[PATCH] clean up __set_page_dirty_nobuffers()
[pandora-kernel.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/smp_lock.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 static void invalidate_bh_lrus(void);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 inline void
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 {
53         bh->b_end_io = handler;
54         bh->b_private = private;
55 }
56
57 static int sync_buffer(void *word)
58 {
59         struct block_device *bd;
60         struct buffer_head *bh
61                 = container_of(word, struct buffer_head, b_state);
62
63         smp_mb();
64         bd = bh->b_bdev;
65         if (bd)
66                 blk_run_address_space(bd->bd_inode->i_mapping);
67         io_schedule();
68         return 0;
69 }
70
71 void fastcall __lock_buffer(struct buffer_head *bh)
72 {
73         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74                                                         TASK_UNINTERRUPTIBLE);
75 }
76 EXPORT_SYMBOL(__lock_buffer);
77
78 void fastcall unlock_buffer(struct buffer_head *bh)
79 {
80         clear_buffer_locked(bh);
81         smp_mb__after_clear_bit();
82         wake_up_bit(&bh->b_state, BH_Lock);
83 }
84
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93 }
94
95 static void
96 __clear_page_buffers(struct page *page)
97 {
98         ClearPagePrivate(page);
99         set_page_private(page, 0);
100         page_cache_release(page);
101 }
102
103 static void buffer_io_error(struct buffer_head *bh)
104 {
105         char b[BDEVNAME_SIZE];
106
107         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108                         bdevname(bh->b_bdev, b),
109                         (unsigned long long)bh->b_blocknr);
110 }
111
112 /*
113  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
114  * unlock the buffer. This is what ll_rw_block uses too.
115  */
116 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
117 {
118         if (uptodate) {
119                 set_buffer_uptodate(bh);
120         } else {
121                 /* This happens, due to failed READA attempts. */
122                 clear_buffer_uptodate(bh);
123         }
124         unlock_buffer(bh);
125         put_bh(bh);
126 }
127
128 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
129 {
130         char b[BDEVNAME_SIZE];
131
132         if (uptodate) {
133                 set_buffer_uptodate(bh);
134         } else {
135                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
136                         buffer_io_error(bh);
137                         printk(KERN_WARNING "lost page write due to "
138                                         "I/O error on %s\n",
139                                        bdevname(bh->b_bdev, b));
140                 }
141                 set_buffer_write_io_error(bh);
142                 clear_buffer_uptodate(bh);
143         }
144         unlock_buffer(bh);
145         put_bh(bh);
146 }
147
148 /*
149  * Write out and wait upon all the dirty data associated with a block
150  * device via its mapping.  Does not take the superblock lock.
151  */
152 int sync_blockdev(struct block_device *bdev)
153 {
154         int ret = 0;
155
156         if (bdev)
157                 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
158         return ret;
159 }
160 EXPORT_SYMBOL(sync_blockdev);
161
162 /*
163  * Write out and wait upon all dirty data associated with this
164  * device.   Filesystem data as well as the underlying block
165  * device.  Takes the superblock lock.
166  */
167 int fsync_bdev(struct block_device *bdev)
168 {
169         struct super_block *sb = get_super(bdev);
170         if (sb) {
171                 int res = fsync_super(sb);
172                 drop_super(sb);
173                 return res;
174         }
175         return sync_blockdev(bdev);
176 }
177
178 /**
179  * freeze_bdev  --  lock a filesystem and force it into a consistent state
180  * @bdev:       blockdevice to lock
181  *
182  * This takes the block device bd_mount_mutex to make sure no new mounts
183  * happen on bdev until thaw_bdev() is called.
184  * If a superblock is found on this device, we take the s_umount semaphore
185  * on it to make sure nobody unmounts until the snapshot creation is done.
186  */
187 struct super_block *freeze_bdev(struct block_device *bdev)
188 {
189         struct super_block *sb;
190
191         mutex_lock(&bdev->bd_mount_mutex);
192         sb = get_super(bdev);
193         if (sb && !(sb->s_flags & MS_RDONLY)) {
194                 sb->s_frozen = SB_FREEZE_WRITE;
195                 smp_wmb();
196
197                 __fsync_super(sb);
198
199                 sb->s_frozen = SB_FREEZE_TRANS;
200                 smp_wmb();
201
202                 sync_blockdev(sb->s_bdev);
203
204                 if (sb->s_op->write_super_lockfs)
205                         sb->s_op->write_super_lockfs(sb);
206         }
207
208         sync_blockdev(bdev);
209         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
210 }
211 EXPORT_SYMBOL(freeze_bdev);
212
213 /**
214  * thaw_bdev  -- unlock filesystem
215  * @bdev:       blockdevice to unlock
216  * @sb:         associated superblock
217  *
218  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
219  */
220 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
221 {
222         if (sb) {
223                 BUG_ON(sb->s_bdev != bdev);
224
225                 if (sb->s_op->unlockfs)
226                         sb->s_op->unlockfs(sb);
227                 sb->s_frozen = SB_UNFROZEN;
228                 smp_wmb();
229                 wake_up(&sb->s_wait_unfrozen);
230                 drop_super(sb);
231         }
232
233         mutex_unlock(&bdev->bd_mount_mutex);
234 }
235 EXPORT_SYMBOL(thaw_bdev);
236
237 /*
238  * Various filesystems appear to want __find_get_block to be non-blocking.
239  * But it's the page lock which protects the buffers.  To get around this,
240  * we get exclusion from try_to_free_buffers with the blockdev mapping's
241  * private_lock.
242  *
243  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
244  * may be quite high.  This code could TryLock the page, and if that
245  * succeeds, there is no need to take private_lock. (But if
246  * private_lock is contended then so is mapping->tree_lock).
247  */
248 static struct buffer_head *
249 __find_get_block_slow(struct block_device *bdev, sector_t block)
250 {
251         struct inode *bd_inode = bdev->bd_inode;
252         struct address_space *bd_mapping = bd_inode->i_mapping;
253         struct buffer_head *ret = NULL;
254         pgoff_t index;
255         struct buffer_head *bh;
256         struct buffer_head *head;
257         struct page *page;
258         int all_mapped = 1;
259
260         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
261         page = find_get_page(bd_mapping, index);
262         if (!page)
263                 goto out;
264
265         spin_lock(&bd_mapping->private_lock);
266         if (!page_has_buffers(page))
267                 goto out_unlock;
268         head = page_buffers(page);
269         bh = head;
270         do {
271                 if (bh->b_blocknr == block) {
272                         ret = bh;
273                         get_bh(bh);
274                         goto out_unlock;
275                 }
276                 if (!buffer_mapped(bh))
277                         all_mapped = 0;
278                 bh = bh->b_this_page;
279         } while (bh != head);
280
281         /* we might be here because some of the buffers on this page are
282          * not mapped.  This is due to various races between
283          * file io on the block device and getblk.  It gets dealt with
284          * elsewhere, don't buffer_error if we had some unmapped buffers
285          */
286         if (all_mapped) {
287                 printk("__find_get_block_slow() failed. "
288                         "block=%llu, b_blocknr=%llu\n",
289                         (unsigned long long)block,
290                         (unsigned long long)bh->b_blocknr);
291                 printk("b_state=0x%08lx, b_size=%zu\n",
292                         bh->b_state, bh->b_size);
293                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
294         }
295 out_unlock:
296         spin_unlock(&bd_mapping->private_lock);
297         page_cache_release(page);
298 out:
299         return ret;
300 }
301
302 /* If invalidate_buffers() will trash dirty buffers, it means some kind
303    of fs corruption is going on. Trashing dirty data always imply losing
304    information that was supposed to be just stored on the physical layer
305    by the user.
306
307    Thus invalidate_buffers in general usage is not allwowed to trash
308    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
309    be preserved.  These buffers are simply skipped.
310   
311    We also skip buffers which are still in use.  For example this can
312    happen if a userspace program is reading the block device.
313
314    NOTE: In the case where the user removed a removable-media-disk even if
315    there's still dirty data not synced on disk (due a bug in the device driver
316    or due an error of the user), by not destroying the dirty buffers we could
317    generate corruption also on the next media inserted, thus a parameter is
318    necessary to handle this case in the most safe way possible (trying
319    to not corrupt also the new disk inserted with the data belonging to
320    the old now corrupted disk). Also for the ramdisk the natural thing
321    to do in order to release the ramdisk memory is to destroy dirty buffers.
322
323    These are two special cases. Normal usage imply the device driver
324    to issue a sync on the device (without waiting I/O completion) and
325    then an invalidate_buffers call that doesn't trash dirty buffers.
326
327    For handling cache coherency with the blkdev pagecache the 'update' case
328    is been introduced. It is needed to re-read from disk any pinned
329    buffer. NOTE: re-reading from disk is destructive so we can do it only
330    when we assume nobody is changing the buffercache under our I/O and when
331    we think the disk contains more recent information than the buffercache.
332    The update == 1 pass marks the buffers we need to update, the update == 2
333    pass does the actual I/O. */
334 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
335 {
336         struct address_space *mapping = bdev->bd_inode->i_mapping;
337
338         if (mapping->nrpages == 0)
339                 return;
340
341         invalidate_bh_lrus();
342         /*
343          * FIXME: what about destroy_dirty_buffers?
344          * We really want to use invalidate_inode_pages2() for
345          * that, but not until that's cleaned up.
346          */
347         invalidate_inode_pages(mapping);
348 }
349
350 /*
351  * Kick pdflush then try to free up some ZONE_NORMAL memory.
352  */
353 static void free_more_memory(void)
354 {
355         struct zone **zones;
356         pg_data_t *pgdat;
357
358         wakeup_pdflush(1024);
359         yield();
360
361         for_each_online_pgdat(pgdat) {
362                 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
363                 if (*zones)
364                         try_to_free_pages(zones, GFP_NOFS);
365         }
366 }
367
368 /*
369  * I/O completion handler for block_read_full_page() - pages
370  * which come unlocked at the end of I/O.
371  */
372 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
373 {
374         unsigned long flags;
375         struct buffer_head *first;
376         struct buffer_head *tmp;
377         struct page *page;
378         int page_uptodate = 1;
379
380         BUG_ON(!buffer_async_read(bh));
381
382         page = bh->b_page;
383         if (uptodate) {
384                 set_buffer_uptodate(bh);
385         } else {
386                 clear_buffer_uptodate(bh);
387                 if (printk_ratelimit())
388                         buffer_io_error(bh);
389                 SetPageError(page);
390         }
391
392         /*
393          * Be _very_ careful from here on. Bad things can happen if
394          * two buffer heads end IO at almost the same time and both
395          * decide that the page is now completely done.
396          */
397         first = page_buffers(page);
398         local_irq_save(flags);
399         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
400         clear_buffer_async_read(bh);
401         unlock_buffer(bh);
402         tmp = bh;
403         do {
404                 if (!buffer_uptodate(tmp))
405                         page_uptodate = 0;
406                 if (buffer_async_read(tmp)) {
407                         BUG_ON(!buffer_locked(tmp));
408                         goto still_busy;
409                 }
410                 tmp = tmp->b_this_page;
411         } while (tmp != bh);
412         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
413         local_irq_restore(flags);
414
415         /*
416          * If none of the buffers had errors and they are all
417          * uptodate then we can set the page uptodate.
418          */
419         if (page_uptodate && !PageError(page))
420                 SetPageUptodate(page);
421         unlock_page(page);
422         return;
423
424 still_busy:
425         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
426         local_irq_restore(flags);
427         return;
428 }
429
430 /*
431  * Completion handler for block_write_full_page() - pages which are unlocked
432  * during I/O, and which have PageWriteback cleared upon I/O completion.
433  */
434 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
435 {
436         char b[BDEVNAME_SIZE];
437         unsigned long flags;
438         struct buffer_head *first;
439         struct buffer_head *tmp;
440         struct page *page;
441
442         BUG_ON(!buffer_async_write(bh));
443
444         page = bh->b_page;
445         if (uptodate) {
446                 set_buffer_uptodate(bh);
447         } else {
448                 if (printk_ratelimit()) {
449                         buffer_io_error(bh);
450                         printk(KERN_WARNING "lost page write due to "
451                                         "I/O error on %s\n",
452                                bdevname(bh->b_bdev, b));
453                 }
454                 set_bit(AS_EIO, &page->mapping->flags);
455                 set_buffer_write_io_error(bh);
456                 clear_buffer_uptodate(bh);
457                 SetPageError(page);
458         }
459
460         first = page_buffers(page);
461         local_irq_save(flags);
462         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
463
464         clear_buffer_async_write(bh);
465         unlock_buffer(bh);
466         tmp = bh->b_this_page;
467         while (tmp != bh) {
468                 if (buffer_async_write(tmp)) {
469                         BUG_ON(!buffer_locked(tmp));
470                         goto still_busy;
471                 }
472                 tmp = tmp->b_this_page;
473         }
474         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
475         local_irq_restore(flags);
476         end_page_writeback(page);
477         return;
478
479 still_busy:
480         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
481         local_irq_restore(flags);
482         return;
483 }
484
485 /*
486  * If a page's buffers are under async readin (end_buffer_async_read
487  * completion) then there is a possibility that another thread of
488  * control could lock one of the buffers after it has completed
489  * but while some of the other buffers have not completed.  This
490  * locked buffer would confuse end_buffer_async_read() into not unlocking
491  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
492  * that this buffer is not under async I/O.
493  *
494  * The page comes unlocked when it has no locked buffer_async buffers
495  * left.
496  *
497  * PageLocked prevents anyone starting new async I/O reads any of
498  * the buffers.
499  *
500  * PageWriteback is used to prevent simultaneous writeout of the same
501  * page.
502  *
503  * PageLocked prevents anyone from starting writeback of a page which is
504  * under read I/O (PageWriteback is only ever set against a locked page).
505  */
506 static void mark_buffer_async_read(struct buffer_head *bh)
507 {
508         bh->b_end_io = end_buffer_async_read;
509         set_buffer_async_read(bh);
510 }
511
512 void mark_buffer_async_write(struct buffer_head *bh)
513 {
514         bh->b_end_io = end_buffer_async_write;
515         set_buffer_async_write(bh);
516 }
517 EXPORT_SYMBOL(mark_buffer_async_write);
518
519
520 /*
521  * fs/buffer.c contains helper functions for buffer-backed address space's
522  * fsync functions.  A common requirement for buffer-based filesystems is
523  * that certain data from the backing blockdev needs to be written out for
524  * a successful fsync().  For example, ext2 indirect blocks need to be
525  * written back and waited upon before fsync() returns.
526  *
527  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
528  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
529  * management of a list of dependent buffers at ->i_mapping->private_list.
530  *
531  * Locking is a little subtle: try_to_free_buffers() will remove buffers
532  * from their controlling inode's queue when they are being freed.  But
533  * try_to_free_buffers() will be operating against the *blockdev* mapping
534  * at the time, not against the S_ISREG file which depends on those buffers.
535  * So the locking for private_list is via the private_lock in the address_space
536  * which backs the buffers.  Which is different from the address_space 
537  * against which the buffers are listed.  So for a particular address_space,
538  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
539  * mapping->private_list will always be protected by the backing blockdev's
540  * ->private_lock.
541  *
542  * Which introduces a requirement: all buffers on an address_space's
543  * ->private_list must be from the same address_space: the blockdev's.
544  *
545  * address_spaces which do not place buffers at ->private_list via these
546  * utility functions are free to use private_lock and private_list for
547  * whatever they want.  The only requirement is that list_empty(private_list)
548  * be true at clear_inode() time.
549  *
550  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
551  * filesystems should do that.  invalidate_inode_buffers() should just go
552  * BUG_ON(!list_empty).
553  *
554  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
555  * take an address_space, not an inode.  And it should be called
556  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
557  * queued up.
558  *
559  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
560  * list if it is already on a list.  Because if the buffer is on a list,
561  * it *must* already be on the right one.  If not, the filesystem is being
562  * silly.  This will save a ton of locking.  But first we have to ensure
563  * that buffers are taken *off* the old inode's list when they are freed
564  * (presumably in truncate).  That requires careful auditing of all
565  * filesystems (do it inside bforget()).  It could also be done by bringing
566  * b_inode back.
567  */
568
569 /*
570  * The buffer's backing address_space's private_lock must be held
571  */
572 static inline void __remove_assoc_queue(struct buffer_head *bh)
573 {
574         list_del_init(&bh->b_assoc_buffers);
575         WARN_ON(!bh->b_assoc_map);
576         if (buffer_write_io_error(bh))
577                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
578         bh->b_assoc_map = NULL;
579 }
580
581 int inode_has_buffers(struct inode *inode)
582 {
583         return !list_empty(&inode->i_data.private_list);
584 }
585
586 /*
587  * osync is designed to support O_SYNC io.  It waits synchronously for
588  * all already-submitted IO to complete, but does not queue any new
589  * writes to the disk.
590  *
591  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
592  * you dirty the buffers, and then use osync_inode_buffers to wait for
593  * completion.  Any other dirty buffers which are not yet queued for
594  * write will not be flushed to disk by the osync.
595  */
596 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
597 {
598         struct buffer_head *bh;
599         struct list_head *p;
600         int err = 0;
601
602         spin_lock(lock);
603 repeat:
604         list_for_each_prev(p, list) {
605                 bh = BH_ENTRY(p);
606                 if (buffer_locked(bh)) {
607                         get_bh(bh);
608                         spin_unlock(lock);
609                         wait_on_buffer(bh);
610                         if (!buffer_uptodate(bh))
611                                 err = -EIO;
612                         brelse(bh);
613                         spin_lock(lock);
614                         goto repeat;
615                 }
616         }
617         spin_unlock(lock);
618         return err;
619 }
620
621 /**
622  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
623  *                        buffers
624  * @mapping: the mapping which wants those buffers written
625  *
626  * Starts I/O against the buffers at mapping->private_list, and waits upon
627  * that I/O.
628  *
629  * Basically, this is a convenience function for fsync().
630  * @mapping is a file or directory which needs those buffers to be written for
631  * a successful fsync().
632  */
633 int sync_mapping_buffers(struct address_space *mapping)
634 {
635         struct address_space *buffer_mapping = mapping->assoc_mapping;
636
637         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
638                 return 0;
639
640         return fsync_buffers_list(&buffer_mapping->private_lock,
641                                         &mapping->private_list);
642 }
643 EXPORT_SYMBOL(sync_mapping_buffers);
644
645 /*
646  * Called when we've recently written block `bblock', and it is known that
647  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
648  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
649  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
650  */
651 void write_boundary_block(struct block_device *bdev,
652                         sector_t bblock, unsigned blocksize)
653 {
654         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
655         if (bh) {
656                 if (buffer_dirty(bh))
657                         ll_rw_block(WRITE, 1, &bh);
658                 put_bh(bh);
659         }
660 }
661
662 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
663 {
664         struct address_space *mapping = inode->i_mapping;
665         struct address_space *buffer_mapping = bh->b_page->mapping;
666
667         mark_buffer_dirty(bh);
668         if (!mapping->assoc_mapping) {
669                 mapping->assoc_mapping = buffer_mapping;
670         } else {
671                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
672         }
673         if (list_empty(&bh->b_assoc_buffers)) {
674                 spin_lock(&buffer_mapping->private_lock);
675                 list_move_tail(&bh->b_assoc_buffers,
676                                 &mapping->private_list);
677                 bh->b_assoc_map = mapping;
678                 spin_unlock(&buffer_mapping->private_lock);
679         }
680 }
681 EXPORT_SYMBOL(mark_buffer_dirty_inode);
682
683 /*
684  * Add a page to the dirty page list.
685  *
686  * It is a sad fact of life that this function is called from several places
687  * deeply under spinlocking.  It may not sleep.
688  *
689  * If the page has buffers, the uptodate buffers are set dirty, to preserve
690  * dirty-state coherency between the page and the buffers.  It the page does
691  * not have buffers then when they are later attached they will all be set
692  * dirty.
693  *
694  * The buffers are dirtied before the page is dirtied.  There's a small race
695  * window in which a writepage caller may see the page cleanness but not the
696  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
697  * before the buffers, a concurrent writepage caller could clear the page dirty
698  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
699  * page on the dirty page list.
700  *
701  * We use private_lock to lock against try_to_free_buffers while using the
702  * page's buffer list.  Also use this to protect against clean buffers being
703  * added to the page after it was set dirty.
704  *
705  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
706  * address_space though.
707  */
708 int __set_page_dirty_buffers(struct page *page)
709 {
710         struct address_space * const mapping = page_mapping(page);
711
712         if (unlikely(!mapping))
713                 return !TestSetPageDirty(page);
714
715         spin_lock(&mapping->private_lock);
716         if (page_has_buffers(page)) {
717                 struct buffer_head *head = page_buffers(page);
718                 struct buffer_head *bh = head;
719
720                 do {
721                         set_buffer_dirty(bh);
722                         bh = bh->b_this_page;
723                 } while (bh != head);
724         }
725         spin_unlock(&mapping->private_lock);
726
727         if (TestSetPageDirty(page))
728                 return 0;
729
730         write_lock_irq(&mapping->tree_lock);
731         if (page->mapping) {    /* Race with truncate? */
732                 if (mapping_cap_account_dirty(mapping))
733                         __inc_zone_page_state(page, NR_FILE_DIRTY);
734                 radix_tree_tag_set(&mapping->page_tree,
735                                 page_index(page), PAGECACHE_TAG_DIRTY);
736         }
737         write_unlock_irq(&mapping->tree_lock);
738         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
739         return 1;
740 }
741 EXPORT_SYMBOL(__set_page_dirty_buffers);
742
743 /*
744  * Write out and wait upon a list of buffers.
745  *
746  * We have conflicting pressures: we want to make sure that all
747  * initially dirty buffers get waited on, but that any subsequently
748  * dirtied buffers don't.  After all, we don't want fsync to last
749  * forever if somebody is actively writing to the file.
750  *
751  * Do this in two main stages: first we copy dirty buffers to a
752  * temporary inode list, queueing the writes as we go.  Then we clean
753  * up, waiting for those writes to complete.
754  * 
755  * During this second stage, any subsequent updates to the file may end
756  * up refiling the buffer on the original inode's dirty list again, so
757  * there is a chance we will end up with a buffer queued for write but
758  * not yet completed on that list.  So, as a final cleanup we go through
759  * the osync code to catch these locked, dirty buffers without requeuing
760  * any newly dirty buffers for write.
761  */
762 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
763 {
764         struct buffer_head *bh;
765         struct list_head tmp;
766         int err = 0, err2;
767
768         INIT_LIST_HEAD(&tmp);
769
770         spin_lock(lock);
771         while (!list_empty(list)) {
772                 bh = BH_ENTRY(list->next);
773                 __remove_assoc_queue(bh);
774                 if (buffer_dirty(bh) || buffer_locked(bh)) {
775                         list_add(&bh->b_assoc_buffers, &tmp);
776                         if (buffer_dirty(bh)) {
777                                 get_bh(bh);
778                                 spin_unlock(lock);
779                                 /*
780                                  * Ensure any pending I/O completes so that
781                                  * ll_rw_block() actually writes the current
782                                  * contents - it is a noop if I/O is still in
783                                  * flight on potentially older contents.
784                                  */
785                                 ll_rw_block(SWRITE, 1, &bh);
786                                 brelse(bh);
787                                 spin_lock(lock);
788                         }
789                 }
790         }
791
792         while (!list_empty(&tmp)) {
793                 bh = BH_ENTRY(tmp.prev);
794                 list_del_init(&bh->b_assoc_buffers);
795                 get_bh(bh);
796                 spin_unlock(lock);
797                 wait_on_buffer(bh);
798                 if (!buffer_uptodate(bh))
799                         err = -EIO;
800                 brelse(bh);
801                 spin_lock(lock);
802         }
803         
804         spin_unlock(lock);
805         err2 = osync_buffers_list(lock, list);
806         if (err)
807                 return err;
808         else
809                 return err2;
810 }
811
812 /*
813  * Invalidate any and all dirty buffers on a given inode.  We are
814  * probably unmounting the fs, but that doesn't mean we have already
815  * done a sync().  Just drop the buffers from the inode list.
816  *
817  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
818  * assumes that all the buffers are against the blockdev.  Not true
819  * for reiserfs.
820  */
821 void invalidate_inode_buffers(struct inode *inode)
822 {
823         if (inode_has_buffers(inode)) {
824                 struct address_space *mapping = &inode->i_data;
825                 struct list_head *list = &mapping->private_list;
826                 struct address_space *buffer_mapping = mapping->assoc_mapping;
827
828                 spin_lock(&buffer_mapping->private_lock);
829                 while (!list_empty(list))
830                         __remove_assoc_queue(BH_ENTRY(list->next));
831                 spin_unlock(&buffer_mapping->private_lock);
832         }
833 }
834
835 /*
836  * Remove any clean buffers from the inode's buffer list.  This is called
837  * when we're trying to free the inode itself.  Those buffers can pin it.
838  *
839  * Returns true if all buffers were removed.
840  */
841 int remove_inode_buffers(struct inode *inode)
842 {
843         int ret = 1;
844
845         if (inode_has_buffers(inode)) {
846                 struct address_space *mapping = &inode->i_data;
847                 struct list_head *list = &mapping->private_list;
848                 struct address_space *buffer_mapping = mapping->assoc_mapping;
849
850                 spin_lock(&buffer_mapping->private_lock);
851                 while (!list_empty(list)) {
852                         struct buffer_head *bh = BH_ENTRY(list->next);
853                         if (buffer_dirty(bh)) {
854                                 ret = 0;
855                                 break;
856                         }
857                         __remove_assoc_queue(bh);
858                 }
859                 spin_unlock(&buffer_mapping->private_lock);
860         }
861         return ret;
862 }
863
864 /*
865  * Create the appropriate buffers when given a page for data area and
866  * the size of each buffer.. Use the bh->b_this_page linked list to
867  * follow the buffers created.  Return NULL if unable to create more
868  * buffers.
869  *
870  * The retry flag is used to differentiate async IO (paging, swapping)
871  * which may not fail from ordinary buffer allocations.
872  */
873 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
874                 int retry)
875 {
876         struct buffer_head *bh, *head;
877         long offset;
878
879 try_again:
880         head = NULL;
881         offset = PAGE_SIZE;
882         while ((offset -= size) >= 0) {
883                 bh = alloc_buffer_head(GFP_NOFS);
884                 if (!bh)
885                         goto no_grow;
886
887                 bh->b_bdev = NULL;
888                 bh->b_this_page = head;
889                 bh->b_blocknr = -1;
890                 head = bh;
891
892                 bh->b_state = 0;
893                 atomic_set(&bh->b_count, 0);
894                 bh->b_private = NULL;
895                 bh->b_size = size;
896
897                 /* Link the buffer to its page */
898                 set_bh_page(bh, page, offset);
899
900                 init_buffer(bh, NULL, NULL);
901         }
902         return head;
903 /*
904  * In case anything failed, we just free everything we got.
905  */
906 no_grow:
907         if (head) {
908                 do {
909                         bh = head;
910                         head = head->b_this_page;
911                         free_buffer_head(bh);
912                 } while (head);
913         }
914
915         /*
916          * Return failure for non-async IO requests.  Async IO requests
917          * are not allowed to fail, so we have to wait until buffer heads
918          * become available.  But we don't want tasks sleeping with 
919          * partially complete buffers, so all were released above.
920          */
921         if (!retry)
922                 return NULL;
923
924         /* We're _really_ low on memory. Now we just
925          * wait for old buffer heads to become free due to
926          * finishing IO.  Since this is an async request and
927          * the reserve list is empty, we're sure there are 
928          * async buffer heads in use.
929          */
930         free_more_memory();
931         goto try_again;
932 }
933 EXPORT_SYMBOL_GPL(alloc_page_buffers);
934
935 static inline void
936 link_dev_buffers(struct page *page, struct buffer_head *head)
937 {
938         struct buffer_head *bh, *tail;
939
940         bh = head;
941         do {
942                 tail = bh;
943                 bh = bh->b_this_page;
944         } while (bh);
945         tail->b_this_page = head;
946         attach_page_buffers(page, head);
947 }
948
949 /*
950  * Initialise the state of a blockdev page's buffers.
951  */ 
952 static void
953 init_page_buffers(struct page *page, struct block_device *bdev,
954                         sector_t block, int size)
955 {
956         struct buffer_head *head = page_buffers(page);
957         struct buffer_head *bh = head;
958         int uptodate = PageUptodate(page);
959
960         do {
961                 if (!buffer_mapped(bh)) {
962                         init_buffer(bh, NULL, NULL);
963                         bh->b_bdev = bdev;
964                         bh->b_blocknr = block;
965                         if (uptodate)
966                                 set_buffer_uptodate(bh);
967                         set_buffer_mapped(bh);
968                 }
969                 block++;
970                 bh = bh->b_this_page;
971         } while (bh != head);
972 }
973
974 /*
975  * Create the page-cache page that contains the requested block.
976  *
977  * This is user purely for blockdev mappings.
978  */
979 static struct page *
980 grow_dev_page(struct block_device *bdev, sector_t block,
981                 pgoff_t index, int size)
982 {
983         struct inode *inode = bdev->bd_inode;
984         struct page *page;
985         struct buffer_head *bh;
986
987         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
988         if (!page)
989                 return NULL;
990
991         BUG_ON(!PageLocked(page));
992
993         if (page_has_buffers(page)) {
994                 bh = page_buffers(page);
995                 if (bh->b_size == size) {
996                         init_page_buffers(page, bdev, block, size);
997                         return page;
998                 }
999                 if (!try_to_free_buffers(page))
1000                         goto failed;
1001         }
1002
1003         /*
1004          * Allocate some buffers for this page
1005          */
1006         bh = alloc_page_buffers(page, size, 0);
1007         if (!bh)
1008                 goto failed;
1009
1010         /*
1011          * Link the page to the buffers and initialise them.  Take the
1012          * lock to be atomic wrt __find_get_block(), which does not
1013          * run under the page lock.
1014          */
1015         spin_lock(&inode->i_mapping->private_lock);
1016         link_dev_buffers(page, bh);
1017         init_page_buffers(page, bdev, block, size);
1018         spin_unlock(&inode->i_mapping->private_lock);
1019         return page;
1020
1021 failed:
1022         BUG();
1023         unlock_page(page);
1024         page_cache_release(page);
1025         return NULL;
1026 }
1027
1028 /*
1029  * Create buffers for the specified block device block's page.  If
1030  * that page was dirty, the buffers are set dirty also.
1031  *
1032  * Except that's a bug.  Attaching dirty buffers to a dirty
1033  * blockdev's page can result in filesystem corruption, because
1034  * some of those buffers may be aliases of filesystem data.
1035  * grow_dev_page() will go BUG() if this happens.
1036  */
1037 static int
1038 grow_buffers(struct block_device *bdev, sector_t block, int size)
1039 {
1040         struct page *page;
1041         pgoff_t index;
1042         int sizebits;
1043
1044         sizebits = -1;
1045         do {
1046                 sizebits++;
1047         } while ((size << sizebits) < PAGE_SIZE);
1048
1049         index = block >> sizebits;
1050
1051         /*
1052          * Check for a block which wants to lie outside our maximum possible
1053          * pagecache index.  (this comparison is done using sector_t types).
1054          */
1055         if (unlikely(index != block >> sizebits)) {
1056                 char b[BDEVNAME_SIZE];
1057
1058                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1059                         "device %s\n",
1060                         __FUNCTION__, (unsigned long long)block,
1061                         bdevname(bdev, b));
1062                 return -EIO;
1063         }
1064         block = index << sizebits;
1065         /* Create a page with the proper size buffers.. */
1066         page = grow_dev_page(bdev, block, index, size);
1067         if (!page)
1068                 return 0;
1069         unlock_page(page);
1070         page_cache_release(page);
1071         return 1;
1072 }
1073
1074 static struct buffer_head *
1075 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1076 {
1077         /* Size must be multiple of hard sectorsize */
1078         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1079                         (size < 512 || size > PAGE_SIZE))) {
1080                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1081                                         size);
1082                 printk(KERN_ERR "hardsect size: %d\n",
1083                                         bdev_hardsect_size(bdev));
1084
1085                 dump_stack();
1086                 return NULL;
1087         }
1088
1089         for (;;) {
1090                 struct buffer_head * bh;
1091                 int ret;
1092
1093                 bh = __find_get_block(bdev, block, size);
1094                 if (bh)
1095                         return bh;
1096
1097                 ret = grow_buffers(bdev, block, size);
1098                 if (ret < 0)
1099                         return NULL;
1100                 if (ret == 0)
1101                         free_more_memory();
1102         }
1103 }
1104
1105 /*
1106  * The relationship between dirty buffers and dirty pages:
1107  *
1108  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1109  * the page is tagged dirty in its radix tree.
1110  *
1111  * At all times, the dirtiness of the buffers represents the dirtiness of
1112  * subsections of the page.  If the page has buffers, the page dirty bit is
1113  * merely a hint about the true dirty state.
1114  *
1115  * When a page is set dirty in its entirety, all its buffers are marked dirty
1116  * (if the page has buffers).
1117  *
1118  * When a buffer is marked dirty, its page is dirtied, but the page's other
1119  * buffers are not.
1120  *
1121  * Also.  When blockdev buffers are explicitly read with bread(), they
1122  * individually become uptodate.  But their backing page remains not
1123  * uptodate - even if all of its buffers are uptodate.  A subsequent
1124  * block_read_full_page() against that page will discover all the uptodate
1125  * buffers, will set the page uptodate and will perform no I/O.
1126  */
1127
1128 /**
1129  * mark_buffer_dirty - mark a buffer_head as needing writeout
1130  * @bh: the buffer_head to mark dirty
1131  *
1132  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1133  * backing page dirty, then tag the page as dirty in its address_space's radix
1134  * tree and then attach the address_space's inode to its superblock's dirty
1135  * inode list.
1136  *
1137  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1138  * mapping->tree_lock and the global inode_lock.
1139  */
1140 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1141 {
1142         if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1143                 __set_page_dirty_nobuffers(bh->b_page);
1144 }
1145
1146 /*
1147  * Decrement a buffer_head's reference count.  If all buffers against a page
1148  * have zero reference count, are clean and unlocked, and if the page is clean
1149  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1150  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1151  * a page but it ends up not being freed, and buffers may later be reattached).
1152  */
1153 void __brelse(struct buffer_head * buf)
1154 {
1155         if (atomic_read(&buf->b_count)) {
1156                 put_bh(buf);
1157                 return;
1158         }
1159         printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1160         WARN_ON(1);
1161 }
1162
1163 /*
1164  * bforget() is like brelse(), except it discards any
1165  * potentially dirty data.
1166  */
1167 void __bforget(struct buffer_head *bh)
1168 {
1169         clear_buffer_dirty(bh);
1170         if (!list_empty(&bh->b_assoc_buffers)) {
1171                 struct address_space *buffer_mapping = bh->b_page->mapping;
1172
1173                 spin_lock(&buffer_mapping->private_lock);
1174                 list_del_init(&bh->b_assoc_buffers);
1175                 bh->b_assoc_map = NULL;
1176                 spin_unlock(&buffer_mapping->private_lock);
1177         }
1178         __brelse(bh);
1179 }
1180
1181 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1182 {
1183         lock_buffer(bh);
1184         if (buffer_uptodate(bh)) {
1185                 unlock_buffer(bh);
1186                 return bh;
1187         } else {
1188                 get_bh(bh);
1189                 bh->b_end_io = end_buffer_read_sync;
1190                 submit_bh(READ, bh);
1191                 wait_on_buffer(bh);
1192                 if (buffer_uptodate(bh))
1193                         return bh;
1194         }
1195         brelse(bh);
1196         return NULL;
1197 }
1198
1199 /*
1200  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1201  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1202  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1203  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1204  * CPU's LRUs at the same time.
1205  *
1206  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1207  * sb_find_get_block().
1208  *
1209  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1210  * a local interrupt disable for that.
1211  */
1212
1213 #define BH_LRU_SIZE     8
1214
1215 struct bh_lru {
1216         struct buffer_head *bhs[BH_LRU_SIZE];
1217 };
1218
1219 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1220
1221 #ifdef CONFIG_SMP
1222 #define bh_lru_lock()   local_irq_disable()
1223 #define bh_lru_unlock() local_irq_enable()
1224 #else
1225 #define bh_lru_lock()   preempt_disable()
1226 #define bh_lru_unlock() preempt_enable()
1227 #endif
1228
1229 static inline void check_irqs_on(void)
1230 {
1231 #ifdef irqs_disabled
1232         BUG_ON(irqs_disabled());
1233 #endif
1234 }
1235
1236 /*
1237  * The LRU management algorithm is dopey-but-simple.  Sorry.
1238  */
1239 static void bh_lru_install(struct buffer_head *bh)
1240 {
1241         struct buffer_head *evictee = NULL;
1242         struct bh_lru *lru;
1243
1244         check_irqs_on();
1245         bh_lru_lock();
1246         lru = &__get_cpu_var(bh_lrus);
1247         if (lru->bhs[0] != bh) {
1248                 struct buffer_head *bhs[BH_LRU_SIZE];
1249                 int in;
1250                 int out = 0;
1251
1252                 get_bh(bh);
1253                 bhs[out++] = bh;
1254                 for (in = 0; in < BH_LRU_SIZE; in++) {
1255                         struct buffer_head *bh2 = lru->bhs[in];
1256
1257                         if (bh2 == bh) {
1258                                 __brelse(bh2);
1259                         } else {
1260                                 if (out >= BH_LRU_SIZE) {
1261                                         BUG_ON(evictee != NULL);
1262                                         evictee = bh2;
1263                                 } else {
1264                                         bhs[out++] = bh2;
1265                                 }
1266                         }
1267                 }
1268                 while (out < BH_LRU_SIZE)
1269                         bhs[out++] = NULL;
1270                 memcpy(lru->bhs, bhs, sizeof(bhs));
1271         }
1272         bh_lru_unlock();
1273
1274         if (evictee)
1275                 __brelse(evictee);
1276 }
1277
1278 /*
1279  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1280  */
1281 static struct buffer_head *
1282 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1283 {
1284         struct buffer_head *ret = NULL;
1285         struct bh_lru *lru;
1286         int i;
1287
1288         check_irqs_on();
1289         bh_lru_lock();
1290         lru = &__get_cpu_var(bh_lrus);
1291         for (i = 0; i < BH_LRU_SIZE; i++) {
1292                 struct buffer_head *bh = lru->bhs[i];
1293
1294                 if (bh && bh->b_bdev == bdev &&
1295                                 bh->b_blocknr == block && bh->b_size == size) {
1296                         if (i) {
1297                                 while (i) {
1298                                         lru->bhs[i] = lru->bhs[i - 1];
1299                                         i--;
1300                                 }
1301                                 lru->bhs[0] = bh;
1302                         }
1303                         get_bh(bh);
1304                         ret = bh;
1305                         break;
1306                 }
1307         }
1308         bh_lru_unlock();
1309         return ret;
1310 }
1311
1312 /*
1313  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1314  * it in the LRU and mark it as accessed.  If it is not present then return
1315  * NULL
1316  */
1317 struct buffer_head *
1318 __find_get_block(struct block_device *bdev, sector_t block, int size)
1319 {
1320         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1321
1322         if (bh == NULL) {
1323                 bh = __find_get_block_slow(bdev, block);
1324                 if (bh)
1325                         bh_lru_install(bh);
1326         }
1327         if (bh)
1328                 touch_buffer(bh);
1329         return bh;
1330 }
1331 EXPORT_SYMBOL(__find_get_block);
1332
1333 /*
1334  * __getblk will locate (and, if necessary, create) the buffer_head
1335  * which corresponds to the passed block_device, block and size. The
1336  * returned buffer has its reference count incremented.
1337  *
1338  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1339  * illegal block number, __getblk() will happily return a buffer_head
1340  * which represents the non-existent block.  Very weird.
1341  *
1342  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1343  * attempt is failing.  FIXME, perhaps?
1344  */
1345 struct buffer_head *
1346 __getblk(struct block_device *bdev, sector_t block, int size)
1347 {
1348         struct buffer_head *bh = __find_get_block(bdev, block, size);
1349
1350         might_sleep();
1351         if (bh == NULL)
1352                 bh = __getblk_slow(bdev, block, size);
1353         return bh;
1354 }
1355 EXPORT_SYMBOL(__getblk);
1356
1357 /*
1358  * Do async read-ahead on a buffer..
1359  */
1360 void __breadahead(struct block_device *bdev, sector_t block, int size)
1361 {
1362         struct buffer_head *bh = __getblk(bdev, block, size);
1363         if (likely(bh)) {
1364                 ll_rw_block(READA, 1, &bh);
1365                 brelse(bh);
1366         }
1367 }
1368 EXPORT_SYMBOL(__breadahead);
1369
1370 /**
1371  *  __bread() - reads a specified block and returns the bh
1372  *  @bdev: the block_device to read from
1373  *  @block: number of block
1374  *  @size: size (in bytes) to read
1375  * 
1376  *  Reads a specified block, and returns buffer head that contains it.
1377  *  It returns NULL if the block was unreadable.
1378  */
1379 struct buffer_head *
1380 __bread(struct block_device *bdev, sector_t block, int size)
1381 {
1382         struct buffer_head *bh = __getblk(bdev, block, size);
1383
1384         if (likely(bh) && !buffer_uptodate(bh))
1385                 bh = __bread_slow(bh);
1386         return bh;
1387 }
1388 EXPORT_SYMBOL(__bread);
1389
1390 /*
1391  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1392  * This doesn't race because it runs in each cpu either in irq
1393  * or with preempt disabled.
1394  */
1395 static void invalidate_bh_lru(void *arg)
1396 {
1397         struct bh_lru *b = &get_cpu_var(bh_lrus);
1398         int i;
1399
1400         for (i = 0; i < BH_LRU_SIZE; i++) {
1401                 brelse(b->bhs[i]);
1402                 b->bhs[i] = NULL;
1403         }
1404         put_cpu_var(bh_lrus);
1405 }
1406         
1407 static void invalidate_bh_lrus(void)
1408 {
1409         on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1410 }
1411
1412 void set_bh_page(struct buffer_head *bh,
1413                 struct page *page, unsigned long offset)
1414 {
1415         bh->b_page = page;
1416         BUG_ON(offset >= PAGE_SIZE);
1417         if (PageHighMem(page))
1418                 /*
1419                  * This catches illegal uses and preserves the offset:
1420                  */
1421                 bh->b_data = (char *)(0 + offset);
1422         else
1423                 bh->b_data = page_address(page) + offset;
1424 }
1425 EXPORT_SYMBOL(set_bh_page);
1426
1427 /*
1428  * Called when truncating a buffer on a page completely.
1429  */
1430 static void discard_buffer(struct buffer_head * bh)
1431 {
1432         lock_buffer(bh);
1433         clear_buffer_dirty(bh);
1434         bh->b_bdev = NULL;
1435         clear_buffer_mapped(bh);
1436         clear_buffer_req(bh);
1437         clear_buffer_new(bh);
1438         clear_buffer_delay(bh);
1439         unlock_buffer(bh);
1440 }
1441
1442 /**
1443  * block_invalidatepage - invalidate part of all of a buffer-backed page
1444  *
1445  * @page: the page which is affected
1446  * @offset: the index of the truncation point
1447  *
1448  * block_invalidatepage() is called when all or part of the page has become
1449  * invalidatedby a truncate operation.
1450  *
1451  * block_invalidatepage() does not have to release all buffers, but it must
1452  * ensure that no dirty buffer is left outside @offset and that no I/O
1453  * is underway against any of the blocks which are outside the truncation
1454  * point.  Because the caller is about to free (and possibly reuse) those
1455  * blocks on-disk.
1456  */
1457 void block_invalidatepage(struct page *page, unsigned long offset)
1458 {
1459         struct buffer_head *head, *bh, *next;
1460         unsigned int curr_off = 0;
1461
1462         BUG_ON(!PageLocked(page));
1463         if (!page_has_buffers(page))
1464                 goto out;
1465
1466         head = page_buffers(page);
1467         bh = head;
1468         do {
1469                 unsigned int next_off = curr_off + bh->b_size;
1470                 next = bh->b_this_page;
1471
1472                 /*
1473                  * is this block fully invalidated?
1474                  */
1475                 if (offset <= curr_off)
1476                         discard_buffer(bh);
1477                 curr_off = next_off;
1478                 bh = next;
1479         } while (bh != head);
1480
1481         /*
1482          * We release buffers only if the entire page is being invalidated.
1483          * The get_block cached value has been unconditionally invalidated,
1484          * so real IO is not possible anymore.
1485          */
1486         if (offset == 0)
1487                 try_to_release_page(page, 0);
1488 out:
1489         return;
1490 }
1491 EXPORT_SYMBOL(block_invalidatepage);
1492
1493 /*
1494  * We attach and possibly dirty the buffers atomically wrt
1495  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1496  * is already excluded via the page lock.
1497  */
1498 void create_empty_buffers(struct page *page,
1499                         unsigned long blocksize, unsigned long b_state)
1500 {
1501         struct buffer_head *bh, *head, *tail;
1502
1503         head = alloc_page_buffers(page, blocksize, 1);
1504         bh = head;
1505         do {
1506                 bh->b_state |= b_state;
1507                 tail = bh;
1508                 bh = bh->b_this_page;
1509         } while (bh);
1510         tail->b_this_page = head;
1511
1512         spin_lock(&page->mapping->private_lock);
1513         if (PageUptodate(page) || PageDirty(page)) {
1514                 bh = head;
1515                 do {
1516                         if (PageDirty(page))
1517                                 set_buffer_dirty(bh);
1518                         if (PageUptodate(page))
1519                                 set_buffer_uptodate(bh);
1520                         bh = bh->b_this_page;
1521                 } while (bh != head);
1522         }
1523         attach_page_buffers(page, head);
1524         spin_unlock(&page->mapping->private_lock);
1525 }
1526 EXPORT_SYMBOL(create_empty_buffers);
1527
1528 /*
1529  * We are taking a block for data and we don't want any output from any
1530  * buffer-cache aliases starting from return from that function and
1531  * until the moment when something will explicitly mark the buffer
1532  * dirty (hopefully that will not happen until we will free that block ;-)
1533  * We don't even need to mark it not-uptodate - nobody can expect
1534  * anything from a newly allocated buffer anyway. We used to used
1535  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1536  * don't want to mark the alias unmapped, for example - it would confuse
1537  * anyone who might pick it with bread() afterwards...
1538  *
1539  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1540  * be writeout I/O going on against recently-freed buffers.  We don't
1541  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1542  * only if we really need to.  That happens here.
1543  */
1544 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1545 {
1546         struct buffer_head *old_bh;
1547
1548         might_sleep();
1549
1550         old_bh = __find_get_block_slow(bdev, block);
1551         if (old_bh) {
1552                 clear_buffer_dirty(old_bh);
1553                 wait_on_buffer(old_bh);
1554                 clear_buffer_req(old_bh);
1555                 __brelse(old_bh);
1556         }
1557 }
1558 EXPORT_SYMBOL(unmap_underlying_metadata);
1559
1560 /*
1561  * NOTE! All mapped/uptodate combinations are valid:
1562  *
1563  *      Mapped  Uptodate        Meaning
1564  *
1565  *      No      No              "unknown" - must do get_block()
1566  *      No      Yes             "hole" - zero-filled
1567  *      Yes     No              "allocated" - allocated on disk, not read in
1568  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1569  *
1570  * "Dirty" is valid only with the last case (mapped+uptodate).
1571  */
1572
1573 /*
1574  * While block_write_full_page is writing back the dirty buffers under
1575  * the page lock, whoever dirtied the buffers may decide to clean them
1576  * again at any time.  We handle that by only looking at the buffer
1577  * state inside lock_buffer().
1578  *
1579  * If block_write_full_page() is called for regular writeback
1580  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1581  * locked buffer.   This only can happen if someone has written the buffer
1582  * directly, with submit_bh().  At the address_space level PageWriteback
1583  * prevents this contention from occurring.
1584  */
1585 static int __block_write_full_page(struct inode *inode, struct page *page,
1586                         get_block_t *get_block, struct writeback_control *wbc)
1587 {
1588         int err;
1589         sector_t block;
1590         sector_t last_block;
1591         struct buffer_head *bh, *head;
1592         const unsigned blocksize = 1 << inode->i_blkbits;
1593         int nr_underway = 0;
1594
1595         BUG_ON(!PageLocked(page));
1596
1597         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1598
1599         if (!page_has_buffers(page)) {
1600                 create_empty_buffers(page, blocksize,
1601                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1602         }
1603
1604         /*
1605          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1606          * here, and the (potentially unmapped) buffers may become dirty at
1607          * any time.  If a buffer becomes dirty here after we've inspected it
1608          * then we just miss that fact, and the page stays dirty.
1609          *
1610          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1611          * handle that here by just cleaning them.
1612          */
1613
1614         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1615         head = page_buffers(page);
1616         bh = head;
1617
1618         /*
1619          * Get all the dirty buffers mapped to disk addresses and
1620          * handle any aliases from the underlying blockdev's mapping.
1621          */
1622         do {
1623                 if (block > last_block) {
1624                         /*
1625                          * mapped buffers outside i_size will occur, because
1626                          * this page can be outside i_size when there is a
1627                          * truncate in progress.
1628                          */
1629                         /*
1630                          * The buffer was zeroed by block_write_full_page()
1631                          */
1632                         clear_buffer_dirty(bh);
1633                         set_buffer_uptodate(bh);
1634                 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1635                         WARN_ON(bh->b_size != blocksize);
1636                         err = get_block(inode, block, bh, 1);
1637                         if (err)
1638                                 goto recover;
1639                         if (buffer_new(bh)) {
1640                                 /* blockdev mappings never come here */
1641                                 clear_buffer_new(bh);
1642                                 unmap_underlying_metadata(bh->b_bdev,
1643                                                         bh->b_blocknr);
1644                         }
1645                 }
1646                 bh = bh->b_this_page;
1647                 block++;
1648         } while (bh != head);
1649
1650         do {
1651                 if (!buffer_mapped(bh))
1652                         continue;
1653                 /*
1654                  * If it's a fully non-blocking write attempt and we cannot
1655                  * lock the buffer then redirty the page.  Note that this can
1656                  * potentially cause a busy-wait loop from pdflush and kswapd
1657                  * activity, but those code paths have their own higher-level
1658                  * throttling.
1659                  */
1660                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1661                         lock_buffer(bh);
1662                 } else if (test_set_buffer_locked(bh)) {
1663                         redirty_page_for_writepage(wbc, page);
1664                         continue;
1665                 }
1666                 if (test_clear_buffer_dirty(bh)) {
1667                         mark_buffer_async_write(bh);
1668                 } else {
1669                         unlock_buffer(bh);
1670                 }
1671         } while ((bh = bh->b_this_page) != head);
1672
1673         /*
1674          * The page and its buffers are protected by PageWriteback(), so we can
1675          * drop the bh refcounts early.
1676          */
1677         BUG_ON(PageWriteback(page));
1678         set_page_writeback(page);
1679
1680         do {
1681                 struct buffer_head *next = bh->b_this_page;
1682                 if (buffer_async_write(bh)) {
1683                         submit_bh(WRITE, bh);
1684                         nr_underway++;
1685                 }
1686                 bh = next;
1687         } while (bh != head);
1688         unlock_page(page);
1689
1690         err = 0;
1691 done:
1692         if (nr_underway == 0) {
1693                 /*
1694                  * The page was marked dirty, but the buffers were
1695                  * clean.  Someone wrote them back by hand with
1696                  * ll_rw_block/submit_bh.  A rare case.
1697                  */
1698                 int uptodate = 1;
1699                 do {
1700                         if (!buffer_uptodate(bh)) {
1701                                 uptodate = 0;
1702                                 break;
1703                         }
1704                         bh = bh->b_this_page;
1705                 } while (bh != head);
1706                 if (uptodate)
1707                         SetPageUptodate(page);
1708                 end_page_writeback(page);
1709                 /*
1710                  * The page and buffer_heads can be released at any time from
1711                  * here on.
1712                  */
1713                 wbc->pages_skipped++;   /* We didn't write this page */
1714         }
1715         return err;
1716
1717 recover:
1718         /*
1719          * ENOSPC, or some other error.  We may already have added some
1720          * blocks to the file, so we need to write these out to avoid
1721          * exposing stale data.
1722          * The page is currently locked and not marked for writeback
1723          */
1724         bh = head;
1725         /* Recovery: lock and submit the mapped buffers */
1726         do {
1727                 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1728                         lock_buffer(bh);
1729                         mark_buffer_async_write(bh);
1730                 } else {
1731                         /*
1732                          * The buffer may have been set dirty during
1733                          * attachment to a dirty page.
1734                          */
1735                         clear_buffer_dirty(bh);
1736                 }
1737         } while ((bh = bh->b_this_page) != head);
1738         SetPageError(page);
1739         BUG_ON(PageWriteback(page));
1740         set_page_writeback(page);
1741         unlock_page(page);
1742         do {
1743                 struct buffer_head *next = bh->b_this_page;
1744                 if (buffer_async_write(bh)) {
1745                         clear_buffer_dirty(bh);
1746                         submit_bh(WRITE, bh);
1747                         nr_underway++;
1748                 }
1749                 bh = next;
1750         } while (bh != head);
1751         goto done;
1752 }
1753
1754 static int __block_prepare_write(struct inode *inode, struct page *page,
1755                 unsigned from, unsigned to, get_block_t *get_block)
1756 {
1757         unsigned block_start, block_end;
1758         sector_t block;
1759         int err = 0;
1760         unsigned blocksize, bbits;
1761         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1762
1763         BUG_ON(!PageLocked(page));
1764         BUG_ON(from > PAGE_CACHE_SIZE);
1765         BUG_ON(to > PAGE_CACHE_SIZE);
1766         BUG_ON(from > to);
1767
1768         blocksize = 1 << inode->i_blkbits;
1769         if (!page_has_buffers(page))
1770                 create_empty_buffers(page, blocksize, 0);
1771         head = page_buffers(page);
1772
1773         bbits = inode->i_blkbits;
1774         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1775
1776         for(bh = head, block_start = 0; bh != head || !block_start;
1777             block++, block_start=block_end, bh = bh->b_this_page) {
1778                 block_end = block_start + blocksize;
1779                 if (block_end <= from || block_start >= to) {
1780                         if (PageUptodate(page)) {
1781                                 if (!buffer_uptodate(bh))
1782                                         set_buffer_uptodate(bh);
1783                         }
1784                         continue;
1785                 }
1786                 if (buffer_new(bh))
1787                         clear_buffer_new(bh);
1788                 if (!buffer_mapped(bh)) {
1789                         WARN_ON(bh->b_size != blocksize);
1790                         err = get_block(inode, block, bh, 1);
1791                         if (err)
1792                                 break;
1793                         if (buffer_new(bh)) {
1794                                 unmap_underlying_metadata(bh->b_bdev,
1795                                                         bh->b_blocknr);
1796                                 if (PageUptodate(page)) {
1797                                         set_buffer_uptodate(bh);
1798                                         continue;
1799                                 }
1800                                 if (block_end > to || block_start < from) {
1801                                         void *kaddr;
1802
1803                                         kaddr = kmap_atomic(page, KM_USER0);
1804                                         if (block_end > to)
1805                                                 memset(kaddr+to, 0,
1806                                                         block_end-to);
1807                                         if (block_start < from)
1808                                                 memset(kaddr+block_start,
1809                                                         0, from-block_start);
1810                                         flush_dcache_page(page);
1811                                         kunmap_atomic(kaddr, KM_USER0);
1812                                 }
1813                                 continue;
1814                         }
1815                 }
1816                 if (PageUptodate(page)) {
1817                         if (!buffer_uptodate(bh))
1818                                 set_buffer_uptodate(bh);
1819                         continue; 
1820                 }
1821                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1822                      (block_start < from || block_end > to)) {
1823                         ll_rw_block(READ, 1, &bh);
1824                         *wait_bh++=bh;
1825                 }
1826         }
1827         /*
1828          * If we issued read requests - let them complete.
1829          */
1830         while(wait_bh > wait) {
1831                 wait_on_buffer(*--wait_bh);
1832                 if (!buffer_uptodate(*wait_bh))
1833                         err = -EIO;
1834         }
1835         if (!err) {
1836                 bh = head;
1837                 do {
1838                         if (buffer_new(bh))
1839                                 clear_buffer_new(bh);
1840                 } while ((bh = bh->b_this_page) != head);
1841                 return 0;
1842         }
1843         /* Error case: */
1844         /*
1845          * Zero out any newly allocated blocks to avoid exposing stale
1846          * data.  If BH_New is set, we know that the block was newly
1847          * allocated in the above loop.
1848          */
1849         bh = head;
1850         block_start = 0;
1851         do {
1852                 block_end = block_start+blocksize;
1853                 if (block_end <= from)
1854                         goto next_bh;
1855                 if (block_start >= to)
1856                         break;
1857                 if (buffer_new(bh)) {
1858                         void *kaddr;
1859
1860                         clear_buffer_new(bh);
1861                         kaddr = kmap_atomic(page, KM_USER0);
1862                         memset(kaddr+block_start, 0, bh->b_size);
1863                         flush_dcache_page(page);
1864                         kunmap_atomic(kaddr, KM_USER0);
1865                         set_buffer_uptodate(bh);
1866                         mark_buffer_dirty(bh);
1867                 }
1868 next_bh:
1869                 block_start = block_end;
1870                 bh = bh->b_this_page;
1871         } while (bh != head);
1872         return err;
1873 }
1874
1875 static int __block_commit_write(struct inode *inode, struct page *page,
1876                 unsigned from, unsigned to)
1877 {
1878         unsigned block_start, block_end;
1879         int partial = 0;
1880         unsigned blocksize;
1881         struct buffer_head *bh, *head;
1882
1883         blocksize = 1 << inode->i_blkbits;
1884
1885         for(bh = head = page_buffers(page), block_start = 0;
1886             bh != head || !block_start;
1887             block_start=block_end, bh = bh->b_this_page) {
1888                 block_end = block_start + blocksize;
1889                 if (block_end <= from || block_start >= to) {
1890                         if (!buffer_uptodate(bh))
1891                                 partial = 1;
1892                 } else {
1893                         set_buffer_uptodate(bh);
1894                         mark_buffer_dirty(bh);
1895                 }
1896         }
1897
1898         /*
1899          * If this is a partial write which happened to make all buffers
1900          * uptodate then we can optimize away a bogus readpage() for
1901          * the next read(). Here we 'discover' whether the page went
1902          * uptodate as a result of this (potentially partial) write.
1903          */
1904         if (!partial)
1905                 SetPageUptodate(page);
1906         return 0;
1907 }
1908
1909 /*
1910  * Generic "read page" function for block devices that have the normal
1911  * get_block functionality. This is most of the block device filesystems.
1912  * Reads the page asynchronously --- the unlock_buffer() and
1913  * set/clear_buffer_uptodate() functions propagate buffer state into the
1914  * page struct once IO has completed.
1915  */
1916 int block_read_full_page(struct page *page, get_block_t *get_block)
1917 {
1918         struct inode *inode = page->mapping->host;
1919         sector_t iblock, lblock;
1920         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
1921         unsigned int blocksize;
1922         int nr, i;
1923         int fully_mapped = 1;
1924
1925         BUG_ON(!PageLocked(page));
1926         blocksize = 1 << inode->i_blkbits;
1927         if (!page_has_buffers(page))
1928                 create_empty_buffers(page, blocksize, 0);
1929         head = page_buffers(page);
1930
1931         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1932         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
1933         bh = head;
1934         nr = 0;
1935         i = 0;
1936
1937         do {
1938                 if (buffer_uptodate(bh))
1939                         continue;
1940
1941                 if (!buffer_mapped(bh)) {
1942                         int err = 0;
1943
1944                         fully_mapped = 0;
1945                         if (iblock < lblock) {
1946                                 WARN_ON(bh->b_size != blocksize);
1947                                 err = get_block(inode, iblock, bh, 0);
1948                                 if (err)
1949                                         SetPageError(page);
1950                         }
1951                         if (!buffer_mapped(bh)) {
1952                                 void *kaddr = kmap_atomic(page, KM_USER0);
1953                                 memset(kaddr + i * blocksize, 0, blocksize);
1954                                 flush_dcache_page(page);
1955                                 kunmap_atomic(kaddr, KM_USER0);
1956                                 if (!err)
1957                                         set_buffer_uptodate(bh);
1958                                 continue;
1959                         }
1960                         /*
1961                          * get_block() might have updated the buffer
1962                          * synchronously
1963                          */
1964                         if (buffer_uptodate(bh))
1965                                 continue;
1966                 }
1967                 arr[nr++] = bh;
1968         } while (i++, iblock++, (bh = bh->b_this_page) != head);
1969
1970         if (fully_mapped)
1971                 SetPageMappedToDisk(page);
1972
1973         if (!nr) {
1974                 /*
1975                  * All buffers are uptodate - we can set the page uptodate
1976                  * as well. But not if get_block() returned an error.
1977                  */
1978                 if (!PageError(page))
1979                         SetPageUptodate(page);
1980                 unlock_page(page);
1981                 return 0;
1982         }
1983
1984         /* Stage two: lock the buffers */
1985         for (i = 0; i < nr; i++) {
1986                 bh = arr[i];
1987                 lock_buffer(bh);
1988                 mark_buffer_async_read(bh);
1989         }
1990
1991         /*
1992          * Stage 3: start the IO.  Check for uptodateness
1993          * inside the buffer lock in case another process reading
1994          * the underlying blockdev brought it uptodate (the sct fix).
1995          */
1996         for (i = 0; i < nr; i++) {
1997                 bh = arr[i];
1998                 if (buffer_uptodate(bh))
1999                         end_buffer_async_read(bh, 1);
2000                 else
2001                         submit_bh(READ, bh);
2002         }
2003         return 0;
2004 }
2005
2006 /* utility function for filesystems that need to do work on expanding
2007  * truncates.  Uses prepare/commit_write to allow the filesystem to
2008  * deal with the hole.  
2009  */
2010 static int __generic_cont_expand(struct inode *inode, loff_t size,
2011                                  pgoff_t index, unsigned int offset)
2012 {
2013         struct address_space *mapping = inode->i_mapping;
2014         struct page *page;
2015         unsigned long limit;
2016         int err;
2017
2018         err = -EFBIG;
2019         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2020         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2021                 send_sig(SIGXFSZ, current, 0);
2022                 goto out;
2023         }
2024         if (size > inode->i_sb->s_maxbytes)
2025                 goto out;
2026
2027         err = -ENOMEM;
2028         page = grab_cache_page(mapping, index);
2029         if (!page)
2030                 goto out;
2031         err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2032         if (err) {
2033                 /*
2034                  * ->prepare_write() may have instantiated a few blocks
2035                  * outside i_size.  Trim these off again.
2036                  */
2037                 unlock_page(page);
2038                 page_cache_release(page);
2039                 vmtruncate(inode, inode->i_size);
2040                 goto out;
2041         }
2042
2043         err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2044
2045         unlock_page(page);
2046         page_cache_release(page);
2047         if (err > 0)
2048                 err = 0;
2049 out:
2050         return err;
2051 }
2052
2053 int generic_cont_expand(struct inode *inode, loff_t size)
2054 {
2055         pgoff_t index;
2056         unsigned int offset;
2057
2058         offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2059
2060         /* ugh.  in prepare/commit_write, if from==to==start of block, we
2061         ** skip the prepare.  make sure we never send an offset for the start
2062         ** of a block
2063         */
2064         if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2065                 /* caller must handle this extra byte. */
2066                 offset++;
2067         }
2068         index = size >> PAGE_CACHE_SHIFT;
2069
2070         return __generic_cont_expand(inode, size, index, offset);
2071 }
2072
2073 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2074 {
2075         loff_t pos = size - 1;
2076         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2077         unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2078
2079         /* prepare/commit_write can handle even if from==to==start of block. */
2080         return __generic_cont_expand(inode, size, index, offset);
2081 }
2082
2083 /*
2084  * For moronic filesystems that do not allow holes in file.
2085  * We may have to extend the file.
2086  */
2087
2088 int cont_prepare_write(struct page *page, unsigned offset,
2089                 unsigned to, get_block_t *get_block, loff_t *bytes)
2090 {
2091         struct address_space *mapping = page->mapping;
2092         struct inode *inode = mapping->host;
2093         struct page *new_page;
2094         pgoff_t pgpos;
2095         long status;
2096         unsigned zerofrom;
2097         unsigned blocksize = 1 << inode->i_blkbits;
2098         void *kaddr;
2099
2100         while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2101                 status = -ENOMEM;
2102                 new_page = grab_cache_page(mapping, pgpos);
2103                 if (!new_page)
2104                         goto out;
2105                 /* we might sleep */
2106                 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2107                         unlock_page(new_page);
2108                         page_cache_release(new_page);
2109                         continue;
2110                 }
2111                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2112                 if (zerofrom & (blocksize-1)) {
2113                         *bytes |= (blocksize-1);
2114                         (*bytes)++;
2115                 }
2116                 status = __block_prepare_write(inode, new_page, zerofrom,
2117                                                 PAGE_CACHE_SIZE, get_block);
2118                 if (status)
2119                         goto out_unmap;
2120                 kaddr = kmap_atomic(new_page, KM_USER0);
2121                 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2122                 flush_dcache_page(new_page);
2123                 kunmap_atomic(kaddr, KM_USER0);
2124                 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2125                 unlock_page(new_page);
2126                 page_cache_release(new_page);
2127         }
2128
2129         if (page->index < pgpos) {
2130                 /* completely inside the area */
2131                 zerofrom = offset;
2132         } else {
2133                 /* page covers the boundary, find the boundary offset */
2134                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2135
2136                 /* if we will expand the thing last block will be filled */
2137                 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2138                         *bytes |= (blocksize-1);
2139                         (*bytes)++;
2140                 }
2141
2142                 /* starting below the boundary? Nothing to zero out */
2143                 if (offset <= zerofrom)
2144                         zerofrom = offset;
2145         }
2146         status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2147         if (status)
2148                 goto out1;
2149         if (zerofrom < offset) {
2150                 kaddr = kmap_atomic(page, KM_USER0);
2151                 memset(kaddr+zerofrom, 0, offset-zerofrom);
2152                 flush_dcache_page(page);
2153                 kunmap_atomic(kaddr, KM_USER0);
2154                 __block_commit_write(inode, page, zerofrom, offset);
2155         }
2156         return 0;
2157 out1:
2158         ClearPageUptodate(page);
2159         return status;
2160
2161 out_unmap:
2162         ClearPageUptodate(new_page);
2163         unlock_page(new_page);
2164         page_cache_release(new_page);
2165 out:
2166         return status;
2167 }
2168
2169 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2170                         get_block_t *get_block)
2171 {
2172         struct inode *inode = page->mapping->host;
2173         int err = __block_prepare_write(inode, page, from, to, get_block);
2174         if (err)
2175                 ClearPageUptodate(page);
2176         return err;
2177 }
2178
2179 int block_commit_write(struct page *page, unsigned from, unsigned to)
2180 {
2181         struct inode *inode = page->mapping->host;
2182         __block_commit_write(inode,page,from,to);
2183         return 0;
2184 }
2185
2186 int generic_commit_write(struct file *file, struct page *page,
2187                 unsigned from, unsigned to)
2188 {
2189         struct inode *inode = page->mapping->host;
2190         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2191         __block_commit_write(inode,page,from,to);
2192         /*
2193          * No need to use i_size_read() here, the i_size
2194          * cannot change under us because we hold i_mutex.
2195          */
2196         if (pos > inode->i_size) {
2197                 i_size_write(inode, pos);
2198                 mark_inode_dirty(inode);
2199         }
2200         return 0;
2201 }
2202
2203
2204 /*
2205  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2206  * immediately, while under the page lock.  So it needs a special end_io
2207  * handler which does not touch the bh after unlocking it.
2208  *
2209  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2210  * a race there is benign: unlock_buffer() only use the bh's address for
2211  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2212  * itself.
2213  */
2214 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2215 {
2216         if (uptodate) {
2217                 set_buffer_uptodate(bh);
2218         } else {
2219                 /* This happens, due to failed READA attempts. */
2220                 clear_buffer_uptodate(bh);
2221         }
2222         unlock_buffer(bh);
2223 }
2224
2225 /*
2226  * On entry, the page is fully not uptodate.
2227  * On exit the page is fully uptodate in the areas outside (from,to)
2228  */
2229 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2230                         get_block_t *get_block)
2231 {
2232         struct inode *inode = page->mapping->host;
2233         const unsigned blkbits = inode->i_blkbits;
2234         const unsigned blocksize = 1 << blkbits;
2235         struct buffer_head map_bh;
2236         struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2237         unsigned block_in_page;
2238         unsigned block_start;
2239         sector_t block_in_file;
2240         char *kaddr;
2241         int nr_reads = 0;
2242         int i;
2243         int ret = 0;
2244         int is_mapped_to_disk = 1;
2245         int dirtied_it = 0;
2246
2247         if (PageMappedToDisk(page))
2248                 return 0;
2249
2250         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2251         map_bh.b_page = page;
2252
2253         /*
2254          * We loop across all blocks in the page, whether or not they are
2255          * part of the affected region.  This is so we can discover if the
2256          * page is fully mapped-to-disk.
2257          */
2258         for (block_start = 0, block_in_page = 0;
2259                   block_start < PAGE_CACHE_SIZE;
2260                   block_in_page++, block_start += blocksize) {
2261                 unsigned block_end = block_start + blocksize;
2262                 int create;
2263
2264                 map_bh.b_state = 0;
2265                 create = 1;
2266                 if (block_start >= to)
2267                         create = 0;
2268                 map_bh.b_size = blocksize;
2269                 ret = get_block(inode, block_in_file + block_in_page,
2270                                         &map_bh, create);
2271                 if (ret)
2272                         goto failed;
2273                 if (!buffer_mapped(&map_bh))
2274                         is_mapped_to_disk = 0;
2275                 if (buffer_new(&map_bh))
2276                         unmap_underlying_metadata(map_bh.b_bdev,
2277                                                         map_bh.b_blocknr);
2278                 if (PageUptodate(page))
2279                         continue;
2280                 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2281                         kaddr = kmap_atomic(page, KM_USER0);
2282                         if (block_start < from) {
2283                                 memset(kaddr+block_start, 0, from-block_start);
2284                                 dirtied_it = 1;
2285                         }
2286                         if (block_end > to) {
2287                                 memset(kaddr + to, 0, block_end - to);
2288                                 dirtied_it = 1;
2289                         }
2290                         flush_dcache_page(page);
2291                         kunmap_atomic(kaddr, KM_USER0);
2292                         continue;
2293                 }
2294                 if (buffer_uptodate(&map_bh))
2295                         continue;       /* reiserfs does this */
2296                 if (block_start < from || block_end > to) {
2297                         struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2298
2299                         if (!bh) {
2300                                 ret = -ENOMEM;
2301                                 goto failed;
2302                         }
2303                         bh->b_state = map_bh.b_state;
2304                         atomic_set(&bh->b_count, 0);
2305                         bh->b_this_page = NULL;
2306                         bh->b_page = page;
2307                         bh->b_blocknr = map_bh.b_blocknr;
2308                         bh->b_size = blocksize;
2309                         bh->b_data = (char *)(long)block_start;
2310                         bh->b_bdev = map_bh.b_bdev;
2311                         bh->b_private = NULL;
2312                         read_bh[nr_reads++] = bh;
2313                 }
2314         }
2315
2316         if (nr_reads) {
2317                 struct buffer_head *bh;
2318
2319                 /*
2320                  * The page is locked, so these buffers are protected from
2321                  * any VM or truncate activity.  Hence we don't need to care
2322                  * for the buffer_head refcounts.
2323                  */
2324                 for (i = 0; i < nr_reads; i++) {
2325                         bh = read_bh[i];
2326                         lock_buffer(bh);
2327                         bh->b_end_io = end_buffer_read_nobh;
2328                         submit_bh(READ, bh);
2329                 }
2330                 for (i = 0; i < nr_reads; i++) {
2331                         bh = read_bh[i];
2332                         wait_on_buffer(bh);
2333                         if (!buffer_uptodate(bh))
2334                                 ret = -EIO;
2335                         free_buffer_head(bh);
2336                         read_bh[i] = NULL;
2337                 }
2338                 if (ret)
2339                         goto failed;
2340         }
2341
2342         if (is_mapped_to_disk)
2343                 SetPageMappedToDisk(page);
2344         SetPageUptodate(page);
2345
2346         /*
2347          * Setting the page dirty here isn't necessary for the prepare_write
2348          * function - commit_write will do that.  But if/when this function is
2349          * used within the pagefault handler to ensure that all mmapped pages
2350          * have backing space in the filesystem, we will need to dirty the page
2351          * if its contents were altered.
2352          */
2353         if (dirtied_it)
2354                 set_page_dirty(page);
2355
2356         return 0;
2357
2358 failed:
2359         for (i = 0; i < nr_reads; i++) {
2360                 if (read_bh[i])
2361                         free_buffer_head(read_bh[i]);
2362         }
2363
2364         /*
2365          * Error recovery is pretty slack.  Clear the page and mark it dirty
2366          * so we'll later zero out any blocks which _were_ allocated.
2367          */
2368         kaddr = kmap_atomic(page, KM_USER0);
2369         memset(kaddr, 0, PAGE_CACHE_SIZE);
2370         flush_dcache_page(page);
2371         kunmap_atomic(kaddr, KM_USER0);
2372         SetPageUptodate(page);
2373         set_page_dirty(page);
2374         return ret;
2375 }
2376 EXPORT_SYMBOL(nobh_prepare_write);
2377
2378 int nobh_commit_write(struct file *file, struct page *page,
2379                 unsigned from, unsigned to)
2380 {
2381         struct inode *inode = page->mapping->host;
2382         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2383
2384         set_page_dirty(page);
2385         if (pos > inode->i_size) {
2386                 i_size_write(inode, pos);
2387                 mark_inode_dirty(inode);
2388         }
2389         return 0;
2390 }
2391 EXPORT_SYMBOL(nobh_commit_write);
2392
2393 /*
2394  * nobh_writepage() - based on block_full_write_page() except
2395  * that it tries to operate without attaching bufferheads to
2396  * the page.
2397  */
2398 int nobh_writepage(struct page *page, get_block_t *get_block,
2399                         struct writeback_control *wbc)
2400 {
2401         struct inode * const inode = page->mapping->host;
2402         loff_t i_size = i_size_read(inode);
2403         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2404         unsigned offset;
2405         void *kaddr;
2406         int ret;
2407
2408         /* Is the page fully inside i_size? */
2409         if (page->index < end_index)
2410                 goto out;
2411
2412         /* Is the page fully outside i_size? (truncate in progress) */
2413         offset = i_size & (PAGE_CACHE_SIZE-1);
2414         if (page->index >= end_index+1 || !offset) {
2415                 /*
2416                  * The page may have dirty, unmapped buffers.  For example,
2417                  * they may have been added in ext3_writepage().  Make them
2418                  * freeable here, so the page does not leak.
2419                  */
2420 #if 0
2421                 /* Not really sure about this  - do we need this ? */
2422                 if (page->mapping->a_ops->invalidatepage)
2423                         page->mapping->a_ops->invalidatepage(page, offset);
2424 #endif
2425                 unlock_page(page);
2426                 return 0; /* don't care */
2427         }
2428
2429         /*
2430          * The page straddles i_size.  It must be zeroed out on each and every
2431          * writepage invocation because it may be mmapped.  "A file is mapped
2432          * in multiples of the page size.  For a file that is not a multiple of
2433          * the  page size, the remaining memory is zeroed when mapped, and
2434          * writes to that region are not written out to the file."
2435          */
2436         kaddr = kmap_atomic(page, KM_USER0);
2437         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2438         flush_dcache_page(page);
2439         kunmap_atomic(kaddr, KM_USER0);
2440 out:
2441         ret = mpage_writepage(page, get_block, wbc);
2442         if (ret == -EAGAIN)
2443                 ret = __block_write_full_page(inode, page, get_block, wbc);
2444         return ret;
2445 }
2446 EXPORT_SYMBOL(nobh_writepage);
2447
2448 /*
2449  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2450  */
2451 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2452 {
2453         struct inode *inode = mapping->host;
2454         unsigned blocksize = 1 << inode->i_blkbits;
2455         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2456         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2457         unsigned to;
2458         struct page *page;
2459         const struct address_space_operations *a_ops = mapping->a_ops;
2460         char *kaddr;
2461         int ret = 0;
2462
2463         if ((offset & (blocksize - 1)) == 0)
2464                 goto out;
2465
2466         ret = -ENOMEM;
2467         page = grab_cache_page(mapping, index);
2468         if (!page)
2469                 goto out;
2470
2471         to = (offset + blocksize) & ~(blocksize - 1);
2472         ret = a_ops->prepare_write(NULL, page, offset, to);
2473         if (ret == 0) {
2474                 kaddr = kmap_atomic(page, KM_USER0);
2475                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2476                 flush_dcache_page(page);
2477                 kunmap_atomic(kaddr, KM_USER0);
2478                 set_page_dirty(page);
2479         }
2480         unlock_page(page);
2481         page_cache_release(page);
2482 out:
2483         return ret;
2484 }
2485 EXPORT_SYMBOL(nobh_truncate_page);
2486
2487 int block_truncate_page(struct address_space *mapping,
2488                         loff_t from, get_block_t *get_block)
2489 {
2490         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2491         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2492         unsigned blocksize;
2493         sector_t iblock;
2494         unsigned length, pos;
2495         struct inode *inode = mapping->host;
2496         struct page *page;
2497         struct buffer_head *bh;
2498         void *kaddr;
2499         int err;
2500
2501         blocksize = 1 << inode->i_blkbits;
2502         length = offset & (blocksize - 1);
2503
2504         /* Block boundary? Nothing to do */
2505         if (!length)
2506                 return 0;
2507
2508         length = blocksize - length;
2509         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2510         
2511         page = grab_cache_page(mapping, index);
2512         err = -ENOMEM;
2513         if (!page)
2514                 goto out;
2515
2516         if (!page_has_buffers(page))
2517                 create_empty_buffers(page, blocksize, 0);
2518
2519         /* Find the buffer that contains "offset" */
2520         bh = page_buffers(page);
2521         pos = blocksize;
2522         while (offset >= pos) {
2523                 bh = bh->b_this_page;
2524                 iblock++;
2525                 pos += blocksize;
2526         }
2527
2528         err = 0;
2529         if (!buffer_mapped(bh)) {
2530                 WARN_ON(bh->b_size != blocksize);
2531                 err = get_block(inode, iblock, bh, 0);
2532                 if (err)
2533                         goto unlock;
2534                 /* unmapped? It's a hole - nothing to do */
2535                 if (!buffer_mapped(bh))
2536                         goto unlock;
2537         }
2538
2539         /* Ok, it's mapped. Make sure it's up-to-date */
2540         if (PageUptodate(page))
2541                 set_buffer_uptodate(bh);
2542
2543         if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2544                 err = -EIO;
2545                 ll_rw_block(READ, 1, &bh);
2546                 wait_on_buffer(bh);
2547                 /* Uhhuh. Read error. Complain and punt. */
2548                 if (!buffer_uptodate(bh))
2549                         goto unlock;
2550         }
2551
2552         kaddr = kmap_atomic(page, KM_USER0);
2553         memset(kaddr + offset, 0, length);
2554         flush_dcache_page(page);
2555         kunmap_atomic(kaddr, KM_USER0);
2556
2557         mark_buffer_dirty(bh);
2558         err = 0;
2559
2560 unlock:
2561         unlock_page(page);
2562         page_cache_release(page);
2563 out:
2564         return err;
2565 }
2566
2567 /*
2568  * The generic ->writepage function for buffer-backed address_spaces
2569  */
2570 int block_write_full_page(struct page *page, get_block_t *get_block,
2571                         struct writeback_control *wbc)
2572 {
2573         struct inode * const inode = page->mapping->host;
2574         loff_t i_size = i_size_read(inode);
2575         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2576         unsigned offset;
2577         void *kaddr;
2578
2579         /* Is the page fully inside i_size? */
2580         if (page->index < end_index)
2581                 return __block_write_full_page(inode, page, get_block, wbc);
2582
2583         /* Is the page fully outside i_size? (truncate in progress) */
2584         offset = i_size & (PAGE_CACHE_SIZE-1);
2585         if (page->index >= end_index+1 || !offset) {
2586                 /*
2587                  * The page may have dirty, unmapped buffers.  For example,
2588                  * they may have been added in ext3_writepage().  Make them
2589                  * freeable here, so the page does not leak.
2590                  */
2591                 do_invalidatepage(page, 0);
2592                 unlock_page(page);
2593                 return 0; /* don't care */
2594         }
2595
2596         /*
2597          * The page straddles i_size.  It must be zeroed out on each and every
2598          * writepage invokation because it may be mmapped.  "A file is mapped
2599          * in multiples of the page size.  For a file that is not a multiple of
2600          * the  page size, the remaining memory is zeroed when mapped, and
2601          * writes to that region are not written out to the file."
2602          */
2603         kaddr = kmap_atomic(page, KM_USER0);
2604         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2605         flush_dcache_page(page);
2606         kunmap_atomic(kaddr, KM_USER0);
2607         return __block_write_full_page(inode, page, get_block, wbc);
2608 }
2609
2610 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2611                             get_block_t *get_block)
2612 {
2613         struct buffer_head tmp;
2614         struct inode *inode = mapping->host;
2615         tmp.b_state = 0;
2616         tmp.b_blocknr = 0;
2617         tmp.b_size = 1 << inode->i_blkbits;
2618         get_block(inode, block, &tmp, 0);
2619         return tmp.b_blocknr;
2620 }
2621
2622 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2623 {
2624         struct buffer_head *bh = bio->bi_private;
2625
2626         if (bio->bi_size)
2627                 return 1;
2628
2629         if (err == -EOPNOTSUPP) {
2630                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2631                 set_bit(BH_Eopnotsupp, &bh->b_state);
2632         }
2633
2634         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2635         bio_put(bio);
2636         return 0;
2637 }
2638
2639 int submit_bh(int rw, struct buffer_head * bh)
2640 {
2641         struct bio *bio;
2642         int ret = 0;
2643
2644         BUG_ON(!buffer_locked(bh));
2645         BUG_ON(!buffer_mapped(bh));
2646         BUG_ON(!bh->b_end_io);
2647
2648         if (buffer_ordered(bh) && (rw == WRITE))
2649                 rw = WRITE_BARRIER;
2650
2651         /*
2652          * Only clear out a write error when rewriting, should this
2653          * include WRITE_SYNC as well?
2654          */
2655         if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2656                 clear_buffer_write_io_error(bh);
2657
2658         /*
2659          * from here on down, it's all bio -- do the initial mapping,
2660          * submit_bio -> generic_make_request may further map this bio around
2661          */
2662         bio = bio_alloc(GFP_NOIO, 1);
2663
2664         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2665         bio->bi_bdev = bh->b_bdev;
2666         bio->bi_io_vec[0].bv_page = bh->b_page;
2667         bio->bi_io_vec[0].bv_len = bh->b_size;
2668         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2669
2670         bio->bi_vcnt = 1;
2671         bio->bi_idx = 0;
2672         bio->bi_size = bh->b_size;
2673
2674         bio->bi_end_io = end_bio_bh_io_sync;
2675         bio->bi_private = bh;
2676
2677         bio_get(bio);
2678         submit_bio(rw, bio);
2679
2680         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2681                 ret = -EOPNOTSUPP;
2682
2683         bio_put(bio);
2684         return ret;
2685 }
2686
2687 /**
2688  * ll_rw_block: low-level access to block devices (DEPRECATED)
2689  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2690  * @nr: number of &struct buffer_heads in the array
2691  * @bhs: array of pointers to &struct buffer_head
2692  *
2693  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2694  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2695  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2696  * are sent to disk. The fourth %READA option is described in the documentation
2697  * for generic_make_request() which ll_rw_block() calls.
2698  *
2699  * This function drops any buffer that it cannot get a lock on (with the
2700  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2701  * clean when doing a write request, and any buffer that appears to be
2702  * up-to-date when doing read request.  Further it marks as clean buffers that
2703  * are processed for writing (the buffer cache won't assume that they are
2704  * actually clean until the buffer gets unlocked).
2705  *
2706  * ll_rw_block sets b_end_io to simple completion handler that marks
2707  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2708  * any waiters. 
2709  *
2710  * All of the buffers must be for the same device, and must also be a
2711  * multiple of the current approved size for the device.
2712  */
2713 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2714 {
2715         int i;
2716
2717         for (i = 0; i < nr; i++) {
2718                 struct buffer_head *bh = bhs[i];
2719
2720                 if (rw == SWRITE)
2721                         lock_buffer(bh);
2722                 else if (test_set_buffer_locked(bh))
2723                         continue;
2724
2725                 if (rw == WRITE || rw == SWRITE) {
2726                         if (test_clear_buffer_dirty(bh)) {
2727                                 bh->b_end_io = end_buffer_write_sync;
2728                                 get_bh(bh);
2729                                 submit_bh(WRITE, bh);
2730                                 continue;
2731                         }
2732                 } else {
2733                         if (!buffer_uptodate(bh)) {
2734                                 bh->b_end_io = end_buffer_read_sync;
2735                                 get_bh(bh);
2736                                 submit_bh(rw, bh);
2737                                 continue;
2738                         }
2739                 }
2740                 unlock_buffer(bh);
2741         }
2742 }
2743
2744 /*
2745  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2746  * and then start new I/O and then wait upon it.  The caller must have a ref on
2747  * the buffer_head.
2748  */
2749 int sync_dirty_buffer(struct buffer_head *bh)
2750 {
2751         int ret = 0;
2752
2753         WARN_ON(atomic_read(&bh->b_count) < 1);
2754         lock_buffer(bh);
2755         if (test_clear_buffer_dirty(bh)) {
2756                 get_bh(bh);
2757                 bh->b_end_io = end_buffer_write_sync;
2758                 ret = submit_bh(WRITE, bh);
2759                 wait_on_buffer(bh);
2760                 if (buffer_eopnotsupp(bh)) {
2761                         clear_buffer_eopnotsupp(bh);
2762                         ret = -EOPNOTSUPP;
2763                 }
2764                 if (!ret && !buffer_uptodate(bh))
2765                         ret = -EIO;
2766         } else {
2767                 unlock_buffer(bh);
2768         }
2769         return ret;
2770 }
2771
2772 /*
2773  * try_to_free_buffers() checks if all the buffers on this particular page
2774  * are unused, and releases them if so.
2775  *
2776  * Exclusion against try_to_free_buffers may be obtained by either
2777  * locking the page or by holding its mapping's private_lock.
2778  *
2779  * If the page is dirty but all the buffers are clean then we need to
2780  * be sure to mark the page clean as well.  This is because the page
2781  * may be against a block device, and a later reattachment of buffers
2782  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2783  * filesystem data on the same device.
2784  *
2785  * The same applies to regular filesystem pages: if all the buffers are
2786  * clean then we set the page clean and proceed.  To do that, we require
2787  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2788  * private_lock.
2789  *
2790  * try_to_free_buffers() is non-blocking.
2791  */
2792 static inline int buffer_busy(struct buffer_head *bh)
2793 {
2794         return atomic_read(&bh->b_count) |
2795                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2796 }
2797
2798 static int
2799 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2800 {
2801         struct buffer_head *head = page_buffers(page);
2802         struct buffer_head *bh;
2803
2804         bh = head;
2805         do {
2806                 if (buffer_write_io_error(bh) && page->mapping)
2807                         set_bit(AS_EIO, &page->mapping->flags);
2808                 if (buffer_busy(bh))
2809                         goto failed;
2810                 bh = bh->b_this_page;
2811         } while (bh != head);
2812
2813         do {
2814                 struct buffer_head *next = bh->b_this_page;
2815
2816                 if (!list_empty(&bh->b_assoc_buffers))
2817                         __remove_assoc_queue(bh);
2818                 bh = next;
2819         } while (bh != head);
2820         *buffers_to_free = head;
2821         __clear_page_buffers(page);
2822         return 1;
2823 failed:
2824         return 0;
2825 }
2826
2827 int try_to_free_buffers(struct page *page)
2828 {
2829         struct address_space * const mapping = page->mapping;
2830         struct buffer_head *buffers_to_free = NULL;
2831         int ret = 0;
2832
2833         BUG_ON(!PageLocked(page));
2834         if (PageWriteback(page))
2835                 return 0;
2836
2837         if (mapping == NULL) {          /* can this still happen? */
2838                 ret = drop_buffers(page, &buffers_to_free);
2839                 goto out;
2840         }
2841
2842         spin_lock(&mapping->private_lock);
2843         ret = drop_buffers(page, &buffers_to_free);
2844         spin_unlock(&mapping->private_lock);
2845         if (ret) {
2846                 /*
2847                  * If the filesystem writes its buffers by hand (eg ext3)
2848                  * then we can have clean buffers against a dirty page.  We
2849                  * clean the page here; otherwise later reattachment of buffers
2850                  * could encounter a non-uptodate page, which is unresolvable.
2851                  * This only applies in the rare case where try_to_free_buffers
2852                  * succeeds but the page is not freed.
2853                  */
2854                 clear_page_dirty(page);
2855         }
2856 out:
2857         if (buffers_to_free) {
2858                 struct buffer_head *bh = buffers_to_free;
2859
2860                 do {
2861                         struct buffer_head *next = bh->b_this_page;
2862                         free_buffer_head(bh);
2863                         bh = next;
2864                 } while (bh != buffers_to_free);
2865         }
2866         return ret;
2867 }
2868 EXPORT_SYMBOL(try_to_free_buffers);
2869
2870 void block_sync_page(struct page *page)
2871 {
2872         struct address_space *mapping;
2873
2874         smp_mb();
2875         mapping = page_mapping(page);
2876         if (mapping)
2877                 blk_run_backing_dev(mapping->backing_dev_info, page);
2878 }
2879
2880 /*
2881  * There are no bdflush tunables left.  But distributions are
2882  * still running obsolete flush daemons, so we terminate them here.
2883  *
2884  * Use of bdflush() is deprecated and will be removed in a future kernel.
2885  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2886  */
2887 asmlinkage long sys_bdflush(int func, long data)
2888 {
2889         static int msg_count;
2890
2891         if (!capable(CAP_SYS_ADMIN))
2892                 return -EPERM;
2893
2894         if (msg_count < 5) {
2895                 msg_count++;
2896                 printk(KERN_INFO
2897                         "warning: process `%s' used the obsolete bdflush"
2898                         " system call\n", current->comm);
2899                 printk(KERN_INFO "Fix your initscripts?\n");
2900         }
2901
2902         if (func == 1)
2903                 do_exit(0);
2904         return 0;
2905 }
2906
2907 /*
2908  * Buffer-head allocation
2909  */
2910 static struct kmem_cache *bh_cachep;
2911
2912 /*
2913  * Once the number of bh's in the machine exceeds this level, we start
2914  * stripping them in writeback.
2915  */
2916 static int max_buffer_heads;
2917
2918 int buffer_heads_over_limit;
2919
2920 struct bh_accounting {
2921         int nr;                 /* Number of live bh's */
2922         int ratelimit;          /* Limit cacheline bouncing */
2923 };
2924
2925 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2926
2927 static void recalc_bh_state(void)
2928 {
2929         int i;
2930         int tot = 0;
2931
2932         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
2933                 return;
2934         __get_cpu_var(bh_accounting).ratelimit = 0;
2935         for_each_online_cpu(i)
2936                 tot += per_cpu(bh_accounting, i).nr;
2937         buffer_heads_over_limit = (tot > max_buffer_heads);
2938 }
2939         
2940 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2941 {
2942         struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
2943         if (ret) {
2944                 get_cpu_var(bh_accounting).nr++;
2945                 recalc_bh_state();
2946                 put_cpu_var(bh_accounting);
2947         }
2948         return ret;
2949 }
2950 EXPORT_SYMBOL(alloc_buffer_head);
2951
2952 void free_buffer_head(struct buffer_head *bh)
2953 {
2954         BUG_ON(!list_empty(&bh->b_assoc_buffers));
2955         kmem_cache_free(bh_cachep, bh);
2956         get_cpu_var(bh_accounting).nr--;
2957         recalc_bh_state();
2958         put_cpu_var(bh_accounting);
2959 }
2960 EXPORT_SYMBOL(free_buffer_head);
2961
2962 static void
2963 init_buffer_head(void *data, struct kmem_cache *cachep, unsigned long flags)
2964 {
2965         if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2966                             SLAB_CTOR_CONSTRUCTOR) {
2967                 struct buffer_head * bh = (struct buffer_head *)data;
2968
2969                 memset(bh, 0, sizeof(*bh));
2970                 INIT_LIST_HEAD(&bh->b_assoc_buffers);
2971         }
2972 }
2973
2974 static void buffer_exit_cpu(int cpu)
2975 {
2976         int i;
2977         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2978
2979         for (i = 0; i < BH_LRU_SIZE; i++) {
2980                 brelse(b->bhs[i]);
2981                 b->bhs[i] = NULL;
2982         }
2983         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
2984         per_cpu(bh_accounting, cpu).nr = 0;
2985         put_cpu_var(bh_accounting);
2986 }
2987
2988 static int buffer_cpu_notify(struct notifier_block *self,
2989                               unsigned long action, void *hcpu)
2990 {
2991         if (action == CPU_DEAD)
2992                 buffer_exit_cpu((unsigned long)hcpu);
2993         return NOTIFY_OK;
2994 }
2995
2996 void __init buffer_init(void)
2997 {
2998         int nrpages;
2999
3000         bh_cachep = kmem_cache_create("buffer_head",
3001                                         sizeof(struct buffer_head), 0,
3002                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3003                                         SLAB_MEM_SPREAD),
3004                                         init_buffer_head,
3005                                         NULL);
3006
3007         /*
3008          * Limit the bh occupancy to 10% of ZONE_NORMAL
3009          */
3010         nrpages = (nr_free_buffer_pages() * 10) / 100;
3011         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3012         hotcpu_notifier(buffer_cpu_notify, 0);
3013 }
3014
3015 EXPORT_SYMBOL(__bforget);
3016 EXPORT_SYMBOL(__brelse);
3017 EXPORT_SYMBOL(__wait_on_buffer);
3018 EXPORT_SYMBOL(block_commit_write);
3019 EXPORT_SYMBOL(block_prepare_write);
3020 EXPORT_SYMBOL(block_read_full_page);
3021 EXPORT_SYMBOL(block_sync_page);
3022 EXPORT_SYMBOL(block_truncate_page);
3023 EXPORT_SYMBOL(block_write_full_page);
3024 EXPORT_SYMBOL(cont_prepare_write);
3025 EXPORT_SYMBOL(end_buffer_read_sync);
3026 EXPORT_SYMBOL(end_buffer_write_sync);
3027 EXPORT_SYMBOL(file_fsync);
3028 EXPORT_SYMBOL(fsync_bdev);
3029 EXPORT_SYMBOL(generic_block_bmap);
3030 EXPORT_SYMBOL(generic_commit_write);
3031 EXPORT_SYMBOL(generic_cont_expand);
3032 EXPORT_SYMBOL(generic_cont_expand_simple);
3033 EXPORT_SYMBOL(init_buffer);
3034 EXPORT_SYMBOL(invalidate_bdev);
3035 EXPORT_SYMBOL(ll_rw_block);
3036 EXPORT_SYMBOL(mark_buffer_dirty);
3037 EXPORT_SYMBOL(submit_bh);
3038 EXPORT_SYMBOL(sync_dirty_buffer);
3039 EXPORT_SYMBOL(unlock_buffer);