in inode body */
174 err = ext4_mark_inode_dirty(handle, inode);
179 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
180 struct ext4_ext_path *path,
184 int depth = path->p_depth;
185 struct ext4_extent *ex;
188 * Try to predict block placement assuming that we are
189 * filling in a file which will eventually be
190 * non-sparse --- i.e., in the case of libbfd writing
191 * an ELF object sections out-of-order but in a way
192 * the eventually results in a contiguous object or
193 * executable file, or some database extending a table
194 * space file. However, this is actually somewhat
195 * non-ideal if we are writing a sparse file such as
196 * qemu or KVM writing a raw image file that is going
197 * to stay fairly sparse, since it will end up
198 * fragmenting the file system's free space. Maybe we
199 * should have some hueristics or some way to allow
200 * userspace to pass a hint to file system,
201 * especially if the latter case turns out to be
204 ex = path[depth].p_ext;
206 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
207 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
209 if (block > ext_block)
210 return ext_pblk + (block - ext_block);
212 return ext_pblk - (ext_block - block);
215 /* it looks like index is empty;
216 * try to find starting block from index itself */
217 if (path[depth].p_bh)
218 return path[depth].p_bh->b_blocknr;
221 /* OK. use inode's group */
222 return ext4_inode_to_goal_block(inode);
226 * Allocation for a meta data block
229 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
230 struct ext4_ext_path *path,
231 struct ext4_extent *ex, int *err, unsigned int flags)
233 ext4_fsblk_t goal, newblock;
235 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
236 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
241 static inline int ext4_ext_space_block(struct inode *inode, int check)
245 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
246 / sizeof(struct ext4_extent);
247 #ifdef AGGRESSIVE_TEST
248 if (!check && size > 6)
254 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
258 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
259 / sizeof(struct ext4_extent_idx);
260 #ifdef AGGRESSIVE_TEST
261 if (!check && size > 5)
267 static inline int ext4_ext_space_root(struct inode *inode, int check)
271 size = sizeof(EXT4_I(inode)->i_data);
272 size -= sizeof(struct ext4_extent_header);
273 size /= sizeof(struct ext4_extent);
274 #ifdef AGGRESSIVE_TEST
275 if (!check && size > 3)
281 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
285 size = sizeof(EXT4_I(inode)->i_data);
286 size -= sizeof(struct ext4_extent_header);
287 size /= sizeof(struct ext4_extent_idx);
288 #ifdef AGGRESSIVE_TEST
289 if (!check && size > 4)
296 * Calculate the number of metadata blocks needed
297 * to allocate @blocks
298 * Worse case is one block per extent
300 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
302 struct ext4_inode_info *ei = EXT4_I(inode);
305 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
306 / sizeof(struct ext4_extent_idx));
309 * If the new delayed allocation block is contiguous with the
310 * previous da block, it can share index blocks with the
311 * previous block, so we only need to allocate a new index
312 * block every idxs leaf blocks. At ldxs**2 blocks, we need
313 * an additional index block, and at ldxs**3 blocks, yet
314 * another index blocks.
316 if (ei->i_da_metadata_calc_len &&
317 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
320 if ((ei->i_da_metadata_calc_len % idxs) == 0)
322 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
324 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
326 ei->i_da_metadata_calc_len = 0;
328 ei->i_da_metadata_calc_len++;
329 ei->i_da_metadata_calc_last_lblock++;
334 * In the worst case we need a new set of index blocks at
335 * every level of the inode's extent tree.
337 ei->i_da_metadata_calc_len = 1;
338 ei->i_da_metadata_calc_last_lblock = lblock;
339 return ext_depth(inode) + 1;
343 ext4_ext_max_entries(struct inode *inode, int depth)
347 if (depth == ext_depth(inode)) {
349 max = ext4_ext_space_root(inode, 1);
351 max = ext4_ext_space_root_idx(inode, 1);
354 max = ext4_ext_space_block(inode, 1);
356 max = ext4_ext_space_block_idx(inode, 1);
362 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
364 ext4_fsblk_t block = ext4_ext_pblock(ext);
365 int len = ext4_ext_get_actual_len(ext);
369 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
372 static int ext4_valid_extent_idx(struct inode *inode,
373 struct ext4_extent_idx *ext_idx)
375 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
377 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
380 static int ext4_valid_extent_entries(struct inode *inode,
381 struct ext4_extent_header *eh,
384 unsigned short entries;
385 if (eh->eh_entries == 0)
388 entries = le16_to_cpu(eh->eh_entries);
392 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
394 if (!ext4_valid_extent(inode, ext))
400 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
402 if (!ext4_valid_extent_idx(inode, ext_idx))
411 static int __ext4_ext_check(const char *function, unsigned int line,
412 struct inode *inode, struct ext4_extent_header *eh,
415 const char *error_msg;
418 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
419 error_msg = "invalid magic";
422 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
423 error_msg = "unexpected eh_depth";
426 if (unlikely(eh->eh_max == 0)) {
427 error_msg = "invalid eh_max";
430 max = ext4_ext_max_entries(inode, depth);
431 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
432 error_msg = "too large eh_max";
435 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
436 error_msg = "invalid eh_entries";
439 if (!ext4_valid_extent_entries(inode, eh, depth)) {
440 error_msg = "invalid extent entries";
443 /* Verify checksum on non-root extent tree nodes */
444 if (ext_depth(inode) != depth &&
445 !ext4_extent_block_csum_verify(inode, eh)) {
446 error_msg = "extent tree corrupted";
452 ext4_error_inode(inode, function, line, 0,
453 "bad header/extent: %s - magic %x, "
454 "entries %u, max %u(%u), depth %u(%u)",
455 error_msg, le16_to_cpu(eh->eh_magic),
456 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
457 max, le16_to_cpu(eh->eh_depth), depth);
462 #define ext4_ext_check(inode, eh, depth) \
463 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
465 int ext4_ext_check_inode(struct inode *inode)
467 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
470 static int __ext4_ext_check_block(const char *function, unsigned int line,
472 struct ext4_extent_header *eh,
474 struct buffer_head *bh)
478 if (buffer_verified(bh))
480 ret = ext4_ext_check(inode, eh, depth);
483 set_buffer_verified(bh);
487 #define ext4_ext_check_block(inode, eh, depth, bh) \
488 __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
491 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
493 int k, l = path->p_depth;
496 for (k = 0; k <= l; k++, path++) {
498 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
499 ext4_idx_pblock(path->p_idx));
500 } else if (path->p_ext) {
501 ext_debug(" %d:[%d]%d:%llu ",
502 le32_to_cpu(path->p_ext->ee_block),
503 ext4_ext_is_uninitialized(path->p_ext),
504 ext4_ext_get_actual_len(path->p_ext),
505 ext4_ext_pblock(path->p_ext));
512 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
514 int depth = ext_depth(inode);
515 struct ext4_extent_header *eh;
516 struct ext4_extent *ex;
522 eh = path[depth].p_hdr;
523 ex = EXT_FIRST_EXTENT(eh);
525 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
527 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
528 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
529 ext4_ext_is_uninitialized(ex),
530 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
535 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
536 ext4_fsblk_t newblock, int level)
538 int depth = ext_depth(inode);
539 struct ext4_extent *ex;
541 if (depth != level) {
542 struct ext4_extent_idx *idx;
543 idx = path[level].p_idx;
544 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
545 ext_debug("%d: move %d:%llu in new index %llu\n", level,
546 le32_to_cpu(idx->ei_block),
547 ext4_idx_pblock(idx),
555 ex = path[depth].p_ext;
556 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
557 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
558 le32_to_cpu(ex->ee_block),
560 ext4_ext_is_uninitialized(ex),
561 ext4_ext_get_actual_len(ex),
568 #define ext4_ext_show_path(inode, path)
569 #define ext4_ext_show_leaf(inode, path)
570 #define ext4_ext_show_move(inode, path, newblock, level)
573 void ext4_ext_drop_refs(struct ext4_ext_path *path)
575 int depth = path->p_depth;
578 for (i = 0; i <= depth; i++, path++)
586 * ext4_ext_binsearch_idx:
587 * binary search for the closest index of the given block
588 * the header must be checked before calling this
591 ext4_ext_binsearch_idx(struct inode *inode,
592 struct ext4_ext_path *path, ext4_lblk_t block)
594 struct ext4_extent_header *eh = path->p_hdr;
595 struct ext4_extent_idx *r, *l, *m;
598 ext_debug("binsearch for %u(idx): ", block);
600 l = EXT_FIRST_INDEX(eh) + 1;
601 r = EXT_LAST_INDEX(eh);
604 if (block < le32_to_cpu(m->ei_block))
608 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
609 m, le32_to_cpu(m->ei_block),
610 r, le32_to_cpu(r->ei_block));
614 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
615 ext4_idx_pblock(path->p_idx));
617 #ifdef CHECK_BINSEARCH
619 struct ext4_extent_idx *chix, *ix;
622 chix = ix = EXT_FIRST_INDEX(eh);
623 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
625 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
626 printk(KERN_DEBUG "k=%d, ix=0x%p, "
628 ix, EXT_FIRST_INDEX(eh));
629 printk(KERN_DEBUG "%u <= %u\n",
630 le32_to_cpu(ix->ei_block),
631 le32_to_cpu(ix[-1].ei_block));
633 BUG_ON(k && le32_to_cpu(ix->ei_block)
634 <= le32_to_cpu(ix[-1].ei_block));
635 if (block < le32_to_cpu(ix->ei_block))
639 BUG_ON(chix != path->p_idx);
646 * ext4_ext_binsearch:
647 * binary search for closest extent of the given block
648 * the header must be checked before calling this
651 ext4_ext_binsearch(struct inode *inode,
652 struct ext4_ext_path *path, ext4_lblk_t block)
654 struct ext4_extent_header *eh = path->p_hdr;
655 struct ext4_extent *r, *l, *m;
657 if (eh->eh_entries == 0) {
659 * this leaf is empty:
660 * we get such a leaf in split/add case
665 ext_debug("binsearch for %u: ", block);
667 l = EXT_FIRST_EXTENT(eh) + 1;
668 r = EXT_LAST_EXTENT(eh);
672 if (block < le32_to_cpu(m->ee_block))
676 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
677 m, le32_to_cpu(m->ee_block),
678 r, le32_to_cpu(r->ee_block));
682 ext_debug(" -> %d:%llu:[%d]%d ",
683 le32_to_cpu(path->p_ext->ee_block),
684 ext4_ext_pblock(path->p_ext),
685 ext4_ext_is_uninitialized(path->p_ext),
686 ext4_ext_get_actual_len(path->p_ext));
688 #ifdef CHECK_BINSEARCH
690 struct ext4_extent *chex, *ex;
693 chex = ex = EXT_FIRST_EXTENT(eh);
694 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
695 BUG_ON(k && le32_to_cpu(ex->ee_block)
696 <= le32_to_cpu(ex[-1].ee_block));
697 if (block < le32_to_cpu(ex->ee_block))
701 BUG_ON(chex != path->p_ext);
707 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
709 struct ext4_extent_header *eh;
711 eh = ext_inode_hdr(inode);
714 eh->eh_magic = EXT4_EXT_MAGIC;
715 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
716 ext4_mark_inode_dirty(handle, inode);
717 ext4_ext_invalidate_cache(inode);
721 struct ext4_ext_path *
722 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
723 struct ext4_ext_path *path)
725 struct ext4_extent_header *eh;
726 struct buffer_head *bh;
727 short int depth, i, ppos = 0, alloc = 0;
729 eh = ext_inode_hdr(inode);
730 depth = ext_depth(inode);
732 /* account possible depth increase */
734 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
737 return ERR_PTR(-ENOMEM);
744 /* walk through the tree */
746 ext_debug("depth %d: num %d, max %d\n",
747 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
749 ext4_ext_binsearch_idx(inode, path + ppos, block);
750 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
751 path[ppos].p_depth = i;
752 path[ppos].p_ext = NULL;
754 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
757 if (!bh_uptodate_or_lock(bh)) {
758 trace_ext4_ext_load_extent(inode, block,
760 if (bh_submit_read(bh) < 0) {
765 eh = ext_block_hdr(bh);
767 if (unlikely(ppos > depth)) {
769 EXT4_ERROR_INODE(inode,
770 "ppos %d > depth %d", ppos, depth);
773 path[ppos].p_bh = bh;
774 path[ppos].p_hdr = eh;
777 if (ext4_ext_check_block(inode, eh, i, bh))
781 path[ppos].p_depth = i;
782 path[ppos].p_ext = NULL;
783 path[ppos].p_idx = NULL;
786 ext4_ext_binsearch(inode, path + ppos, block);
787 /* if not an empty leaf */
788 if (path[ppos].p_ext)
789 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
791 ext4_ext_show_path(inode, path);
796 ext4_ext_drop_refs(path);
799 return ERR_PTR(-EIO);
803 * ext4_ext_insert_index:
804 * insert new index [@logical;@ptr] into the block at @curp;
805 * check where to insert: before @curp or after @curp
807 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
808 struct ext4_ext_path *curp,
809 int logical, ext4_fsblk_t ptr)
811 struct ext4_extent_idx *ix;
814 err = ext4_ext_get_access(handle, inode, curp);
818 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
819 EXT4_ERROR_INODE(inode,
820 "logical %d == ei_block %d!",
821 logical, le32_to_cpu(curp->p_idx->ei_block));
825 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
826 >= le16_to_cpu(curp->p_hdr->eh_max))) {
827 EXT4_ERROR_INODE(inode,
828 "eh_entries %d >= eh_max %d!",
829 le16_to_cpu(curp->p_hdr->eh_entries),
830 le16_to_cpu(curp->p_hdr->eh_max));
834 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
836 ext_debug("insert new index %d after: %llu\n", logical, ptr);
837 ix = curp->p_idx + 1;
840 ext_debug("insert new index %d before: %llu\n", logical, ptr);
844 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
847 ext_debug("insert new index %d: "
848 "move %d indices from 0x%p to 0x%p\n",
849 logical, len, ix, ix + 1);
850 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
853 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
854 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
858 ix->ei_block = cpu_to_le32(logical);
859 ext4_idx_store_pblock(ix, ptr);
860 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
862 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
863 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
867 err = ext4_ext_dirty(handle, inode, curp);
868 ext4_std_error(inode->i_sb, err);
875 * inserts new subtree into the path, using free index entry
877 * - allocates all needed blocks (new leaf and all intermediate index blocks)
878 * - makes decision where to split
879 * - moves remaining extents and index entries (right to the split point)
880 * into the newly allocated blocks
881 * - initializes subtree
883 static int ext4_ext_split(handle_t *handle, struct inode *inode,
885 struct ext4_ext_path *path,
886 struct ext4_extent *newext, int at)
888 struct buffer_head *bh = NULL;
889 int depth = ext_depth(inode);
890 struct ext4_extent_header *neh;
891 struct ext4_extent_idx *fidx;
893 ext4_fsblk_t newblock, oldblock;
895 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
898 /* make decision: where to split? */
899 /* FIXME: now decision is simplest: at current extent */
901 /* if current leaf will be split, then we should use
902 * border from split point */
903 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
904 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
907 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
908 border = path[depth].p_ext[1].ee_block;
909 ext_debug("leaf will be split."
910 " next leaf starts at %d\n",
911 le32_to_cpu(border));
913 border = newext->ee_block;
914 ext_debug("leaf will be added."
915 " next leaf starts at %d\n",
916 le32_to_cpu(border));
920 * If error occurs, then we break processing
921 * and mark filesystem read-only. index won't
922 * be inserted and tree will be in consistent
923 * state. Next mount will repair buffers too.
927 * Get array to track all allocated blocks.
928 * We need this to handle errors and free blocks
931 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
935 /* allocate all needed blocks */
936 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
937 for (a = 0; a < depth - at; a++) {
938 newblock = ext4_ext_new_meta_block(handle, inode, path,
939 newext, &err, flags);
942 ablocks[a] = newblock;
945 /* initialize new leaf */
946 newblock = ablocks[--a];
947 if (unlikely(newblock == 0)) {
948 EXT4_ERROR_INODE(inode, "newblock == 0!");
952 bh = sb_getblk(inode->i_sb, newblock);
959 err = ext4_journal_get_create_access(handle, bh);
963 neh = ext_block_hdr(bh);
965 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
966 neh->eh_magic = EXT4_EXT_MAGIC;
969 /* move remainder of path[depth] to the new leaf */
970 if (unlikely(path[depth].p_hdr->eh_entries !=
971 path[depth].p_hdr->eh_max)) {
972 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
973 path[depth].p_hdr->eh_entries,
974 path[depth].p_hdr->eh_max);
978 /* start copy from next extent */
979 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
980 ext4_ext_show_move(inode, path, newblock, depth);
982 struct ext4_extent *ex;
983 ex = EXT_FIRST_EXTENT(neh);
984 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
985 le16_add_cpu(&neh->eh_entries, m);
988 ext4_extent_block_csum_set(inode, neh);
989 set_buffer_uptodate(bh);
992 err = ext4_handle_dirty_metadata(handle, inode, bh);
998 /* correct old leaf */
1000 err = ext4_ext_get_access(handle, inode, path + depth);
1003 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1004 err = ext4_ext_dirty(handle, inode, path + depth);
1010 /* create intermediate indexes */
1012 if (unlikely(k < 0)) {
1013 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1018 ext_debug("create %d intermediate indices\n", k);
1019 /* insert new index into current index block */
1020 /* current depth stored in i var */
1023 oldblock = newblock;
1024 newblock = ablocks[--a];
1025 bh = sb_getblk(inode->i_sb, newblock);
1032 err = ext4_journal_get_create_access(handle, bh);
1036 neh = ext_block_hdr(bh);
1037 neh->eh_entries = cpu_to_le16(1);
1038 neh->eh_magic = EXT4_EXT_MAGIC;
1039 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1040 neh->eh_depth = cpu_to_le16(depth - i);
1041 fidx = EXT_FIRST_INDEX(neh);
1042 fidx->ei_block = border;
1043 ext4_idx_store_pblock(fidx, oldblock);
1045 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1046 i, newblock, le32_to_cpu(border), oldblock);
1048 /* move remainder of path[i] to the new index block */
1049 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1050 EXT_LAST_INDEX(path[i].p_hdr))) {
1051 EXT4_ERROR_INODE(inode,
1052 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1053 le32_to_cpu(path[i].p_ext->ee_block));
1057 /* start copy indexes */
1058 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1059 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1060 EXT_MAX_INDEX(path[i].p_hdr));
1061 ext4_ext_show_move(inode, path, newblock, i);
1063 memmove(++fidx, path[i].p_idx,
1064 sizeof(struct ext4_extent_idx) * m);
1065 le16_add_cpu(&neh->eh_entries, m);
1067 ext4_extent_block_csum_set(inode, neh);
1068 set_buffer_uptodate(bh);
1071 err = ext4_handle_dirty_metadata(handle, inode, bh);
1077 /* correct old index */
1079 err = ext4_ext_get_access(handle, inode, path + i);
1082 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1083 err = ext4_ext_dirty(handle, inode, path + i);
1091 /* insert new index */
1092 err = ext4_ext_insert_index(handle, inode, path + at,
1093 le32_to_cpu(border), newblock);
1097 if (buffer_locked(bh))
1103 /* free all allocated blocks in error case */
1104 for (i = 0; i < depth; i++) {
1107 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1108 EXT4_FREE_BLOCKS_METADATA);
1117 * ext4_ext_grow_indepth:
1118 * implements tree growing procedure:
1119 * - allocates new block
1120 * - moves top-level data (index block or leaf) into the new block
1121 * - initializes new top-level, creating index that points to the
1122 * just created block
1124 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1126 struct ext4_extent *newext)
1128 struct ext4_extent_header *neh;
1129 struct buffer_head *bh;
1130 ext4_fsblk_t newblock;
1133 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1134 newext, &err, flags);
1138 bh = sb_getblk(inode->i_sb, newblock);
1141 ext4_std_error(inode->i_sb, err);
1146 err = ext4_journal_get_create_access(handle, bh);
1152 /* move top-level index/leaf into new block */
1153 memmove(bh->b_data, EXT4_I(inode)->i_data,
1154 sizeof(EXT4_I(inode)->i_data));
1156 /* set size of new block */
1157 neh = ext_block_hdr(bh);
1158 /* old root could have indexes or leaves
1159 * so calculate e_max right way */
1160 if (ext_depth(inode))
1161 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1163 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1164 neh->eh_magic = EXT4_EXT_MAGIC;
1165 ext4_extent_block_csum_set(inode, neh);
1166 set_buffer_uptodate(bh);
1169 err = ext4_handle_dirty_metadata(handle, inode, bh);
1173 /* Update top-level index: num,max,pointer */
1174 neh = ext_inode_hdr(inode);
1175 neh->eh_entries = cpu_to_le16(1);
1176 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1177 if (neh->eh_depth == 0) {
1178 /* Root extent block becomes index block */
1179 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1180 EXT_FIRST_INDEX(neh)->ei_block =
1181 EXT_FIRST_EXTENT(neh)->ee_block;
1183 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1184 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1185 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1186 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1188 le16_add_cpu(&neh->eh_depth, 1);
1189 ext4_mark_inode_dirty(handle, inode);
1197 * ext4_ext_create_new_leaf:
1198 * finds empty index and adds new leaf.
1199 * if no free index is found, then it requests in-depth growing.
1201 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1203 struct ext4_ext_path *path,
1204 struct ext4_extent *newext)
1206 struct ext4_ext_path *curp;
1207 int depth, i, err = 0;
1210 i = depth = ext_depth(inode);
1212 /* walk up to the tree and look for free index entry */
1213 curp = path + depth;
1214 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1219 /* we use already allocated block for index block,
1220 * so subsequent data blocks should be contiguous */
1221 if (EXT_HAS_FREE_INDEX(curp)) {
1222 /* if we found index with free entry, then use that
1223 * entry: create all needed subtree and add new leaf */
1224 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1229 ext4_ext_drop_refs(path);
1230 path = ext4_ext_find_extent(inode,
1231 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1234 err = PTR_ERR(path);
1236 /* tree is full, time to grow in depth */
1237 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1242 ext4_ext_drop_refs(path);
1243 path = ext4_ext_find_extent(inode,
1244 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1247 err = PTR_ERR(path);
1252 * only first (depth 0 -> 1) produces free space;
1253 * in all other cases we have to split the grown tree
1255 depth = ext_depth(inode);
1256 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1257 /* now we need to split */
1267 * search the closest allocated block to the left for *logical
1268 * and returns it at @logical + it's physical address at @phys
1269 * if *logical is the smallest allocated block, the function
1270 * returns 0 at @phys
1271 * return value contains 0 (success) or error code
1273 static int ext4_ext_search_left(struct inode *inode,
1274 struct ext4_ext_path *path,
1275 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1277 struct ext4_extent_idx *ix;
1278 struct ext4_extent *ex;
1281 if (unlikely(path == NULL)) {
1282 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1285 depth = path->p_depth;
1288 if (depth == 0 && path->p_ext == NULL)
1291 /* usually extent in the path covers blocks smaller
1292 * then *logical, but it can be that extent is the
1293 * first one in the file */
1295 ex = path[depth].p_ext;
1296 ee_len = ext4_ext_get_actual_len(ex);
1297 if (*logical < le32_to_cpu(ex->ee_block)) {
1298 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1299 EXT4_ERROR_INODE(inode,
1300 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1301 *logical, le32_to_cpu(ex->ee_block));
1304 while (--depth >= 0) {
1305 ix = path[depth].p_idx;
1306 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1307 EXT4_ERROR_INODE(inode,
1308 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1309 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1310 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1311 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1319 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1320 EXT4_ERROR_INODE(inode,
1321 "logical %d < ee_block %d + ee_len %d!",
1322 *logical, le32_to_cpu(ex->ee_block), ee_len);
1326 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1327 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1332 * search the closest allocated block to the right for *logical
1333 * and returns it at @logical + it's physical address at @phys
1334 * if *logical is the largest allocated block, the function
1335 * returns 0 at @phys
1336 * return value contains 0 (success) or error code
1338 static int ext4_ext_search_right(struct inode *inode,
1339 struct ext4_ext_path *path,
1340 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1341 struct ext4_extent **ret_ex)
1343 struct buffer_head *bh = NULL;
1344 struct ext4_extent_header *eh;
1345 struct ext4_extent_idx *ix;
1346 struct ext4_extent *ex;
1348 int depth; /* Note, NOT eh_depth; depth from top of tree */
1351 if (unlikely(path == NULL)) {
1352 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1355 depth = path->p_depth;
1358 if (depth == 0 && path->p_ext == NULL)
1361 /* usually extent in the path covers blocks smaller
1362 * then *logical, but it can be that extent is the
1363 * first one in the file */
1365 ex = path[depth].p_ext;
1366 ee_len = ext4_ext_get_actual_len(ex);
1367 if (*logical < le32_to_cpu(ex->ee_block)) {
1368 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1369 EXT4_ERROR_INODE(inode,
1370 "first_extent(path[%d].p_hdr) != ex",
1374 while (--depth >= 0) {
1375 ix = path[depth].p_idx;
1376 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1377 EXT4_ERROR_INODE(inode,
1378 "ix != EXT_FIRST_INDEX *logical %d!",
1386 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1387 EXT4_ERROR_INODE(inode,
1388 "logical %d < ee_block %d + ee_len %d!",
1389 *logical, le32_to_cpu(ex->ee_block), ee_len);
1393 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1394 /* next allocated block in this leaf */
1399 /* go up and search for index to the right */
1400 while (--depth >= 0) {
1401 ix = path[depth].p_idx;
1402 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1406 /* we've gone up to the root and found no index to the right */
1410 /* we've found index to the right, let's
1411 * follow it and find the closest allocated
1412 * block to the right */
1414 block = ext4_idx_pblock(ix);
1415 while (++depth < path->p_depth) {
1416 bh = sb_bread(inode->i_sb, block);
1419 eh = ext_block_hdr(bh);
1420 /* subtract from p_depth to get proper eh_depth */
1421 if (ext4_ext_check_block(inode, eh,
1422 path->p_depth - depth, bh)) {
1426 ix = EXT_FIRST_INDEX(eh);
1427 block = ext4_idx_pblock(ix);
1431 bh = sb_bread(inode->i_sb, block);
1434 eh = ext_block_hdr(bh);
1435 if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1439 ex = EXT_FIRST_EXTENT(eh);
1441 *logical = le32_to_cpu(ex->ee_block);
1442 *phys = ext4_ext_pblock(ex);
1450 * ext4_ext_next_allocated_block:
1451 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1452 * NOTE: it considers block number from index entry as
1453 * allocated block. Thus, index entries have to be consistent
1457 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1461 BUG_ON(path == NULL);
1462 depth = path->p_depth;
1464 if (depth == 0 && path->p_ext == NULL)
1465 return EXT_MAX_BLOCKS;
1467 while (depth >= 0) {
1468 if (depth == path->p_depth) {
1470 if (path[depth].p_ext &&
1471 path[depth].p_ext !=
1472 EXT_LAST_EXTENT(path[depth].p_hdr))
1473 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1476 if (path[depth].p_idx !=
1477 EXT_LAST_INDEX(path[depth].p_hdr))
1478 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1483 return EXT_MAX_BLOCKS;
1487 * ext4_ext_next_leaf_block:
1488 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1490 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1494 BUG_ON(path == NULL);
1495 depth = path->p_depth;
1497 /* zero-tree has no leaf blocks at all */
1499 return EXT_MAX_BLOCKS;
1501 /* go to index block */
1504 while (depth >= 0) {
1505 if (path[depth].p_idx !=
1506 EXT_LAST_INDEX(path[depth].p_hdr))
1507 return (ext4_lblk_t)
1508 le32_to_cpu(path[depth].p_idx[1].ei_block);
1512 return EXT_MAX_BLOCKS;
1516 * ext4_ext_correct_indexes:
1517 * if leaf gets modified and modified extent is first in the leaf,
1518 * then we have to correct all indexes above.
1519 * TODO: do we need to correct tree in all cases?
1521 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1522 struct ext4_ext_path *path)
1524 struct ext4_extent_header *eh;
1525 int depth = ext_depth(inode);
1526 struct ext4_extent *ex;
1530 eh = path[depth].p_hdr;
1531 ex = path[depth].p_ext;
1533 if (unlikely(ex == NULL || eh == NULL)) {
1534 EXT4_ERROR_INODE(inode,
1535 "ex %p == NULL or eh %p == NULL", ex, eh);
1540 /* there is no tree at all */
1544 if (ex != EXT_FIRST_EXTENT(eh)) {
1545 /* we correct tree if first leaf got modified only */
1550 * TODO: we need correction if border is smaller than current one
1553 border = path[depth].p_ext->ee_block;
1554 err = ext4_ext_get_access(handle, inode, path + k);
1557 path[k].p_idx->ei_block = border;
1558 err = ext4_ext_dirty(handle, inode, path + k);
1563 /* change all left-side indexes */
1564 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1566 err = ext4_ext_get_access(handle, inode, path + k);
1569 path[k].p_idx->ei_block = border;
1570 err = ext4_ext_dirty(handle, inode, path + k);
1579 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1580 struct ext4_extent *ex2)
1582 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1585 * Make sure that either both extents are uninitialized, or
1588 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1591 if (ext4_ext_is_uninitialized(ex1))
1592 max_len = EXT_UNINIT_MAX_LEN;
1594 max_len = EXT_INIT_MAX_LEN;
1596 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1597 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1599 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1600 le32_to_cpu(ex2->ee_block))
1604 * To allow future support for preallocated extents to be added
1605 * as an RO_COMPAT feature, refuse to merge to extents if
1606 * this can result in the top bit of ee_len being set.
1608 if (ext1_ee_len + ext2_ee_len > max_len)
1610 #ifdef AGGRESSIVE_TEST
1611 if (ext1_ee_len >= 4)
1615 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1621 * This function tries to merge the "ex" extent to the next extent in the tree.
1622 * It always tries to merge towards right. If you want to merge towards
1623 * left, pass "ex - 1" as argument instead of "ex".
1624 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1625 * 1 if they got merged.
1627 static int ext4_ext_try_to_merge_right(struct inode *inode,
1628 struct ext4_ext_path *path,
1629 struct ext4_extent *ex)
1631 struct ext4_extent_header *eh;
1632 unsigned int depth, len;
1634 int uninitialized = 0;
1636 depth = ext_depth(inode);
1637 BUG_ON(path[depth].p_hdr == NULL);
1638 eh = path[depth].p_hdr;
1640 while (ex < EXT_LAST_EXTENT(eh)) {
1641 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1643 /* merge with next extent! */
1644 if (ext4_ext_is_uninitialized(ex))
1646 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1647 + ext4_ext_get_actual_len(ex + 1));
1649 ext4_ext_mark_uninitialized(ex);
1651 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1652 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1653 * sizeof(struct ext4_extent);
1654 memmove(ex + 1, ex + 2, len);
1656 le16_add_cpu(&eh->eh_entries, -1);
1658 WARN_ON(eh->eh_entries == 0);
1659 if (!eh->eh_entries)
1660 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1667 * This function does a very simple check to see if we can collapse
1668 * an extent tree with a single extent tree leaf block into the inode.
1670 static void ext4_ext_try_to_merge_up(handle_t *handle,
1671 struct inode *inode,
1672 struct ext4_ext_path *path)
1675 unsigned max_root = ext4_ext_space_root(inode, 0);
1678 if ((path[0].p_depth != 1) ||
1679 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1680 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1684 * We need to modify the block allocation bitmap and the block
1685 * group descriptor to release the extent tree block. If we
1686 * can't get the journal credits, give up.
1688 if (ext4_journal_extend(handle, 2))
1692 * Copy the extent data up to the inode
1694 blk = ext4_idx_pblock(path[0].p_idx);
1695 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1696 sizeof(struct ext4_extent_idx);
1697 s += sizeof(struct ext4_extent_header);
1699 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1700 path[0].p_depth = 0;
1701 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1702 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1703 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1705 brelse(path[1].p_bh);
1706 ext4_free_blocks(handle, inode, NULL, blk, 1,
1707 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1711 * This function tries to merge the @ex extent to neighbours in the tree.
1712 * return 1 if merge left else 0.
1714 static void ext4_ext_try_to_merge(handle_t *handle,
1715 struct inode *inode,
1716 struct ext4_ext_path *path,
1717 struct ext4_extent *ex) {
1718 struct ext4_extent_header *eh;
1722 depth = ext_depth(inode);
1723 BUG_ON(path[depth].p_hdr == NULL);
1724 eh = path[depth].p_hdr;
1726 if (ex > EXT_FIRST_EXTENT(eh))
1727 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1730 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1732 ext4_ext_try_to_merge_up(handle, inode, path);
1736 * check if a portion of the "newext" extent overlaps with an
1739 * If there is an overlap discovered, it updates the length of the newext
1740 * such that there will be no overlap, and then returns 1.
1741 * If there is no overlap found, it returns 0.
1743 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1744 struct inode *inode,
1745 struct ext4_extent *newext,
1746 struct ext4_ext_path *path)
1749 unsigned int depth, len1;
1750 unsigned int ret = 0;
1752 b1 = le32_to_cpu(newext->ee_block);
1753 len1 = ext4_ext_get_actual_len(newext);
1754 depth = ext_depth(inode);
1755 if (!path[depth].p_ext)
1757 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1758 b2 &= ~(sbi->s_cluster_ratio - 1);
1761 * get the next allocated block if the extent in the path
1762 * is before the requested block(s)
1765 b2 = ext4_ext_next_allocated_block(path);
1766 if (b2 == EXT_MAX_BLOCKS)
1768 b2 &= ~(sbi->s_cluster_ratio - 1);
1771 /* check for wrap through zero on extent logical start block*/
1772 if (b1 + len1 < b1) {
1773 len1 = EXT_MAX_BLOCKS - b1;
1774 newext->ee_len = cpu_to_le16(len1);
1778 /* check for overlap */
1779 if (b1 + len1 > b2) {
1780 newext->ee_len = cpu_to_le16(b2 - b1);
1788 * ext4_ext_insert_extent:
1789 * tries to merge requsted extent into the existing extent or
1790 * inserts requested extent as new one into the tree,
1791 * creating new leaf in the no-space case.
1793 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1794 struct ext4_ext_path *path,
1795 struct ext4_extent *newext, int flag)
1797 struct ext4_extent_header *eh;
1798 struct ext4_extent *ex, *fex;
1799 struct ext4_extent *nearex; /* nearest extent */
1800 struct ext4_ext_path *npath = NULL;
1801 int depth, len, err;
1803 unsigned uninitialized = 0;
1806 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1807 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1810 depth = ext_depth(inode);
1811 ex = path[depth].p_ext;
1812 if (unlikely(path[depth].p_hdr == NULL)) {
1813 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1817 /* try to insert block into found extent and return */
1818 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1819 && ext4_can_extents_be_merged(inode, ex, newext)) {
1820 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1821 ext4_ext_is_uninitialized(newext),
1822 ext4_ext_get_actual_len(newext),
1823 le32_to_cpu(ex->ee_block),
1824 ext4_ext_is_uninitialized(ex),
1825 ext4_ext_get_actual_len(ex),
1826 ext4_ext_pblock(ex));
1827 err = ext4_ext_get_access(handle, inode, path + depth);
1832 * ext4_can_extents_be_merged should have checked that either
1833 * both extents are uninitialized, or both aren't. Thus we
1834 * need to check only one of them here.
1836 if (ext4_ext_is_uninitialized(ex))
1838 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1839 + ext4_ext_get_actual_len(newext));
1841 ext4_ext_mark_uninitialized(ex);
1842 eh = path[depth].p_hdr;
1847 depth = ext_depth(inode);
1848 eh = path[depth].p_hdr;
1849 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1852 /* probably next leaf has space for us? */
1853 fex = EXT_LAST_EXTENT(eh);
1854 next = EXT_MAX_BLOCKS;
1855 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1856 next = ext4_ext_next_leaf_block(path);
1857 if (next != EXT_MAX_BLOCKS) {
1858 ext_debug("next leaf block - %u\n", next);
1859 BUG_ON(npath != NULL);
1860 npath = ext4_ext_find_extent(inode, next, NULL);
1862 return PTR_ERR(npath);
1863 BUG_ON(npath->p_depth != path->p_depth);
1864 eh = npath[depth].p_hdr;
1865 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1866 ext_debug("next leaf isn't full(%d)\n",
1867 le16_to_cpu(eh->eh_entries));
1871 ext_debug("next leaf has no free space(%d,%d)\n",
1872 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1876 * There is no free space in the found leaf.
1877 * We're gonna add a new leaf in the tree.
1879 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1880 flags = EXT4_MB_USE_ROOT_BLOCKS;
1881 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1884 depth = ext_depth(inode);
1885 eh = path[depth].p_hdr;
1888 nearex = path[depth].p_ext;
1890 err = ext4_ext_get_access(handle, inode, path + depth);
1895 /* there is no extent in this leaf, create first one */
1896 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1897 le32_to_cpu(newext->ee_block),
1898 ext4_ext_pblock(newext),
1899 ext4_ext_is_uninitialized(newext),
1900 ext4_ext_get_actual_len(newext));
1901 nearex = EXT_FIRST_EXTENT(eh);
1903 if (le32_to_cpu(newext->ee_block)
1904 > le32_to_cpu(nearex->ee_block)) {
1906 ext_debug("insert %u:%llu:[%d]%d before: "
1908 le32_to_cpu(newext->ee_block),
1909 ext4_ext_pblock(newext),
1910 ext4_ext_is_uninitialized(newext),
1911 ext4_ext_get_actual_len(newext),
1916 BUG_ON(newext->ee_block == nearex->ee_block);
1917 ext_debug("insert %u:%llu:[%d]%d after: "
1919 le32_to_cpu(newext->ee_block),
1920 ext4_ext_pblock(newext),
1921 ext4_ext_is_uninitialized(newext),
1922 ext4_ext_get_actual_len(newext),
1925 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1927 ext_debug("insert %u:%llu:[%d]%d: "
1928 "move %d extents from 0x%p to 0x%p\n",
1929 le32_to_cpu(newext->ee_block),
1930 ext4_ext_pblock(newext),
1931 ext4_ext_is_uninitialized(newext),
1932 ext4_ext_get_actual_len(newext),
1933 len, nearex, nearex + 1);
1934 memmove(nearex + 1, nearex,
1935 len * sizeof(struct ext4_extent));
1939 le16_add_cpu(&eh->eh_entries, 1);
1940 path[depth].p_ext = nearex;
1941 nearex->ee_block = newext->ee_block;
1942 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1943 nearex->ee_len = newext->ee_len;
1946 /* try to merge extents */
1947 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1948 ext4_ext_try_to_merge(handle, inode, path, nearex);
1951 /* time to correct all indexes above */
1952 err = ext4_ext_correct_indexes(handle, inode, path);
1956 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
1960 ext4_ext_drop_refs(npath);
1963 ext4_ext_invalidate_cache(inode);
1967 static int ext4_fill_fiemap_extents(struct inode *inode,
1968 ext4_lblk_t block, ext4_lblk_t num,
1969 struct fiemap_extent_info *fieinfo)
1971 struct ext4_ext_path *path = NULL;
1972 struct ext4_ext_cache newex;
1973 struct ext4_extent *ex;
1974 ext4_lblk_t next, next_del, start = 0, end = 0;
1975 ext4_lblk_t last = block + num;
1976 int exists, depth = 0, err = 0;
1977 unsigned int flags = 0;
1978 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
1980 while (block < last && block != EXT_MAX_BLOCKS) {
1982 /* find extent for this block */
1983 down_read(&EXT4_I(inode)->i_data_sem);
1985 if (path && ext_depth(inode) != depth) {
1986 /* depth was changed. we have to realloc path */
1991 path = ext4_ext_find_extent(inode, block, path);
1993 up_read(&EXT4_I(inode)->i_data_sem);
1994 err = PTR_ERR(path);
1999 depth = ext_depth(inode);
2000 if (unlikely(path[depth].p_hdr == NULL)) {
2001 up_read(&EXT4_I(inode)->i_data_sem);
2002 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2006 ex = path[depth].p_ext;
2007 next = ext4_ext_next_allocated_block(path);
2008 ext4_ext_drop_refs(path);
2013 /* there is no extent yet, so try to allocate
2014 * all requested space */
2017 } else if (le32_to_cpu(ex->ee_block) > block) {
2018 /* need to allocate space before found extent */
2020 end = le32_to_cpu(ex->ee_block);
2021 if (block + num < end)
2023 } else if (block >= le32_to_cpu(ex->ee_block)
2024 + ext4_ext_get_actual_len(ex)) {
2025 /* need to allocate space after found extent */
2030 } else if (block >= le32_to_cpu(ex->ee_block)) {
2032 * some part of requested space is covered
2036 end = le32_to_cpu(ex->ee_block)
2037 + ext4_ext_get_actual_len(ex);
2038 if (block + num < end)
2044 BUG_ON(end <= start);
2047 newex.ec_block = start;
2048 newex.ec_len = end - start;
2051 newex.ec_block = le32_to_cpu(ex->ee_block);
2052 newex.ec_len = ext4_ext_get_actual_len(ex);
2053 newex.ec_start = ext4_ext_pblock(ex);
2054 if (ext4_ext_is_uninitialized(ex))
2055 flags |= FIEMAP_EXTENT_UNWRITTEN;
2059 * Find delayed extent and update newex accordingly. We call
2060 * it even in !exists case to find out whether newex is the
2061 * last existing extent or not.
2063 next_del = ext4_find_delayed_extent(inode, &newex);
2064 if (!exists && next_del) {
2066 flags |= FIEMAP_EXTENT_DELALLOC;
2068 up_read(&EXT4_I(inode)->i_data_sem);
2070 if (unlikely(newex.ec_len == 0)) {
2071 EXT4_ERROR_INODE(inode, "newex.ec_len == 0");
2076 /* This is possible iff next == next_del == EXT_MAX_BLOCKS */
2077 if (next == next_del) {
2078 flags |= FIEMAP_EXTENT_LAST;
2079 if (unlikely(next_del != EXT_MAX_BLOCKS ||
2080 next != EXT_MAX_BLOCKS)) {
2081 EXT4_ERROR_INODE(inode,
2082 "next extent == %u, next "
2083 "delalloc extent = %u",
2091 err = fiemap_fill_next_extent(fieinfo,
2092 (__u64)newex.ec_block << blksize_bits,
2093 (__u64)newex.ec_start << blksize_bits,
2094 (__u64)newex.ec_len << blksize_bits,
2104 block = newex.ec_block + newex.ec_len;
2108 ext4_ext_drop_refs(path);
2116 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
2117 __u32 len, ext4_fsblk_t start)
2119 struct ext4_ext_cache *cex;
2121 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2122 trace_ext4_ext_put_in_cache(inode, block, len, start);
2123 cex = &EXT4_I(inode)->i_cached_extent;
2124 cex->ec_block = block;
2126 cex->ec_start = start;
2127 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2131 * ext4_ext_put_gap_in_cache:
2132 * calculate boundaries of the gap that the requested block fits into
2133 * and cache this gap
2136 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2139 int depth = ext_depth(inode);
2142 struct ext4_extent *ex;
2144 ex = path[depth].p_ext;
2146 /* there is no extent yet, so gap is [0;-] */
2148 len = EXT_MAX_BLOCKS;
2149 ext_debug("cache gap(whole file):");
2150 } else if (block < le32_to_cpu(ex->ee_block)) {
2152 len = le32_to_cpu(ex->ee_block) - block;
2153 ext_debug("cache gap(before): %u [%u:%u]",
2155 le32_to_cpu(ex->ee_block),
2156 ext4_ext_get_actual_len(ex));
2157 } else if (block >= le32_to_cpu(ex->ee_block)
2158 + ext4_ext_get_actual_len(ex)) {
2160 lblock = le32_to_cpu(ex->ee_block)
2161 + ext4_ext_get_actual_len(ex);
2163 next = ext4_ext_next_allocated_block(path);
2164 ext_debug("cache gap(after): [%u:%u] %u",
2165 le32_to_cpu(ex->ee_block),
2166 ext4_ext_get_actual_len(ex),
2168 BUG_ON(next == lblock);
2169 len = next - lblock;
2175 ext_debug(" -> %u:%lu\n", lblock, len);
2176 ext4_ext_put_in_cache(inode, lblock, len, 0);
2180 * ext4_ext_in_cache()
2181 * Checks to see if the given block is in the cache.
2182 * If it is, the cached extent is stored in the given
2183 * cache extent pointer.
2185 * @inode: The files inode
2186 * @block: The block to look for in the cache
2187 * @ex: Pointer where the cached extent will be stored
2188 * if it contains block
2190 * Return 0 if cache is invalid; 1 if the cache is valid
2193 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2194 struct ext4_extent *ex)
2196 struct ext4_ext_cache *cex;
2200 * We borrow i_block_reservation_lock to protect i_cached_extent
2202 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2203 cex = &EXT4_I(inode)->i_cached_extent;
2205 /* has cache valid data? */
2206 if (cex->ec_len == 0)
2209 if (in_range(block, cex->ec_block, cex->ec_len)) {
2210 ex->ee_block = cpu_to_le32(cex->ec_block);
2211 ext4_ext_store_pblock(ex, cex->ec_start);
2212 ex->ee_len = cpu_to_le16(cex->ec_len);
2213 ext_debug("%u cached by %u:%u:%llu\n",
2215 cex->ec_block, cex->ec_len, cex->ec_start);
2219 trace_ext4_ext_in_cache(inode, block, ret);
2220 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2226 * removes index from the index block.
2228 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2229 struct ext4_ext_path *path, int depth)
2234 /* free index block */
2236 path = path + depth;
2237 leaf = ext4_idx_pblock(path->p_idx);
2238 if (unlikely(path->p_hdr->eh_entries == 0)) {
2239 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2242 err = ext4_ext_get_access(handle, inode, path);
2246 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2247 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2248 len *= sizeof(struct ext4_extent_idx);
2249 memmove(path->p_idx, path->p_idx + 1, len);
2252 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2253 err = ext4_ext_dirty(handle, inode, path);
2256 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2257 trace_ext4_ext_rm_idx(inode, leaf);
2259 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2260 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2262 while (--depth >= 0) {
2263 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2266 err = ext4_ext_get_access(handle, inode, path);
2269 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2270 err = ext4_ext_dirty(handle, inode, path);
2278 * ext4_ext_calc_credits_for_single_extent:
2279 * This routine returns max. credits that needed to insert an extent
2280 * to the extent tree.
2281 * When pass the actual path, the caller should calculate credits
2284 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2285 struct ext4_ext_path *path)
2288 int depth = ext_depth(inode);
2291 /* probably there is space in leaf? */
2292 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2293 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2296 * There are some space in the leaf tree, no
2297 * need to account for leaf block credit
2299 * bitmaps and block group descriptor blocks
2300 * and other metadata blocks still need to be
2303 /* 1 bitmap, 1 block group descriptor */
2304 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2309 return ext4_chunk_trans_blocks(inode, nrblocks);
2313 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2315 * if nrblocks are fit in a single extent (chunk flag is 1), then
2316 * in the worse case, each tree level index/leaf need to be changed
2317 * if the tree split due to insert a new extent, then the old tree
2318 * index/leaf need to be updated too
2320 * If the nrblocks are discontiguous, they could cause
2321 * the whole tree split more than once, but this is really rare.
2323 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2328 /* If we are converting the inline data, only one is needed here. */
2329 if (ext4_has_inline_data(inode))
2332 depth = ext_depth(inode);
2342 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2343 struct ext4_extent *ex,
2344 ext4_fsblk_t *partial_cluster,
2345 ext4_lblk_t from, ext4_lblk_t to)
2347 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2348 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2352 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2353 flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2354 else if (ext4_should_journal_data(inode))
2355 flags |= EXT4_FREE_BLOCKS_FORGET;
2358 * For bigalloc file systems, we never free a partial cluster
2359 * at the beginning of the extent. Instead, we make a note
2360 * that we tried freeing the cluster, and check to see if we
2361 * need to free it on a subsequent call to ext4_remove_blocks,
2362 * or at the end of the ext4_truncate() operation.
2364 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2366 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2368 * If we have a partial cluster, and it's different from the
2369 * cluster of the last block, we need to explicitly free the
2370 * partial cluster here.
2372 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2373 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2374 ext4_free_blocks(handle, inode, NULL,
2375 EXT4_C2B(sbi, *partial_cluster),
2376 sbi->s_cluster_ratio, flags);
2377 *partial_cluster = 0;
2380 #ifdef EXTENTS_STATS
2382 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2383 spin_lock(&sbi->s_ext_stats_lock);
2384 sbi->s_ext_blocks += ee_len;
2385 sbi->s_ext_extents++;
2386 if (ee_len < sbi->s_ext_min)
2387 sbi->s_ext_min = ee_len;
2388 if (ee_len > sbi->s_ext_max)
2389 sbi->s_ext_max = ee_len;
2390 if (ext_depth(inode) > sbi->s_depth_max)
2391 sbi->s_depth_max = ext_depth(inode);
2392 spin_unlock(&sbi->s_ext_stats_lock);
2395 if (from >= le32_to_cpu(ex->ee_block)
2396 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2400 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2401 pblk = ext4_ext_pblock(ex) + ee_len - num;
2402 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2403 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2405 * If the block range to be freed didn't start at the
2406 * beginning of a cluster, and we removed the entire
2407 * extent, save the partial cluster here, since we
2408 * might need to delete if we determine that the
2409 * truncate operation has removed all of the blocks in
2412 if (pblk & (sbi->s_cluster_ratio - 1) &&
2414 *partial_cluster = EXT4_B2C(sbi, pblk);
2416 *partial_cluster = 0;
2417 } else if (from == le32_to_cpu(ex->ee_block)
2418 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2424 start = ext4_ext_pblock(ex);
2426 ext_debug("free first %u blocks starting %llu\n", num, start);
2427 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2430 printk(KERN_INFO "strange request: removal(2) "
2431 "%u-%u from %u:%u\n",
2432 from, to, le32_to_cpu(ex->ee_block), ee_len);
2439 * ext4_ext_rm_leaf() Removes the extents associated with the
2440 * blocks appearing between "start" and "end", and splits the extents
2441 * if "start" and "end" appear in the same extent
2443 * @handle: The journal handle
2444 * @inode: The files inode
2445 * @path: The path to the leaf
2446 * @start: The first block to remove
2447 * @end: The last block to remove
2450 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2451 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2452 ext4_lblk_t start, ext4_lblk_t end)
2454 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2455 int err = 0, correct_index = 0;
2456 int depth = ext_depth(inode), credits;
2457 struct ext4_extent_header *eh;
2460 ext4_lblk_t ex_ee_block;
2461 unsigned short ex_ee_len;
2462 unsigned uninitialized = 0;
2463 struct ext4_extent *ex;
2465 /* the header must be checked already in ext4_ext_remove_space() */
2466 ext_debug("truncate since %u in leaf to %u\n", start, end);
2467 if (!path[depth].p_hdr)
2468 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2469 eh = path[depth].p_hdr;
2470 if (unlikely(path[depth].p_hdr == NULL)) {
2471 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2474 /* find where to start removing */
2475 ex = EXT_LAST_EXTENT(eh);
2477 ex_ee_block = le32_to_cpu(ex->ee_block);
2478 ex_ee_len = ext4_ext_get_actual_len(ex);
2480 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2482 while (ex >= EXT_FIRST_EXTENT(eh) &&
2483 ex_ee_block + ex_ee_len > start) {
2485 if (ext4_ext_is_uninitialized(ex))
2490 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2491 uninitialized, ex_ee_len);
2492 path[depth].p_ext = ex;
2494 a = ex_ee_block > start ? ex_ee_block : start;
2495 b = ex_ee_block+ex_ee_len - 1 < end ?
2496 ex_ee_block+ex_ee_len - 1 : end;
2498 ext_debug(" border %u:%u\n", a, b);
2500 /* If this extent is beyond the end of the hole, skip it */
2501 if (end < ex_ee_block) {
2503 ex_ee_block = le32_to_cpu(ex->ee_block);
2504 ex_ee_len = ext4_ext_get_actual_len(ex);
2506 } else if (b != ex_ee_block + ex_ee_len - 1) {
2507 EXT4_ERROR_INODE(inode,
2508 "can not handle truncate %u:%u "
2510 start, end, ex_ee_block,
2511 ex_ee_block + ex_ee_len - 1);
2514 } else if (a != ex_ee_block) {
2515 /* remove tail of the extent */
2516 num = a - ex_ee_block;
2518 /* remove whole extent: excellent! */
2522 * 3 for leaf, sb, and inode plus 2 (bmap and group
2523 * descriptor) for each block group; assume two block
2524 * groups plus ex_ee_len/blocks_per_block_group for
2527 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2528 if (ex == EXT_FIRST_EXTENT(eh)) {
2530 credits += (ext_depth(inode)) + 1;
2532 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2534 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2538 err = ext4_ext_get_access(handle, inode, path + depth);
2542 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2548 /* this extent is removed; mark slot entirely unused */
2549 ext4_ext_store_pblock(ex, 0);
2551 ex->ee_len = cpu_to_le16(num);
2553 * Do not mark uninitialized if all the blocks in the
2554 * extent have been removed.
2556 if (uninitialized && num)
2557 ext4_ext_mark_uninitialized(ex);
2559 * If the extent was completely released,
2560 * we need to remove it from the leaf
2563 if (end != EXT_MAX_BLOCKS - 1) {
2565 * For hole punching, we need to scoot all the
2566 * extents up when an extent is removed so that
2567 * we dont have blank extents in the middle
2569 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2570 sizeof(struct ext4_extent));
2572 /* Now get rid of the one at the end */
2573 memset(EXT_LAST_EXTENT(eh), 0,
2574 sizeof(struct ext4_extent));
2576 le16_add_cpu(&eh->eh_entries, -1);
2578 *partial_cluster = 0;
2580 err = ext4_ext_dirty(handle, inode, path + depth);
2584 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2585 ext4_ext_pblock(ex));
2587 ex_ee_block = le32_to_cpu(ex->ee_block);
2588 ex_ee_len = ext4_ext_get_actual_len(ex);
2591 if (correct_index && eh->eh_entries)
2592 err = ext4_ext_correct_indexes(handle, inode, path);
2595 * If there is still a entry in the leaf node, check to see if
2596 * it references the partial cluster. This is the only place
2597 * where it could; if it doesn't, we can free the cluster.
2599 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2600 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2601 *partial_cluster)) {
2602 int flags = EXT4_FREE_BLOCKS_FORGET;
2604 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2605 flags |= EXT4_FREE_BLOCKS_METADATA;
2607 ext4_free_blocks(handle, inode, NULL,
2608 EXT4_C2B(sbi, *partial_cluster),
2609 sbi->s_cluster_ratio, flags);
2610 *partial_cluster = 0;
2613 /* if this leaf is free, then we should
2614 * remove it from index block above */
2615 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2616 err = ext4_ext_rm_idx(handle, inode, path, depth);
2623 * ext4_ext_more_to_rm:
2624 * returns 1 if current index has to be freed (even partial)
2627 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2629 BUG_ON(path->p_idx == NULL);
2631 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2635 * if truncate on deeper level happened, it wasn't partial,
2636 * so we have to consider current index for truncation
2638 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2643 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2646 struct super_block *sb = inode->i_sb;
2647 int depth = ext_depth(inode);
2648 struct ext4_ext_path *path = NULL;
2649 ext4_fsblk_t partial_cluster = 0;
2653 ext_debug("truncate since %u to %u\n", start, end);
2655 /* probably first extent we're gonna free will be last in block */
2656 handle = ext4_journal_start(inode, depth + 1);
2658 return PTR_ERR(handle);
2661 ext4_ext_invalidate_cache(inode);
2663 trace_ext4_ext_remove_space(inode, start, depth);
2666 * Check if we are removing extents inside the extent tree. If that
2667 * is the case, we are going to punch a hole inside the extent tree
2668 * so we have to check whether we need to split the extent covering
2669 * the last block to remove so we can easily remove the part of it
2670 * in ext4_ext_rm_leaf().
2672 if (end < EXT_MAX_BLOCKS - 1) {
2673 struct ext4_extent *ex;
2674 ext4_lblk_t ee_block;
2676 /* find extent for this block */
2677 path = ext4_ext_find_extent(inode, end, NULL);
2679 ext4_journal_stop(handle);
2680 return PTR_ERR(path);
2682 depth = ext_depth(inode);
2683 /* Leaf not may not exist only if inode has no blocks at all */
2684 ex = path[depth].p_ext;
2687 EXT4_ERROR_INODE(inode,
2688 "path[%d].p_hdr == NULL",
2695 ee_block = le32_to_cpu(ex->ee_block);
2698 * See if the last block is inside the extent, if so split
2699 * the extent at 'end' block so we can easily remove the
2700 * tail of the first part of the split extent in
2701 * ext4_ext_rm_leaf().
2703 if (end >= ee_block &&
2704 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2707 if (ext4_ext_is_uninitialized(ex))
2708 split_flag = EXT4_EXT_MARK_UNINIT1 |
2709 EXT4_EXT_MARK_UNINIT2;
2712 * Split the extent in two so that 'end' is the last
2713 * block in the first new extent
2715 err = ext4_split_extent_at(handle, inode, path,
2716 end + 1, split_flag,
2717 EXT4_GET_BLOCKS_PRE_IO |
2718 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2725 * We start scanning from right side, freeing all the blocks
2726 * after i_size and walking into the tree depth-wise.
2728 depth = ext_depth(inode);
2733 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2735 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2738 ext4_journal_stop(handle);
2741 path[0].p_depth = depth;
2742 path[0].p_hdr = ext_inode_hdr(inode);
2745 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2752 while (i >= 0 && err == 0) {
2754 /* this is leaf block */
2755 err = ext4_ext_rm_leaf(handle, inode, path,
2756 &partial_cluster, start,
2758 /* root level has p_bh == NULL, brelse() eats this */
2759 brelse(path[i].p_bh);
2760 path[i].p_bh = NULL;
2765 /* this is index block */
2766 if (!path[i].p_hdr) {
2767 ext_debug("initialize header\n");
2768 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2771 if (!path[i].p_idx) {
2772 /* this level hasn't been touched yet */
2773 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2774 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2775 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2777 le16_to_cpu(path[i].p_hdr->eh_entries));
2779 /* we were already here, see at next index */
2783 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2784 i, EXT_FIRST_INDEX(path[i].p_hdr),
2786 if (ext4_ext_more_to_rm(path + i)) {
2787 struct buffer_head *bh;
2788 /* go to the next level */
2789 ext_debug("move to level %d (block %llu)\n",
2790 i + 1, ext4_idx_pblock(path[i].p_idx));
2791 memset(path + i + 1, 0, sizeof(*path));
2792 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2794 /* should we reset i_size? */
2798 if (WARN_ON(i + 1 > depth)) {
2802 if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2803 depth - i - 1, bh)) {
2807 path[i + 1].p_bh = bh;
2809 /* save actual number of indexes since this
2810 * number is changed at the next iteration */
2811 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2814 /* we finished processing this index, go up */
2815 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2816 /* index is empty, remove it;
2817 * handle must be already prepared by the
2818 * truncatei_leaf() */
2819 err = ext4_ext_rm_idx(handle, inode, path, i);
2821 /* root level has p_bh == NULL, brelse() eats this */
2822 brelse(path[i].p_bh);
2823 path[i].p_bh = NULL;
2825 ext_debug("return to level %d\n", i);
2829 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2830 path->p_hdr->eh_entries);
2832 /* If we still have something in the partial cluster and we have removed
2833 * even the first extent, then we should free the blocks in the partial
2834 * cluster as well. */
2835 if (partial_cluster && path->p_hdr->eh_entries == 0) {
2836 int flags = EXT4_FREE_BLOCKS_FORGET;
2838 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2839 flags |= EXT4_FREE_BLOCKS_METADATA;
2841 ext4_free_blocks(handle, inode, NULL,
2842 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2843 EXT4_SB(sb)->s_cluster_ratio, flags);
2844 partial_cluster = 0;
2847 /* TODO: flexible tree reduction should be here */
2848 if (path->p_hdr->eh_entries == 0) {
2850 * truncate to zero freed all the tree,
2851 * so we need to correct eh_depth
2853 err = ext4_ext_get_access(handle, inode, path);
2855 ext_inode_hdr(inode)->eh_depth = 0;
2856 ext_inode_hdr(inode)->eh_max =
2857 cpu_to_le16(ext4_ext_space_root(inode, 0));
2858 err = ext4_ext_dirty(handle, inode, path);
2862 ext4_ext_drop_refs(path);
2864 if (err == -EAGAIN) {
2868 ext4_journal_stop(handle);
2874 * called at mount time
2876 void ext4_ext_init(struct super_block *sb)
2879 * possible initialization would be here
2882 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2883 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2884 printk(KERN_INFO "EXT4-fs: file extents enabled"
2885 #ifdef AGGRESSIVE_TEST
2886 ", aggressive tests"
2888 #ifdef CHECK_BINSEARCH
2891 #ifdef EXTENTS_STATS
2896 #ifdef EXTENTS_STATS
2897 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2898 EXT4_SB(sb)->s_ext_min = 1 << 30;
2899 EXT4_SB(sb)->s_ext_max = 0;
2905 * called at umount time
2907 void ext4_ext_release(struct super_block *sb)
2909 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2912 #ifdef EXTENTS_STATS
2913 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2914 struct ext4_sb_info *sbi = EXT4_SB(sb);
2915 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2916 sbi->s_ext_blocks, sbi->s_ext_extents,
2917 sbi->s_ext_blocks / sbi->s_ext_extents);
2918 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2919 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2924 /* FIXME!! we need to try to merge to left or right after zero-out */
2925 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2927 ext4_fsblk_t ee_pblock;
2928 unsigned int ee_len;
2931 ee_len = ext4_ext_get_actual_len(ex);
2932 ee_pblock = ext4_ext_pblock(ex);
2934 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2942 * ext4_split_extent_at() splits an extent at given block.
2944 * @handle: the journal handle
2945 * @inode: the file inode
2946 * @path: the path to the extent
2947 * @split: the logical block where the extent is splitted.
2948 * @split_flags: indicates if the extent could be zeroout if split fails, and
2949 * the states(init or uninit) of new extents.
2950 * @flags: flags used to insert new extent to extent tree.
2953 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2954 * of which are deterimined by split_flag.
2956 * There are two cases:
2957 * a> the extent are splitted into two extent.
2958 * b> split is not needed, and just mark the extent.
2960 * return 0 on success.
2962 static int ext4_split_extent_at(handle_t *handle,
2963 struct inode *inode,
2964 struct ext4_ext_path *path,
2969 ext4_fsblk_t newblock;
2970 ext4_lblk_t ee_block;
2971 struct ext4_extent *ex, newex, orig_ex;
2972 struct ext4_extent *ex2 = NULL;
2973 unsigned int ee_len, depth;
2976 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
2977 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
2979 ext_debug("ext4_split_extents_at: inode %lu, logical"
2980 "block %llu\n", inode->i_ino, (unsigned long long)split);
2982 ext4_ext_show_leaf(inode, path);
2984 depth = ext_depth(inode);
2985 ex = path[depth].p_ext;
2986 ee_block = le32_to_cpu(ex->ee_block);
2987 ee_len = ext4_ext_get_actual_len(ex);
2988 newblock = split - ee_block + ext4_ext_pblock(ex);
2990 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2992 err = ext4_ext_get_access(handle, inode, path + depth);
2996 if (split == ee_block) {
2998 * case b: block @split is the block that the extent begins with
2999 * then we just change the state of the extent, and splitting
3002 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3003 ext4_ext_mark_uninitialized(ex);
3005 ext4_ext_mark_initialized(ex);
3007 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3008 ext4_ext_try_to_merge(handle, inode, path, ex);
3010 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3015 memcpy(&orig_ex, ex, sizeof(orig_ex));
3016 ex->ee_len = cpu_to_le16(split - ee_block);
3017 if (split_flag & EXT4_EXT_MARK_UNINIT1)
3018 ext4_ext_mark_uninitialized(ex);
3021 * path may lead to new leaf, not to original leaf any more
3022 * after ext4_ext_insert_extent() returns,
3024 err = ext4_ext_dirty(handle, inode, path + depth);
3026 goto fix_extent_len;
3029 ex2->ee_block = cpu_to_le32(split);
3030 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
3031 ext4_ext_store_pblock(ex2, newblock);
3032 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3033 ext4_ext_mark_uninitialized(ex2);
3035 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3036 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3037 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3038 if (split_flag & EXT4_EXT_DATA_VALID1)
3039 err = ext4_ext_zeroout(inode, ex2);
3041 err = ext4_ext_zeroout(inode, ex);
3043 err = ext4_ext_zeroout(inode, &orig_ex);
3046 goto fix_extent_len;
3047 /* update the extent length and mark as initialized */
3048 ex->ee_len = cpu_to_le16(ee_len);
3049 ext4_ext_try_to_merge(handle, inode, path, ex);
3050 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3053 goto fix_extent_len;
3056 ext4_ext_show_leaf(inode, path);
3060 ex->ee_len = orig_ex.ee_len;
3061 ext4_ext_dirty(handle, inode, path + depth);
3066 * ext4_split_extents() splits an extent and mark extent which is covered
3067 * by @map as split_flags indicates
3069 * It may result in splitting the extent into multiple extents (upto three)
3070 * There are three possibilities:
3071 * a> There is no split required
3072 * b> Splits in two extents: Split is happening at either end of the extent
3073 * c> Splits in three extents: Somone is splitting in middle of the extent
3076 static int ext4_split_extent(handle_t *handle,
3077 struct inode *inode,
3078 struct ext4_ext_path *path,
3079 struct ext4_map_blocks *map,
3083 ext4_lblk_t ee_block;
3084 struct ext4_extent *ex;
3085 unsigned int ee_len, depth;
3088 int split_flag1, flags1;
3090 depth = ext_depth(inode);
3091 ex = path[depth].p_ext;
3092 ee_block = le32_to_cpu(ex->ee_block);
3093 ee_len = ext4_ext_get_actual_len(ex);
3094 uninitialized = ext4_ext_is_uninitialized(ex);
3096 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3097 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3098 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3100 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3101 EXT4_EXT_MARK_UNINIT2;
3102 if (split_flag & EXT4_EXT_DATA_VALID2)
3103 split_flag1 |= EXT4_EXT_DATA_VALID1;
3104 err = ext4_split_extent_at(handle, inode, path,
3105 map->m_lblk + map->m_len, split_flag1, flags1);
3110 ext4_ext_drop_refs(path);
3111 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3113 return PTR_ERR(path);
3115 if (map->m_lblk >= ee_block) {
3116 split_flag1 = split_flag & (EXT4_EXT_MAY_ZEROOUT |
3117 EXT4_EXT_DATA_VALID2);
3119 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3120 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3121 split_flag1 |= EXT4_EXT_MARK_UNINIT2;
3122 err = ext4_split_extent_at(handle, inode, path,
3123 map->m_lblk, split_flag1, flags);
3128 ext4_ext_show_leaf(inode, path);
3130 return err ? err : map->m_len;
3134 * This function is called by ext4_ext_map_blocks() if someone tries to write
3135 * to an uninitialized extent. It may result in splitting the uninitialized
3136 * extent into multiple extents (up to three - one initialized and two
3138 * There are three possibilities:
3139 * a> There is no split required: Entire extent should be initialized
3140 * b> Splits in two extents: Write is happening at either end of the extent
3141 * c> Splits in three extents: Somone is writing in middle of the extent
3144 * - The extent pointed to by 'path' is uninitialized.
3145 * - The extent pointed to by 'path' contains a superset
3146 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3148 * Post-conditions on success:
3149 * - the returned value is the number of blocks beyond map->l_lblk
3150 * that are allocated and initialized.
3151 * It is guaranteed to be >= map->m_len.
3153 static int ext4_ext_convert_to_initialized(handle_t *handle,
3154 struct inode *inode,
3155 struct ext4_map_blocks *map,
3156 struct ext4_ext_path *path)
3158 struct ext4_sb_info *sbi;
3159 struct ext4_extent_header *eh;
3160 struct ext4_map_blocks split_map;
3161 struct ext4_extent zero_ex;
3162 struct ext4_extent *ex;
3163 ext4_lblk_t ee_block, eof_block;
3164 unsigned int ee_len, depth;
3165 int allocated, max_zeroout = 0;
3169 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3170 "block %llu, max_blocks %u\n", inode->i_ino,
3171 (unsigned long long)map->m_lblk, map->m_len);
3173 sbi = EXT4_SB(inode->i_sb);
3174 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3175 inode->i_sb->s_blocksize_bits;
3176 if (eof_block < map->m_lblk + map->m_len)
3177 eof_block = map->m_lblk + map->m_len;
3179 depth = ext_depth(inode);
3180 eh = path[depth].p_hdr;
3181 ex = path[depth].p_ext;
3182 ee_block = le32_to_cpu(ex->ee_block);
3183 ee_len = ext4_ext_get_actual_len(ex);
3184 allocated = ee_len - (map->m_lblk - ee_block);
3186 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3188 /* Pre-conditions */
3189 BUG_ON(!ext4_ext_is_uninitialized(ex));
3190 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3193 * Attempt to transfer newly initialized blocks from the currently
3194 * uninitialized extent to its left neighbor. This is much cheaper
3195 * than an insertion followed by a merge as those involve costly
3196 * memmove() calls. This is the common case in steady state for
3197 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3200 * Limitations of the current logic:
3201 * - L1: we only deal with writes at the start of the extent.
3202 * The approach could be extended to writes at the end
3203 * of the extent but this scenario was deemed less common.
3204 * - L2: we do not deal with writes covering the whole extent.
3205 * This would require removing the extent if the transfer
3207 * - L3: we only attempt to merge with an extent stored in the
3208 * same extent tree node.
3210 if ((map->m_lblk == ee_block) && /*L1*/
3211 (map->m_len < ee_len) && /*L2*/
3212 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/
3213 struct ext4_extent *prev_ex;
3214 ext4_lblk_t prev_lblk;
3215 ext4_fsblk_t prev_pblk, ee_pblk;
3216 unsigned int prev_len, write_len;
3219 prev_lblk = le32_to_cpu(prev_ex->ee_block);
3220 prev_len = ext4_ext_get_actual_len(prev_ex);
3221 prev_pblk = ext4_ext_pblock(prev_ex);
3222 ee_pblk = ext4_ext_pblock(ex);
3223 write_len = map->m_len;
3226 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3227 * upon those conditions:
3228 * - C1: prev_ex is initialized,
3229 * - C2: prev_ex is logically abutting ex,
3230 * - C3: prev_ex is physically abutting ex,
3231 * - C4: prev_ex can receive the additional blocks without
3232 * overflowing the (initialized) length limit.
3234 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/
3235 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3236 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3237 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/
3238 err = ext4_ext_get_access(handle, inode, path + depth);
3242 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3245 /* Shift the start of ex by 'write_len' blocks */
3246 ex->ee_block = cpu_to_le32(ee_block + write_len);
3247 ext4_ext_store_pblock(ex, ee_pblk + write_len);
3248 ex->ee_len = cpu_to_le16(ee_len - write_len);
3249 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3251 /* Extend prev_ex by 'write_len' blocks */
3252 prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3254 /* Mark the block containing both extents as dirty */
3255 ext4_ext_dirty(handle, inode, path + depth);
3257 /* Update path to point to the right extent */
3258 path[depth].p_ext = prev_ex;
3260 /* Result: number of initialized blocks past m_lblk */
3261 allocated = write_len;
3266 WARN_ON(map->m_lblk < ee_block);
3268 * It is safe to convert extent to initialized via explicit
3269 * zeroout only if extent is fully insde i_size or new_size.
3271 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3273 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3274 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3275 inode->i_sb->s_blocksize_bits;
3277 /* If extent is less than s_max_zeroout_kb, zeroout directly */
3278 if (max_zeroout && (ee_len <= max_zeroout)) {
3279 err = ext4_ext_zeroout(inode, ex);
3283 err = ext4_ext_get_access(handle, inode, path + depth);
3286 ext4_ext_mark_initialized(ex);
3287 ext4_ext_try_to_merge(handle, inode, path, ex);
3288 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3294 * 1. split the extent into three extents.
3295 * 2. split the extent into two extents, zeroout the first half.
3296 * 3. split the extent into two extents, zeroout the second half.
3297 * 4. split the extent into two extents with out zeroout.
3299 split_map.m_lblk = map->m_lblk;
3300 split_map.m_len = map->m_len;
3302 if (max_zeroout && (allocated > map->m_len)) {
3303 if (allocated <= max_zeroout) {
3306 cpu_to_le32(map->m_lblk);
3307 zero_ex.ee_len = cpu_to_le16(allocated);
3308 ext4_ext_store_pblock(&zero_ex,
3309 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3310 err = ext4_ext_zeroout(inode, &zero_ex);
3313 split_map.m_lblk = map->m_lblk;
3314 split_map.m_len = allocated;
3315 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3317 if (map->m_lblk != ee_block) {
3318 zero_ex.ee_block = ex->ee_block;
3319 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3321 ext4_ext_store_pblock(&zero_ex,
3322 ext4_ext_pblock(ex));
3323 err = ext4_ext_zeroout(inode, &zero_ex);
3328 split_map.m_lblk = ee_block;
3329 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3330 allocated = map->m_len;
3334 allocated = ext4_split_extent(handle, inode, path,
3335 &split_map, split_flag, 0);
3340 return err ? err : allocated;
3344 * This function is called by ext4_ext_map_blocks() from
3345 * ext4_get_blocks_dio_write() when DIO to write
3346 * to an uninitialized extent.
3348 * Writing to an uninitialized extent may result in splitting the uninitialized
3349 * extent into multiple initialized/uninitialized extents (up to three)
3350 * There are three possibilities:
3351 * a> There is no split required: Entire extent should be uninitialized
3352 * b> Splits in two extents: Write is happening at either end of the extent
3353 * c> Splits in three extents: Somone is writing in middle of the extent
3355 * One of more index blocks maybe needed if the extent tree grow after
3356 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3357 * complete, we need to split the uninitialized extent before DIO submit
3358 * the IO. The uninitialized extent called at this time will be split
3359 * into three uninitialized extent(at most). After IO complete, the part
3360 * being filled will be convert to initialized by the end_io callback function
3361 * via ext4_convert_unwritten_extents().
3363 * Returns the size of uninitialized extent to be written on success.
3365 static int ext4_split_unwritten_extents(handle_t *handle,
3366 struct inode *inode,
3367 struct ext4_map_blocks *map,
3368 struct ext4_ext_path *path,
3371 ext4_lblk_t eof_block;
3372 ext4_lblk_t ee_block;
3373 struct ext4_extent *ex;
3374 unsigned int ee_len;
3375 int split_flag = 0, depth;
3377 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3378 "block %llu, max_blocks %u\n", inode->i_ino,
3379 (unsigned long long)map->m_lblk, map->m_len);
3381 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3382 inode->i_sb->s_blocksize_bits;
3383 if (eof_block < map->m_lblk + map->m_len)
3384 eof_block = map->m_lblk + map->m_len;
3386 * It is safe to convert extent to initialized via explicit
3387 * zeroout only if extent is fully insde i_size or new_size.
3389 depth = ext_depth(inode);
3390 ex = path[depth].p_ext;
3391 ee_block = le32_to_cpu(ex->ee_block);
3392 ee_len = ext4_ext_get_actual_len(ex);
3394 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3395 split_flag |= EXT4_EXT_MARK_UNINIT2;
3396 if (flags & EXT4_GET_BLOCKS_CONVERT)
3397 split_flag |= EXT4_EXT_DATA_VALID2;
3398 flags |= EXT4_GET_BLOCKS_PRE_IO;
3399 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3402 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3403 struct inode *inode,
3404 struct ext4_map_blocks *map,
3405 struct ext4_ext_path *path)
3407 struct ext4_extent *ex;
3408 ext4_lblk_t ee_block;
3409 unsigned int ee_len;
3413 depth = ext_depth(inode);
3414 ex = path[depth].p_ext;
3415 ee_block = le32_to_cpu(ex->ee_block);
3416 ee_len = ext4_ext_get_actual_len(ex);
3418 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3419 "block %llu, max_blocks %u\n", inode->i_ino,
3420 (unsigned long long)ee_block, ee_len);
3422 /* If extent is larger than requested then split is required */
3423 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3424 err = ext4_split_unwritten_extents(handle, inode, map, path,
3425 EXT4_GET_BLOCKS_CONVERT);
3428 ext4_ext_drop_refs(path);
3429 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3431 err = PTR_ERR(path);
3434 depth = ext_depth(inode);
3435 ex = path[depth].p_ext;
3438 err = ext4_ext_get_access(handle, inode, path + depth);
3441 /* first mark the extent as initialized */
3442 ext4_ext_mark_initialized(ex);
3444 /* note: ext4_ext_correct_indexes() isn't needed here because
3445 * borders are not changed
3447 ext4_ext_try_to_merge(handle, inode, path, ex);
3449 /* Mark modified extent as dirty */
3450 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3452 ext4_ext_show_leaf(inode, path);
3456 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3457 sector_t block, int count)
3460 for (i = 0; i < count; i++)
3461 unmap_underlying_metadata(bdev, block + i);
3465 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3467 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3469 struct ext4_ext_path *path,
3473 struct ext4_extent_header *eh;
3474 struct ext4_extent *last_ex;
3476 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3479 depth = ext_depth(inode);
3480 eh = path[depth].p_hdr;
3483 * We're going to remove EOFBLOCKS_FL entirely in future so we
3484 * do not care for this case anymore. Simply remove the flag
3485 * if there are no extents.
3487 if (unlikely(!eh->eh_entries))
3489 last_ex = EXT_LAST_EXTENT(eh);
3491 * We should clear the EOFBLOCKS_FL flag if we are writing the
3492 * last block in the last extent in the file. We test this by
3493 * first checking to see if the caller to
3494 * ext4_ext_get_blocks() was interested in the last block (or
3495 * a block beyond the last block) in the current extent. If
3496 * this turns out to be false, we can bail out from this
3497 * function immediately.
3499 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3500 ext4_ext_get_actual_len(last_ex))
3503 * If the caller does appear to be planning to write at or
3504 * beyond the end of the current extent, we then test to see
3505 * if the current extent is the last extent in the file, by
3506 * checking to make sure it was reached via the rightmost node
3507 * at each level of the tree.
3509 for (i = depth-1; i >= 0; i--)
3510 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3513 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3514 return ext4_mark_inode_dirty(handle, inode);
3518 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3520 * Return 1 if there is a delalloc block in the range, otherwise 0.
3522 static int ext4_find_delalloc_range(struct inode *inode,
3523 ext4_lblk_t lblk_start,
3524 ext4_lblk_t lblk_end)
3526 struct extent_status es;
3528 es.start = lblk_start;
3529 ext4_es_find_extent(inode, &es);
3531 return 0; /* there is no delay extent in this tree */
3532 else if (es.start <= lblk_start && lblk_start < es.start + es.len)
3534 else if (lblk_start <= es.start && es.start <= lblk_end)
3540 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3542 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3543 ext4_lblk_t lblk_start, lblk_end;
3544 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3545 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3547 return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3551 * Determines how many complete clusters (out of those specified by the 'map')
3552 * are under delalloc and were reserved quota for.
3553 * This function is called when we are writing out the blocks that were
3554 * originally written with their allocation delayed, but then the space was
3555 * allocated using fallocate() before the delayed allocation could be resolved.
3556 * The cases to look for are:
3557 * ('=' indicated delayed allocated blocks
3558 * '-' indicates non-delayed allocated blocks)
3559 * (a) partial clusters towards beginning and/or end outside of allocated range
3560 * are not delalloc'ed.
3562 * |----c---=|====c====|====c====|===-c----|
3563 * |++++++ allocated ++++++|
3564 * ==> 4 complete clusters in above example
3566 * (b) partial cluster (outside of allocated range) towards either end is
3567 * marked for delayed allocation. In this case, we will exclude that
3570 * |----====c========|========c========|
3571 * |++++++ allocated ++++++|
3572 * ==> 1 complete clusters in above example
3575 * |================c================|
3576 * |++++++ allocated ++++++|
3577 * ==> 0 complete clusters in above example
3579 * The ext4_da_update_reserve_space will be called only if we
3580 * determine here that there were some "entire" clusters that span
3581 * this 'allocated' range.
3582 * In the non-bigalloc case, this function will just end up returning num_blks
3583 * without ever calling ext4_find_delalloc_range.
3586 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3587 unsigned int num_blks)
3589 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3590 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3591 ext4_lblk_t lblk_from, lblk_to, c_offset;
3592 unsigned int allocated_clusters = 0;
3594 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3595 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3597 /* max possible clusters for this allocation */
3598 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3600 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3602 /* Check towards left side */
3603 c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3605 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3606 lblk_to = lblk_from + c_offset - 1;
3608 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3609 allocated_clusters--;
3612 /* Now check towards right. */
3613 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3614 if (allocated_clusters && c_offset) {
3615 lblk_from = lblk_start + num_blks;
3616 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3618 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3619 allocated_clusters--;
3622 return allocated_clusters;
3626 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3627 struct ext4_map_blocks *map,
3628 struct ext4_ext_path *path, int flags,
3629 unsigned int allocated, ext4_fsblk_t newblock)
3633 ext4_io_end_t *io = ext4_inode_aio(inode);
3635 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3636 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3637 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3639 ext4_ext_show_leaf(inode, path);
3641 trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3642 allocated, newblock);
3644 /* get_block() before submit the IO, split the extent */
3645 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3646 ret = ext4_split_unwritten_extents(handle, inode, map,
3651 * Flag the inode(non aio case) or end_io struct (aio case)
3652 * that this IO needs to conversion to written when IO is
3656 ext4_set_io_unwritten_flag(inode, io);
3658 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3659 if (ext4_should_dioread_nolock(inode))
3660 map->m_flags |= EXT4_MAP_UNINIT;
3663 /* IO end_io complete, convert the filled extent to written */
3664 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3665 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3668 ext4_update_inode_fsync_trans(handle, inode, 1);
3669 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3675 /* buffered IO case */
3677 * repeat fallocate creation request
3678 * we already have an unwritten extent
3680 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3683 /* buffered READ or buffered write_begin() lookup */
3684 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3686 * We have blocks reserved already. We
3687 * return allocated blocks so that delalloc
3688 * won't do block reservation for us. But
3689 * the buffer head will be unmapped so that
3690 * a read from the block returns 0s.
3692 map->m_flags |= EXT4_MAP_UNWRITTEN;
3696 /* buffered write, writepage time, convert*/
3697 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3699 ext4_update_inode_fsync_trans(handle, inode, 1);
3706 map->m_flags |= EXT4_MAP_NEW;
3708 * if we allocated more blocks than requested
3709 * we need to make sure we unmap the extra block
3710 * allocated. The actual needed block will get
3711 * unmapped later when we find the buffer_head marked
3714 if (allocated > map->m_len) {
3715 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3716 newblock + map->m_len,
3717 allocated - map->m_len);
3718 allocated = map->m_len;
3722 * If we have done fallocate with the offset that is already
3723 * delayed allocated, we would have block reservation
3724 * and quota reservation done in the delayed write path.
3725 * But fallocate would have already updated quota and block
3726 * count for this offset. So cancel these reservation
3728 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3729 unsigned int reserved_clusters;
3730 reserved_clusters = get_reserved_cluster_alloc(inode,
3731 map->m_lblk, map->m_len);
3732 if (reserved_clusters)
3733 ext4_da_update_reserve_space(inode,
3739 map->m_flags |= EXT4_MAP_MAPPED;
3740 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3741 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3747 if (allocated > map->m_len)
3748 allocated = map->m_len;
3749 ext4_ext_show_leaf(inode, path);
3750 map->m_pblk = newblock;
3751 map->m_len = allocated;
3754 ext4_ext_drop_refs(path);
3757 return err ? err : allocated;
3761 * get_implied_cluster_alloc - check to see if the requested
3762 * allocation (in the map structure) overlaps with a cluster already
3763 * allocated in an extent.
3764 * @sb The filesystem superblock structure
3765 * @map The requested lblk->pblk mapping
3766 * @ex The extent structure which might contain an implied
3767 * cluster allocation
3769 * This function is called by ext4_ext_map_blocks() after we failed to
3770 * find blocks that were already in the inode's extent tree. Hence,
3771 * we know that the beginning of the requested region cannot overlap
3772 * the extent from the inode's extent tree. There are three cases we
3773 * want to catch. The first is this case:
3775 * |--- cluster # N--|
3776 * |--- extent ---| |---- requested region ---|
3779 * The second case that we need to test for is this one:
3781 * |--------- cluster # N ----------------|
3782 * |--- requested region --| |------- extent ----|
3783 * |=======================|
3785 * The third case is when the requested region lies between two extents
3786 * within the same cluster:
3787 * |------------- cluster # N-------------|
3788 * |----- ex -----| |---- ex_right ----|
3789 * |------ requested region ------|
3790 * |================|
3792 * In each of the above cases, we need to set the map->m_pblk and
3793 * map->m_len so it corresponds to the return the extent labelled as
3794 * "|====|" from cluster #N, since it is already in use for data in
3795 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3796 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3797 * as a new "allocated" block region. Otherwise, we will return 0 and
3798 * ext4_ext_map_blocks() will then allocate one or more new clusters
3799 * by calling ext4_mb_new_blocks().
3801 static int get_implied_cluster_alloc(struct super_block *sb,
3802 struct ext4_map_blocks *map,
3803 struct ext4_extent *ex,
3804 struct ext4_ext_path *path)
3806 struct ext4_sb_info *sbi = EXT4_SB(sb);
3807 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3808 ext4_lblk_t ex_cluster_start, ex_cluster_end;
3809 ext4_lblk_t rr_cluster_start;
3810 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3811 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3812 unsigned short ee_len = ext4_ext_get_actual_len(ex);
3814 /* The extent passed in that we are trying to match */
3815 ex_cluster_start = EXT4_B2C(sbi, ee_block);
3816 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3818 /* The requested region passed into ext4_map_blocks() */
3819 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3821 if ((rr_cluster_start == ex_cluster_end) ||
3822 (rr_cluster_start == ex_cluster_start)) {
3823 if (rr_cluster_start == ex_cluster_end)
3824 ee_start += ee_len - 1;
3825 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3827 map->m_len = min(map->m_len,
3828 (unsigned) sbi->s_cluster_ratio - c_offset);
3830 * Check for and handle this case:
3832 * |--------- cluster # N-------------|
3833 * |------- extent ----|
3834 * |--- requested region ---|
3838 if (map->m_lblk < ee_block)
3839 map->m_len = min(map->m_len, ee_block - map->m_lblk);
3842 * Check for the case where there is already another allocated
3843 * block to the right of 'ex' but before the end of the cluster.
3845 * |------------- cluster # N-------------|
3846 * |----- ex -----| |---- ex_right ----|
3847 * |------ requested region ------|
3848 * |================|
3850 if (map->m_lblk > ee_block) {
3851 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3852 map->m_len = min(map->m_len, next - map->m_lblk);
3855 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3859 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3865 * Block allocation/map/preallocation routine for extents based files
3868 * Need to be called with
3869 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3870 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3872 * return > 0, number of of blocks already mapped/allocated
3873 * if create == 0 and these are pre-allocated blocks
3874 * buffer head is unmapped
3875 * otherwise blocks are mapped
3877 * return = 0, if plain look up failed (blocks have not been allocated)
3878 * buffer head is unmapped
3880 * return < 0, error case.
3882 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3883 struct ext4_map_blocks *map, int flags)
3885 struct ext4_ext_path *path = NULL;
3886 struct ext4_extent newex, *ex, *ex2;
3887 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3888 ext4_fsblk_t newblock = 0;
3889 int free_on_err = 0, err = 0, depth;
3890 unsigned int allocated = 0, offset = 0;
3891 unsigned int allocated_clusters = 0;
3892 struct ext4_allocation_request ar;
3893 ext4_io_end_t *io = ext4_inode_aio(inode);
3894 ext4_lblk_t cluster_offset;
3895 int set_unwritten = 0;
3897 ext_debug("blocks %u/%u requested for inode %lu\n",
3898 map->m_lblk, map->m_len, inode->i_ino);
3899 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3901 /* check in cache */
3902 if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3903 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3904 if ((sbi->s_cluster_ratio > 1) &&
3905 ext4_find_delalloc_cluster(inode, map->m_lblk))
3906 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3908 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3910 * block isn't allocated yet and
3911 * user doesn't want to allocate it
3915 /* we should allocate requested block */
3917 /* block is already allocated */
3918 if (sbi->s_cluster_ratio > 1)
3919 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3920 newblock = map->m_lblk
3921 - le32_to_cpu(newex.ee_block)
3922 + ext4_ext_pblock(&newex);
3923 /* number of remaining blocks in the extent */
3924 allocated = ext4_ext_get_actual_len(&newex) -
3925 (map->m_lblk - le32_to_cpu(newex.ee_block));
3930 /* find extent for this block */
3931 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3933 err = PTR_ERR(path);
3938 depth = ext_depth(inode);
3941 * consistent leaf must not be empty;
3942 * this situation is possible, though, _during_ tree modification;
3943 * this is why assert can't be put in ext4_ext_find_extent()
3945 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3946 EXT4_ERROR_INODE(inode, "bad extent address "
3947 "lblock: %lu, depth: %d pblock %lld",
3948 (unsigned long) map->m_lblk, depth,
3949 path[depth].p_block);
3954 ex = path[depth].p_ext;
3956 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3957 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3958 unsigned short ee_len;
3961 * Uninitialized extents are treated as holes, except that
3962 * we split out initialized portions during a write.
3964 ee_len = ext4_ext_get_actual_len(ex);
3966 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3968 /* if found extent covers block, simply return it */
3969 if (in_range(map->m_lblk, ee_block, ee_len)) {
3970 newblock = map->m_lblk - ee_block + ee_start;
3971 /* number of remaining blocks in the extent */
3972 allocated = ee_len - (map->m_lblk - ee_block);
3973 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3974 ee_block, ee_len, newblock);
3977 * Do not put uninitialized extent
3980 if (!ext4_ext_is_uninitialized(ex)) {
3981 ext4_ext_put_in_cache(inode, ee_block,
3985 allocated = ext4_ext_handle_uninitialized_extents(
3986 handle, inode, map, path, flags,
3987 allocated, newblock);
3992 if ((sbi->s_cluster_ratio > 1) &&
3993 ext4_find_delalloc_cluster(inode, map->m_lblk))
3994 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3997 * requested block isn't allocated yet;
3998 * we couldn't try to create block if create flag is zero
4000 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4002 * put just found gap into cache to speed up
4003 * subsequent requests
4005 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4010 * Okay, we need to do block allocation.
4012 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4013 newex.ee_block = cpu_to_le32(map->m_lblk);
4014 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4017 * If we are doing bigalloc, check to see if the extent returned
4018 * by ext4_ext_find_extent() implies a cluster we can use.
4020 if (cluster_offset && ex &&
4021 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4022 ar.len = allocated = map->m_len;
4023 newblock = map->m_pblk;
4024 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4025 goto got_allocated_blocks;
4028 /* find neighbour allocated blocks */
4029 ar.lleft = map->m_lblk;
4030 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4033 ar.lright = map->m_lblk;
4035 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4039 /* Check if the extent after searching to the right implies a
4040 * cluster we can use. */
4041 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4042 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4043 ar.len = allocated = map->m_len;
4044 newblock = map->m_pblk;
4045 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4046 goto got_allocated_blocks;
4050 * See if request is beyond maximum number of blocks we can have in
4051 * a single extent. For an initialized extent this limit is
4052 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4053 * EXT_UNINIT_MAX_LEN.
4055 if (map->m_len > EXT_INIT_MAX_LEN &&
4056 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4057 map->m_len = EXT_INIT_MAX_LEN;
4058 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4059 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4060 map->m_len = EXT_UNINIT_MAX_LEN;
4062 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4063 newex.ee_len = cpu_to_le16(map->m_len);
4064 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4066 allocated = ext4_ext_get_actual_len(&newex);
4068 allocated = map->m_len;
4070 /* allocate new block */
4072 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4073 ar.logical = map->m_lblk;
4075 * We calculate the offset from the beginning of the cluster
4076 * for the logical block number, since when we allocate a
4077 * physical cluster, the physical block should start at the
4078 * same offset from the beginning of the cluster. This is
4079 * needed so that future calls to get_implied_cluster_alloc()
4082 offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4083 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4085 ar.logical -= offset;
4086 if (S_ISREG(inode->i_mode))
4087 ar.flags = EXT4_MB_HINT_DATA;
4089 /* disable in-core preallocation for non-regular files */
4091 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4092 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4093 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4096 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4097 ar.goal, newblock, allocated);
4099 allocated_clusters = ar.len;
4100 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4101 if (ar.len > allocated)
4104 got_allocated_blocks:
4105 /* try to insert new extent into found leaf and return */
4106 ext4_ext_store_pblock(&newex, newblock + offset);
4107 newex.ee_len = cpu_to_le16(ar.len);
4108 /* Mark uninitialized */
4109 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4110 ext4_ext_mark_uninitialized(&newex);
4112 * io_end structure was created for every IO write to an
4113 * uninitialized extent. To avoid unnecessary conversion,
4114 * here we flag the IO that really needs the conversion.
4115 * For non asycn direct IO case, flag the inode state
4116 * that we need to perform conversion when IO is done.
4118 if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4120 if (ext4_should_dioread_nolock(inode))
4121 map->m_flags |= EXT4_MAP_UNINIT;
4125 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4126 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4129 err = ext4_ext_insert_extent(handle, inode, path,
4132 if (!err && set_unwritten) {
4134 ext4_set_io_unwritten_flag(inode, io);
4136 ext4_set_inode_state(inode,
4137 EXT4_STATE_DIO_UNWRITTEN);
4140 if (err && free_on_err) {
4141 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4142 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4143 /* free data blocks we just allocated */
4144 /* not a good idea to call discard here directly,
4145 * but otherwise we'd need to call it every free() */
4146 ext4_discard_preallocations(inode);
4147 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4148 ext4_ext_get_actual_len(&newex), fb_flags);
4152 /* previous routine could use block we allocated */
4153 newblock = ext4_ext_pblock(&newex);
4154 allocated = ext4_ext_get_actual_len(&newex);
4155 if (allocated > map->m_len)
4156 allocated = map->m_len;
4157 map->m_flags |= EXT4_MAP_NEW;
4160 * Update reserved blocks/metadata blocks after successful
4161 * block allocation which had been deferred till now.
4163 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4164 unsigned int reserved_clusters;
4166 * Check how many clusters we had reserved this allocated range
4168 reserved_clusters = get_reserved_cluster_alloc(inode,
4169 map->m_lblk, allocated);
4170 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4171 if (reserved_clusters) {
4173 * We have clusters reserved for this range.
4174 * But since we are not doing actual allocation
4175 * and are simply using blocks from previously
4176 * allocated cluster, we should release the
4177 * reservation and not claim quota.
4179 ext4_da_update_reserve_space(inode,
4180 reserved_clusters, 0);
4183 BUG_ON(allocated_clusters < reserved_clusters);
4184 /* We will claim quota for all newly allocated blocks.*/
4185 ext4_da_update_reserve_space(inode, allocated_clusters,
4187 if (reserved_clusters < allocated_clusters) {
4188 struct ext4_inode_info *ei = EXT4_I(inode);
4189 int reservation = allocated_clusters -
4192 * It seems we claimed few clusters outside of
4193 * the range of this allocation. We should give
4194 * it back to the reservation pool. This can
4195 * happen in the following case:
4197 * * Suppose s_cluster_ratio is 4 (i.e., each
4198 * cluster has 4 blocks. Thus, the clusters
4199 * are [0-3],[4-7],[8-11]...
4200 * * First comes delayed allocation write for
4201 * logical blocks 10 & 11. Since there were no
4202 * previous delayed allocated blocks in the
4203 * range [8-11], we would reserve 1 cluster
4205 * * Next comes write for logical blocks 3 to 8.
4206 * In this case, we will reserve 2 clusters
4207 * (for [0-3] and [4-7]; and not for [8-11] as
4208 * that range has a delayed allocated blocks.
4209 * Thus total reserved clusters now becomes 3.
4210 * * Now, during the delayed allocation writeout
4211 * time, we will first write blocks [3-8] and
4212 * allocate 3 clusters for writing these
4213 * blocks. Also, we would claim all these
4214 * three clusters above.
4215 * * Now when we come here to writeout the
4216 * blocks [10-11], we would expect to claim
4217 * the reservation of 1 cluster we had made
4218 * (and we would claim it since there are no
4219 * more delayed allocated blocks in the range
4220 * [8-11]. But our reserved cluster count had
4221 * already gone to 0.
4223 * Thus, at the step 4 above when we determine
4224 * that there are still some unwritten delayed
4225 * allocated blocks outside of our current
4226 * block range, we should increment the
4227 * reserved clusters count so that when the
4228 * remaining blocks finally gets written, we
4231 dquot_reserve_block(inode,
4232 EXT4_C2B(sbi, reservation));
4233 spin_lock(&ei->i_block_reservation_lock);
4234 ei->i_reserved_data_blocks += reservation;
4235 spin_unlock(&ei->i_block_reservation_lock);
4241 * Cache the extent and update transaction to commit on fdatasync only
4242 * when it is _not_ an uninitialized extent.
4244 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4245 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4246 ext4_update_inode_fsync_trans(handle, inode, 1);
4248 ext4_update_inode_fsync_trans(handle, inode, 0);
4250 if (allocated > map->m_len)
4251 allocated = map->m_len;
4252 ext4_ext_show_leaf(inode, path);
4253 map->m_flags |= EXT4_MAP_MAPPED;
4254 map->m_pblk = newblock;
4255 map->m_len = allocated;
4258 ext4_ext_drop_refs(path);
4263 trace_ext4_ext_map_blocks_exit(inode, map, err ? err : allocated);
4265 return err ? err : allocated;
4268 void ext4_ext_truncate(struct inode *inode)
4270 struct address_space *mapping = inode->i_mapping;
4271 struct super_block *sb = inode->i_sb;
4272 ext4_lblk_t last_block;
4278 * finish any pending end_io work so we won't run the risk of
4279 * converting any truncated blocks to initialized later
4281 ext4_flush_unwritten_io(inode);
4284 * probably first extent we're gonna free will be last in block
4286 err = ext4_writepage_trans_blocks(inode);
4287 handle = ext4_journal_start(inode, err);
4291 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4292 page_len = PAGE_CACHE_SIZE -
4293 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4295 err = ext4_discard_partial_page_buffers(handle,
4296 mapping, inode->i_size, page_len, 0);
4302 if (ext4_orphan_add(handle, inode))
4305 down_write(&EXT4_I(inode)->i_data_sem);
4306 ext4_ext_invalidate_cache(inode);
4308 ext4_discard_preallocations(inode);
4311 * TODO: optimization is possible here.
4312 * Probably we need not scan at all,
4313 * because page truncation is enough.
4316 /* we have to know where to truncate from in crash case */
4317 EXT4_I(inode)->i_disksize = inode->i_size;
4318 ext4_mark_inode_dirty(handle, inode);
4320 last_block = (inode->i_size + sb->s_blocksize - 1)
4321 >> EXT4_BLOCK_SIZE_BITS(sb);
4322 err = ext4_es_remove_extent(inode, last_block,
4323 EXT_MAX_BLOCKS - last_block);
4324 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4326 /* In a multi-transaction truncate, we only make the final
4327 * transaction synchronous.
4330 ext4_handle_sync(handle);
4332 up_write(&EXT4_I(inode)->i_data_sem);
4336 * If this was a simple ftruncate() and the file will remain alive,
4337 * then we need to clear up the orphan record which we created above.
4338 * However, if this was a real unlink then we were called by
4339 * ext4_delete_inode(), and we allow that function to clean up the
4340 * orphan info for us.
4343 ext4_orphan_del(handle, inode);
4345 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4346 ext4_mark_inode_dirty(handle, inode);
4347 ext4_journal_stop(handle);
4350 static void ext4_falloc_update_inode(struct inode *inode,
4351 int mode, loff_t new_size, int update_ctime)
4353 struct timespec now;
4356 now = current_fs_time(inode->i_sb);
4357 if (!timespec_equal(&inode->i_ctime, &now))
4358 inode->i_ctime = now;
4361 * Update only when preallocation was requested beyond
4364 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4365 if (new_size > i_size_read(inode))
4366 i_size_write(inode, new_size);
4367 if (new_size > EXT4_I(inode)->i_disksize)
4368 ext4_update_i_disksize(inode, new_size);
4371 * Mark that we allocate beyond EOF so the subsequent truncate
4372 * can proceed even if the new size is the same as i_size.
4374 if (new_size > i_size_read(inode))
4375 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4381 * preallocate space for a file. This implements ext4's fallocate file
4382 * operation, which gets called from sys_fallocate system call.
4383 * For block-mapped files, posix_fallocate should fall back to the method
4384 * of writing zeroes to the required new blocks (the same behavior which is
4385 * expected for file systems which do not support fallocate() system call).
4387 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4389 struct inode *inode = file->f_path.dentry->d_inode;
4392 unsigned int max_blocks;
4397 struct ext4_map_blocks map;
4398 unsigned int credits, blkbits = inode->i_blkbits;
4401 * currently supporting (pre)allocate mode for extent-based
4404 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4407 /* Return error if mode is not supported */
4408 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4411 if (mode & FALLOC_FL_PUNCH_HOLE)
4412 return ext4_punch_hole(file, offset, len);
4414 ret = ext4_convert_inline_data(inode);
4418 trace_ext4_fallocate_enter(inode, offset, len, mode);
4419 map.m_lblk = offset >> blkbits;
4421 * We can't just convert len to max_blocks because
4422 * If blocksize = 4096 offset = 3072 and len = 2048
4424 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4427 * credits to insert 1 extent into extent tree
4429 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4430 mutex_lock(&inode->i_mutex);
4431 ret = inode_newsize_ok(inode, (len + offset));
4433 mutex_unlock(&inode->i_mutex);
4434 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4437 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4438 if (mode & FALLOC_FL_KEEP_SIZE)
4439 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4441 * Don't normalize the request if it can fit in one extent so
4442 * that it doesn't get unnecessarily split into multiple
4445 if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4446 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4448 /* Prevent race condition between unwritten */
4449 ext4_flush_unwritten_io(inode);
4451 while (ret >= 0 && ret < max_blocks) {
4452 map.m_lblk = map.m_lblk + ret;
4453 map.m_len = max_blocks = max_blocks - ret;
4454 handle = ext4_journal_start(inode, credits);
4455 if (IS_ERR(handle)) {
4456 ret = PTR_ERR(handle);
4459 ret = ext4_map_blocks(handle, inode, &map, flags);
4463 printk(KERN_ERR "%s: ext4_ext_map_blocks "
4464 "returned error inode#%lu, block=%u, "
4465 "max_blocks=%u", __func__,
4466 inode->i_ino, map.m_lblk, max_blocks);
4468 ext4_mark_inode_dirty(handle, inode);
4469 ret2 = ext4_journal_stop(handle);
4472 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4473 blkbits) >> blkbits))
4474 new_size = offset + len;
4476 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4478 ext4_falloc_update_inode(inode, mode, new_size,
4479 (map.m_flags & EXT4_MAP_NEW));
4480 ext4_mark_inode_dirty(handle, inode);
4481 if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4482 ext4_handle_sync(handle);
4483 ret2 = ext4_journal_stop(handle);
4487 if (ret == -ENOSPC &&
4488 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4492 mutex_unlock(&inode->i_mutex);
4493 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4494 ret > 0 ? ret2 : ret);
4495 return ret > 0 ? ret2 : ret;
4499 * This function convert a range of blocks to written extents
4500 * The caller of this function will pass the start offset and the size.
4501 * all unwritten extents within this range will be converted to
4504 * This function is called from the direct IO end io call back
4505 * function, to convert the fallocated extents after IO is completed.
4506 * Returns 0 on success.
4508 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4512 unsigned int max_blocks;
4515 struct ext4_map_blocks map;
4516 unsigned int credits, blkbits = inode->i_blkbits;
4518 map.m_lblk = offset >> blkbits;
4520 * We can't just convert len to max_blocks because
4521 * If blocksize = 4096 offset = 3072 and len = 2048
4523 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4526 * credits to insert 1 extent into extent tree
4528 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4529 while (ret >= 0 && ret < max_blocks) {
4531 map.m_len = (max_blocks -= ret);
4532 handle = ext4_journal_start(inode, credits);
4533 if (IS_ERR(handle)) {
4534 ret = PTR_ERR(handle);
4537 ret = ext4_map_blocks(handle, inode, &map,
4538 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4541 ext4_msg(inode->i_sb, KERN_ERR,
4542 "%s:%d: inode #%lu: block %u: len %u: "
4543 "ext4_ext_map_blocks returned %d",
4544 __func__, __LINE__, inode->i_ino, map.m_lblk,
4547 ext4_mark_inode_dirty(handle, inode);
4548 ret2 = ext4_journal_stop(handle);
4549 if (ret <= 0 || ret2 )
4552 return ret > 0 ? ret2 : ret;
4556 * If newex is not existing extent (newex->ec_start equals zero) find
4557 * delayed extent at start of newex and update newex accordingly and
4558 * return start of the next delayed extent.
4560 * If newex is existing extent (newex->ec_start is not equal zero)
4561 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4562 * extent found. Leave newex unmodified.
4564 static int ext4_find_delayed_extent(struct inode *inode,
4565 struct ext4_ext_cache *newex)
4567 struct extent_status es;
4568 ext4_lblk_t next_del;
4570 es.start = newex->ec_block;
4571 next_del = ext4_es_find_extent(inode, &es);
4573 if (newex->ec_start == 0) {
4575 * No extent in extent-tree contains block @newex->ec_start,
4576 * then the block may stay in 1)a hole or 2)delayed-extent.
4582 if (es.start > newex->ec_block) {
4584 newex->ec_len = min(es.start - newex->ec_block,
4589 newex->ec_len = es.start + es.len - newex->ec_block;
4594 /* fiemap flags we can handle specified here */
4595 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4597 static int ext4_xattr_fiemap(struct inode *inode,
4598 struct fiemap_extent_info *fieinfo)
4602 __u32 flags = FIEMAP_EXTENT_LAST;
4603 int blockbits = inode->i_sb->s_blocksize_bits;
4607 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4608 struct ext4_iloc iloc;
4609 int offset; /* offset of xattr in inode */
4611 error = ext4_get_inode_loc(inode, &iloc);
4614 physical = iloc.bh->b_blocknr << blockbits;
4615 offset = EXT4_GOOD_OLD_INODE_SIZE +
4616 EXT4_I(inode)->i_extra_isize;
4618 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4619 flags |= FIEMAP_EXTENT_DATA_INLINE;
4621 } else { /* external block */
4622 physical = EXT4_I(inode)->i_file_acl << blockbits;
4623 length = inode->i_sb->s_blocksize;
4627 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4629 return (error < 0 ? error : 0);
4633 * ext4_ext_punch_hole
4635 * Punches a hole of "length" bytes in a file starting
4638 * @inode: The inode of the file to punch a hole in
4639 * @offset: The starting byte offset of the hole
4640 * @length: The length of the hole
4642 * Returns the number of blocks removed or negative on err
4644 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4646 struct inode *inode = file->f_path.dentry->d_inode;
4647 struct super_block *sb = inode->i_sb;
4648 ext4_lblk_t first_block, stop_block;
4649 struct address_space *mapping = inode->i_mapping;
4651 loff_t first_page, last_page, page_len;
4652 loff_t first_page_offset, last_page_offset;
4653 int credits, err = 0;
4656 * Write out all dirty pages to avoid race conditions
4657 * Then release them.
4659 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4660 err = filemap_write_and_wait_range(mapping,
4661 offset, offset + length - 1);
4667 mutex_lock(&inode->i_mutex);
4668 /* It's not possible punch hole on append only file */
4669 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4673 if (IS_SWAPFILE(inode)) {
4678 /* No need to punch hole beyond i_size */
4679 if (offset >= inode->i_size)
4683 * If the hole extends beyond i_size, set the hole
4684 * to end after the page that contains i_size
4686 if (offset + length > inode->i_size) {
4687 length = inode->i_size +
4688 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4692 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4693 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4695 first_page_offset = first_page << PAGE_CACHE_SHIFT;
4696 last_page_offset = last_page << PAGE_CACHE_SHIFT;
4698 /* Now release the pages */
4699 if (last_page_offset > first_page_offset) {
4700 truncate_pagecache_range(inode, first_page_offset,
4701 last_page_offset - 1);
4704 /* Wait all existing dio workers, newcomers will block on i_mutex */
4705 ext4_inode_block_unlocked_dio(inode);
4706 err = ext4_flush_unwritten_io(inode);
4709 inode_dio_wait(inode);
4711 credits = ext4_writepage_trans_blocks(inode);
4712 handle = ext4_journal_start(inode, credits);
4713 if (IS_ERR(handle)) {
4714 err = PTR_ERR(handle);
4720 * Now we need to zero out the non-page-aligned data in the
4721 * pages at the start and tail of the hole, and unmap the buffer
4722 * heads for the block aligned regions of the page that were
4723 * completely zeroed.
4725 if (first_page > last_page) {
4727 * If the file space being truncated is contained within a page
4728 * just zero out and unmap the middle of that page
4730 err = ext4_discard_partial_page_buffers(handle,
4731 mapping, offset, length, 0);
4737 * zero out and unmap the partial page that contains
4738 * the start of the hole
4740 page_len = first_page_offset - offset;
4742 err = ext4_discard_partial_page_buffers(handle, mapping,
4743 offset, page_len, 0);
4749 * zero out and unmap the partial page that contains
4750 * the end of the hole
4752 page_len = offset + length - last_page_offset;
4754 err = ext4_discard_partial_page_buffers(handle, mapping,
4755 last_page_offset, page_len, 0);
4762 * If i_size is contained in the last page, we need to
4763 * unmap and zero the partial page after i_size
4765 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4766 inode->i_size % PAGE_CACHE_SIZE != 0) {
4768 page_len = PAGE_CACHE_SIZE -
4769 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4772 err = ext4_discard_partial_page_buffers(handle,
4773 mapping, inode->i_size, page_len, 0);
4780 first_block = (offset + sb->s_blocksize - 1) >>
4781 EXT4_BLOCK_SIZE_BITS(sb);
4782 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4784 /* If there are no blocks to remove, return now */
4785 if (first_block >= stop_block)
4788 down_write(&EXT4_I(inode)->i_data_sem);
4789 ext4_ext_invalidate_cache(inode);
4790 ext4_discard_preallocations(inode);
4792 err = ext4_es_remove_extent(inode, first_block,
4793 stop_block - first_block);
4794 err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4796 ext4_ext_invalidate_cache(inode);
4797 ext4_discard_preallocations(inode);
4800 ext4_handle_sync(handle);
4802 up_write(&EXT4_I(inode)->i_data_sem);
4805 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4806 ext4_mark_inode_dirty(handle, inode);
4807 ext4_journal_stop(handle);
4809 ext4_inode_resume_unlocked_dio(inode);
4811 mutex_unlock(&inode->i_mutex);
4815 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4816 __u64 start, __u64 len)
4818 ext4_lblk_t start_blk;
4821 if (ext4_has_inline_data(inode)) {
4824 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4830 /* fallback to generic here if not in extents fmt */
4831 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4832 return generic_block_fiemap(inode, fieinfo, start, len,
4835 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4838 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4839 error = ext4_xattr_fiemap(inode, fieinfo);
4841 ext4_lblk_t len_blks;
4844 start_blk = start >> inode->i_sb->s_blocksize_bits;
4845 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4846 if (last_blk >= EXT_MAX_BLOCKS)
4847 last_blk = EXT_MAX_BLOCKS-1;
4848 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4851 * Walk the extent tree gathering extent information
4852 * and pushing extents back to the user.
4854 error = ext4_fill_fiemap_extents(inode, start_blk,