s390/pgtable: fix ipte notify bit
[pandora-kernel.git] / fs / ext3 / inode.c
1 /*
2  *  linux/fs/ext3/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/highuid.h>
26 #include <linux/quotaops.h>
27 #include <linux/writeback.h>
28 #include <linux/mpage.h>
29 #include <linux/namei.h>
30 #include "ext3.h"
31 #include "xattr.h"
32 #include "acl.h"
33
34 static int ext3_writepage_trans_blocks(struct inode *inode);
35 static int ext3_block_truncate_page(struct inode *inode, loff_t from);
36
37 /*
38  * Test whether an inode is a fast symlink.
39  */
40 static int ext3_inode_is_fast_symlink(struct inode *inode)
41 {
42         int ea_blocks = EXT3_I(inode)->i_file_acl ?
43                 (inode->i_sb->s_blocksize >> 9) : 0;
44
45         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
46 }
47
48 /*
49  * The ext3 forget function must perform a revoke if we are freeing data
50  * which has been journaled.  Metadata (eg. indirect blocks) must be
51  * revoked in all cases.
52  *
53  * "bh" may be NULL: a metadata block may have been freed from memory
54  * but there may still be a record of it in the journal, and that record
55  * still needs to be revoked.
56  */
57 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
58                         struct buffer_head *bh, ext3_fsblk_t blocknr)
59 {
60         int err;
61
62         might_sleep();
63
64         trace_ext3_forget(inode, is_metadata, blocknr);
65         BUFFER_TRACE(bh, "enter");
66
67         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
68                   "data mode %lx\n",
69                   bh, is_metadata, inode->i_mode,
70                   test_opt(inode->i_sb, DATA_FLAGS));
71
72         /* Never use the revoke function if we are doing full data
73          * journaling: there is no need to, and a V1 superblock won't
74          * support it.  Otherwise, only skip the revoke on un-journaled
75          * data blocks. */
76
77         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
78             (!is_metadata && !ext3_should_journal_data(inode))) {
79                 if (bh) {
80                         BUFFER_TRACE(bh, "call journal_forget");
81                         return ext3_journal_forget(handle, bh);
82                 }
83                 return 0;
84         }
85
86         /*
87          * data!=journal && (is_metadata || should_journal_data(inode))
88          */
89         BUFFER_TRACE(bh, "call ext3_journal_revoke");
90         err = ext3_journal_revoke(handle, blocknr, bh);
91         if (err)
92                 ext3_abort(inode->i_sb, __func__,
93                            "error %d when attempting revoke", err);
94         BUFFER_TRACE(bh, "exit");
95         return err;
96 }
97
98 /*
99  * Work out how many blocks we need to proceed with the next chunk of a
100  * truncate transaction.
101  */
102 static unsigned long blocks_for_truncate(struct inode *inode)
103 {
104         unsigned long needed;
105
106         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
107
108         /* Give ourselves just enough room to cope with inodes in which
109          * i_blocks is corrupt: we've seen disk corruptions in the past
110          * which resulted in random data in an inode which looked enough
111          * like a regular file for ext3 to try to delete it.  Things
112          * will go a bit crazy if that happens, but at least we should
113          * try not to panic the whole kernel. */
114         if (needed < 2)
115                 needed = 2;
116
117         /* But we need to bound the transaction so we don't overflow the
118          * journal. */
119         if (needed > EXT3_MAX_TRANS_DATA)
120                 needed = EXT3_MAX_TRANS_DATA;
121
122         return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
123 }
124
125 /*
126  * Truncate transactions can be complex and absolutely huge.  So we need to
127  * be able to restart the transaction at a conventient checkpoint to make
128  * sure we don't overflow the journal.
129  *
130  * start_transaction gets us a new handle for a truncate transaction,
131  * and extend_transaction tries to extend the existing one a bit.  If
132  * extend fails, we need to propagate the failure up and restart the
133  * transaction in the top-level truncate loop. --sct
134  */
135 static handle_t *start_transaction(struct inode *inode)
136 {
137         handle_t *result;
138
139         result = ext3_journal_start(inode, blocks_for_truncate(inode));
140         if (!IS_ERR(result))
141                 return result;
142
143         ext3_std_error(inode->i_sb, PTR_ERR(result));
144         return result;
145 }
146
147 /*
148  * Try to extend this transaction for the purposes of truncation.
149  *
150  * Returns 0 if we managed to create more room.  If we can't create more
151  * room, and the transaction must be restarted we return 1.
152  */
153 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
154 {
155         if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
156                 return 0;
157         if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
158                 return 0;
159         return 1;
160 }
161
162 /*
163  * Restart the transaction associated with *handle.  This does a commit,
164  * so before we call here everything must be consistently dirtied against
165  * this transaction.
166  */
167 static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
168 {
169         int ret;
170
171         jbd_debug(2, "restarting handle %p\n", handle);
172         /*
173          * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
174          * At this moment, get_block can be called only for blocks inside
175          * i_size since page cache has been already dropped and writes are
176          * blocked by i_mutex. So we can safely drop the truncate_mutex.
177          */
178         mutex_unlock(&EXT3_I(inode)->truncate_mutex);
179         ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
180         mutex_lock(&EXT3_I(inode)->truncate_mutex);
181         return ret;
182 }
183
184 /*
185  * Called at inode eviction from icache
186  */
187 void ext3_evict_inode (struct inode *inode)
188 {
189         struct ext3_inode_info *ei = EXT3_I(inode);
190         struct ext3_block_alloc_info *rsv;
191         handle_t *handle;
192         int want_delete = 0;
193
194         trace_ext3_evict_inode(inode);
195         if (!inode->i_nlink && !is_bad_inode(inode)) {
196                 dquot_initialize(inode);
197                 want_delete = 1;
198         }
199
200         /*
201          * When journalling data dirty buffers are tracked only in the journal.
202          * So although mm thinks everything is clean and ready for reaping the
203          * inode might still have some pages to write in the running
204          * transaction or waiting to be checkpointed. Thus calling
205          * journal_invalidatepage() (via truncate_inode_pages()) to discard
206          * these buffers can cause data loss. Also even if we did not discard
207          * these buffers, we would have no way to find them after the inode
208          * is reaped and thus user could see stale data if he tries to read
209          * them before the transaction is checkpointed. So be careful and
210          * force everything to disk here... We use ei->i_datasync_tid to
211          * store the newest transaction containing inode's data.
212          *
213          * Note that directories do not have this problem because they don't
214          * use page cache.
215          *
216          * The s_journal check handles the case when ext3_get_journal() fails
217          * and puts the journal inode.
218          */
219         if (inode->i_nlink && ext3_should_journal_data(inode) &&
220             EXT3_SB(inode->i_sb)->s_journal &&
221             (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
222             inode->i_ino != EXT3_JOURNAL_INO) {
223                 tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
224                 journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
225
226                 log_start_commit(journal, commit_tid);
227                 log_wait_commit(journal, commit_tid);
228                 filemap_write_and_wait(&inode->i_data);
229         }
230         truncate_inode_pages(&inode->i_data, 0);
231
232         ext3_discard_reservation(inode);
233         rsv = ei->i_block_alloc_info;
234         ei->i_block_alloc_info = NULL;
235         if (unlikely(rsv))
236                 kfree(rsv);
237
238         if (!want_delete)
239                 goto no_delete;
240
241         handle = start_transaction(inode);
242         if (IS_ERR(handle)) {
243                 /*
244                  * If we're going to skip the normal cleanup, we still need to
245                  * make sure that the in-core orphan linked list is properly
246                  * cleaned up.
247                  */
248                 ext3_orphan_del(NULL, inode);
249                 goto no_delete;
250         }
251
252         if (IS_SYNC(inode))
253                 handle->h_sync = 1;
254         inode->i_size = 0;
255         if (inode->i_blocks)
256                 ext3_truncate(inode);
257         /*
258          * Kill off the orphan record created when the inode lost the last
259          * link.  Note that ext3_orphan_del() has to be able to cope with the
260          * deletion of a non-existent orphan - ext3_truncate() could
261          * have removed the record.
262          */
263         ext3_orphan_del(handle, inode);
264         ei->i_dtime = get_seconds();
265
266         /*
267          * One subtle ordering requirement: if anything has gone wrong
268          * (transaction abort, IO errors, whatever), then we can still
269          * do these next steps (the fs will already have been marked as
270          * having errors), but we can't free the inode if the mark_dirty
271          * fails.
272          */
273         if (ext3_mark_inode_dirty(handle, inode)) {
274                 /* If that failed, just dquot_drop() and be done with that */
275                 dquot_drop(inode);
276                 clear_inode(inode);
277         } else {
278                 ext3_xattr_delete_inode(handle, inode);
279                 dquot_free_inode(inode);
280                 dquot_drop(inode);
281                 clear_inode(inode);
282                 ext3_free_inode(handle, inode);
283         }
284         ext3_journal_stop(handle);
285         return;
286 no_delete:
287         clear_inode(inode);
288         dquot_drop(inode);
289 }
290
291 typedef struct {
292         __le32  *p;
293         __le32  key;
294         struct buffer_head *bh;
295 } Indirect;
296
297 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
298 {
299         p->key = *(p->p = v);
300         p->bh = bh;
301 }
302
303 static int verify_chain(Indirect *from, Indirect *to)
304 {
305         while (from <= to && from->key == *from->p)
306                 from++;
307         return (from > to);
308 }
309
310 /**
311  *      ext3_block_to_path - parse the block number into array of offsets
312  *      @inode: inode in question (we are only interested in its superblock)
313  *      @i_block: block number to be parsed
314  *      @offsets: array to store the offsets in
315  *      @boundary: set this non-zero if the referred-to block is likely to be
316  *             followed (on disk) by an indirect block.
317  *
318  *      To store the locations of file's data ext3 uses a data structure common
319  *      for UNIX filesystems - tree of pointers anchored in the inode, with
320  *      data blocks at leaves and indirect blocks in intermediate nodes.
321  *      This function translates the block number into path in that tree -
322  *      return value is the path length and @offsets[n] is the offset of
323  *      pointer to (n+1)th node in the nth one. If @block is out of range
324  *      (negative or too large) warning is printed and zero returned.
325  *
326  *      Note: function doesn't find node addresses, so no IO is needed. All
327  *      we need to know is the capacity of indirect blocks (taken from the
328  *      inode->i_sb).
329  */
330
331 /*
332  * Portability note: the last comparison (check that we fit into triple
333  * indirect block) is spelled differently, because otherwise on an
334  * architecture with 32-bit longs and 8Kb pages we might get into trouble
335  * if our filesystem had 8Kb blocks. We might use long long, but that would
336  * kill us on x86. Oh, well, at least the sign propagation does not matter -
337  * i_block would have to be negative in the very beginning, so we would not
338  * get there at all.
339  */
340
341 static int ext3_block_to_path(struct inode *inode,
342                         long i_block, int offsets[4], int *boundary)
343 {
344         int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
345         int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
346         const long direct_blocks = EXT3_NDIR_BLOCKS,
347                 indirect_blocks = ptrs,
348                 double_blocks = (1 << (ptrs_bits * 2));
349         int n = 0;
350         int final = 0;
351
352         if (i_block < 0) {
353                 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
354         } else if (i_block < direct_blocks) {
355                 offsets[n++] = i_block;
356                 final = direct_blocks;
357         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
358                 offsets[n++] = EXT3_IND_BLOCK;
359                 offsets[n++] = i_block;
360                 final = ptrs;
361         } else if ((i_block -= indirect_blocks) < double_blocks) {
362                 offsets[n++] = EXT3_DIND_BLOCK;
363                 offsets[n++] = i_block >> ptrs_bits;
364                 offsets[n++] = i_block & (ptrs - 1);
365                 final = ptrs;
366         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
367                 offsets[n++] = EXT3_TIND_BLOCK;
368                 offsets[n++] = i_block >> (ptrs_bits * 2);
369                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
370                 offsets[n++] = i_block & (ptrs - 1);
371                 final = ptrs;
372         } else {
373                 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
374         }
375         if (boundary)
376                 *boundary = final - 1 - (i_block & (ptrs - 1));
377         return n;
378 }
379
380 /**
381  *      ext3_get_branch - read the chain of indirect blocks leading to data
382  *      @inode: inode in question
383  *      @depth: depth of the chain (1 - direct pointer, etc.)
384  *      @offsets: offsets of pointers in inode/indirect blocks
385  *      @chain: place to store the result
386  *      @err: here we store the error value
387  *
388  *      Function fills the array of triples <key, p, bh> and returns %NULL
389  *      if everything went OK or the pointer to the last filled triple
390  *      (incomplete one) otherwise. Upon the return chain[i].key contains
391  *      the number of (i+1)-th block in the chain (as it is stored in memory,
392  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
393  *      number (it points into struct inode for i==0 and into the bh->b_data
394  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
395  *      block for i>0 and NULL for i==0. In other words, it holds the block
396  *      numbers of the chain, addresses they were taken from (and where we can
397  *      verify that chain did not change) and buffer_heads hosting these
398  *      numbers.
399  *
400  *      Function stops when it stumbles upon zero pointer (absent block)
401  *              (pointer to last triple returned, *@err == 0)
402  *      or when it gets an IO error reading an indirect block
403  *              (ditto, *@err == -EIO)
404  *      or when it notices that chain had been changed while it was reading
405  *              (ditto, *@err == -EAGAIN)
406  *      or when it reads all @depth-1 indirect blocks successfully and finds
407  *      the whole chain, all way to the data (returns %NULL, *err == 0).
408  */
409 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
410                                  Indirect chain[4], int *err)
411 {
412         struct super_block *sb = inode->i_sb;
413         Indirect *p = chain;
414         struct buffer_head *bh;
415
416         *err = 0;
417         /* i_data is not going away, no lock needed */
418         add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
419         if (!p->key)
420                 goto no_block;
421         while (--depth) {
422                 bh = sb_bread(sb, le32_to_cpu(p->key));
423                 if (!bh)
424                         goto failure;
425                 /* Reader: pointers */
426                 if (!verify_chain(chain, p))
427                         goto changed;
428                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
429                 /* Reader: end */
430                 if (!p->key)
431                         goto no_block;
432         }
433         return NULL;
434
435 changed:
436         brelse(bh);
437         *err = -EAGAIN;
438         goto no_block;
439 failure:
440         *err = -EIO;
441 no_block:
442         return p;
443 }
444
445 /**
446  *      ext3_find_near - find a place for allocation with sufficient locality
447  *      @inode: owner
448  *      @ind: descriptor of indirect block.
449  *
450  *      This function returns the preferred place for block allocation.
451  *      It is used when heuristic for sequential allocation fails.
452  *      Rules are:
453  *        + if there is a block to the left of our position - allocate near it.
454  *        + if pointer will live in indirect block - allocate near that block.
455  *        + if pointer will live in inode - allocate in the same
456  *          cylinder group.
457  *
458  * In the latter case we colour the starting block by the callers PID to
459  * prevent it from clashing with concurrent allocations for a different inode
460  * in the same block group.   The PID is used here so that functionally related
461  * files will be close-by on-disk.
462  *
463  *      Caller must make sure that @ind is valid and will stay that way.
464  */
465 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
466 {
467         struct ext3_inode_info *ei = EXT3_I(inode);
468         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
469         __le32 *p;
470         ext3_fsblk_t bg_start;
471         ext3_grpblk_t colour;
472
473         /* Try to find previous block */
474         for (p = ind->p - 1; p >= start; p--) {
475                 if (*p)
476                         return le32_to_cpu(*p);
477         }
478
479         /* No such thing, so let's try location of indirect block */
480         if (ind->bh)
481                 return ind->bh->b_blocknr;
482
483         /*
484          * It is going to be referred to from the inode itself? OK, just put it
485          * into the same cylinder group then.
486          */
487         bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
488         colour = (current->pid % 16) *
489                         (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
490         return bg_start + colour;
491 }
492
493 /**
494  *      ext3_find_goal - find a preferred place for allocation.
495  *      @inode: owner
496  *      @block:  block we want
497  *      @partial: pointer to the last triple within a chain
498  *
499  *      Normally this function find the preferred place for block allocation,
500  *      returns it.
501  */
502
503 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
504                                    Indirect *partial)
505 {
506         struct ext3_block_alloc_info *block_i;
507
508         block_i =  EXT3_I(inode)->i_block_alloc_info;
509
510         /*
511          * try the heuristic for sequential allocation,
512          * failing that at least try to get decent locality.
513          */
514         if (block_i && (block == block_i->last_alloc_logical_block + 1)
515                 && (block_i->last_alloc_physical_block != 0)) {
516                 return block_i->last_alloc_physical_block + 1;
517         }
518
519         return ext3_find_near(inode, partial);
520 }
521
522 /**
523  *      ext3_blks_to_allocate - Look up the block map and count the number
524  *      of direct blocks need to be allocated for the given branch.
525  *
526  *      @branch: chain of indirect blocks
527  *      @k: number of blocks need for indirect blocks
528  *      @blks: number of data blocks to be mapped.
529  *      @blocks_to_boundary:  the offset in the indirect block
530  *
531  *      return the total number of blocks to be allocate, including the
532  *      direct and indirect blocks.
533  */
534 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
535                 int blocks_to_boundary)
536 {
537         unsigned long count = 0;
538
539         /*
540          * Simple case, [t,d]Indirect block(s) has not allocated yet
541          * then it's clear blocks on that path have not allocated
542          */
543         if (k > 0) {
544                 /* right now we don't handle cross boundary allocation */
545                 if (blks < blocks_to_boundary + 1)
546                         count += blks;
547                 else
548                         count += blocks_to_boundary + 1;
549                 return count;
550         }
551
552         count++;
553         while (count < blks && count <= blocks_to_boundary &&
554                 le32_to_cpu(*(branch[0].p + count)) == 0) {
555                 count++;
556         }
557         return count;
558 }
559
560 /**
561  *      ext3_alloc_blocks - multiple allocate blocks needed for a branch
562  *      @handle: handle for this transaction
563  *      @inode: owner
564  *      @goal: preferred place for allocation
565  *      @indirect_blks: the number of blocks need to allocate for indirect
566  *                      blocks
567  *      @blks:  number of blocks need to allocated for direct blocks
568  *      @new_blocks: on return it will store the new block numbers for
569  *      the indirect blocks(if needed) and the first direct block,
570  *      @err: here we store the error value
571  *
572  *      return the number of direct blocks allocated
573  */
574 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
575                         ext3_fsblk_t goal, int indirect_blks, int blks,
576                         ext3_fsblk_t new_blocks[4], int *err)
577 {
578         int target, i;
579         unsigned long count = 0;
580         int index = 0;
581         ext3_fsblk_t current_block = 0;
582         int ret = 0;
583
584         /*
585          * Here we try to allocate the requested multiple blocks at once,
586          * on a best-effort basis.
587          * To build a branch, we should allocate blocks for
588          * the indirect blocks(if not allocated yet), and at least
589          * the first direct block of this branch.  That's the
590          * minimum number of blocks need to allocate(required)
591          */
592         target = blks + indirect_blks;
593
594         while (1) {
595                 count = target;
596                 /* allocating blocks for indirect blocks and direct blocks */
597                 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
598                 if (*err)
599                         goto failed_out;
600
601                 target -= count;
602                 /* allocate blocks for indirect blocks */
603                 while (index < indirect_blks && count) {
604                         new_blocks[index++] = current_block++;
605                         count--;
606                 }
607
608                 if (count > 0)
609                         break;
610         }
611
612         /* save the new block number for the first direct block */
613         new_blocks[index] = current_block;
614
615         /* total number of blocks allocated for direct blocks */
616         ret = count;
617         *err = 0;
618         return ret;
619 failed_out:
620         for (i = 0; i <index; i++)
621                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
622         return ret;
623 }
624
625 /**
626  *      ext3_alloc_branch - allocate and set up a chain of blocks.
627  *      @handle: handle for this transaction
628  *      @inode: owner
629  *      @indirect_blks: number of allocated indirect blocks
630  *      @blks: number of allocated direct blocks
631  *      @goal: preferred place for allocation
632  *      @offsets: offsets (in the blocks) to store the pointers to next.
633  *      @branch: place to store the chain in.
634  *
635  *      This function allocates blocks, zeroes out all but the last one,
636  *      links them into chain and (if we are synchronous) writes them to disk.
637  *      In other words, it prepares a branch that can be spliced onto the
638  *      inode. It stores the information about that chain in the branch[], in
639  *      the same format as ext3_get_branch() would do. We are calling it after
640  *      we had read the existing part of chain and partial points to the last
641  *      triple of that (one with zero ->key). Upon the exit we have the same
642  *      picture as after the successful ext3_get_block(), except that in one
643  *      place chain is disconnected - *branch->p is still zero (we did not
644  *      set the last link), but branch->key contains the number that should
645  *      be placed into *branch->p to fill that gap.
646  *
647  *      If allocation fails we free all blocks we've allocated (and forget
648  *      their buffer_heads) and return the error value the from failed
649  *      ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
650  *      as described above and return 0.
651  */
652 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
653                         int indirect_blks, int *blks, ext3_fsblk_t goal,
654                         int *offsets, Indirect *branch)
655 {
656         int blocksize = inode->i_sb->s_blocksize;
657         int i, n = 0;
658         int err = 0;
659         struct buffer_head *bh;
660         int num;
661         ext3_fsblk_t new_blocks[4];
662         ext3_fsblk_t current_block;
663
664         num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
665                                 *blks, new_blocks, &err);
666         if (err)
667                 return err;
668
669         branch[0].key = cpu_to_le32(new_blocks[0]);
670         /*
671          * metadata blocks and data blocks are allocated.
672          */
673         for (n = 1; n <= indirect_blks;  n++) {
674                 /*
675                  * Get buffer_head for parent block, zero it out
676                  * and set the pointer to new one, then send
677                  * parent to disk.
678                  */
679                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
680                 if (unlikely(!bh)) {
681                         err = -ENOMEM;
682                         goto failed;
683                 }
684                 branch[n].bh = bh;
685                 lock_buffer(bh);
686                 BUFFER_TRACE(bh, "call get_create_access");
687                 err = ext3_journal_get_create_access(handle, bh);
688                 if (err) {
689                         unlock_buffer(bh);
690                         brelse(bh);
691                         goto failed;
692                 }
693
694                 memset(bh->b_data, 0, blocksize);
695                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
696                 branch[n].key = cpu_to_le32(new_blocks[n]);
697                 *branch[n].p = branch[n].key;
698                 if ( n == indirect_blks) {
699                         current_block = new_blocks[n];
700                         /*
701                          * End of chain, update the last new metablock of
702                          * the chain to point to the new allocated
703                          * data blocks numbers
704                          */
705                         for (i=1; i < num; i++)
706                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
707                 }
708                 BUFFER_TRACE(bh, "marking uptodate");
709                 set_buffer_uptodate(bh);
710                 unlock_buffer(bh);
711
712                 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
713                 err = ext3_journal_dirty_metadata(handle, bh);
714                 if (err)
715                         goto failed;
716         }
717         *blks = num;
718         return err;
719 failed:
720         /* Allocation failed, free what we already allocated */
721         for (i = 1; i <= n ; i++) {
722                 BUFFER_TRACE(branch[i].bh, "call journal_forget");
723                 ext3_journal_forget(handle, branch[i].bh);
724         }
725         for (i = 0; i < indirect_blks; i++)
726                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
727
728         ext3_free_blocks(handle, inode, new_blocks[i], num);
729
730         return err;
731 }
732
733 /**
734  * ext3_splice_branch - splice the allocated branch onto inode.
735  * @handle: handle for this transaction
736  * @inode: owner
737  * @block: (logical) number of block we are adding
738  * @where: location of missing link
739  * @num:   number of indirect blocks we are adding
740  * @blks:  number of direct blocks we are adding
741  *
742  * This function fills the missing link and does all housekeeping needed in
743  * inode (->i_blocks, etc.). In case of success we end up with the full
744  * chain to new block and return 0.
745  */
746 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
747                         long block, Indirect *where, int num, int blks)
748 {
749         int i;
750         int err = 0;
751         struct ext3_block_alloc_info *block_i;
752         ext3_fsblk_t current_block;
753         struct ext3_inode_info *ei = EXT3_I(inode);
754         struct timespec now;
755
756         block_i = ei->i_block_alloc_info;
757         /*
758          * If we're splicing into a [td]indirect block (as opposed to the
759          * inode) then we need to get write access to the [td]indirect block
760          * before the splice.
761          */
762         if (where->bh) {
763                 BUFFER_TRACE(where->bh, "get_write_access");
764                 err = ext3_journal_get_write_access(handle, where->bh);
765                 if (err)
766                         goto err_out;
767         }
768         /* That's it */
769
770         *where->p = where->key;
771
772         /*
773          * Update the host buffer_head or inode to point to more just allocated
774          * direct blocks blocks
775          */
776         if (num == 0 && blks > 1) {
777                 current_block = le32_to_cpu(where->key) + 1;
778                 for (i = 1; i < blks; i++)
779                         *(where->p + i ) = cpu_to_le32(current_block++);
780         }
781
782         /*
783          * update the most recently allocated logical & physical block
784          * in i_block_alloc_info, to assist find the proper goal block for next
785          * allocation
786          */
787         if (block_i) {
788                 block_i->last_alloc_logical_block = block + blks - 1;
789                 block_i->last_alloc_physical_block =
790                                 le32_to_cpu(where[num].key) + blks - 1;
791         }
792
793         /* We are done with atomic stuff, now do the rest of housekeeping */
794         now = CURRENT_TIME_SEC;
795         if (!timespec_equal(&inode->i_ctime, &now) || !where->bh) {
796                 inode->i_ctime = now;
797                 ext3_mark_inode_dirty(handle, inode);
798         }
799         /* ext3_mark_inode_dirty already updated i_sync_tid */
800         atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
801
802         /* had we spliced it onto indirect block? */
803         if (where->bh) {
804                 /*
805                  * If we spliced it onto an indirect block, we haven't
806                  * altered the inode.  Note however that if it is being spliced
807                  * onto an indirect block at the very end of the file (the
808                  * file is growing) then we *will* alter the inode to reflect
809                  * the new i_size.  But that is not done here - it is done in
810                  * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
811                  */
812                 jbd_debug(5, "splicing indirect only\n");
813                 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
814                 err = ext3_journal_dirty_metadata(handle, where->bh);
815                 if (err)
816                         goto err_out;
817         } else {
818                 /*
819                  * OK, we spliced it into the inode itself on a direct block.
820                  * Inode was dirtied above.
821                  */
822                 jbd_debug(5, "splicing direct\n");
823         }
824         return err;
825
826 err_out:
827         for (i = 1; i <= num; i++) {
828                 BUFFER_TRACE(where[i].bh, "call journal_forget");
829                 ext3_journal_forget(handle, where[i].bh);
830                 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
831         }
832         ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
833
834         return err;
835 }
836
837 /*
838  * Allocation strategy is simple: if we have to allocate something, we will
839  * have to go the whole way to leaf. So let's do it before attaching anything
840  * to tree, set linkage between the newborn blocks, write them if sync is
841  * required, recheck the path, free and repeat if check fails, otherwise
842  * set the last missing link (that will protect us from any truncate-generated
843  * removals - all blocks on the path are immune now) and possibly force the
844  * write on the parent block.
845  * That has a nice additional property: no special recovery from the failed
846  * allocations is needed - we simply release blocks and do not touch anything
847  * reachable from inode.
848  *
849  * `handle' can be NULL if create == 0.
850  *
851  * The BKL may not be held on entry here.  Be sure to take it early.
852  * return > 0, # of blocks mapped or allocated.
853  * return = 0, if plain lookup failed.
854  * return < 0, error case.
855  */
856 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
857                 sector_t iblock, unsigned long maxblocks,
858                 struct buffer_head *bh_result,
859                 int create)
860 {
861         int err = -EIO;
862         int offsets[4];
863         Indirect chain[4];
864         Indirect *partial;
865         ext3_fsblk_t goal;
866         int indirect_blks;
867         int blocks_to_boundary = 0;
868         int depth;
869         struct ext3_inode_info *ei = EXT3_I(inode);
870         int count = 0;
871         ext3_fsblk_t first_block = 0;
872
873
874         trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
875         J_ASSERT(handle != NULL || create == 0);
876         depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
877
878         if (depth == 0)
879                 goto out;
880
881         partial = ext3_get_branch(inode, depth, offsets, chain, &err);
882
883         /* Simplest case - block found, no allocation needed */
884         if (!partial) {
885                 first_block = le32_to_cpu(chain[depth - 1].key);
886                 clear_buffer_new(bh_result);
887                 count++;
888                 /*map more blocks*/
889                 while (count < maxblocks && count <= blocks_to_boundary) {
890                         ext3_fsblk_t blk;
891
892                         if (!verify_chain(chain, chain + depth - 1)) {
893                                 /*
894                                  * Indirect block might be removed by
895                                  * truncate while we were reading it.
896                                  * Handling of that case: forget what we've
897                                  * got now. Flag the err as EAGAIN, so it
898                                  * will reread.
899                                  */
900                                 err = -EAGAIN;
901                                 count = 0;
902                                 break;
903                         }
904                         blk = le32_to_cpu(*(chain[depth-1].p + count));
905
906                         if (blk == first_block + count)
907                                 count++;
908                         else
909                                 break;
910                 }
911                 if (err != -EAGAIN)
912                         goto got_it;
913         }
914
915         /* Next simple case - plain lookup or failed read of indirect block */
916         if (!create || err == -EIO)
917                 goto cleanup;
918
919         /*
920          * Block out ext3_truncate while we alter the tree
921          */
922         mutex_lock(&ei->truncate_mutex);
923
924         /*
925          * If the indirect block is missing while we are reading
926          * the chain(ext3_get_branch() returns -EAGAIN err), or
927          * if the chain has been changed after we grab the semaphore,
928          * (either because another process truncated this branch, or
929          * another get_block allocated this branch) re-grab the chain to see if
930          * the request block has been allocated or not.
931          *
932          * Since we already block the truncate/other get_block
933          * at this point, we will have the current copy of the chain when we
934          * splice the branch into the tree.
935          */
936         if (err == -EAGAIN || !verify_chain(chain, partial)) {
937                 while (partial > chain) {
938                         brelse(partial->bh);
939                         partial--;
940                 }
941                 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
942                 if (!partial) {
943                         count++;
944                         mutex_unlock(&ei->truncate_mutex);
945                         if (err)
946                                 goto cleanup;
947                         clear_buffer_new(bh_result);
948                         goto got_it;
949                 }
950         }
951
952         /*
953          * Okay, we need to do block allocation.  Lazily initialize the block
954          * allocation info here if necessary
955         */
956         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
957                 ext3_init_block_alloc_info(inode);
958
959         goal = ext3_find_goal(inode, iblock, partial);
960
961         /* the number of blocks need to allocate for [d,t]indirect blocks */
962         indirect_blks = (chain + depth) - partial - 1;
963
964         /*
965          * Next look up the indirect map to count the totoal number of
966          * direct blocks to allocate for this branch.
967          */
968         count = ext3_blks_to_allocate(partial, indirect_blks,
969                                         maxblocks, blocks_to_boundary);
970         err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
971                                 offsets + (partial - chain), partial);
972
973         /*
974          * The ext3_splice_branch call will free and forget any buffers
975          * on the new chain if there is a failure, but that risks using
976          * up transaction credits, especially for bitmaps where the
977          * credits cannot be returned.  Can we handle this somehow?  We
978          * may need to return -EAGAIN upwards in the worst case.  --sct
979          */
980         if (!err)
981                 err = ext3_splice_branch(handle, inode, iblock,
982                                         partial, indirect_blks, count);
983         mutex_unlock(&ei->truncate_mutex);
984         if (err)
985                 goto cleanup;
986
987         set_buffer_new(bh_result);
988 got_it:
989         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
990         if (count > blocks_to_boundary)
991                 set_buffer_boundary(bh_result);
992         err = count;
993         /* Clean up and exit */
994         partial = chain + depth - 1;    /* the whole chain */
995 cleanup:
996         while (partial > chain) {
997                 BUFFER_TRACE(partial->bh, "call brelse");
998                 brelse(partial->bh);
999                 partial--;
1000         }
1001         BUFFER_TRACE(bh_result, "returned");
1002 out:
1003         trace_ext3_get_blocks_exit(inode, iblock,
1004                                    depth ? le32_to_cpu(chain[depth-1].key) : 0,
1005                                    count, err);
1006         return err;
1007 }
1008
1009 /* Maximum number of blocks we map for direct IO at once. */
1010 #define DIO_MAX_BLOCKS 4096
1011 /*
1012  * Number of credits we need for writing DIO_MAX_BLOCKS:
1013  * We need sb + group descriptor + bitmap + inode -> 4
1014  * For B blocks with A block pointers per block we need:
1015  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
1016  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
1017  */
1018 #define DIO_CREDITS 25
1019
1020 static int ext3_get_block(struct inode *inode, sector_t iblock,
1021                         struct buffer_head *bh_result, int create)
1022 {
1023         handle_t *handle = ext3_journal_current_handle();
1024         int ret = 0, started = 0;
1025         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1026
1027         if (create && !handle) {        /* Direct IO write... */
1028                 if (max_blocks > DIO_MAX_BLOCKS)
1029                         max_blocks = DIO_MAX_BLOCKS;
1030                 handle = ext3_journal_start(inode, DIO_CREDITS +
1031                                 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
1032                 if (IS_ERR(handle)) {
1033                         ret = PTR_ERR(handle);
1034                         goto out;
1035                 }
1036                 started = 1;
1037         }
1038
1039         ret = ext3_get_blocks_handle(handle, inode, iblock,
1040                                         max_blocks, bh_result, create);
1041         if (ret > 0) {
1042                 bh_result->b_size = (ret << inode->i_blkbits);
1043                 ret = 0;
1044         }
1045         if (started)
1046                 ext3_journal_stop(handle);
1047 out:
1048         return ret;
1049 }
1050
1051 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1052                 u64 start, u64 len)
1053 {
1054         return generic_block_fiemap(inode, fieinfo, start, len,
1055                                     ext3_get_block);
1056 }
1057
1058 /*
1059  * `handle' can be NULL if create is zero
1060  */
1061 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1062                                 long block, int create, int *errp)
1063 {
1064         struct buffer_head dummy;
1065         int fatal = 0, err;
1066
1067         J_ASSERT(handle != NULL || create == 0);
1068
1069         dummy.b_state = 0;
1070         dummy.b_blocknr = -1000;
1071         buffer_trace_init(&dummy.b_history);
1072         err = ext3_get_blocks_handle(handle, inode, block, 1,
1073                                         &dummy, create);
1074         /*
1075          * ext3_get_blocks_handle() returns number of blocks
1076          * mapped. 0 in case of a HOLE.
1077          */
1078         if (err > 0) {
1079                 WARN_ON(err > 1);
1080                 err = 0;
1081         }
1082         *errp = err;
1083         if (!err && buffer_mapped(&dummy)) {
1084                 struct buffer_head *bh;
1085                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1086                 if (unlikely(!bh)) {
1087                         *errp = -ENOMEM;
1088                         goto err;
1089                 }
1090                 if (buffer_new(&dummy)) {
1091                         J_ASSERT(create != 0);
1092                         J_ASSERT(handle != NULL);
1093
1094                         /*
1095                          * Now that we do not always journal data, we should
1096                          * keep in mind whether this should always journal the
1097                          * new buffer as metadata.  For now, regular file
1098                          * writes use ext3_get_block instead, so it's not a
1099                          * problem.
1100                          */
1101                         lock_buffer(bh);
1102                         BUFFER_TRACE(bh, "call get_create_access");
1103                         fatal = ext3_journal_get_create_access(handle, bh);
1104                         if (!fatal && !buffer_uptodate(bh)) {
1105                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1106                                 set_buffer_uptodate(bh);
1107                         }
1108                         unlock_buffer(bh);
1109                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1110                         err = ext3_journal_dirty_metadata(handle, bh);
1111                         if (!fatal)
1112                                 fatal = err;
1113                 } else {
1114                         BUFFER_TRACE(bh, "not a new buffer");
1115                 }
1116                 if (fatal) {
1117                         *errp = fatal;
1118                         brelse(bh);
1119                         bh = NULL;
1120                 }
1121                 return bh;
1122         }
1123 err:
1124         return NULL;
1125 }
1126
1127 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1128                                int block, int create, int *err)
1129 {
1130         struct buffer_head * bh;
1131
1132         bh = ext3_getblk(handle, inode, block, create, err);
1133         if (!bh)
1134                 return bh;
1135         if (bh_uptodate_or_lock(bh))
1136                 return bh;
1137         get_bh(bh);
1138         bh->b_end_io = end_buffer_read_sync;
1139         submit_bh(READ | REQ_META | REQ_PRIO, bh);
1140         wait_on_buffer(bh);
1141         if (buffer_uptodate(bh))
1142                 return bh;
1143         put_bh(bh);
1144         *err = -EIO;
1145         return NULL;
1146 }
1147
1148 static int walk_page_buffers(   handle_t *handle,
1149                                 struct buffer_head *head,
1150                                 unsigned from,
1151                                 unsigned to,
1152                                 int *partial,
1153                                 int (*fn)(      handle_t *handle,
1154                                                 struct buffer_head *bh))
1155 {
1156         struct buffer_head *bh;
1157         unsigned block_start, block_end;
1158         unsigned blocksize = head->b_size;
1159         int err, ret = 0;
1160         struct buffer_head *next;
1161
1162         for (   bh = head, block_start = 0;
1163                 ret == 0 && (bh != head || !block_start);
1164                 block_start = block_end, bh = next)
1165         {
1166                 next = bh->b_this_page;
1167                 block_end = block_start + blocksize;
1168                 if (block_end <= from || block_start >= to) {
1169                         if (partial && !buffer_uptodate(bh))
1170                                 *partial = 1;
1171                         continue;
1172                 }
1173                 err = (*fn)(handle, bh);
1174                 if (!ret)
1175                         ret = err;
1176         }
1177         return ret;
1178 }
1179
1180 /*
1181  * To preserve ordering, it is essential that the hole instantiation and
1182  * the data write be encapsulated in a single transaction.  We cannot
1183  * close off a transaction and start a new one between the ext3_get_block()
1184  * and the commit_write().  So doing the journal_start at the start of
1185  * prepare_write() is the right place.
1186  *
1187  * Also, this function can nest inside ext3_writepage() ->
1188  * block_write_full_page(). In that case, we *know* that ext3_writepage()
1189  * has generated enough buffer credits to do the whole page.  So we won't
1190  * block on the journal in that case, which is good, because the caller may
1191  * be PF_MEMALLOC.
1192  *
1193  * By accident, ext3 can be reentered when a transaction is open via
1194  * quota file writes.  If we were to commit the transaction while thus
1195  * reentered, there can be a deadlock - we would be holding a quota
1196  * lock, and the commit would never complete if another thread had a
1197  * transaction open and was blocking on the quota lock - a ranking
1198  * violation.
1199  *
1200  * So what we do is to rely on the fact that journal_stop/journal_start
1201  * will _not_ run commit under these circumstances because handle->h_ref
1202  * is elevated.  We'll still have enough credits for the tiny quotafile
1203  * write.
1204  */
1205 static int do_journal_get_write_access(handle_t *handle,
1206                                         struct buffer_head *bh)
1207 {
1208         int dirty = buffer_dirty(bh);
1209         int ret;
1210
1211         if (!buffer_mapped(bh) || buffer_freed(bh))
1212                 return 0;
1213         /*
1214          * __block_prepare_write() could have dirtied some buffers. Clean
1215          * the dirty bit as jbd2_journal_get_write_access() could complain
1216          * otherwise about fs integrity issues. Setting of the dirty bit
1217          * by __block_prepare_write() isn't a real problem here as we clear
1218          * the bit before releasing a page lock and thus writeback cannot
1219          * ever write the buffer.
1220          */
1221         if (dirty)
1222                 clear_buffer_dirty(bh);
1223         ret = ext3_journal_get_write_access(handle, bh);
1224         if (!ret && dirty)
1225                 ret = ext3_journal_dirty_metadata(handle, bh);
1226         return ret;
1227 }
1228
1229 /*
1230  * Truncate blocks that were not used by write. We have to truncate the
1231  * pagecache as well so that corresponding buffers get properly unmapped.
1232  */
1233 static void ext3_truncate_failed_write(struct inode *inode)
1234 {
1235         truncate_inode_pages(inode->i_mapping, inode->i_size);
1236         ext3_truncate(inode);
1237 }
1238
1239 /*
1240  * Truncate blocks that were not used by direct IO write. We have to zero out
1241  * the last file block as well because direct IO might have written to it.
1242  */
1243 static void ext3_truncate_failed_direct_write(struct inode *inode)
1244 {
1245         ext3_block_truncate_page(inode, inode->i_size);
1246         ext3_truncate(inode);
1247 }
1248
1249 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1250                                 loff_t pos, unsigned len, unsigned flags,
1251                                 struct page **pagep, void **fsdata)
1252 {
1253         struct inode *inode = mapping->host;
1254         int ret;
1255         handle_t *handle;
1256         int retries = 0;
1257         struct page *page;
1258         pgoff_t index;
1259         unsigned from, to;
1260         /* Reserve one block more for addition to orphan list in case
1261          * we allocate blocks but write fails for some reason */
1262         int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1263
1264         trace_ext3_write_begin(inode, pos, len, flags);
1265
1266         index = pos >> PAGE_CACHE_SHIFT;
1267         from = pos & (PAGE_CACHE_SIZE - 1);
1268         to = from + len;
1269
1270 retry:
1271         page = grab_cache_page_write_begin(mapping, index, flags);
1272         if (!page)
1273                 return -ENOMEM;
1274         *pagep = page;
1275
1276         handle = ext3_journal_start(inode, needed_blocks);
1277         if (IS_ERR(handle)) {
1278                 unlock_page(page);
1279                 page_cache_release(page);
1280                 ret = PTR_ERR(handle);
1281                 goto out;
1282         }
1283         ret = __block_write_begin(page, pos, len, ext3_get_block);
1284         if (ret)
1285                 goto write_begin_failed;
1286
1287         if (ext3_should_journal_data(inode)) {
1288                 ret = walk_page_buffers(handle, page_buffers(page),
1289                                 from, to, NULL, do_journal_get_write_access);
1290         }
1291 write_begin_failed:
1292         if (ret) {
1293                 /*
1294                  * block_write_begin may have instantiated a few blocks
1295                  * outside i_size.  Trim these off again. Don't need
1296                  * i_size_read because we hold i_mutex.
1297                  *
1298                  * Add inode to orphan list in case we crash before truncate
1299                  * finishes. Do this only if ext3_can_truncate() agrees so
1300                  * that orphan processing code is happy.
1301                  */
1302                 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1303                         ext3_orphan_add(handle, inode);
1304                 ext3_journal_stop(handle);
1305                 unlock_page(page);
1306                 page_cache_release(page);
1307                 if (pos + len > inode->i_size)
1308                         ext3_truncate_failed_write(inode);
1309         }
1310         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1311                 goto retry;
1312 out:
1313         return ret;
1314 }
1315
1316
1317 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1318 {
1319         int err = journal_dirty_data(handle, bh);
1320         if (err)
1321                 ext3_journal_abort_handle(__func__, __func__,
1322                                                 bh, handle, err);
1323         return err;
1324 }
1325
1326 /* For ordered writepage and write_end functions */
1327 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1328 {
1329         /*
1330          * Write could have mapped the buffer but it didn't copy the data in
1331          * yet. So avoid filing such buffer into a transaction.
1332          */
1333         if (buffer_mapped(bh) && buffer_uptodate(bh))
1334                 return ext3_journal_dirty_data(handle, bh);
1335         return 0;
1336 }
1337
1338 /* For write_end() in data=journal mode */
1339 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1340 {
1341         if (!buffer_mapped(bh) || buffer_freed(bh))
1342                 return 0;
1343         set_buffer_uptodate(bh);
1344         return ext3_journal_dirty_metadata(handle, bh);
1345 }
1346
1347 /*
1348  * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1349  * for the whole page but later we failed to copy the data in. Update inode
1350  * size according to what we managed to copy. The rest is going to be
1351  * truncated in write_end function.
1352  */
1353 static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1354 {
1355         /* What matters to us is i_disksize. We don't write i_size anywhere */
1356         if (pos + copied > inode->i_size)
1357                 i_size_write(inode, pos + copied);
1358         if (pos + copied > EXT3_I(inode)->i_disksize) {
1359                 EXT3_I(inode)->i_disksize = pos + copied;
1360                 mark_inode_dirty(inode);
1361         }
1362 }
1363
1364 /*
1365  * We need to pick up the new inode size which generic_commit_write gave us
1366  * `file' can be NULL - eg, when called from page_symlink().
1367  *
1368  * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1369  * buffers are managed internally.
1370  */
1371 static int ext3_ordered_write_end(struct file *file,
1372                                 struct address_space *mapping,
1373                                 loff_t pos, unsigned len, unsigned copied,
1374                                 struct page *page, void *fsdata)
1375 {
1376         handle_t *handle = ext3_journal_current_handle();
1377         struct inode *inode = file->f_mapping->host;
1378         unsigned from, to;
1379         int ret = 0, ret2;
1380
1381         trace_ext3_ordered_write_end(inode, pos, len, copied);
1382         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1383
1384         from = pos & (PAGE_CACHE_SIZE - 1);
1385         to = from + copied;
1386         ret = walk_page_buffers(handle, page_buffers(page),
1387                 from, to, NULL, journal_dirty_data_fn);
1388
1389         if (ret == 0)
1390                 update_file_sizes(inode, pos, copied);
1391         /*
1392          * There may be allocated blocks outside of i_size because
1393          * we failed to copy some data. Prepare for truncate.
1394          */
1395         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1396                 ext3_orphan_add(handle, inode);
1397         ret2 = ext3_journal_stop(handle);
1398         if (!ret)
1399                 ret = ret2;
1400         unlock_page(page);
1401         page_cache_release(page);
1402
1403         if (pos + len > inode->i_size)
1404                 ext3_truncate_failed_write(inode);
1405         return ret ? ret : copied;
1406 }
1407
1408 static int ext3_writeback_write_end(struct file *file,
1409                                 struct address_space *mapping,
1410                                 loff_t pos, unsigned len, unsigned copied,
1411                                 struct page *page, void *fsdata)
1412 {
1413         handle_t *handle = ext3_journal_current_handle();
1414         struct inode *inode = file->f_mapping->host;
1415         int ret;
1416
1417         trace_ext3_writeback_write_end(inode, pos, len, copied);
1418         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1419         update_file_sizes(inode, pos, copied);
1420         /*
1421          * There may be allocated blocks outside of i_size because
1422          * we failed to copy some data. Prepare for truncate.
1423          */
1424         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1425                 ext3_orphan_add(handle, inode);
1426         ret = ext3_journal_stop(handle);
1427         unlock_page(page);
1428         page_cache_release(page);
1429
1430         if (pos + len > inode->i_size)
1431                 ext3_truncate_failed_write(inode);
1432         return ret ? ret : copied;
1433 }
1434
1435 static int ext3_journalled_write_end(struct file *file,
1436                                 struct address_space *mapping,
1437                                 loff_t pos, unsigned len, unsigned copied,
1438                                 struct page *page, void *fsdata)
1439 {
1440         handle_t *handle = ext3_journal_current_handle();
1441         struct inode *inode = mapping->host;
1442         struct ext3_inode_info *ei = EXT3_I(inode);
1443         int ret = 0, ret2;
1444         int partial = 0;
1445         unsigned from, to;
1446
1447         trace_ext3_journalled_write_end(inode, pos, len, copied);
1448         from = pos & (PAGE_CACHE_SIZE - 1);
1449         to = from + len;
1450
1451         if (copied < len) {
1452                 if (!PageUptodate(page))
1453                         copied = 0;
1454                 page_zero_new_buffers(page, from + copied, to);
1455                 to = from + copied;
1456         }
1457
1458         ret = walk_page_buffers(handle, page_buffers(page), from,
1459                                 to, &partial, write_end_fn);
1460         if (!partial)
1461                 SetPageUptodate(page);
1462
1463         if (pos + copied > inode->i_size)
1464                 i_size_write(inode, pos + copied);
1465         /*
1466          * There may be allocated blocks outside of i_size because
1467          * we failed to copy some data. Prepare for truncate.
1468          */
1469         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1470                 ext3_orphan_add(handle, inode);
1471         ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1472         atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
1473         if (inode->i_size > ei->i_disksize) {
1474                 ei->i_disksize = inode->i_size;
1475                 ret2 = ext3_mark_inode_dirty(handle, inode);
1476                 if (!ret)
1477                         ret = ret2;
1478         }
1479
1480         ret2 = ext3_journal_stop(handle);
1481         if (!ret)
1482                 ret = ret2;
1483         unlock_page(page);
1484         page_cache_release(page);
1485
1486         if (pos + len > inode->i_size)
1487                 ext3_truncate_failed_write(inode);
1488         return ret ? ret : copied;
1489 }
1490
1491 /*
1492  * bmap() is special.  It gets used by applications such as lilo and by
1493  * the swapper to find the on-disk block of a specific piece of data.
1494  *
1495  * Naturally, this is dangerous if the block concerned is still in the
1496  * journal.  If somebody makes a swapfile on an ext3 data-journaling
1497  * filesystem and enables swap, then they may get a nasty shock when the
1498  * data getting swapped to that swapfile suddenly gets overwritten by
1499  * the original zero's written out previously to the journal and
1500  * awaiting writeback in the kernel's buffer cache.
1501  *
1502  * So, if we see any bmap calls here on a modified, data-journaled file,
1503  * take extra steps to flush any blocks which might be in the cache.
1504  */
1505 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1506 {
1507         struct inode *inode = mapping->host;
1508         journal_t *journal;
1509         int err;
1510
1511         if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1512                 /*
1513                  * This is a REALLY heavyweight approach, but the use of
1514                  * bmap on dirty files is expected to be extremely rare:
1515                  * only if we run lilo or swapon on a freshly made file
1516                  * do we expect this to happen.
1517                  *
1518                  * (bmap requires CAP_SYS_RAWIO so this does not
1519                  * represent an unprivileged user DOS attack --- we'd be
1520                  * in trouble if mortal users could trigger this path at
1521                  * will.)
1522                  *
1523                  * NB. EXT3_STATE_JDATA is not set on files other than
1524                  * regular files.  If somebody wants to bmap a directory
1525                  * or symlink and gets confused because the buffer
1526                  * hasn't yet been flushed to disk, they deserve
1527                  * everything they get.
1528                  */
1529
1530                 ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1531                 journal = EXT3_JOURNAL(inode);
1532                 journal_lock_updates(journal);
1533                 err = journal_flush(journal);
1534                 journal_unlock_updates(journal);
1535
1536                 if (err)
1537                         return 0;
1538         }
1539
1540         return generic_block_bmap(mapping,block,ext3_get_block);
1541 }
1542
1543 static int bget_one(handle_t *handle, struct buffer_head *bh)
1544 {
1545         get_bh(bh);
1546         return 0;
1547 }
1548
1549 static int bput_one(handle_t *handle, struct buffer_head *bh)
1550 {
1551         put_bh(bh);
1552         return 0;
1553 }
1554
1555 static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1556 {
1557         return !buffer_mapped(bh);
1558 }
1559
1560 /*
1561  * Note that we always start a transaction even if we're not journalling
1562  * data.  This is to preserve ordering: any hole instantiation within
1563  * __block_write_full_page -> ext3_get_block() should be journalled
1564  * along with the data so we don't crash and then get metadata which
1565  * refers to old data.
1566  *
1567  * In all journalling modes block_write_full_page() will start the I/O.
1568  *
1569  * Problem:
1570  *
1571  *      ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1572  *              ext3_writepage()
1573  *
1574  * Similar for:
1575  *
1576  *      ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1577  *
1578  * Same applies to ext3_get_block().  We will deadlock on various things like
1579  * lock_journal and i_truncate_mutex.
1580  *
1581  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1582  * allocations fail.
1583  *
1584  * 16May01: If we're reentered then journal_current_handle() will be
1585  *          non-zero. We simply *return*.
1586  *
1587  * 1 July 2001: @@@ FIXME:
1588  *   In journalled data mode, a data buffer may be metadata against the
1589  *   current transaction.  But the same file is part of a shared mapping
1590  *   and someone does a writepage() on it.
1591  *
1592  *   We will move the buffer onto the async_data list, but *after* it has
1593  *   been dirtied. So there's a small window where we have dirty data on
1594  *   BJ_Metadata.
1595  *
1596  *   Note that this only applies to the last partial page in the file.  The
1597  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1598  *   broken code anyway: it's wrong for msync()).
1599  *
1600  *   It's a rare case: affects the final partial page, for journalled data
1601  *   where the file is subject to bith write() and writepage() in the same
1602  *   transction.  To fix it we'll need a custom block_write_full_page().
1603  *   We'll probably need that anyway for journalling writepage() output.
1604  *
1605  * We don't honour synchronous mounts for writepage().  That would be
1606  * disastrous.  Any write() or metadata operation will sync the fs for
1607  * us.
1608  *
1609  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1610  * we don't need to open a transaction here.
1611  */
1612 static int ext3_ordered_writepage(struct page *page,
1613                                 struct writeback_control *wbc)
1614 {
1615         struct inode *inode = page->mapping->host;
1616         struct buffer_head *page_bufs;
1617         handle_t *handle = NULL;
1618         int ret = 0;
1619         int err;
1620
1621         J_ASSERT(PageLocked(page));
1622         /*
1623          * We don't want to warn for emergency remount. The condition is
1624          * ordered to avoid dereferencing inode->i_sb in non-error case to
1625          * avoid slow-downs.
1626          */
1627         WARN_ON_ONCE(IS_RDONLY(inode) &&
1628                      !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1629
1630         /*
1631          * We give up here if we're reentered, because it might be for a
1632          * different filesystem.
1633          */
1634         if (ext3_journal_current_handle())
1635                 goto out_fail;
1636
1637         trace_ext3_ordered_writepage(page);
1638         if (!page_has_buffers(page)) {
1639                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1640                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1641                 page_bufs = page_buffers(page);
1642         } else {
1643                 page_bufs = page_buffers(page);
1644                 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1645                                        NULL, buffer_unmapped)) {
1646                         /* Provide NULL get_block() to catch bugs if buffers
1647                          * weren't really mapped */
1648                         return block_write_full_page(page, NULL, wbc);
1649                 }
1650         }
1651         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1652
1653         if (IS_ERR(handle)) {
1654                 ret = PTR_ERR(handle);
1655                 goto out_fail;
1656         }
1657
1658         walk_page_buffers(handle, page_bufs, 0,
1659                         PAGE_CACHE_SIZE, NULL, bget_one);
1660
1661         ret = block_write_full_page(page, ext3_get_block, wbc);
1662
1663         /*
1664          * The page can become unlocked at any point now, and
1665          * truncate can then come in and change things.  So we
1666          * can't touch *page from now on.  But *page_bufs is
1667          * safe due to elevated refcount.
1668          */
1669
1670         /*
1671          * And attach them to the current transaction.  But only if
1672          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1673          * and generally junk.
1674          */
1675         if (ret == 0) {
1676                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1677                                         NULL, journal_dirty_data_fn);
1678                 if (!ret)
1679                         ret = err;
1680         }
1681         walk_page_buffers(handle, page_bufs, 0,
1682                         PAGE_CACHE_SIZE, NULL, bput_one);
1683         err = ext3_journal_stop(handle);
1684         if (!ret)
1685                 ret = err;
1686         return ret;
1687
1688 out_fail:
1689         redirty_page_for_writepage(wbc, page);
1690         unlock_page(page);
1691         return ret;
1692 }
1693
1694 static int ext3_writeback_writepage(struct page *page,
1695                                 struct writeback_control *wbc)
1696 {
1697         struct inode *inode = page->mapping->host;
1698         handle_t *handle = NULL;
1699         int ret = 0;
1700         int err;
1701
1702         J_ASSERT(PageLocked(page));
1703         /*
1704          * We don't want to warn for emergency remount. The condition is
1705          * ordered to avoid dereferencing inode->i_sb in non-error case to
1706          * avoid slow-downs.
1707          */
1708         WARN_ON_ONCE(IS_RDONLY(inode) &&
1709                      !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1710
1711         if (ext3_journal_current_handle())
1712                 goto out_fail;
1713
1714         trace_ext3_writeback_writepage(page);
1715         if (page_has_buffers(page)) {
1716                 if (!walk_page_buffers(NULL, page_buffers(page), 0,
1717                                       PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1718                         /* Provide NULL get_block() to catch bugs if buffers
1719                          * weren't really mapped */
1720                         return block_write_full_page(page, NULL, wbc);
1721                 }
1722         }
1723
1724         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1725         if (IS_ERR(handle)) {
1726                 ret = PTR_ERR(handle);
1727                 goto out_fail;
1728         }
1729
1730         ret = block_write_full_page(page, ext3_get_block, wbc);
1731
1732         err = ext3_journal_stop(handle);
1733         if (!ret)
1734                 ret = err;
1735         return ret;
1736
1737 out_fail:
1738         redirty_page_for_writepage(wbc, page);
1739         unlock_page(page);
1740         return ret;
1741 }
1742
1743 static int ext3_journalled_writepage(struct page *page,
1744                                 struct writeback_control *wbc)
1745 {
1746         struct inode *inode = page->mapping->host;
1747         handle_t *handle = NULL;
1748         int ret = 0;
1749         int err;
1750
1751         J_ASSERT(PageLocked(page));
1752         /*
1753          * We don't want to warn for emergency remount. The condition is
1754          * ordered to avoid dereferencing inode->i_sb in non-error case to
1755          * avoid slow-downs.
1756          */
1757         WARN_ON_ONCE(IS_RDONLY(inode) &&
1758                      !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1759
1760         if (ext3_journal_current_handle())
1761                 goto no_write;
1762
1763         trace_ext3_journalled_writepage(page);
1764         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1765         if (IS_ERR(handle)) {
1766                 ret = PTR_ERR(handle);
1767                 goto no_write;
1768         }
1769
1770         if (!page_has_buffers(page) || PageChecked(page)) {
1771                 /*
1772                  * It's mmapped pagecache.  Add buffers and journal it.  There
1773                  * doesn't seem much point in redirtying the page here.
1774                  */
1775                 ClearPageChecked(page);
1776                 ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
1777                                           ext3_get_block);
1778                 if (ret != 0) {
1779                         ext3_journal_stop(handle);
1780                         goto out_unlock;
1781                 }
1782                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1783                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1784
1785                 err = walk_page_buffers(handle, page_buffers(page), 0,
1786                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
1787                 if (ret == 0)
1788                         ret = err;
1789                 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1790                 atomic_set(&EXT3_I(inode)->i_datasync_tid,
1791                            handle->h_transaction->t_tid);
1792                 unlock_page(page);
1793         } else {
1794                 /*
1795                  * It may be a page full of checkpoint-mode buffers.  We don't
1796                  * really know unless we go poke around in the buffer_heads.
1797                  * But block_write_full_page will do the right thing.
1798                  */
1799                 ret = block_write_full_page(page, ext3_get_block, wbc);
1800         }
1801         err = ext3_journal_stop(handle);
1802         if (!ret)
1803                 ret = err;
1804 out:
1805         return ret;
1806
1807 no_write:
1808         redirty_page_for_writepage(wbc, page);
1809 out_unlock:
1810         unlock_page(page);
1811         goto out;
1812 }
1813
1814 static int ext3_readpage(struct file *file, struct page *page)
1815 {
1816         trace_ext3_readpage(page);
1817         return mpage_readpage(page, ext3_get_block);
1818 }
1819
1820 static int
1821 ext3_readpages(struct file *file, struct address_space *mapping,
1822                 struct list_head *pages, unsigned nr_pages)
1823 {
1824         return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1825 }
1826
1827 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1828 {
1829         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1830
1831         trace_ext3_invalidatepage(page, offset);
1832
1833         /*
1834          * If it's a full truncate we just forget about the pending dirtying
1835          */
1836         if (offset == 0)
1837                 ClearPageChecked(page);
1838
1839         journal_invalidatepage(journal, page, offset);
1840 }
1841
1842 static int ext3_releasepage(struct page *page, gfp_t wait)
1843 {
1844         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1845
1846         trace_ext3_releasepage(page);
1847         WARN_ON(PageChecked(page));
1848         if (!page_has_buffers(page))
1849                 return 0;
1850         return journal_try_to_free_buffers(journal, page, wait);
1851 }
1852
1853 /*
1854  * If the O_DIRECT write will extend the file then add this inode to the
1855  * orphan list.  So recovery will truncate it back to the original size
1856  * if the machine crashes during the write.
1857  *
1858  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1859  * crashes then stale disk data _may_ be exposed inside the file. But current
1860  * VFS code falls back into buffered path in that case so we are safe.
1861  */
1862 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1863                         const struct iovec *iov, loff_t offset,
1864                         unsigned long nr_segs)
1865 {
1866         struct file *file = iocb->ki_filp;
1867         struct inode *inode = file->f_mapping->host;
1868         struct ext3_inode_info *ei = EXT3_I(inode);
1869         handle_t *handle;
1870         ssize_t ret;
1871         int orphan = 0;
1872         size_t count = iov_length(iov, nr_segs);
1873         int retries = 0;
1874
1875         trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
1876
1877         if (rw == WRITE) {
1878                 loff_t final_size = offset + count;
1879
1880                 if (final_size > inode->i_size) {
1881                         /* Credits for sb + inode write */
1882                         handle = ext3_journal_start(inode, 2);
1883                         if (IS_ERR(handle)) {
1884                                 ret = PTR_ERR(handle);
1885                                 goto out;
1886                         }
1887                         ret = ext3_orphan_add(handle, inode);
1888                         if (ret) {
1889                                 ext3_journal_stop(handle);
1890                                 goto out;
1891                         }
1892                         orphan = 1;
1893                         ei->i_disksize = inode->i_size;
1894                         ext3_journal_stop(handle);
1895                 }
1896         }
1897
1898 retry:
1899         ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
1900                                  ext3_get_block);
1901         /*
1902          * In case of error extending write may have instantiated a few
1903          * blocks outside i_size. Trim these off again.
1904          */
1905         if (unlikely((rw & WRITE) && ret < 0)) {
1906                 loff_t isize = i_size_read(inode);
1907                 loff_t end = offset + iov_length(iov, nr_segs);
1908
1909                 if (end > isize)
1910                         ext3_truncate_failed_direct_write(inode);
1911         }
1912         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1913                 goto retry;
1914
1915         if (orphan) {
1916                 int err;
1917
1918                 /* Credits for sb + inode write */
1919                 handle = ext3_journal_start(inode, 2);
1920                 if (IS_ERR(handle)) {
1921                         /* This is really bad luck. We've written the data
1922                          * but cannot extend i_size. Truncate allocated blocks
1923                          * and pretend the write failed... */
1924                         ext3_truncate_failed_direct_write(inode);
1925                         ret = PTR_ERR(handle);
1926                         goto out;
1927                 }
1928                 if (inode->i_nlink)
1929                         ext3_orphan_del(handle, inode);
1930                 if (ret > 0) {
1931                         loff_t end = offset + ret;
1932                         if (end > inode->i_size) {
1933                                 ei->i_disksize = end;
1934                                 i_size_write(inode, end);
1935                                 /*
1936                                  * We're going to return a positive `ret'
1937                                  * here due to non-zero-length I/O, so there's
1938                                  * no way of reporting error returns from
1939                                  * ext3_mark_inode_dirty() to userspace.  So
1940                                  * ignore it.
1941                                  */
1942                                 ext3_mark_inode_dirty(handle, inode);
1943                         }
1944                 }
1945                 err = ext3_journal_stop(handle);
1946                 if (ret == 0)
1947                         ret = err;
1948         }
1949 out:
1950         trace_ext3_direct_IO_exit(inode, offset,
1951                                 iov_length(iov, nr_segs), rw, ret);
1952         return ret;
1953 }
1954
1955 /*
1956  * Pages can be marked dirty completely asynchronously from ext3's journalling
1957  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1958  * much here because ->set_page_dirty is called under VFS locks.  The page is
1959  * not necessarily locked.
1960  *
1961  * We cannot just dirty the page and leave attached buffers clean, because the
1962  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1963  * or jbddirty because all the journalling code will explode.
1964  *
1965  * So what we do is to mark the page "pending dirty" and next time writepage
1966  * is called, propagate that into the buffers appropriately.
1967  */
1968 static int ext3_journalled_set_page_dirty(struct page *page)
1969 {
1970         SetPageChecked(page);
1971         return __set_page_dirty_nobuffers(page);
1972 }
1973
1974 static const struct address_space_operations ext3_ordered_aops = {
1975         .readpage               = ext3_readpage,
1976         .readpages              = ext3_readpages,
1977         .writepage              = ext3_ordered_writepage,
1978         .write_begin            = ext3_write_begin,
1979         .write_end              = ext3_ordered_write_end,
1980         .bmap                   = ext3_bmap,
1981         .invalidatepage         = ext3_invalidatepage,
1982         .releasepage            = ext3_releasepage,
1983         .direct_IO              = ext3_direct_IO,
1984         .migratepage            = buffer_migrate_page,
1985         .is_partially_uptodate  = block_is_partially_uptodate,
1986         .error_remove_page      = generic_error_remove_page,
1987 };
1988
1989 static const struct address_space_operations ext3_writeback_aops = {
1990         .readpage               = ext3_readpage,
1991         .readpages              = ext3_readpages,
1992         .writepage              = ext3_writeback_writepage,
1993         .write_begin            = ext3_write_begin,
1994         .write_end              = ext3_writeback_write_end,
1995         .bmap                   = ext3_bmap,
1996         .invalidatepage         = ext3_invalidatepage,
1997         .releasepage            = ext3_releasepage,
1998         .direct_IO              = ext3_direct_IO,
1999         .migratepage            = buffer_migrate_page,
2000         .is_partially_uptodate  = block_is_partially_uptodate,
2001         .error_remove_page      = generic_error_remove_page,
2002 };
2003
2004 static const struct address_space_operations ext3_journalled_aops = {
2005         .readpage               = ext3_readpage,
2006         .readpages              = ext3_readpages,
2007         .writepage              = ext3_journalled_writepage,
2008         .write_begin            = ext3_write_begin,
2009         .write_end              = ext3_journalled_write_end,
2010         .set_page_dirty         = ext3_journalled_set_page_dirty,
2011         .bmap                   = ext3_bmap,
2012         .invalidatepage         = ext3_invalidatepage,
2013         .releasepage            = ext3_releasepage,
2014         .is_partially_uptodate  = block_is_partially_uptodate,
2015         .error_remove_page      = generic_error_remove_page,
2016 };
2017
2018 void ext3_set_aops(struct inode *inode)
2019 {
2020         if (ext3_should_order_data(inode))
2021                 inode->i_mapping->a_ops = &ext3_ordered_aops;
2022         else if (ext3_should_writeback_data(inode))
2023                 inode->i_mapping->a_ops = &ext3_writeback_aops;
2024         else
2025                 inode->i_mapping->a_ops = &ext3_journalled_aops;
2026 }
2027
2028 /*
2029  * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
2030  * up to the end of the block which corresponds to `from'.
2031  * This required during truncate. We need to physically zero the tail end
2032  * of that block so it doesn't yield old data if the file is later grown.
2033  */
2034 static int ext3_block_truncate_page(struct inode *inode, loff_t from)
2035 {
2036         ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2037         unsigned offset = from & (PAGE_CACHE_SIZE - 1);
2038         unsigned blocksize, iblock, length, pos;
2039         struct page *page;
2040         handle_t *handle = NULL;
2041         struct buffer_head *bh;
2042         int err = 0;
2043
2044         /* Truncated on block boundary - nothing to do */
2045         blocksize = inode->i_sb->s_blocksize;
2046         if ((from & (blocksize - 1)) == 0)
2047                 return 0;
2048
2049         page = grab_cache_page(inode->i_mapping, index);
2050         if (!page)
2051                 return -ENOMEM;
2052         length = blocksize - (offset & (blocksize - 1));
2053         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2054
2055         if (!page_has_buffers(page))
2056                 create_empty_buffers(page, blocksize, 0);
2057
2058         /* Find the buffer that contains "offset" */
2059         bh = page_buffers(page);
2060         pos = blocksize;
2061         while (offset >= pos) {
2062                 bh = bh->b_this_page;
2063                 iblock++;
2064                 pos += blocksize;
2065         }
2066
2067         err = 0;
2068         if (buffer_freed(bh)) {
2069                 BUFFER_TRACE(bh, "freed: skip");
2070                 goto unlock;
2071         }
2072
2073         if (!buffer_mapped(bh)) {
2074                 BUFFER_TRACE(bh, "unmapped");
2075                 ext3_get_block(inode, iblock, bh, 0);
2076                 /* unmapped? It's a hole - nothing to do */
2077                 if (!buffer_mapped(bh)) {
2078                         BUFFER_TRACE(bh, "still unmapped");
2079                         goto unlock;
2080                 }
2081         }
2082
2083         /* Ok, it's mapped. Make sure it's up-to-date */
2084         if (PageUptodate(page))
2085                 set_buffer_uptodate(bh);
2086
2087         if (!bh_uptodate_or_lock(bh)) {
2088                 err = bh_submit_read(bh);
2089                 /* Uhhuh. Read error. Complain and punt. */
2090                 if (err)
2091                         goto unlock;
2092         }
2093
2094         /* data=writeback mode doesn't need transaction to zero-out data */
2095         if (!ext3_should_writeback_data(inode)) {
2096                 /* We journal at most one block */
2097                 handle = ext3_journal_start(inode, 1);
2098                 if (IS_ERR(handle)) {
2099                         clear_highpage(page);
2100                         flush_dcache_page(page);
2101                         err = PTR_ERR(handle);
2102                         goto unlock;
2103                 }
2104         }
2105
2106         if (ext3_should_journal_data(inode)) {
2107                 BUFFER_TRACE(bh, "get write access");
2108                 err = ext3_journal_get_write_access(handle, bh);
2109                 if (err)
2110                         goto stop;
2111         }
2112
2113         zero_user(page, offset, length);
2114         BUFFER_TRACE(bh, "zeroed end of block");
2115
2116         err = 0;
2117         if (ext3_should_journal_data(inode)) {
2118                 err = ext3_journal_dirty_metadata(handle, bh);
2119         } else {
2120                 if (ext3_should_order_data(inode))
2121                         err = ext3_journal_dirty_data(handle, bh);
2122                 mark_buffer_dirty(bh);
2123         }
2124 stop:
2125         if (handle)
2126                 ext3_journal_stop(handle);
2127
2128 unlock:
2129         unlock_page(page);
2130         page_cache_release(page);
2131         return err;
2132 }
2133
2134 /*
2135  * Probably it should be a library function... search for first non-zero word
2136  * or memcmp with zero_page, whatever is better for particular architecture.
2137  * Linus?
2138  */
2139 static inline int all_zeroes(__le32 *p, __le32 *q)
2140 {
2141         while (p < q)
2142                 if (*p++)
2143                         return 0;
2144         return 1;
2145 }
2146
2147 /**
2148  *      ext3_find_shared - find the indirect blocks for partial truncation.
2149  *      @inode:   inode in question
2150  *      @depth:   depth of the affected branch
2151  *      @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2152  *      @chain:   place to store the pointers to partial indirect blocks
2153  *      @top:     place to the (detached) top of branch
2154  *
2155  *      This is a helper function used by ext3_truncate().
2156  *
2157  *      When we do truncate() we may have to clean the ends of several
2158  *      indirect blocks but leave the blocks themselves alive. Block is
2159  *      partially truncated if some data below the new i_size is referred
2160  *      from it (and it is on the path to the first completely truncated
2161  *      data block, indeed).  We have to free the top of that path along
2162  *      with everything to the right of the path. Since no allocation
2163  *      past the truncation point is possible until ext3_truncate()
2164  *      finishes, we may safely do the latter, but top of branch may
2165  *      require special attention - pageout below the truncation point
2166  *      might try to populate it.
2167  *
2168  *      We atomically detach the top of branch from the tree, store the
2169  *      block number of its root in *@top, pointers to buffer_heads of
2170  *      partially truncated blocks - in @chain[].bh and pointers to
2171  *      their last elements that should not be removed - in
2172  *      @chain[].p. Return value is the pointer to last filled element
2173  *      of @chain.
2174  *
2175  *      The work left to caller to do the actual freeing of subtrees:
2176  *              a) free the subtree starting from *@top
2177  *              b) free the subtrees whose roots are stored in
2178  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2179  *              c) free the subtrees growing from the inode past the @chain[0].
2180  *                      (no partially truncated stuff there).  */
2181
2182 static Indirect *ext3_find_shared(struct inode *inode, int depth,
2183                         int offsets[4], Indirect chain[4], __le32 *top)
2184 {
2185         Indirect *partial, *p;
2186         int k, err;
2187
2188         *top = 0;
2189         /* Make k index the deepest non-null offset + 1 */
2190         for (k = depth; k > 1 && !offsets[k-1]; k--)
2191                 ;
2192         partial = ext3_get_branch(inode, k, offsets, chain, &err);
2193         /* Writer: pointers */
2194         if (!partial)
2195                 partial = chain + k-1;
2196         /*
2197          * If the branch acquired continuation since we've looked at it -
2198          * fine, it should all survive and (new) top doesn't belong to us.
2199          */
2200         if (!partial->key && *partial->p)
2201                 /* Writer: end */
2202                 goto no_top;
2203         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2204                 ;
2205         /*
2206          * OK, we've found the last block that must survive. The rest of our
2207          * branch should be detached before unlocking. However, if that rest
2208          * of branch is all ours and does not grow immediately from the inode
2209          * it's easier to cheat and just decrement partial->p.
2210          */
2211         if (p == chain + k - 1 && p > chain) {
2212                 p->p--;
2213         } else {
2214                 *top = *p->p;
2215                 /* Nope, don't do this in ext3.  Must leave the tree intact */
2216 #if 0
2217                 *p->p = 0;
2218 #endif
2219         }
2220         /* Writer: end */
2221
2222         while(partial > p) {
2223                 brelse(partial->bh);
2224                 partial--;
2225         }
2226 no_top:
2227         return partial;
2228 }
2229
2230 /*
2231  * Zero a number of block pointers in either an inode or an indirect block.
2232  * If we restart the transaction we must again get write access to the
2233  * indirect block for further modification.
2234  *
2235  * We release `count' blocks on disk, but (last - first) may be greater
2236  * than `count' because there can be holes in there.
2237  */
2238 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2239                 struct buffer_head *bh, ext3_fsblk_t block_to_free,
2240                 unsigned long count, __le32 *first, __le32 *last)
2241 {
2242         __le32 *p;
2243         if (try_to_extend_transaction(handle, inode)) {
2244                 if (bh) {
2245                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2246                         if (ext3_journal_dirty_metadata(handle, bh))
2247                                 return;
2248                 }
2249                 ext3_mark_inode_dirty(handle, inode);
2250                 truncate_restart_transaction(handle, inode);
2251                 if (bh) {
2252                         BUFFER_TRACE(bh, "retaking write access");
2253                         if (ext3_journal_get_write_access(handle, bh))
2254                                 return;
2255                 }
2256         }
2257
2258         /*
2259          * Any buffers which are on the journal will be in memory. We find
2260          * them on the hash table so journal_revoke() will run journal_forget()
2261          * on them.  We've already detached each block from the file, so
2262          * bforget() in journal_forget() should be safe.
2263          *
2264          * AKPM: turn on bforget in journal_forget()!!!
2265          */
2266         for (p = first; p < last; p++) {
2267                 u32 nr = le32_to_cpu(*p);
2268                 if (nr) {
2269                         struct buffer_head *bh;
2270
2271                         *p = 0;
2272                         bh = sb_find_get_block(inode->i_sb, nr);
2273                         ext3_forget(handle, 0, inode, bh, nr);
2274                 }
2275         }
2276
2277         ext3_free_blocks(handle, inode, block_to_free, count);
2278 }
2279
2280 /**
2281  * ext3_free_data - free a list of data blocks
2282  * @handle:     handle for this transaction
2283  * @inode:      inode we are dealing with
2284  * @this_bh:    indirect buffer_head which contains *@first and *@last
2285  * @first:      array of block numbers
2286  * @last:       points immediately past the end of array
2287  *
2288  * We are freeing all blocks referred from that array (numbers are stored as
2289  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2290  *
2291  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2292  * blocks are contiguous then releasing them at one time will only affect one
2293  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2294  * actually use a lot of journal space.
2295  *
2296  * @this_bh will be %NULL if @first and @last point into the inode's direct
2297  * block pointers.
2298  */
2299 static void ext3_free_data(handle_t *handle, struct inode *inode,
2300                            struct buffer_head *this_bh,
2301                            __le32 *first, __le32 *last)
2302 {
2303         ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2304         unsigned long count = 0;            /* Number of blocks in the run */
2305         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2306                                                corresponding to
2307                                                block_to_free */
2308         ext3_fsblk_t nr;                    /* Current block # */
2309         __le32 *p;                          /* Pointer into inode/ind
2310                                                for current block */
2311         int err;
2312
2313         if (this_bh) {                          /* For indirect block */
2314                 BUFFER_TRACE(this_bh, "get_write_access");
2315                 err = ext3_journal_get_write_access(handle, this_bh);
2316                 /* Important: if we can't update the indirect pointers
2317                  * to the blocks, we can't free them. */
2318                 if (err)
2319                         return;
2320         }
2321
2322         for (p = first; p < last; p++) {
2323                 nr = le32_to_cpu(*p);
2324                 if (nr) {
2325                         /* accumulate blocks to free if they're contiguous */
2326                         if (count == 0) {
2327                                 block_to_free = nr;
2328                                 block_to_free_p = p;
2329                                 count = 1;
2330                         } else if (nr == block_to_free + count) {
2331                                 count++;
2332                         } else {
2333                                 ext3_clear_blocks(handle, inode, this_bh,
2334                                                   block_to_free,
2335                                                   count, block_to_free_p, p);
2336                                 block_to_free = nr;
2337                                 block_to_free_p = p;
2338                                 count = 1;
2339                         }
2340                 }
2341         }
2342
2343         if (count > 0)
2344                 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2345                                   count, block_to_free_p, p);
2346
2347         if (this_bh) {
2348                 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2349
2350                 /*
2351                  * The buffer head should have an attached journal head at this
2352                  * point. However, if the data is corrupted and an indirect
2353                  * block pointed to itself, it would have been detached when
2354                  * the block was cleared. Check for this instead of OOPSing.
2355                  */
2356                 if (bh2jh(this_bh))
2357                         ext3_journal_dirty_metadata(handle, this_bh);
2358                 else
2359                         ext3_error(inode->i_sb, "ext3_free_data",
2360                                    "circular indirect block detected, "
2361                                    "inode=%lu, block=%llu",
2362                                    inode->i_ino,
2363                                    (unsigned long long)this_bh->b_blocknr);
2364         }
2365 }
2366
2367 /**
2368  *      ext3_free_branches - free an array of branches
2369  *      @handle: JBD handle for this transaction
2370  *      @inode: inode we are dealing with
2371  *      @parent_bh: the buffer_head which contains *@first and *@last
2372  *      @first: array of block numbers
2373  *      @last:  pointer immediately past the end of array
2374  *      @depth: depth of the branches to free
2375  *
2376  *      We are freeing all blocks referred from these branches (numbers are
2377  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2378  *      appropriately.
2379  */
2380 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2381                                struct buffer_head *parent_bh,
2382                                __le32 *first, __le32 *last, int depth)
2383 {
2384         ext3_fsblk_t nr;
2385         __le32 *p;
2386
2387         if (is_handle_aborted(handle))
2388                 return;
2389
2390         if (depth--) {
2391                 struct buffer_head *bh;
2392                 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2393                 p = last;
2394                 while (--p >= first) {
2395                         nr = le32_to_cpu(*p);
2396                         if (!nr)
2397                                 continue;               /* A hole */
2398
2399                         /* Go read the buffer for the next level down */
2400                         bh = sb_bread(inode->i_sb, nr);
2401
2402                         /*
2403                          * A read failure? Report error and clear slot
2404                          * (should be rare).
2405                          */
2406                         if (!bh) {
2407                                 ext3_error(inode->i_sb, "ext3_free_branches",
2408                                            "Read failure, inode=%lu, block="E3FSBLK,
2409                                            inode->i_ino, nr);
2410                                 continue;
2411                         }
2412
2413                         /* This zaps the entire block.  Bottom up. */
2414                         BUFFER_TRACE(bh, "free child branches");
2415                         ext3_free_branches(handle, inode, bh,
2416                                            (__le32*)bh->b_data,
2417                                            (__le32*)bh->b_data + addr_per_block,
2418                                            depth);
2419
2420                         /*
2421                          * Everything below this this pointer has been
2422                          * released.  Now let this top-of-subtree go.
2423                          *
2424                          * We want the freeing of this indirect block to be
2425                          * atomic in the journal with the updating of the
2426                          * bitmap block which owns it.  So make some room in
2427                          * the journal.
2428                          *
2429                          * We zero the parent pointer *after* freeing its
2430                          * pointee in the bitmaps, so if extend_transaction()
2431                          * for some reason fails to put the bitmap changes and
2432                          * the release into the same transaction, recovery
2433                          * will merely complain about releasing a free block,
2434                          * rather than leaking blocks.
2435                          */
2436                         if (is_handle_aborted(handle))
2437                                 return;
2438                         if (try_to_extend_transaction(handle, inode)) {
2439                                 ext3_mark_inode_dirty(handle, inode);
2440                                 truncate_restart_transaction(handle, inode);
2441                         }
2442
2443                         /*
2444                          * We've probably journalled the indirect block several
2445                          * times during the truncate.  But it's no longer
2446                          * needed and we now drop it from the transaction via
2447                          * journal_revoke().
2448                          *
2449                          * That's easy if it's exclusively part of this
2450                          * transaction.  But if it's part of the committing
2451                          * transaction then journal_forget() will simply
2452                          * brelse() it.  That means that if the underlying
2453                          * block is reallocated in ext3_get_block(),
2454                          * unmap_underlying_metadata() will find this block
2455                          * and will try to get rid of it.  damn, damn. Thus
2456                          * we don't allow a block to be reallocated until
2457                          * a transaction freeing it has fully committed.
2458                          *
2459                          * We also have to make sure journal replay after a
2460                          * crash does not overwrite non-journaled data blocks
2461                          * with old metadata when the block got reallocated for
2462                          * data.  Thus we have to store a revoke record for a
2463                          * block in the same transaction in which we free the
2464                          * block.
2465                          */
2466                         ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2467
2468                         ext3_free_blocks(handle, inode, nr, 1);
2469
2470                         if (parent_bh) {
2471                                 /*
2472                                  * The block which we have just freed is
2473                                  * pointed to by an indirect block: journal it
2474                                  */
2475                                 BUFFER_TRACE(parent_bh, "get_write_access");
2476                                 if (!ext3_journal_get_write_access(handle,
2477                                                                    parent_bh)){
2478                                         *p = 0;
2479                                         BUFFER_TRACE(parent_bh,
2480                                         "call ext3_journal_dirty_metadata");
2481                                         ext3_journal_dirty_metadata(handle,
2482                                                                     parent_bh);
2483                                 }
2484                         }
2485                 }
2486         } else {
2487                 /* We have reached the bottom of the tree. */
2488                 BUFFER_TRACE(parent_bh, "free data blocks");
2489                 ext3_free_data(handle, inode, parent_bh, first, last);
2490         }
2491 }
2492
2493 int ext3_can_truncate(struct inode *inode)
2494 {
2495         if (S_ISREG(inode->i_mode))
2496                 return 1;
2497         if (S_ISDIR(inode->i_mode))
2498                 return 1;
2499         if (S_ISLNK(inode->i_mode))
2500                 return !ext3_inode_is_fast_symlink(inode);
2501         return 0;
2502 }
2503
2504 /*
2505  * ext3_truncate()
2506  *
2507  * We block out ext3_get_block() block instantiations across the entire
2508  * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2509  * simultaneously on behalf of the same inode.
2510  *
2511  * As we work through the truncate and commit bits of it to the journal there
2512  * is one core, guiding principle: the file's tree must always be consistent on
2513  * disk.  We must be able to restart the truncate after a crash.
2514  *
2515  * The file's tree may be transiently inconsistent in memory (although it
2516  * probably isn't), but whenever we close off and commit a journal transaction,
2517  * the contents of (the filesystem + the journal) must be consistent and
2518  * restartable.  It's pretty simple, really: bottom up, right to left (although
2519  * left-to-right works OK too).
2520  *
2521  * Note that at recovery time, journal replay occurs *before* the restart of
2522  * truncate against the orphan inode list.
2523  *
2524  * The committed inode has the new, desired i_size (which is the same as
2525  * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2526  * that this inode's truncate did not complete and it will again call
2527  * ext3_truncate() to have another go.  So there will be instantiated blocks
2528  * to the right of the truncation point in a crashed ext3 filesystem.  But
2529  * that's fine - as long as they are linked from the inode, the post-crash
2530  * ext3_truncate() run will find them and release them.
2531  */
2532 void ext3_truncate(struct inode *inode)
2533 {
2534         handle_t *handle;
2535         struct ext3_inode_info *ei = EXT3_I(inode);
2536         __le32 *i_data = ei->i_data;
2537         int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2538         int offsets[4];
2539         Indirect chain[4];
2540         Indirect *partial;
2541         __le32 nr = 0;
2542         int n;
2543         long last_block;
2544         unsigned blocksize = inode->i_sb->s_blocksize;
2545
2546         trace_ext3_truncate_enter(inode);
2547
2548         if (!ext3_can_truncate(inode))
2549                 goto out_notrans;
2550
2551         if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2552                 ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2553
2554         handle = start_transaction(inode);
2555         if (IS_ERR(handle))
2556                 goto out_notrans;
2557
2558         last_block = (inode->i_size + blocksize-1)
2559                                         >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2560         n = ext3_block_to_path(inode, last_block, offsets, NULL);
2561         if (n == 0)
2562                 goto out_stop;  /* error */
2563
2564         /*
2565          * OK.  This truncate is going to happen.  We add the inode to the
2566          * orphan list, so that if this truncate spans multiple transactions,
2567          * and we crash, we will resume the truncate when the filesystem
2568          * recovers.  It also marks the inode dirty, to catch the new size.
2569          *
2570          * Implication: the file must always be in a sane, consistent
2571          * truncatable state while each transaction commits.
2572          */
2573         if (ext3_orphan_add(handle, inode))
2574                 goto out_stop;
2575
2576         /*
2577          * The orphan list entry will now protect us from any crash which
2578          * occurs before the truncate completes, so it is now safe to propagate
2579          * the new, shorter inode size (held for now in i_size) into the
2580          * on-disk inode. We do this via i_disksize, which is the value which
2581          * ext3 *really* writes onto the disk inode.
2582          */
2583         ei->i_disksize = inode->i_size;
2584
2585         /*
2586          * From here we block out all ext3_get_block() callers who want to
2587          * modify the block allocation tree.
2588          */
2589         mutex_lock(&ei->truncate_mutex);
2590
2591         if (n == 1) {           /* direct blocks */
2592                 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2593                                i_data + EXT3_NDIR_BLOCKS);
2594                 goto do_indirects;
2595         }
2596
2597         partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2598         /* Kill the top of shared branch (not detached) */
2599         if (nr) {
2600                 if (partial == chain) {
2601                         /* Shared branch grows from the inode */
2602                         ext3_free_branches(handle, inode, NULL,
2603                                            &nr, &nr+1, (chain+n-1) - partial);
2604                         *partial->p = 0;
2605                         /*
2606                          * We mark the inode dirty prior to restart,
2607                          * and prior to stop.  No need for it here.
2608                          */
2609                 } else {
2610                         /* Shared branch grows from an indirect block */
2611                         ext3_free_branches(handle, inode, partial->bh,
2612                                         partial->p,
2613                                         partial->p+1, (chain+n-1) - partial);
2614                 }
2615         }
2616         /* Clear the ends of indirect blocks on the shared branch */
2617         while (partial > chain) {
2618                 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2619                                    (__le32*)partial->bh->b_data+addr_per_block,
2620                                    (chain+n-1) - partial);
2621                 BUFFER_TRACE(partial->bh, "call brelse");
2622                 brelse (partial->bh);
2623                 partial--;
2624         }
2625 do_indirects:
2626         /* Kill the remaining (whole) subtrees */
2627         switch (offsets[0]) {
2628         default:
2629                 nr = i_data[EXT3_IND_BLOCK];
2630                 if (nr) {
2631                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2632                         i_data[EXT3_IND_BLOCK] = 0;
2633                 }
2634         case EXT3_IND_BLOCK:
2635                 nr = i_data[EXT3_DIND_BLOCK];
2636                 if (nr) {
2637                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2638                         i_data[EXT3_DIND_BLOCK] = 0;
2639                 }
2640         case EXT3_DIND_BLOCK:
2641                 nr = i_data[EXT3_TIND_BLOCK];
2642                 if (nr) {
2643                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2644                         i_data[EXT3_TIND_BLOCK] = 0;
2645                 }
2646         case EXT3_TIND_BLOCK:
2647                 ;
2648         }
2649
2650         ext3_discard_reservation(inode);
2651
2652         mutex_unlock(&ei->truncate_mutex);
2653         inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2654         ext3_mark_inode_dirty(handle, inode);
2655
2656         /*
2657          * In a multi-transaction truncate, we only make the final transaction
2658          * synchronous
2659          */
2660         if (IS_SYNC(inode))
2661                 handle->h_sync = 1;
2662 out_stop:
2663         /*
2664          * If this was a simple ftruncate(), and the file will remain alive
2665          * then we need to clear up the orphan record which we created above.
2666          * However, if this was a real unlink then we were called by
2667          * ext3_evict_inode(), and we allow that function to clean up the
2668          * orphan info for us.
2669          */
2670         if (inode->i_nlink)
2671                 ext3_orphan_del(handle, inode);
2672
2673         ext3_journal_stop(handle);
2674         trace_ext3_truncate_exit(inode);
2675         return;
2676 out_notrans:
2677         /*
2678          * Delete the inode from orphan list so that it doesn't stay there
2679          * forever and trigger assertion on umount.
2680          */
2681         if (inode->i_nlink)
2682                 ext3_orphan_del(NULL, inode);
2683         trace_ext3_truncate_exit(inode);
2684 }
2685
2686 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2687                 unsigned long ino, struct ext3_iloc *iloc)
2688 {
2689         unsigned long block_group;
2690         unsigned long offset;
2691         ext3_fsblk_t block;
2692         struct ext3_group_desc *gdp;
2693
2694         if (!ext3_valid_inum(sb, ino)) {
2695                 /*
2696                  * This error is already checked for in namei.c unless we are
2697                  * looking at an NFS filehandle, in which case no error
2698                  * report is needed
2699                  */
2700                 return 0;
2701         }
2702
2703         block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2704         gdp = ext3_get_group_desc(sb, block_group, NULL);
2705         if (!gdp)
2706                 return 0;
2707         /*
2708          * Figure out the offset within the block group inode table
2709          */
2710         offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2711                 EXT3_INODE_SIZE(sb);
2712         block = le32_to_cpu(gdp->bg_inode_table) +
2713                 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2714
2715         iloc->block_group = block_group;
2716         iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2717         return block;
2718 }
2719
2720 /*
2721  * ext3_get_inode_loc returns with an extra refcount against the inode's
2722  * underlying buffer_head on success. If 'in_mem' is true, we have all
2723  * data in memory that is needed to recreate the on-disk version of this
2724  * inode.
2725  */
2726 static int __ext3_get_inode_loc(struct inode *inode,
2727                                 struct ext3_iloc *iloc, int in_mem)
2728 {
2729         ext3_fsblk_t block;
2730         struct buffer_head *bh;
2731
2732         block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2733         if (!block)
2734                 return -EIO;
2735
2736         bh = sb_getblk(inode->i_sb, block);
2737         if (unlikely(!bh)) {
2738                 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2739                                 "unable to read inode block - "
2740                                 "inode=%lu, block="E3FSBLK,
2741                                  inode->i_ino, block);
2742                 return -ENOMEM;
2743         }
2744         if (!buffer_uptodate(bh)) {
2745                 lock_buffer(bh);
2746
2747                 /*
2748                  * If the buffer has the write error flag, we have failed
2749                  * to write out another inode in the same block.  In this
2750                  * case, we don't have to read the block because we may
2751                  * read the old inode data successfully.
2752                  */
2753                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2754                         set_buffer_uptodate(bh);
2755
2756                 if (buffer_uptodate(bh)) {
2757                         /* someone brought it uptodate while we waited */
2758                         unlock_buffer(bh);
2759                         goto has_buffer;
2760                 }
2761
2762                 /*
2763                  * If we have all information of the inode in memory and this
2764                  * is the only valid inode in the block, we need not read the
2765                  * block.
2766                  */
2767                 if (in_mem) {
2768                         struct buffer_head *bitmap_bh;
2769                         struct ext3_group_desc *desc;
2770                         int inodes_per_buffer;
2771                         int inode_offset, i;
2772                         int block_group;
2773                         int start;
2774
2775                         block_group = (inode->i_ino - 1) /
2776                                         EXT3_INODES_PER_GROUP(inode->i_sb);
2777                         inodes_per_buffer = bh->b_size /
2778                                 EXT3_INODE_SIZE(inode->i_sb);
2779                         inode_offset = ((inode->i_ino - 1) %
2780                                         EXT3_INODES_PER_GROUP(inode->i_sb));
2781                         start = inode_offset & ~(inodes_per_buffer - 1);
2782
2783                         /* Is the inode bitmap in cache? */
2784                         desc = ext3_get_group_desc(inode->i_sb,
2785                                                 block_group, NULL);
2786                         if (!desc)
2787                                 goto make_io;
2788
2789                         bitmap_bh = sb_getblk(inode->i_sb,
2790                                         le32_to_cpu(desc->bg_inode_bitmap));
2791                         if (unlikely(!bitmap_bh))
2792                                 goto make_io;
2793
2794                         /*
2795                          * If the inode bitmap isn't in cache then the
2796                          * optimisation may end up performing two reads instead
2797                          * of one, so skip it.
2798                          */
2799                         if (!buffer_uptodate(bitmap_bh)) {
2800                                 brelse(bitmap_bh);
2801                                 goto make_io;
2802                         }
2803                         for (i = start; i < start + inodes_per_buffer; i++) {
2804                                 if (i == inode_offset)
2805                                         continue;
2806                                 if (ext3_test_bit(i, bitmap_bh->b_data))
2807                                         break;
2808                         }
2809                         brelse(bitmap_bh);
2810                         if (i == start + inodes_per_buffer) {
2811                                 /* all other inodes are free, so skip I/O */
2812                                 memset(bh->b_data, 0, bh->b_size);
2813                                 set_buffer_uptodate(bh);
2814                                 unlock_buffer(bh);
2815                                 goto has_buffer;
2816                         }
2817                 }
2818
2819 make_io:
2820                 /*
2821                  * There are other valid inodes in the buffer, this inode
2822                  * has in-inode xattrs, or we don't have this inode in memory.
2823                  * Read the block from disk.
2824                  */
2825                 trace_ext3_load_inode(inode);
2826                 get_bh(bh);
2827                 bh->b_end_io = end_buffer_read_sync;
2828                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
2829                 wait_on_buffer(bh);
2830                 if (!buffer_uptodate(bh)) {
2831                         ext3_error(inode->i_sb, "ext3_get_inode_loc",
2832                                         "unable to read inode block - "
2833                                         "inode=%lu, block="E3FSBLK,
2834                                         inode->i_ino, block);
2835                         brelse(bh);
2836                         return -EIO;
2837                 }
2838         }
2839 has_buffer:
2840         iloc->bh = bh;
2841         return 0;
2842 }
2843
2844 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2845 {
2846         /* We have all inode data except xattrs in memory here. */
2847         return __ext3_get_inode_loc(inode, iloc,
2848                 !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2849 }
2850
2851 void ext3_set_inode_flags(struct inode *inode)
2852 {
2853         unsigned int flags = EXT3_I(inode)->i_flags;
2854
2855         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2856         if (flags & EXT3_SYNC_FL)
2857                 inode->i_flags |= S_SYNC;
2858         if (flags & EXT3_APPEND_FL)
2859                 inode->i_flags |= S_APPEND;
2860         if (flags & EXT3_IMMUTABLE_FL)
2861                 inode->i_flags |= S_IMMUTABLE;
2862         if (flags & EXT3_NOATIME_FL)
2863                 inode->i_flags |= S_NOATIME;
2864         if (flags & EXT3_DIRSYNC_FL)
2865                 inode->i_flags |= S_DIRSYNC;
2866 }
2867
2868 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2869 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2870 {
2871         unsigned int flags = ei->vfs_inode.i_flags;
2872
2873         ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2874                         EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2875         if (flags & S_SYNC)
2876                 ei->i_flags |= EXT3_SYNC_FL;
2877         if (flags & S_APPEND)
2878                 ei->i_flags |= EXT3_APPEND_FL;
2879         if (flags & S_IMMUTABLE)
2880                 ei->i_flags |= EXT3_IMMUTABLE_FL;
2881         if (flags & S_NOATIME)
2882                 ei->i_flags |= EXT3_NOATIME_FL;
2883         if (flags & S_DIRSYNC)
2884                 ei->i_flags |= EXT3_DIRSYNC_FL;
2885 }
2886
2887 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2888 {
2889         struct ext3_iloc iloc;
2890         struct ext3_inode *raw_inode;
2891         struct ext3_inode_info *ei;
2892         struct buffer_head *bh;
2893         struct inode *inode;
2894         journal_t *journal = EXT3_SB(sb)->s_journal;
2895         transaction_t *transaction;
2896         long ret;
2897         int block;
2898         uid_t i_uid;
2899         gid_t i_gid;
2900
2901         inode = iget_locked(sb, ino);
2902         if (!inode)
2903                 return ERR_PTR(-ENOMEM);
2904         if (!(inode->i_state & I_NEW))
2905                 return inode;
2906
2907         ei = EXT3_I(inode);
2908         ei->i_block_alloc_info = NULL;
2909
2910         ret = __ext3_get_inode_loc(inode, &iloc, 0);
2911         if (ret < 0)
2912                 goto bad_inode;
2913         bh = iloc.bh;
2914         raw_inode = ext3_raw_inode(&iloc);
2915         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2916         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2917         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2918         if(!(test_opt (inode->i_sb, NO_UID32))) {
2919                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2920                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2921         }
2922         i_uid_write(inode, i_uid);
2923         i_gid_write(inode, i_gid);
2924         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
2925         inode->i_size = le32_to_cpu(raw_inode->i_size);
2926         inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2927         inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2928         inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2929         inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2930
2931         ei->i_state_flags = 0;
2932         ei->i_dir_start_lookup = 0;
2933         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2934         /* We now have enough fields to check if the inode was active or not.
2935          * This is needed because nfsd might try to access dead inodes
2936          * the test is that same one that e2fsck uses
2937          * NeilBrown 1999oct15
2938          */
2939         if (inode->i_nlink == 0) {
2940                 if (inode->i_mode == 0 ||
2941                     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2942                         /* this inode is deleted */
2943                         brelse (bh);
2944                         ret = -ESTALE;
2945                         goto bad_inode;
2946                 }
2947                 /* The only unlinked inodes we let through here have
2948                  * valid i_mode and are being read by the orphan
2949                  * recovery code: that's fine, we're about to complete
2950                  * the process of deleting those. */
2951         }
2952         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2953         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2954 #ifdef EXT3_FRAGMENTS
2955         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2956         ei->i_frag_no = raw_inode->i_frag;
2957         ei->i_frag_size = raw_inode->i_fsize;
2958 #endif
2959         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2960         if (!S_ISREG(inode->i_mode)) {
2961                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2962         } else {
2963                 inode->i_size |=
2964                         ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2965         }
2966         ei->i_disksize = inode->i_size;
2967         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2968         ei->i_block_group = iloc.block_group;
2969         /*
2970          * NOTE! The in-memory inode i_data array is in little-endian order
2971          * even on big-endian machines: we do NOT byteswap the block numbers!
2972          */
2973         for (block = 0; block < EXT3_N_BLOCKS; block++)
2974                 ei->i_data[block] = raw_inode->i_block[block];
2975         INIT_LIST_HEAD(&ei->i_orphan);
2976
2977         /*
2978          * Set transaction id's of transactions that have to be committed
2979          * to finish f[data]sync. We set them to currently running transaction
2980          * as we cannot be sure that the inode or some of its metadata isn't
2981          * part of the transaction - the inode could have been reclaimed and
2982          * now it is reread from disk.
2983          */
2984         if (journal) {
2985                 tid_t tid;
2986
2987                 spin_lock(&journal->j_state_lock);
2988                 if (journal->j_running_transaction)
2989                         transaction = journal->j_running_transaction;
2990                 else
2991                         transaction = journal->j_committing_transaction;
2992                 if (transaction)
2993                         tid = transaction->t_tid;
2994                 else
2995                         tid = journal->j_commit_sequence;
2996                 spin_unlock(&journal->j_state_lock);
2997                 atomic_set(&ei->i_sync_tid, tid);
2998                 atomic_set(&ei->i_datasync_tid, tid);
2999         }
3000
3001         if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
3002             EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
3003                 /*
3004                  * When mke2fs creates big inodes it does not zero out
3005                  * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
3006                  * so ignore those first few inodes.
3007                  */
3008                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3009                 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3010                     EXT3_INODE_SIZE(inode->i_sb)) {
3011                         brelse (bh);
3012                         ret = -EIO;
3013                         goto bad_inode;
3014                 }
3015                 if (ei->i_extra_isize == 0) {
3016                         /* The extra space is currently unused. Use it. */
3017                         ei->i_extra_isize = sizeof(struct ext3_inode) -
3018                                             EXT3_GOOD_OLD_INODE_SIZE;
3019                 } else {
3020                         __le32 *magic = (void *)raw_inode +
3021                                         EXT3_GOOD_OLD_INODE_SIZE +
3022                                         ei->i_extra_isize;
3023                         if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
3024                                  ext3_set_inode_state(inode, EXT3_STATE_XATTR);
3025                 }
3026         } else
3027                 ei->i_extra_isize = 0;
3028
3029         if (S_ISREG(inode->i_mode)) {
3030                 inode->i_op = &ext3_file_inode_operations;
3031                 inode->i_fop = &ext3_file_operations;
3032                 ext3_set_aops(inode);
3033         } else if (S_ISDIR(inode->i_mode)) {
3034                 inode->i_op = &ext3_dir_inode_operations;
3035                 inode->i_fop = &ext3_dir_operations;
3036         } else if (S_ISLNK(inode->i_mode)) {
3037                 if (ext3_inode_is_fast_symlink(inode)) {
3038                         inode->i_op = &ext3_fast_symlink_inode_operations;
3039                         nd_terminate_link(ei->i_data, inode->i_size,
3040                                 sizeof(ei->i_data) - 1);
3041                 } else {
3042                         inode->i_op = &ext3_symlink_inode_operations;
3043                         ext3_set_aops(inode);
3044                 }
3045         } else {
3046                 inode->i_op = &ext3_special_inode_operations;
3047                 if (raw_inode->i_block[0])
3048                         init_special_inode(inode, inode->i_mode,
3049                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3050                 else
3051                         init_special_inode(inode, inode->i_mode,
3052                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3053         }
3054         brelse (iloc.bh);
3055         ext3_set_inode_flags(inode);
3056         unlock_new_inode(inode);
3057         return inode;
3058
3059 bad_inode:
3060         iget_failed(inode);
3061         return ERR_PTR(ret);
3062 }
3063
3064 /*
3065  * Post the struct inode info into an on-disk inode location in the
3066  * buffer-cache.  This gobbles the caller's reference to the
3067  * buffer_head in the inode location struct.
3068  *
3069  * The caller must have write access to iloc->bh.
3070  */
3071 static int ext3_do_update_inode(handle_t *handle,
3072                                 struct inode *inode,
3073                                 struct ext3_iloc *iloc)
3074 {
3075         struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
3076         struct ext3_inode_info *ei = EXT3_I(inode);
3077         struct buffer_head *bh = iloc->bh;
3078         int err = 0, rc, block;
3079         int need_datasync = 0;
3080         __le32 disksize;
3081         uid_t i_uid;
3082         gid_t i_gid;
3083
3084 again:
3085         /* we can't allow multiple procs in here at once, its a bit racey */
3086         lock_buffer(bh);
3087
3088         /* For fields not not tracking in the in-memory inode,
3089          * initialise them to zero for new inodes. */
3090         if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
3091                 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
3092
3093         ext3_get_inode_flags(ei);
3094         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3095         i_uid = i_uid_read(inode);
3096         i_gid = i_gid_read(inode);
3097         if(!(test_opt(inode->i_sb, NO_UID32))) {
3098                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
3099                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
3100 /*
3101  * Fix up interoperability with old kernels. Otherwise, old inodes get
3102  * re-used with the upper 16 bits of the uid/gid intact
3103  */
3104                 if(!ei->i_dtime) {
3105                         raw_inode->i_uid_high =
3106                                 cpu_to_le16(high_16_bits(i_uid));
3107                         raw_inode->i_gid_high =
3108                                 cpu_to_le16(high_16_bits(i_gid));
3109                 } else {
3110                         raw_inode->i_uid_high = 0;
3111                         raw_inode->i_gid_high = 0;
3112                 }
3113         } else {
3114                 raw_inode->i_uid_low =
3115                         cpu_to_le16(fs_high2lowuid(i_uid));
3116                 raw_inode->i_gid_low =
3117                         cpu_to_le16(fs_high2lowgid(i_gid));
3118                 raw_inode->i_uid_high = 0;
3119                 raw_inode->i_gid_high = 0;
3120         }
3121         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3122         disksize = cpu_to_le32(ei->i_disksize);
3123         if (disksize != raw_inode->i_size) {
3124                 need_datasync = 1;
3125                 raw_inode->i_size = disksize;
3126         }
3127         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
3128         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
3129         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3130         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3131         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3132         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3133 #ifdef EXT3_FRAGMENTS
3134         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3135         raw_inode->i_frag = ei->i_frag_no;
3136         raw_inode->i_fsize = ei->i_frag_size;
3137 #endif
3138         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3139         if (!S_ISREG(inode->i_mode)) {
3140                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3141         } else {
3142                 disksize = cpu_to_le32(ei->i_disksize >> 32);
3143                 if (disksize != raw_inode->i_size_high) {
3144                         raw_inode->i_size_high = disksize;
3145                         need_datasync = 1;
3146                 }
3147                 if (ei->i_disksize > 0x7fffffffULL) {
3148                         struct super_block *sb = inode->i_sb;
3149                         if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3150                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3151                             EXT3_SB(sb)->s_es->s_rev_level ==
3152                                         cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3153                                /* If this is the first large file
3154                                 * created, add a flag to the superblock.
3155                                 */
3156                                 unlock_buffer(bh);
3157                                 err = ext3_journal_get_write_access(handle,
3158                                                 EXT3_SB(sb)->s_sbh);
3159                                 if (err)
3160                                         goto out_brelse;
3161
3162                                 ext3_update_dynamic_rev(sb);
3163                                 EXT3_SET_RO_COMPAT_FEATURE(sb,
3164                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3165                                 handle->h_sync = 1;
3166                                 err = ext3_journal_dirty_metadata(handle,
3167                                                 EXT3_SB(sb)->s_sbh);
3168                                 /* get our lock and start over */
3169                                 goto again;
3170                         }
3171                 }
3172         }
3173         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3174         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3175                 if (old_valid_dev(inode->i_rdev)) {
3176                         raw_inode->i_block[0] =
3177                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
3178                         raw_inode->i_block[1] = 0;
3179                 } else {
3180                         raw_inode->i_block[0] = 0;
3181                         raw_inode->i_block[1] =
3182                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
3183                         raw_inode->i_block[2] = 0;
3184                 }
3185         } else for (block = 0; block < EXT3_N_BLOCKS; block++)
3186                 raw_inode->i_block[block] = ei->i_data[block];
3187
3188         if (ei->i_extra_isize)
3189                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3190
3191         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3192         unlock_buffer(bh);
3193         rc = ext3_journal_dirty_metadata(handle, bh);
3194         if (!err)
3195                 err = rc;
3196         ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3197
3198         atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3199         if (need_datasync)
3200                 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
3201 out_brelse:
3202         brelse (bh);
3203         ext3_std_error(inode->i_sb, err);
3204         return err;
3205 }
3206
3207 /*
3208  * ext3_write_inode()
3209  *
3210  * We are called from a few places:
3211  *
3212  * - Within generic_file_write() for O_SYNC files.
3213  *   Here, there will be no transaction running. We wait for any running
3214  *   transaction to commit.
3215  *
3216  * - Within sys_sync(), kupdate and such.
3217  *   We wait on commit, if tol to.
3218  *
3219  * - Within prune_icache() (PF_MEMALLOC == true)
3220  *   Here we simply return.  We can't afford to block kswapd on the
3221  *   journal commit.
3222  *
3223  * In all cases it is actually safe for us to return without doing anything,
3224  * because the inode has been copied into a raw inode buffer in
3225  * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3226  * knfsd.
3227  *
3228  * Note that we are absolutely dependent upon all inode dirtiers doing the
3229  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3230  * which we are interested.
3231  *
3232  * It would be a bug for them to not do this.  The code:
3233  *
3234  *      mark_inode_dirty(inode)
3235  *      stuff();
3236  *      inode->i_size = expr;
3237  *
3238  * is in error because a kswapd-driven write_inode() could occur while
3239  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3240  * will no longer be on the superblock's dirty inode list.
3241  */
3242 int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3243 {
3244         if (current->flags & PF_MEMALLOC)
3245                 return 0;
3246
3247         if (ext3_journal_current_handle()) {
3248                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3249                 dump_stack();
3250                 return -EIO;
3251         }
3252
3253         if (wbc->sync_mode != WB_SYNC_ALL)
3254                 return 0;
3255
3256         return ext3_force_commit(inode->i_sb);
3257 }
3258
3259 /*
3260  * ext3_setattr()
3261  *
3262  * Called from notify_change.
3263  *
3264  * We want to trap VFS attempts to truncate the file as soon as
3265  * possible.  In particular, we want to make sure that when the VFS
3266  * shrinks i_size, we put the inode on the orphan list and modify
3267  * i_disksize immediately, so that during the subsequent flushing of
3268  * dirty pages and freeing of disk blocks, we can guarantee that any
3269  * commit will leave the blocks being flushed in an unused state on
3270  * disk.  (On recovery, the inode will get truncated and the blocks will
3271  * be freed, so we have a strong guarantee that no future commit will
3272  * leave these blocks visible to the user.)
3273  *
3274  * Called with inode->sem down.
3275  */
3276 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3277 {
3278         struct inode *inode = dentry->d_inode;
3279         int error, rc = 0;
3280         const unsigned int ia_valid = attr->ia_valid;
3281
3282         error = inode_change_ok(inode, attr);
3283         if (error)
3284                 return error;
3285
3286         if (is_quota_modification(inode, attr))
3287                 dquot_initialize(inode);
3288         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3289             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3290                 handle_t *handle;
3291
3292                 /* (user+group)*(old+new) structure, inode write (sb,
3293                  * inode block, ? - but truncate inode update has it) */
3294                 handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3295                                         EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3296                 if (IS_ERR(handle)) {
3297                         error = PTR_ERR(handle);
3298                         goto err_out;
3299                 }
3300                 error = dquot_transfer(inode, attr);
3301                 if (error) {
3302                         ext3_journal_stop(handle);
3303                         return error;
3304                 }
3305                 /* Update corresponding info in inode so that everything is in
3306                  * one transaction */
3307                 if (attr->ia_valid & ATTR_UID)
3308                         inode->i_uid = attr->ia_uid;
3309                 if (attr->ia_valid & ATTR_GID)
3310                         inode->i_gid = attr->ia_gid;
3311                 error = ext3_mark_inode_dirty(handle, inode);
3312                 ext3_journal_stop(handle);
3313         }
3314
3315         if (attr->ia_valid & ATTR_SIZE)
3316                 inode_dio_wait(inode);
3317
3318         if (S_ISREG(inode->i_mode) &&
3319             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3320                 handle_t *handle;
3321
3322                 handle = ext3_journal_start(inode, 3);
3323                 if (IS_ERR(handle)) {
3324                         error = PTR_ERR(handle);
3325                         goto err_out;
3326                 }
3327
3328                 error = ext3_orphan_add(handle, inode);
3329                 if (error) {
3330                         ext3_journal_stop(handle);
3331                         goto err_out;
3332                 }
3333                 EXT3_I(inode)->i_disksize = attr->ia_size;
3334                 error = ext3_mark_inode_dirty(handle, inode);
3335                 ext3_journal_stop(handle);
3336                 if (error) {
3337                         /* Some hard fs error must have happened. Bail out. */
3338                         ext3_orphan_del(NULL, inode);
3339                         goto err_out;
3340                 }
3341                 rc = ext3_block_truncate_page(inode, attr->ia_size);
3342                 if (rc) {
3343                         /* Cleanup orphan list and exit */
3344                         handle = ext3_journal_start(inode, 3);
3345                         if (IS_ERR(handle)) {
3346                                 ext3_orphan_del(NULL, inode);
3347                                 goto err_out;
3348                         }
3349                         ext3_orphan_del(handle, inode);
3350                         ext3_journal_stop(handle);
3351                         goto err_out;
3352                 }
3353         }
3354
3355         if ((attr->ia_valid & ATTR_SIZE) &&
3356             attr->ia_size != i_size_read(inode)) {
3357                 truncate_setsize(inode, attr->ia_size);
3358                 ext3_truncate(inode);
3359         }
3360
3361         setattr_copy(inode, attr);
3362         mark_inode_dirty(inode);
3363
3364         if (ia_valid & ATTR_MODE)
3365                 rc = ext3_acl_chmod(inode);
3366
3367 err_out:
3368         ext3_std_error(inode->i_sb, error);
3369         if (!error)
3370                 error = rc;
3371         return error;
3372 }
3373
3374
3375 /*
3376  * How many blocks doth make a writepage()?
3377  *
3378  * With N blocks per page, it may be:
3379  * N data blocks
3380  * 2 indirect block
3381  * 2 dindirect
3382  * 1 tindirect
3383  * N+5 bitmap blocks (from the above)
3384  * N+5 group descriptor summary blocks
3385  * 1 inode block
3386  * 1 superblock.
3387  * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3388  *
3389  * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3390  *
3391  * With ordered or writeback data it's the same, less the N data blocks.
3392  *
3393  * If the inode's direct blocks can hold an integral number of pages then a
3394  * page cannot straddle two indirect blocks, and we can only touch one indirect
3395  * and dindirect block, and the "5" above becomes "3".
3396  *
3397  * This still overestimates under most circumstances.  If we were to pass the
3398  * start and end offsets in here as well we could do block_to_path() on each
3399  * block and work out the exact number of indirects which are touched.  Pah.
3400  */
3401
3402 static int ext3_writepage_trans_blocks(struct inode *inode)
3403 {
3404         int bpp = ext3_journal_blocks_per_page(inode);
3405         int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3406         int ret;
3407
3408         if (ext3_should_journal_data(inode))
3409                 ret = 3 * (bpp + indirects) + 2;
3410         else
3411                 ret = 2 * (bpp + indirects) + indirects + 2;
3412
3413 #ifdef CONFIG_QUOTA
3414         /* We know that structure was already allocated during dquot_initialize so
3415          * we will be updating only the data blocks + inodes */
3416         ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3417 #endif
3418
3419         return ret;
3420 }
3421
3422 /*
3423  * The caller must have previously called ext3_reserve_inode_write().
3424  * Give this, we know that the caller already has write access to iloc->bh.
3425  */
3426 int ext3_mark_iloc_dirty(handle_t *handle,
3427                 struct inode *inode, struct ext3_iloc *iloc)
3428 {
3429         int err = 0;
3430
3431         /* the do_update_inode consumes one bh->b_count */
3432         get_bh(iloc->bh);
3433
3434         /* ext3_do_update_inode() does journal_dirty_metadata */
3435         err = ext3_do_update_inode(handle, inode, iloc);
3436         put_bh(iloc->bh);
3437         return err;
3438 }
3439
3440 /*
3441  * On success, We end up with an outstanding reference count against
3442  * iloc->bh.  This _must_ be cleaned up later.
3443  */
3444
3445 int
3446 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3447                          struct ext3_iloc *iloc)
3448 {
3449         int err = 0;
3450         if (handle) {
3451                 err = ext3_get_inode_loc(inode, iloc);
3452                 if (!err) {
3453                         BUFFER_TRACE(iloc->bh, "get_write_access");
3454                         err = ext3_journal_get_write_access(handle, iloc->bh);
3455                         if (err) {
3456                                 brelse(iloc->bh);
3457                                 iloc->bh = NULL;
3458                         }
3459                 }
3460         }
3461         ext3_std_error(inode->i_sb, err);
3462         return err;
3463 }
3464
3465 /*
3466  * What we do here is to mark the in-core inode as clean with respect to inode
3467  * dirtiness (it may still be data-dirty).
3468  * This means that the in-core inode may be reaped by prune_icache
3469  * without having to perform any I/O.  This is a very good thing,
3470  * because *any* task may call prune_icache - even ones which
3471  * have a transaction open against a different journal.
3472  *
3473  * Is this cheating?  Not really.  Sure, we haven't written the
3474  * inode out, but prune_icache isn't a user-visible syncing function.
3475  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3476  * we start and wait on commits.
3477  */
3478 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3479 {
3480         struct ext3_iloc iloc;
3481         int err;
3482
3483         might_sleep();
3484         trace_ext3_mark_inode_dirty(inode, _RET_IP_);
3485         err = ext3_reserve_inode_write(handle, inode, &iloc);
3486         if (!err)
3487                 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3488         return err;
3489 }
3490
3491 /*
3492  * ext3_dirty_inode() is called from __mark_inode_dirty()
3493  *
3494  * We're really interested in the case where a file is being extended.
3495  * i_size has been changed by generic_commit_write() and we thus need
3496  * to include the updated inode in the current transaction.
3497  *
3498  * Also, dquot_alloc_space() will always dirty the inode when blocks
3499  * are allocated to the file.
3500  *
3501  * If the inode is marked synchronous, we don't honour that here - doing
3502  * so would cause a commit on atime updates, which we don't bother doing.
3503  * We handle synchronous inodes at the highest possible level.
3504  */
3505 void ext3_dirty_inode(struct inode *inode, int flags)
3506 {
3507         handle_t *current_handle = ext3_journal_current_handle();
3508         handle_t *handle;
3509
3510         handle = ext3_journal_start(inode, 2);
3511         if (IS_ERR(handle))
3512                 goto out;
3513         if (current_handle &&
3514                 current_handle->h_transaction != handle->h_transaction) {
3515                 /* This task has a transaction open against a different fs */
3516                 printk(KERN_EMERG "%s: transactions do not match!\n",
3517                        __func__);
3518         } else {
3519                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3520                                 current_handle);
3521                 ext3_mark_inode_dirty(handle, inode);
3522         }
3523         ext3_journal_stop(handle);
3524 out:
3525         return;
3526 }
3527
3528 #if 0
3529 /*
3530  * Bind an inode's backing buffer_head into this transaction, to prevent
3531  * it from being flushed to disk early.  Unlike
3532  * ext3_reserve_inode_write, this leaves behind no bh reference and
3533  * returns no iloc structure, so the caller needs to repeat the iloc
3534  * lookup to mark the inode dirty later.
3535  */
3536 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3537 {
3538         struct ext3_iloc iloc;
3539
3540         int err = 0;
3541         if (handle) {
3542                 err = ext3_get_inode_loc(inode, &iloc);
3543                 if (!err) {
3544                         BUFFER_TRACE(iloc.bh, "get_write_access");
3545                         err = journal_get_write_access(handle, iloc.bh);
3546                         if (!err)
3547                                 err = ext3_journal_dirty_metadata(handle,
3548                                                                   iloc.bh);
3549                         brelse(iloc.bh);
3550                 }
3551         }
3552         ext3_std_error(inode->i_sb, err);
3553         return err;
3554 }
3555 #endif
3556
3557 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3558 {
3559         journal_t *journal;
3560         handle_t *handle;
3561         int err;
3562
3563         /*
3564          * We have to be very careful here: changing a data block's
3565          * journaling status dynamically is dangerous.  If we write a
3566          * data block to the journal, change the status and then delete
3567          * that block, we risk forgetting to revoke the old log record
3568          * from the journal and so a subsequent replay can corrupt data.
3569          * So, first we make sure that the journal is empty and that
3570          * nobody is changing anything.
3571          */
3572
3573         journal = EXT3_JOURNAL(inode);
3574         if (is_journal_aborted(journal))
3575                 return -EROFS;
3576
3577         journal_lock_updates(journal);
3578         journal_flush(journal);
3579
3580         /*
3581          * OK, there are no updates running now, and all cached data is
3582          * synced to disk.  We are now in a completely consistent state
3583          * which doesn't have anything in the journal, and we know that
3584          * no filesystem updates are running, so it is safe to modify
3585          * the inode's in-core data-journaling state flag now.
3586          */
3587
3588         if (val)
3589                 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3590         else
3591                 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3592         ext3_set_aops(inode);
3593
3594         journal_unlock_updates(journal);
3595
3596         /* Finally we can mark the inode as dirty. */
3597
3598         handle = ext3_journal_start(inode, 1);
3599         if (IS_ERR(handle))
3600                 return PTR_ERR(handle);
3601
3602         err = ext3_mark_inode_dirty(handle, inode);
3603         handle->h_sync = 1;
3604         ext3_journal_stop(handle);
3605         ext3_std_error(inode->i_sb, err);
3606
3607         return err;
3608 }