4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/smp_lock.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 static void invalidate_bh_lrus(void);
49 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
52 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
54 bh->b_end_io = handler;
55 bh->b_private = private;
58 static int sync_buffer(void *word)
60 struct block_device *bd;
61 struct buffer_head *bh
62 = container_of(word, struct buffer_head, b_state);
67 blk_run_address_space(bd->bd_inode->i_mapping);
72 void fastcall __lock_buffer(struct buffer_head *bh)
74 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
75 TASK_UNINTERRUPTIBLE);
77 EXPORT_SYMBOL(__lock_buffer);
79 void fastcall unlock_buffer(struct buffer_head *bh)
81 clear_buffer_locked(bh);
82 smp_mb__after_clear_bit();
83 wake_up_bit(&bh->b_state, BH_Lock);
87 * Block until a buffer comes unlocked. This doesn't stop it
88 * from becoming locked again - you have to lock it yourself
89 * if you want to preserve its state.
91 void __wait_on_buffer(struct buffer_head * bh)
93 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
97 __clear_page_buffers(struct page *page)
99 ClearPagePrivate(page);
100 set_page_private(page, 0);
101 page_cache_release(page);
104 static void buffer_io_error(struct buffer_head *bh)
106 char b[BDEVNAME_SIZE];
108 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
109 bdevname(bh->b_bdev, b),
110 (unsigned long long)bh->b_blocknr);
114 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
115 * unlock the buffer. This is what ll_rw_block uses too.
117 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
120 set_buffer_uptodate(bh);
122 /* This happens, due to failed READA attempts. */
123 clear_buffer_uptodate(bh);
129 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
131 char b[BDEVNAME_SIZE];
134 set_buffer_uptodate(bh);
136 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
138 printk(KERN_WARNING "lost page write due to "
140 bdevname(bh->b_bdev, b));
142 set_buffer_write_io_error(bh);
143 clear_buffer_uptodate(bh);
150 * Write out and wait upon all the dirty data associated with a block
151 * device via its mapping. Does not take the superblock lock.
153 int sync_blockdev(struct block_device *bdev)
158 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
161 EXPORT_SYMBOL(sync_blockdev);
164 * Write out and wait upon all dirty data associated with this
165 * device. Filesystem data as well as the underlying block
166 * device. Takes the superblock lock.
168 int fsync_bdev(struct block_device *bdev)
170 struct super_block *sb = get_super(bdev);
172 int res = fsync_super(sb);
176 return sync_blockdev(bdev);
180 * freeze_bdev -- lock a filesystem and force it into a consistent state
181 * @bdev: blockdevice to lock
183 * This takes the block device bd_mount_mutex to make sure no new mounts
184 * happen on bdev until thaw_bdev() is called.
185 * If a superblock is found on this device, we take the s_umount semaphore
186 * on it to make sure nobody unmounts until the snapshot creation is done.
188 struct super_block *freeze_bdev(struct block_device *bdev)
190 struct super_block *sb;
192 mutex_lock(&bdev->bd_mount_mutex);
193 sb = get_super(bdev);
194 if (sb && !(sb->s_flags & MS_RDONLY)) {
195 sb->s_frozen = SB_FREEZE_WRITE;
200 sb->s_frozen = SB_FREEZE_TRANS;
203 sync_blockdev(sb->s_bdev);
205 if (sb->s_op->write_super_lockfs)
206 sb->s_op->write_super_lockfs(sb);
210 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
212 EXPORT_SYMBOL(freeze_bdev);
215 * thaw_bdev -- unlock filesystem
216 * @bdev: blockdevice to unlock
217 * @sb: associated superblock
219 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
221 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
224 BUG_ON(sb->s_bdev != bdev);
226 if (sb->s_op->unlockfs)
227 sb->s_op->unlockfs(sb);
228 sb->s_frozen = SB_UNFROZEN;
230 wake_up(&sb->s_wait_unfrozen);
234 mutex_unlock(&bdev->bd_mount_mutex);
236 EXPORT_SYMBOL(thaw_bdev);
239 * Various filesystems appear to want __find_get_block to be non-blocking.
240 * But it's the page lock which protects the buffers. To get around this,
241 * we get exclusion from try_to_free_buffers with the blockdev mapping's
244 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
245 * may be quite high. This code could TryLock the page, and if that
246 * succeeds, there is no need to take private_lock. (But if
247 * private_lock is contended then so is mapping->tree_lock).
249 static struct buffer_head *
250 __find_get_block_slow(struct block_device *bdev, sector_t block)
252 struct inode *bd_inode = bdev->bd_inode;
253 struct address_space *bd_mapping = bd_inode->i_mapping;
254 struct buffer_head *ret = NULL;
256 struct buffer_head *bh;
257 struct buffer_head *head;
261 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
262 page = find_get_page(bd_mapping, index);
266 spin_lock(&bd_mapping->private_lock);
267 if (!page_has_buffers(page))
269 head = page_buffers(page);
272 if (bh->b_blocknr == block) {
277 if (!buffer_mapped(bh))
279 bh = bh->b_this_page;
280 } while (bh != head);
282 /* we might be here because some of the buffers on this page are
283 * not mapped. This is due to various races between
284 * file io on the block device and getblk. It gets dealt with
285 * elsewhere, don't buffer_error if we had some unmapped buffers
288 printk("__find_get_block_slow() failed. "
289 "block=%llu, b_blocknr=%llu\n",
290 (unsigned long long)block,
291 (unsigned long long)bh->b_blocknr);
292 printk("b_state=0x%08lx, b_size=%zu\n",
293 bh->b_state, bh->b_size);
294 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
297 spin_unlock(&bd_mapping->private_lock);
298 page_cache_release(page);
303 /* If invalidate_buffers() will trash dirty buffers, it means some kind
304 of fs corruption is going on. Trashing dirty data always imply losing
305 information that was supposed to be just stored on the physical layer
308 Thus invalidate_buffers in general usage is not allwowed to trash
309 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
310 be preserved. These buffers are simply skipped.
312 We also skip buffers which are still in use. For example this can
313 happen if a userspace program is reading the block device.
315 NOTE: In the case where the user removed a removable-media-disk even if
316 there's still dirty data not synced on disk (due a bug in the device driver
317 or due an error of the user), by not destroying the dirty buffers we could
318 generate corruption also on the next media inserted, thus a parameter is
319 necessary to handle this case in the most safe way possible (trying
320 to not corrupt also the new disk inserted with the data belonging to
321 the old now corrupted disk). Also for the ramdisk the natural thing
322 to do in order to release the ramdisk memory is to destroy dirty buffers.
324 These are two special cases. Normal usage imply the device driver
325 to issue a sync on the device (without waiting I/O completion) and
326 then an invalidate_buffers call that doesn't trash dirty buffers.
328 For handling cache coherency with the blkdev pagecache the 'update' case
329 is been introduced. It is needed to re-read from disk any pinned
330 buffer. NOTE: re-reading from disk is destructive so we can do it only
331 when we assume nobody is changing the buffercache under our I/O and when
332 we think the disk contains more recent information than the buffercache.
333 The update == 1 pass marks the buffers we need to update, the update == 2
334 pass does the actual I/O. */
335 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
337 struct address_space *mapping = bdev->bd_inode->i_mapping;
339 if (mapping->nrpages == 0)
342 invalidate_bh_lrus();
344 * FIXME: what about destroy_dirty_buffers?
345 * We really want to use invalidate_inode_pages2() for
346 * that, but not until that's cleaned up.
348 invalidate_inode_pages(mapping);
352 * Kick pdflush then try to free up some ZONE_NORMAL memory.
354 static void free_more_memory(void)
359 wakeup_pdflush(1024);
362 for_each_online_pgdat(pgdat) {
363 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
365 try_to_free_pages(zones, GFP_NOFS);
370 * I/O completion handler for block_read_full_page() - pages
371 * which come unlocked at the end of I/O.
373 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
376 struct buffer_head *first;
377 struct buffer_head *tmp;
379 int page_uptodate = 1;
381 BUG_ON(!buffer_async_read(bh));
385 set_buffer_uptodate(bh);
387 clear_buffer_uptodate(bh);
388 if (printk_ratelimit())
394 * Be _very_ careful from here on. Bad things can happen if
395 * two buffer heads end IO at almost the same time and both
396 * decide that the page is now completely done.
398 first = page_buffers(page);
399 local_irq_save(flags);
400 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
401 clear_buffer_async_read(bh);
405 if (!buffer_uptodate(tmp))
407 if (buffer_async_read(tmp)) {
408 BUG_ON(!buffer_locked(tmp));
411 tmp = tmp->b_this_page;
413 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
414 local_irq_restore(flags);
417 * If none of the buffers had errors and they are all
418 * uptodate then we can set the page uptodate.
420 if (page_uptodate && !PageError(page))
421 SetPageUptodate(page);
426 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
427 local_irq_restore(flags);
432 * Completion handler for block_write_full_page() - pages which are unlocked
433 * during I/O, and which have PageWriteback cleared upon I/O completion.
435 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
437 char b[BDEVNAME_SIZE];
439 struct buffer_head *first;
440 struct buffer_head *tmp;
443 BUG_ON(!buffer_async_write(bh));
447 set_buffer_uptodate(bh);
449 if (printk_ratelimit()) {
451 printk(KERN_WARNING "lost page write due to "
453 bdevname(bh->b_bdev, b));
455 set_bit(AS_EIO, &page->mapping->flags);
456 set_buffer_write_io_error(bh);
457 clear_buffer_uptodate(bh);
461 first = page_buffers(page);
462 local_irq_save(flags);
463 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
465 clear_buffer_async_write(bh);
467 tmp = bh->b_this_page;
469 if (buffer_async_write(tmp)) {
470 BUG_ON(!buffer_locked(tmp));
473 tmp = tmp->b_this_page;
475 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
476 local_irq_restore(flags);
477 end_page_writeback(page);
481 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
482 local_irq_restore(flags);
487 * If a page's buffers are under async readin (end_buffer_async_read
488 * completion) then there is a possibility that another thread of
489 * control could lock one of the buffers after it has completed
490 * but while some of the other buffers have not completed. This
491 * locked buffer would confuse end_buffer_async_read() into not unlocking
492 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
493 * that this buffer is not under async I/O.
495 * The page comes unlocked when it has no locked buffer_async buffers
498 * PageLocked prevents anyone starting new async I/O reads any of
501 * PageWriteback is used to prevent simultaneous writeout of the same
504 * PageLocked prevents anyone from starting writeback of a page which is
505 * under read I/O (PageWriteback is only ever set against a locked page).
507 static void mark_buffer_async_read(struct buffer_head *bh)
509 bh->b_end_io = end_buffer_async_read;
510 set_buffer_async_read(bh);
513 void mark_buffer_async_write(struct buffer_head *bh)
515 bh->b_end_io = end_buffer_async_write;
516 set_buffer_async_write(bh);
518 EXPORT_SYMBOL(mark_buffer_async_write);
522 * fs/buffer.c contains helper functions for buffer-backed address space's
523 * fsync functions. A common requirement for buffer-based filesystems is
524 * that certain data from the backing blockdev needs to be written out for
525 * a successful fsync(). For example, ext2 indirect blocks need to be
526 * written back and waited upon before fsync() returns.
528 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
529 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
530 * management of a list of dependent buffers at ->i_mapping->private_list.
532 * Locking is a little subtle: try_to_free_buffers() will remove buffers
533 * from their controlling inode's queue when they are being freed. But
534 * try_to_free_buffers() will be operating against the *blockdev* mapping
535 * at the time, not against the S_ISREG file which depends on those buffers.
536 * So the locking for private_list is via the private_lock in the address_space
537 * which backs the buffers. Which is different from the address_space
538 * against which the buffers are listed. So for a particular address_space,
539 * mapping->private_lock does *not* protect mapping->private_list! In fact,
540 * mapping->private_list will always be protected by the backing blockdev's
543 * Which introduces a requirement: all buffers on an address_space's
544 * ->private_list must be from the same address_space: the blockdev's.
546 * address_spaces which do not place buffers at ->private_list via these
547 * utility functions are free to use private_lock and private_list for
548 * whatever they want. The only requirement is that list_empty(private_list)
549 * be true at clear_inode() time.
551 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
552 * filesystems should do that. invalidate_inode_buffers() should just go
553 * BUG_ON(!list_empty).
555 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
556 * take an address_space, not an inode. And it should be called
557 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
560 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
561 * list if it is already on a list. Because if the buffer is on a list,
562 * it *must* already be on the right one. If not, the filesystem is being
563 * silly. This will save a ton of locking. But first we have to ensure
564 * that buffers are taken *off* the old inode's list when they are freed
565 * (presumably in truncate). That requires careful auditing of all
566 * filesystems (do it inside bforget()). It could also be done by bringing
571 * The buffer's backing address_space's private_lock must be held
573 static inline void __remove_assoc_queue(struct buffer_head *bh)
575 list_del_init(&bh->b_assoc_buffers);
576 WARN_ON(!bh->b_assoc_map);
577 if (buffer_write_io_error(bh))
578 set_bit(AS_EIO, &bh->b_assoc_map->flags);
579 bh->b_assoc_map = NULL;
582 int inode_has_buffers(struct inode *inode)
584 return !list_empty(&inode->i_data.private_list);
588 * osync is designed to support O_SYNC io. It waits synchronously for
589 * all already-submitted IO to complete, but does not queue any new
590 * writes to the disk.
592 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
593 * you dirty the buffers, and then use osync_inode_buffers to wait for
594 * completion. Any other dirty buffers which are not yet queued for
595 * write will not be flushed to disk by the osync.
597 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
599 struct buffer_head *bh;
605 list_for_each_prev(p, list) {
607 if (buffer_locked(bh)) {
611 if (!buffer_uptodate(bh))
623 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
625 * @mapping: the mapping which wants those buffers written
627 * Starts I/O against the buffers at mapping->private_list, and waits upon
630 * Basically, this is a convenience function for fsync().
631 * @mapping is a file or directory which needs those buffers to be written for
632 * a successful fsync().
634 int sync_mapping_buffers(struct address_space *mapping)
636 struct address_space *buffer_mapping = mapping->assoc_mapping;
638 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
641 return fsync_buffers_list(&buffer_mapping->private_lock,
642 &mapping->private_list);
644 EXPORT_SYMBOL(sync_mapping_buffers);
647 * Called when we've recently written block `bblock', and it is known that
648 * `bblock' was for a buffer_boundary() buffer. This means that the block at
649 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
650 * dirty, schedule it for IO. So that indirects merge nicely with their data.
652 void write_boundary_block(struct block_device *bdev,
653 sector_t bblock, unsigned blocksize)
655 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
657 if (buffer_dirty(bh))
658 ll_rw_block(WRITE, 1, &bh);
663 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
665 struct address_space *mapping = inode->i_mapping;
666 struct address_space *buffer_mapping = bh->b_page->mapping;
668 mark_buffer_dirty(bh);
669 if (!mapping->assoc_mapping) {
670 mapping->assoc_mapping = buffer_mapping;
672 BUG_ON(mapping->assoc_mapping != buffer_mapping);
674 if (list_empty(&bh->b_assoc_buffers)) {
675 spin_lock(&buffer_mapping->private_lock);
676 list_move_tail(&bh->b_assoc_buffers,
677 &mapping->private_list);
678 bh->b_assoc_map = mapping;
679 spin_unlock(&buffer_mapping->private_lock);
682 EXPORT_SYMBOL(mark_buffer_dirty_inode);
685 * Add a page to the dirty page list.
687 * It is a sad fact of life that this function is called from several places
688 * deeply under spinlocking. It may not sleep.
690 * If the page has buffers, the uptodate buffers are set dirty, to preserve
691 * dirty-state coherency between the page and the buffers. It the page does
692 * not have buffers then when they are later attached they will all be set
695 * The buffers are dirtied before the page is dirtied. There's a small race
696 * window in which a writepage caller may see the page cleanness but not the
697 * buffer dirtiness. That's fine. If this code were to set the page dirty
698 * before the buffers, a concurrent writepage caller could clear the page dirty
699 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
700 * page on the dirty page list.
702 * We use private_lock to lock against try_to_free_buffers while using the
703 * page's buffer list. Also use this to protect against clean buffers being
704 * added to the page after it was set dirty.
706 * FIXME: may need to call ->reservepage here as well. That's rather up to the
707 * address_space though.
709 int __set_page_dirty_buffers(struct page *page)
711 struct address_space * const mapping = page_mapping(page);
713 if (unlikely(!mapping))
714 return !TestSetPageDirty(page);
716 spin_lock(&mapping->private_lock);
717 if (page_has_buffers(page)) {
718 struct buffer_head *head = page_buffers(page);
719 struct buffer_head *bh = head;
722 set_buffer_dirty(bh);
723 bh = bh->b_this_page;
724 } while (bh != head);
726 spin_unlock(&mapping->private_lock);
728 if (TestSetPageDirty(page))
731 write_lock_irq(&mapping->tree_lock);
732 if (page->mapping) { /* Race with truncate? */
733 if (mapping_cap_account_dirty(mapping)) {
734 __inc_zone_page_state(page, NR_FILE_DIRTY);
735 task_io_account_write(PAGE_CACHE_SIZE);
737 radix_tree_tag_set(&mapping->page_tree,
738 page_index(page), PAGECACHE_TAG_DIRTY);
740 write_unlock_irq(&mapping->tree_lock);
741 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
744 EXPORT_SYMBOL(__set_page_dirty_buffers);
747 * Write out and wait upon a list of buffers.
749 * We have conflicting pressures: we want to make sure that all
750 * initially dirty buffers get waited on, but that any subsequently
751 * dirtied buffers don't. After all, we don't want fsync to last
752 * forever if somebody is actively writing to the file.
754 * Do this in two main stages: first we copy dirty buffers to a
755 * temporary inode list, queueing the writes as we go. Then we clean
756 * up, waiting for those writes to complete.
758 * During this second stage, any subsequent updates to the file may end
759 * up refiling the buffer on the original inode's dirty list again, so
760 * there is a chance we will end up with a buffer queued for write but
761 * not yet completed on that list. So, as a final cleanup we go through
762 * the osync code to catch these locked, dirty buffers without requeuing
763 * any newly dirty buffers for write.
765 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
767 struct buffer_head *bh;
768 struct list_head tmp;
771 INIT_LIST_HEAD(&tmp);
774 while (!list_empty(list)) {
775 bh = BH_ENTRY(list->next);
776 __remove_assoc_queue(bh);
777 if (buffer_dirty(bh) || buffer_locked(bh)) {
778 list_add(&bh->b_assoc_buffers, &tmp);
779 if (buffer_dirty(bh)) {
783 * Ensure any pending I/O completes so that
784 * ll_rw_block() actually writes the current
785 * contents - it is a noop if I/O is still in
786 * flight on potentially older contents.
788 ll_rw_block(SWRITE, 1, &bh);
795 while (!list_empty(&tmp)) {
796 bh = BH_ENTRY(tmp.prev);
797 list_del_init(&bh->b_assoc_buffers);
801 if (!buffer_uptodate(bh))
808 err2 = osync_buffers_list(lock, list);
816 * Invalidate any and all dirty buffers on a given inode. We are
817 * probably unmounting the fs, but that doesn't mean we have already
818 * done a sync(). Just drop the buffers from the inode list.
820 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
821 * assumes that all the buffers are against the blockdev. Not true
824 void invalidate_inode_buffers(struct inode *inode)
826 if (inode_has_buffers(inode)) {
827 struct address_space *mapping = &inode->i_data;
828 struct list_head *list = &mapping->private_list;
829 struct address_space *buffer_mapping = mapping->assoc_mapping;
831 spin_lock(&buffer_mapping->private_lock);
832 while (!list_empty(list))
833 __remove_assoc_queue(BH_ENTRY(list->next));
834 spin_unlock(&buffer_mapping->private_lock);
839 * Remove any clean buffers from the inode's buffer list. This is called
840 * when we're trying to free the inode itself. Those buffers can pin it.
842 * Returns true if all buffers were removed.
844 int remove_inode_buffers(struct inode *inode)
848 if (inode_has_buffers(inode)) {
849 struct address_space *mapping = &inode->i_data;
850 struct list_head *list = &mapping->private_list;
851 struct address_space *buffer_mapping = mapping->assoc_mapping;
853 spin_lock(&buffer_mapping->private_lock);
854 while (!list_empty(list)) {
855 struct buffer_head *bh = BH_ENTRY(list->next);
856 if (buffer_dirty(bh)) {
860 __remove_assoc_queue(bh);
862 spin_unlock(&buffer_mapping->private_lock);
868 * Create the appropriate buffers when given a page for data area and
869 * the size of each buffer.. Use the bh->b_this_page linked list to
870 * follow the buffers created. Return NULL if unable to create more
873 * The retry flag is used to differentiate async IO (paging, swapping)
874 * which may not fail from ordinary buffer allocations.
876 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
879 struct buffer_head *bh, *head;
885 while ((offset -= size) >= 0) {
886 bh = alloc_buffer_head(GFP_NOFS);
891 bh->b_this_page = head;
896 atomic_set(&bh->b_count, 0);
897 bh->b_private = NULL;
900 /* Link the buffer to its page */
901 set_bh_page(bh, page, offset);
903 init_buffer(bh, NULL, NULL);
907 * In case anything failed, we just free everything we got.
913 head = head->b_this_page;
914 free_buffer_head(bh);
919 * Return failure for non-async IO requests. Async IO requests
920 * are not allowed to fail, so we have to wait until buffer heads
921 * become available. But we don't want tasks sleeping with
922 * partially complete buffers, so all were released above.
927 /* We're _really_ low on memory. Now we just
928 * wait for old buffer heads to become free due to
929 * finishing IO. Since this is an async request and
930 * the reserve list is empty, we're sure there are
931 * async buffer heads in use.
936 EXPORT_SYMBOL_GPL(alloc_page_buffers);
939 link_dev_buffers(struct page *page, struct buffer_head *head)
941 struct buffer_head *bh, *tail;
946 bh = bh->b_this_page;
948 tail->b_this_page = head;
949 attach_page_buffers(page, head);
953 * Initialise the state of a blockdev page's buffers.
956 init_page_buffers(struct page *page, struct block_device *bdev,
957 sector_t block, int size)
959 struct buffer_head *head = page_buffers(page);
960 struct buffer_head *bh = head;
961 int uptodate = PageUptodate(page);
964 if (!buffer_mapped(bh)) {
965 init_buffer(bh, NULL, NULL);
967 bh->b_blocknr = block;
969 set_buffer_uptodate(bh);
970 set_buffer_mapped(bh);
973 bh = bh->b_this_page;
974 } while (bh != head);
978 * Create the page-cache page that contains the requested block.
980 * This is user purely for blockdev mappings.
983 grow_dev_page(struct block_device *bdev, sector_t block,
984 pgoff_t index, int size)
986 struct inode *inode = bdev->bd_inode;
988 struct buffer_head *bh;
990 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
994 BUG_ON(!PageLocked(page));
996 if (page_has_buffers(page)) {
997 bh = page_buffers(page);
998 if (bh->b_size == size) {
999 init_page_buffers(page, bdev, block, size);
1002 if (!try_to_free_buffers(page))
1007 * Allocate some buffers for this page
1009 bh = alloc_page_buffers(page, size, 0);
1014 * Link the page to the buffers and initialise them. Take the
1015 * lock to be atomic wrt __find_get_block(), which does not
1016 * run under the page lock.
1018 spin_lock(&inode->i_mapping->private_lock);
1019 link_dev_buffers(page, bh);
1020 init_page_buffers(page, bdev, block, size);
1021 spin_unlock(&inode->i_mapping->private_lock);
1027 page_cache_release(page);
1032 * Create buffers for the specified block device block's page. If
1033 * that page was dirty, the buffers are set dirty also.
1035 * Except that's a bug. Attaching dirty buffers to a dirty
1036 * blockdev's page can result in filesystem corruption, because
1037 * some of those buffers may be aliases of filesystem data.
1038 * grow_dev_page() will go BUG() if this happens.
1041 grow_buffers(struct block_device *bdev, sector_t block, int size)
1050 } while ((size << sizebits) < PAGE_SIZE);
1052 index = block >> sizebits;
1055 * Check for a block which wants to lie outside our maximum possible
1056 * pagecache index. (this comparison is done using sector_t types).
1058 if (unlikely(index != block >> sizebits)) {
1059 char b[BDEVNAME_SIZE];
1061 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1063 __FUNCTION__, (unsigned long long)block,
1067 block = index << sizebits;
1068 /* Create a page with the proper size buffers.. */
1069 page = grow_dev_page(bdev, block, index, size);
1073 page_cache_release(page);
1077 static struct buffer_head *
1078 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1080 /* Size must be multiple of hard sectorsize */
1081 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1082 (size < 512 || size > PAGE_SIZE))) {
1083 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1085 printk(KERN_ERR "hardsect size: %d\n",
1086 bdev_hardsect_size(bdev));
1093 struct buffer_head * bh;
1096 bh = __find_get_block(bdev, block, size);
1100 ret = grow_buffers(bdev, block, size);
1109 * The relationship between dirty buffers and dirty pages:
1111 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1112 * the page is tagged dirty in its radix tree.
1114 * At all times, the dirtiness of the buffers represents the dirtiness of
1115 * subsections of the page. If the page has buffers, the page dirty bit is
1116 * merely a hint about the true dirty state.
1118 * When a page is set dirty in its entirety, all its buffers are marked dirty
1119 * (if the page has buffers).
1121 * When a buffer is marked dirty, its page is dirtied, but the page's other
1124 * Also. When blockdev buffers are explicitly read with bread(), they
1125 * individually become uptodate. But their backing page remains not
1126 * uptodate - even if all of its buffers are uptodate. A subsequent
1127 * block_read_full_page() against that page will discover all the uptodate
1128 * buffers, will set the page uptodate and will perform no I/O.
1132 * mark_buffer_dirty - mark a buffer_head as needing writeout
1133 * @bh: the buffer_head to mark dirty
1135 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1136 * backing page dirty, then tag the page as dirty in its address_space's radix
1137 * tree and then attach the address_space's inode to its superblock's dirty
1140 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1141 * mapping->tree_lock and the global inode_lock.
1143 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1145 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1146 __set_page_dirty_nobuffers(bh->b_page);
1150 * Decrement a buffer_head's reference count. If all buffers against a page
1151 * have zero reference count, are clean and unlocked, and if the page is clean
1152 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1153 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1154 * a page but it ends up not being freed, and buffers may later be reattached).
1156 void __brelse(struct buffer_head * buf)
1158 if (atomic_read(&buf->b_count)) {
1162 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1167 * bforget() is like brelse(), except it discards any
1168 * potentially dirty data.
1170 void __bforget(struct buffer_head *bh)
1172 clear_buffer_dirty(bh);
1173 if (!list_empty(&bh->b_assoc_buffers)) {
1174 struct address_space *buffer_mapping = bh->b_page->mapping;
1176 spin_lock(&buffer_mapping->private_lock);
1177 list_del_init(&bh->b_assoc_buffers);
1178 bh->b_assoc_map = NULL;
1179 spin_unlock(&buffer_mapping->private_lock);
1184 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1187 if (buffer_uptodate(bh)) {
1192 bh->b_end_io = end_buffer_read_sync;
1193 submit_bh(READ, bh);
1195 if (buffer_uptodate(bh))
1203 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1204 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1205 * refcount elevated by one when they're in an LRU. A buffer can only appear
1206 * once in a particular CPU's LRU. A single buffer can be present in multiple
1207 * CPU's LRUs at the same time.
1209 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1210 * sb_find_get_block().
1212 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1213 * a local interrupt disable for that.
1216 #define BH_LRU_SIZE 8
1219 struct buffer_head *bhs[BH_LRU_SIZE];
1222 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1225 #define bh_lru_lock() local_irq_disable()
1226 #define bh_lru_unlock() local_irq_enable()
1228 #define bh_lru_lock() preempt_disable()
1229 #define bh_lru_unlock() preempt_enable()
1232 static inline void check_irqs_on(void)
1234 #ifdef irqs_disabled
1235 BUG_ON(irqs_disabled());
1240 * The LRU management algorithm is dopey-but-simple. Sorry.
1242 static void bh_lru_install(struct buffer_head *bh)
1244 struct buffer_head *evictee = NULL;
1249 lru = &__get_cpu_var(bh_lrus);
1250 if (lru->bhs[0] != bh) {
1251 struct buffer_head *bhs[BH_LRU_SIZE];
1257 for (in = 0; in < BH_LRU_SIZE; in++) {
1258 struct buffer_head *bh2 = lru->bhs[in];
1263 if (out >= BH_LRU_SIZE) {
1264 BUG_ON(evictee != NULL);
1271 while (out < BH_LRU_SIZE)
1273 memcpy(lru->bhs, bhs, sizeof(bhs));
1282 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1284 static struct buffer_head *
1285 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1287 struct buffer_head *ret = NULL;
1293 lru = &__get_cpu_var(bh_lrus);
1294 for (i = 0; i < BH_LRU_SIZE; i++) {
1295 struct buffer_head *bh = lru->bhs[i];
1297 if (bh && bh->b_bdev == bdev &&
1298 bh->b_blocknr == block && bh->b_size == size) {
1301 lru->bhs[i] = lru->bhs[i - 1];
1316 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1317 * it in the LRU and mark it as accessed. If it is not present then return
1320 struct buffer_head *
1321 __find_get_block(struct block_device *bdev, sector_t block, int size)
1323 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1326 bh = __find_get_block_slow(bdev, block);
1334 EXPORT_SYMBOL(__find_get_block);
1337 * __getblk will locate (and, if necessary, create) the buffer_head
1338 * which corresponds to the passed block_device, block and size. The
1339 * returned buffer has its reference count incremented.
1341 * __getblk() cannot fail - it just keeps trying. If you pass it an
1342 * illegal block number, __getblk() will happily return a buffer_head
1343 * which represents the non-existent block. Very weird.
1345 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1346 * attempt is failing. FIXME, perhaps?
1348 struct buffer_head *
1349 __getblk(struct block_device *bdev, sector_t block, int size)
1351 struct buffer_head *bh = __find_get_block(bdev, block, size);
1355 bh = __getblk_slow(bdev, block, size);
1358 EXPORT_SYMBOL(__getblk);
1361 * Do async read-ahead on a buffer..
1363 void __breadahead(struct block_device *bdev, sector_t block, int size)
1365 struct buffer_head *bh = __getblk(bdev, block, size);
1367 ll_rw_block(READA, 1, &bh);
1371 EXPORT_SYMBOL(__breadahead);
1374 * __bread() - reads a specified block and returns the bh
1375 * @bdev: the block_device to read from
1376 * @block: number of block
1377 * @size: size (in bytes) to read
1379 * Reads a specified block, and returns buffer head that contains it.
1380 * It returns NULL if the block was unreadable.
1382 struct buffer_head *
1383 __bread(struct block_device *bdev, sector_t block, int size)
1385 struct buffer_head *bh = __getblk(bdev, block, size);
1387 if (likely(bh) && !buffer_uptodate(bh))
1388 bh = __bread_slow(bh);
1391 EXPORT_SYMBOL(__bread);
1394 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1395 * This doesn't race because it runs in each cpu either in irq
1396 * or with preempt disabled.
1398 static void invalidate_bh_lru(void *arg)
1400 struct bh_lru *b = &get_cpu_var(bh_lrus);
1403 for (i = 0; i < BH_LRU_SIZE; i++) {
1407 put_cpu_var(bh_lrus);
1410 static void invalidate_bh_lrus(void)
1412 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1415 void set_bh_page(struct buffer_head *bh,
1416 struct page *page, unsigned long offset)
1419 BUG_ON(offset >= PAGE_SIZE);
1420 if (PageHighMem(page))
1422 * This catches illegal uses and preserves the offset:
1424 bh->b_data = (char *)(0 + offset);
1426 bh->b_data = page_address(page) + offset;
1428 EXPORT_SYMBOL(set_bh_page);
1431 * Called when truncating a buffer on a page completely.
1433 static void discard_buffer(struct buffer_head * bh)
1436 clear_buffer_dirty(bh);
1438 clear_buffer_mapped(bh);
1439 clear_buffer_req(bh);
1440 clear_buffer_new(bh);
1441 clear_buffer_delay(bh);
1446 * block_invalidatepage - invalidate part of all of a buffer-backed page
1448 * @page: the page which is affected
1449 * @offset: the index of the truncation point
1451 * block_invalidatepage() is called when all or part of the page has become
1452 * invalidatedby a truncate operation.
1454 * block_invalidatepage() does not have to release all buffers, but it must
1455 * ensure that no dirty buffer is left outside @offset and that no I/O
1456 * is underway against any of the blocks which are outside the truncation
1457 * point. Because the caller is about to free (and possibly reuse) those
1460 void block_invalidatepage(struct page *page, unsigned long offset)
1462 struct buffer_head *head, *bh, *next;
1463 unsigned int curr_off = 0;
1465 BUG_ON(!PageLocked(page));
1466 if (!page_has_buffers(page))
1469 head = page_buffers(page);
1472 unsigned int next_off = curr_off + bh->b_size;
1473 next = bh->b_this_page;
1476 * is this block fully invalidated?
1478 if (offset <= curr_off)
1480 curr_off = next_off;
1482 } while (bh != head);
1485 * We release buffers only if the entire page is being invalidated.
1486 * The get_block cached value has been unconditionally invalidated,
1487 * so real IO is not possible anymore.
1490 try_to_release_page(page, 0);
1494 EXPORT_SYMBOL(block_invalidatepage);
1497 * We attach and possibly dirty the buffers atomically wrt
1498 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1499 * is already excluded via the page lock.
1501 void create_empty_buffers(struct page *page,
1502 unsigned long blocksize, unsigned long b_state)
1504 struct buffer_head *bh, *head, *tail;
1506 head = alloc_page_buffers(page, blocksize, 1);
1509 bh->b_state |= b_state;
1511 bh = bh->b_this_page;
1513 tail->b_this_page = head;
1515 spin_lock(&page->mapping->private_lock);
1516 if (PageUptodate(page) || PageDirty(page)) {
1519 if (PageDirty(page))
1520 set_buffer_dirty(bh);
1521 if (PageUptodate(page))
1522 set_buffer_uptodate(bh);
1523 bh = bh->b_this_page;
1524 } while (bh != head);
1526 attach_page_buffers(page, head);
1527 spin_unlock(&page->mapping->private_lock);
1529 EXPORT_SYMBOL(create_empty_buffers);
1532 * We are taking a block for data and we don't want any output from any
1533 * buffer-cache aliases starting from return from that function and
1534 * until the moment when something will explicitly mark the buffer
1535 * dirty (hopefully that will not happen until we will free that block ;-)
1536 * We don't even need to mark it not-uptodate - nobody can expect
1537 * anything from a newly allocated buffer anyway. We used to used
1538 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1539 * don't want to mark the alias unmapped, for example - it would confuse
1540 * anyone who might pick it with bread() afterwards...
1542 * Also.. Note that bforget() doesn't lock the buffer. So there can
1543 * be writeout I/O going on against recently-freed buffers. We don't
1544 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1545 * only if we really need to. That happens here.
1547 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1549 struct buffer_head *old_bh;
1553 old_bh = __find_get_block_slow(bdev, block);
1555 clear_buffer_dirty(old_bh);
1556 wait_on_buffer(old_bh);
1557 clear_buffer_req(old_bh);
1561 EXPORT_SYMBOL(unmap_underlying_metadata);
1564 * NOTE! All mapped/uptodate combinations are valid:
1566 * Mapped Uptodate Meaning
1568 * No No "unknown" - must do get_block()
1569 * No Yes "hole" - zero-filled
1570 * Yes No "allocated" - allocated on disk, not read in
1571 * Yes Yes "valid" - allocated and up-to-date in memory.
1573 * "Dirty" is valid only with the last case (mapped+uptodate).
1577 * While block_write_full_page is writing back the dirty buffers under
1578 * the page lock, whoever dirtied the buffers may decide to clean them
1579 * again at any time. We handle that by only looking at the buffer
1580 * state inside lock_buffer().
1582 * If block_write_full_page() is called for regular writeback
1583 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1584 * locked buffer. This only can happen if someone has written the buffer
1585 * directly, with submit_bh(). At the address_space level PageWriteback
1586 * prevents this contention from occurring.
1588 static int __block_write_full_page(struct inode *inode, struct page *page,
1589 get_block_t *get_block, struct writeback_control *wbc)
1593 sector_t last_block;
1594 struct buffer_head *bh, *head;
1595 const unsigned blocksize = 1 << inode->i_blkbits;
1596 int nr_underway = 0;
1598 BUG_ON(!PageLocked(page));
1600 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1602 if (!page_has_buffers(page)) {
1603 create_empty_buffers(page, blocksize,
1604 (1 << BH_Dirty)|(1 << BH_Uptodate));
1608 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1609 * here, and the (potentially unmapped) buffers may become dirty at
1610 * any time. If a buffer becomes dirty here after we've inspected it
1611 * then we just miss that fact, and the page stays dirty.
1613 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1614 * handle that here by just cleaning them.
1617 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1618 head = page_buffers(page);
1622 * Get all the dirty buffers mapped to disk addresses and
1623 * handle any aliases from the underlying blockdev's mapping.
1626 if (block > last_block) {
1628 * mapped buffers outside i_size will occur, because
1629 * this page can be outside i_size when there is a
1630 * truncate in progress.
1633 * The buffer was zeroed by block_write_full_page()
1635 clear_buffer_dirty(bh);
1636 set_buffer_uptodate(bh);
1637 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1638 WARN_ON(bh->b_size != blocksize);
1639 err = get_block(inode, block, bh, 1);
1642 if (buffer_new(bh)) {
1643 /* blockdev mappings never come here */
1644 clear_buffer_new(bh);
1645 unmap_underlying_metadata(bh->b_bdev,
1649 bh = bh->b_this_page;
1651 } while (bh != head);
1654 if (!buffer_mapped(bh))
1657 * If it's a fully non-blocking write attempt and we cannot
1658 * lock the buffer then redirty the page. Note that this can
1659 * potentially cause a busy-wait loop from pdflush and kswapd
1660 * activity, but those code paths have their own higher-level
1663 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1665 } else if (test_set_buffer_locked(bh)) {
1666 redirty_page_for_writepage(wbc, page);
1669 if (test_clear_buffer_dirty(bh)) {
1670 mark_buffer_async_write(bh);
1674 } while ((bh = bh->b_this_page) != head);
1677 * The page and its buffers are protected by PageWriteback(), so we can
1678 * drop the bh refcounts early.
1680 BUG_ON(PageWriteback(page));
1681 set_page_writeback(page);
1684 struct buffer_head *next = bh->b_this_page;
1685 if (buffer_async_write(bh)) {
1686 submit_bh(WRITE, bh);
1690 } while (bh != head);
1695 if (nr_underway == 0) {
1697 * The page was marked dirty, but the buffers were
1698 * clean. Someone wrote them back by hand with
1699 * ll_rw_block/submit_bh. A rare case.
1703 if (!buffer_uptodate(bh)) {
1707 bh = bh->b_this_page;
1708 } while (bh != head);
1710 SetPageUptodate(page);
1711 end_page_writeback(page);
1713 * The page and buffer_heads can be released at any time from
1716 wbc->pages_skipped++; /* We didn't write this page */
1722 * ENOSPC, or some other error. We may already have added some
1723 * blocks to the file, so we need to write these out to avoid
1724 * exposing stale data.
1725 * The page is currently locked and not marked for writeback
1728 /* Recovery: lock and submit the mapped buffers */
1730 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1732 mark_buffer_async_write(bh);
1735 * The buffer may have been set dirty during
1736 * attachment to a dirty page.
1738 clear_buffer_dirty(bh);
1740 } while ((bh = bh->b_this_page) != head);
1742 BUG_ON(PageWriteback(page));
1743 set_page_writeback(page);
1746 struct buffer_head *next = bh->b_this_page;
1747 if (buffer_async_write(bh)) {
1748 clear_buffer_dirty(bh);
1749 submit_bh(WRITE, bh);
1753 } while (bh != head);
1757 static int __block_prepare_write(struct inode *inode, struct page *page,
1758 unsigned from, unsigned to, get_block_t *get_block)
1760 unsigned block_start, block_end;
1763 unsigned blocksize, bbits;
1764 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1766 BUG_ON(!PageLocked(page));
1767 BUG_ON(from > PAGE_CACHE_SIZE);
1768 BUG_ON(to > PAGE_CACHE_SIZE);
1771 blocksize = 1 << inode->i_blkbits;
1772 if (!page_has_buffers(page))
1773 create_empty_buffers(page, blocksize, 0);
1774 head = page_buffers(page);
1776 bbits = inode->i_blkbits;
1777 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1779 for(bh = head, block_start = 0; bh != head || !block_start;
1780 block++, block_start=block_end, bh = bh->b_this_page) {
1781 block_end = block_start + blocksize;
1782 if (block_end <= from || block_start >= to) {
1783 if (PageUptodate(page)) {
1784 if (!buffer_uptodate(bh))
1785 set_buffer_uptodate(bh);
1790 clear_buffer_new(bh);
1791 if (!buffer_mapped(bh)) {
1792 WARN_ON(bh->b_size != blocksize);
1793 err = get_block(inode, block, bh, 1);
1796 if (buffer_new(bh)) {
1797 unmap_underlying_metadata(bh->b_bdev,
1799 if (PageUptodate(page)) {
1800 set_buffer_uptodate(bh);
1803 if (block_end > to || block_start < from) {
1806 kaddr = kmap_atomic(page, KM_USER0);
1810 if (block_start < from)
1811 memset(kaddr+block_start,
1812 0, from-block_start);
1813 flush_dcache_page(page);
1814 kunmap_atomic(kaddr, KM_USER0);
1819 if (PageUptodate(page)) {
1820 if (!buffer_uptodate(bh))
1821 set_buffer_uptodate(bh);
1824 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1825 (block_start < from || block_end > to)) {
1826 ll_rw_block(READ, 1, &bh);
1831 * If we issued read requests - let them complete.
1833 while(wait_bh > wait) {
1834 wait_on_buffer(*--wait_bh);
1835 if (!buffer_uptodate(*wait_bh))
1842 clear_buffer_new(bh);
1843 } while ((bh = bh->b_this_page) != head);
1848 * Zero out any newly allocated blocks to avoid exposing stale
1849 * data. If BH_New is set, we know that the block was newly
1850 * allocated in the above loop.
1855 block_end = block_start+blocksize;
1856 if (block_end <= from)
1858 if (block_start >= to)
1860 if (buffer_new(bh)) {
1863 clear_buffer_new(bh);
1864 kaddr = kmap_atomic(page, KM_USER0);
1865 memset(kaddr+block_start, 0, bh->b_size);
1866 flush_dcache_page(page);
1867 kunmap_atomic(kaddr, KM_USER0);
1868 set_buffer_uptodate(bh);
1869 mark_buffer_dirty(bh);
1872 block_start = block_end;
1873 bh = bh->b_this_page;
1874 } while (bh != head);
1878 static int __block_commit_write(struct inode *inode, struct page *page,
1879 unsigned from, unsigned to)
1881 unsigned block_start, block_end;
1884 struct buffer_head *bh, *head;
1886 blocksize = 1 << inode->i_blkbits;
1888 for(bh = head = page_buffers(page), block_start = 0;
1889 bh != head || !block_start;
1890 block_start=block_end, bh = bh->b_this_page) {
1891 block_end = block_start + blocksize;
1892 if (block_end <= from || block_start >= to) {
1893 if (!buffer_uptodate(bh))
1896 set_buffer_uptodate(bh);
1897 mark_buffer_dirty(bh);
1902 * If this is a partial write which happened to make all buffers
1903 * uptodate then we can optimize away a bogus readpage() for
1904 * the next read(). Here we 'discover' whether the page went
1905 * uptodate as a result of this (potentially partial) write.
1908 SetPageUptodate(page);
1913 * Generic "read page" function for block devices that have the normal
1914 * get_block functionality. This is most of the block device filesystems.
1915 * Reads the page asynchronously --- the unlock_buffer() and
1916 * set/clear_buffer_uptodate() functions propagate buffer state into the
1917 * page struct once IO has completed.
1919 int block_read_full_page(struct page *page, get_block_t *get_block)
1921 struct inode *inode = page->mapping->host;
1922 sector_t iblock, lblock;
1923 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
1924 unsigned int blocksize;
1926 int fully_mapped = 1;
1928 BUG_ON(!PageLocked(page));
1929 blocksize = 1 << inode->i_blkbits;
1930 if (!page_has_buffers(page))
1931 create_empty_buffers(page, blocksize, 0);
1932 head = page_buffers(page);
1934 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1935 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
1941 if (buffer_uptodate(bh))
1944 if (!buffer_mapped(bh)) {
1948 if (iblock < lblock) {
1949 WARN_ON(bh->b_size != blocksize);
1950 err = get_block(inode, iblock, bh, 0);
1954 if (!buffer_mapped(bh)) {
1955 void *kaddr = kmap_atomic(page, KM_USER0);
1956 memset(kaddr + i * blocksize, 0, blocksize);
1957 flush_dcache_page(page);
1958 kunmap_atomic(kaddr, KM_USER0);
1960 set_buffer_uptodate(bh);
1964 * get_block() might have updated the buffer
1967 if (buffer_uptodate(bh))
1971 } while (i++, iblock++, (bh = bh->b_this_page) != head);
1974 SetPageMappedToDisk(page);
1978 * All buffers are uptodate - we can set the page uptodate
1979 * as well. But not if get_block() returned an error.
1981 if (!PageError(page))
1982 SetPageUptodate(page);
1987 /* Stage two: lock the buffers */
1988 for (i = 0; i < nr; i++) {
1991 mark_buffer_async_read(bh);
1995 * Stage 3: start the IO. Check for uptodateness
1996 * inside the buffer lock in case another process reading
1997 * the underlying blockdev brought it uptodate (the sct fix).
1999 for (i = 0; i < nr; i++) {
2001 if (buffer_uptodate(bh))
2002 end_buffer_async_read(bh, 1);
2004 submit_bh(READ, bh);
2009 /* utility function for filesystems that need to do work on expanding
2010 * truncates. Uses prepare/commit_write to allow the filesystem to
2011 * deal with the hole.
2013 static int __generic_cont_expand(struct inode *inode, loff_t size,
2014 pgoff_t index, unsigned int offset)
2016 struct address_space *mapping = inode->i_mapping;
2018 unsigned long limit;
2022 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2023 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2024 send_sig(SIGXFSZ, current, 0);
2027 if (size > inode->i_sb->s_maxbytes)
2031 page = grab_cache_page(mapping, index);
2034 err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2037 * ->prepare_write() may have instantiated a few blocks
2038 * outside i_size. Trim these off again.
2041 page_cache_release(page);
2042 vmtruncate(inode, inode->i_size);
2046 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2049 page_cache_release(page);
2056 int generic_cont_expand(struct inode *inode, loff_t size)
2059 unsigned int offset;
2061 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2063 /* ugh. in prepare/commit_write, if from==to==start of block, we
2064 ** skip the prepare. make sure we never send an offset for the start
2067 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2068 /* caller must handle this extra byte. */
2071 index = size >> PAGE_CACHE_SHIFT;
2073 return __generic_cont_expand(inode, size, index, offset);
2076 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2078 loff_t pos = size - 1;
2079 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2080 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2082 /* prepare/commit_write can handle even if from==to==start of block. */
2083 return __generic_cont_expand(inode, size, index, offset);
2087 * For moronic filesystems that do not allow holes in file.
2088 * We may have to extend the file.
2091 int cont_prepare_write(struct page *page, unsigned offset,
2092 unsigned to, get_block_t *get_block, loff_t *bytes)
2094 struct address_space *mapping = page->mapping;
2095 struct inode *inode = mapping->host;
2096 struct page *new_page;
2100 unsigned blocksize = 1 << inode->i_blkbits;
2103 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2105 new_page = grab_cache_page(mapping, pgpos);
2108 /* we might sleep */
2109 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2110 unlock_page(new_page);
2111 page_cache_release(new_page);
2114 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2115 if (zerofrom & (blocksize-1)) {
2116 *bytes |= (blocksize-1);
2119 status = __block_prepare_write(inode, new_page, zerofrom,
2120 PAGE_CACHE_SIZE, get_block);
2123 kaddr = kmap_atomic(new_page, KM_USER0);
2124 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2125 flush_dcache_page(new_page);
2126 kunmap_atomic(kaddr, KM_USER0);
2127 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2128 unlock_page(new_page);
2129 page_cache_release(new_page);
2132 if (page->index < pgpos) {
2133 /* completely inside the area */
2136 /* page covers the boundary, find the boundary offset */
2137 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2139 /* if we will expand the thing last block will be filled */
2140 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2141 *bytes |= (blocksize-1);
2145 /* starting below the boundary? Nothing to zero out */
2146 if (offset <= zerofrom)
2149 status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2152 if (zerofrom < offset) {
2153 kaddr = kmap_atomic(page, KM_USER0);
2154 memset(kaddr+zerofrom, 0, offset-zerofrom);
2155 flush_dcache_page(page);
2156 kunmap_atomic(kaddr, KM_USER0);
2157 __block_commit_write(inode, page, zerofrom, offset);
2161 ClearPageUptodate(page);
2165 ClearPageUptodate(new_page);
2166 unlock_page(new_page);
2167 page_cache_release(new_page);
2172 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2173 get_block_t *get_block)
2175 struct inode *inode = page->mapping->host;
2176 int err = __block_prepare_write(inode, page, from, to, get_block);
2178 ClearPageUptodate(page);
2182 int block_commit_write(struct page *page, unsigned from, unsigned to)
2184 struct inode *inode = page->mapping->host;
2185 __block_commit_write(inode,page,from,to);
2189 int generic_commit_write(struct file *file, struct page *page,
2190 unsigned from, unsigned to)
2192 struct inode *inode = page->mapping->host;
2193 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2194 __block_commit_write(inode,page,from,to);
2196 * No need to use i_size_read() here, the i_size
2197 * cannot change under us because we hold i_mutex.
2199 if (pos > inode->i_size) {
2200 i_size_write(inode, pos);
2201 mark_inode_dirty(inode);
2208 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2209 * immediately, while under the page lock. So it needs a special end_io
2210 * handler which does not touch the bh after unlocking it.
2212 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2213 * a race there is benign: unlock_buffer() only use the bh's address for
2214 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2217 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2220 set_buffer_uptodate(bh);
2222 /* This happens, due to failed READA attempts. */
2223 clear_buffer_uptodate(bh);
2229 * On entry, the page is fully not uptodate.
2230 * On exit the page is fully uptodate in the areas outside (from,to)
2232 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2233 get_block_t *get_block)
2235 struct inode *inode = page->mapping->host;
2236 const unsigned blkbits = inode->i_blkbits;
2237 const unsigned blocksize = 1 << blkbits;
2238 struct buffer_head map_bh;
2239 struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2240 unsigned block_in_page;
2241 unsigned block_start;
2242 sector_t block_in_file;
2247 int is_mapped_to_disk = 1;
2250 if (PageMappedToDisk(page))
2253 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2254 map_bh.b_page = page;
2257 * We loop across all blocks in the page, whether or not they are
2258 * part of the affected region. This is so we can discover if the
2259 * page is fully mapped-to-disk.
2261 for (block_start = 0, block_in_page = 0;
2262 block_start < PAGE_CACHE_SIZE;
2263 block_in_page++, block_start += blocksize) {
2264 unsigned block_end = block_start + blocksize;
2269 if (block_start >= to)
2271 map_bh.b_size = blocksize;
2272 ret = get_block(inode, block_in_file + block_in_page,
2276 if (!buffer_mapped(&map_bh))
2277 is_mapped_to_disk = 0;
2278 if (buffer_new(&map_bh))
2279 unmap_underlying_metadata(map_bh.b_bdev,
2281 if (PageUptodate(page))
2283 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2284 kaddr = kmap_atomic(page, KM_USER0);
2285 if (block_start < from) {
2286 memset(kaddr+block_start, 0, from-block_start);
2289 if (block_end > to) {
2290 memset(kaddr + to, 0, block_end - to);
2293 flush_dcache_page(page);
2294 kunmap_atomic(kaddr, KM_USER0);
2297 if (buffer_uptodate(&map_bh))
2298 continue; /* reiserfs does this */
2299 if (block_start < from || block_end > to) {
2300 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2306 bh->b_state = map_bh.b_state;
2307 atomic_set(&bh->b_count, 0);
2308 bh->b_this_page = NULL;
2310 bh->b_blocknr = map_bh.b_blocknr;
2311 bh->b_size = blocksize;
2312 bh->b_data = (char *)(long)block_start;
2313 bh->b_bdev = map_bh.b_bdev;
2314 bh->b_private = NULL;
2315 read_bh[nr_reads++] = bh;
2320 struct buffer_head *bh;
2323 * The page is locked, so these buffers are protected from
2324 * any VM or truncate activity. Hence we don't need to care
2325 * for the buffer_head refcounts.
2327 for (i = 0; i < nr_reads; i++) {
2330 bh->b_end_io = end_buffer_read_nobh;
2331 submit_bh(READ, bh);
2333 for (i = 0; i < nr_reads; i++) {
2336 if (!buffer_uptodate(bh))
2338 free_buffer_head(bh);
2345 if (is_mapped_to_disk)
2346 SetPageMappedToDisk(page);
2347 SetPageUptodate(page);
2350 * Setting the page dirty here isn't necessary for the prepare_write
2351 * function - commit_write will do that. But if/when this function is
2352 * used within the pagefault handler to ensure that all mmapped pages
2353 * have backing space in the filesystem, we will need to dirty the page
2354 * if its contents were altered.
2357 set_page_dirty(page);
2362 for (i = 0; i < nr_reads; i++) {
2364 free_buffer_head(read_bh[i]);
2368 * Error recovery is pretty slack. Clear the page and mark it dirty
2369 * so we'll later zero out any blocks which _were_ allocated.
2371 kaddr = kmap_atomic(page, KM_USER0);
2372 memset(kaddr, 0, PAGE_CACHE_SIZE);
2373 flush_dcache_page(page);
2374 kunmap_atomic(kaddr, KM_USER0);
2375 SetPageUptodate(page);
2376 set_page_dirty(page);
2379 EXPORT_SYMBOL(nobh_prepare_write);
2381 int nobh_commit_write(struct file *file, struct page *page,
2382 unsigned from, unsigned to)
2384 struct inode *inode = page->mapping->host;
2385 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2387 set_page_dirty(page);
2388 if (pos > inode->i_size) {
2389 i_size_write(inode, pos);
2390 mark_inode_dirty(inode);
2394 EXPORT_SYMBOL(nobh_commit_write);
2397 * nobh_writepage() - based on block_full_write_page() except
2398 * that it tries to operate without attaching bufferheads to
2401 int nobh_writepage(struct page *page, get_block_t *get_block,
2402 struct writeback_control *wbc)
2404 struct inode * const inode = page->mapping->host;
2405 loff_t i_size = i_size_read(inode);
2406 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2411 /* Is the page fully inside i_size? */
2412 if (page->index < end_index)
2415 /* Is the page fully outside i_size? (truncate in progress) */
2416 offset = i_size & (PAGE_CACHE_SIZE-1);
2417 if (page->index >= end_index+1 || !offset) {
2419 * The page may have dirty, unmapped buffers. For example,
2420 * they may have been added in ext3_writepage(). Make them
2421 * freeable here, so the page does not leak.
2424 /* Not really sure about this - do we need this ? */
2425 if (page->mapping->a_ops->invalidatepage)
2426 page->mapping->a_ops->invalidatepage(page, offset);
2429 return 0; /* don't care */
2433 * The page straddles i_size. It must be zeroed out on each and every
2434 * writepage invocation because it may be mmapped. "A file is mapped
2435 * in multiples of the page size. For a file that is not a multiple of
2436 * the page size, the remaining memory is zeroed when mapped, and
2437 * writes to that region are not written out to the file."
2439 kaddr = kmap_atomic(page, KM_USER0);
2440 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2441 flush_dcache_page(page);
2442 kunmap_atomic(kaddr, KM_USER0);
2444 ret = mpage_writepage(page, get_block, wbc);
2446 ret = __block_write_full_page(inode, page, get_block, wbc);
2449 EXPORT_SYMBOL(nobh_writepage);
2452 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2454 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2456 struct inode *inode = mapping->host;
2457 unsigned blocksize = 1 << inode->i_blkbits;
2458 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2459 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2462 const struct address_space_operations *a_ops = mapping->a_ops;
2466 if ((offset & (blocksize - 1)) == 0)
2470 page = grab_cache_page(mapping, index);
2474 to = (offset + blocksize) & ~(blocksize - 1);
2475 ret = a_ops->prepare_write(NULL, page, offset, to);
2477 kaddr = kmap_atomic(page, KM_USER0);
2478 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2479 flush_dcache_page(page);
2480 kunmap_atomic(kaddr, KM_USER0);
2481 set_page_dirty(page);
2484 page_cache_release(page);
2488 EXPORT_SYMBOL(nobh_truncate_page);
2490 int block_truncate_page(struct address_space *mapping,
2491 loff_t from, get_block_t *get_block)
2493 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2494 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2497 unsigned length, pos;
2498 struct inode *inode = mapping->host;
2500 struct buffer_head *bh;
2504 blocksize = 1 << inode->i_blkbits;
2505 length = offset & (blocksize - 1);
2507 /* Block boundary? Nothing to do */
2511 length = blocksize - length;
2512 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2514 page = grab_cache_page(mapping, index);
2519 if (!page_has_buffers(page))
2520 create_empty_buffers(page, blocksize, 0);
2522 /* Find the buffer that contains "offset" */
2523 bh = page_buffers(page);
2525 while (offset >= pos) {
2526 bh = bh->b_this_page;
2532 if (!buffer_mapped(bh)) {
2533 WARN_ON(bh->b_size != blocksize);
2534 err = get_block(inode, iblock, bh, 0);
2537 /* unmapped? It's a hole - nothing to do */
2538 if (!buffer_mapped(bh))
2542 /* Ok, it's mapped. Make sure it's up-to-date */
2543 if (PageUptodate(page))
2544 set_buffer_uptodate(bh);
2546 if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2548 ll_rw_block(READ, 1, &bh);
2550 /* Uhhuh. Read error. Complain and punt. */
2551 if (!buffer_uptodate(bh))
2555 kaddr = kmap_atomic(page, KM_USER0);
2556 memset(kaddr + offset, 0, length);
2557 flush_dcache_page(page);
2558 kunmap_atomic(kaddr, KM_USER0);
2560 mark_buffer_dirty(bh);
2565 page_cache_release(page);
2571 * The generic ->writepage function for buffer-backed address_spaces
2573 int block_write_full_page(struct page *page, get_block_t *get_block,
2574 struct writeback_control *wbc)
2576 struct inode * const inode = page->mapping->host;
2577 loff_t i_size = i_size_read(inode);
2578 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2582 /* Is the page fully inside i_size? */
2583 if (page->index < end_index)
2584 return __block_write_full_page(inode, page, get_block, wbc);
2586 /* Is the page fully outside i_size? (truncate in progress) */
2587 offset = i_size & (PAGE_CACHE_SIZE-1);
2588 if (page->index >= end_index+1 || !offset) {
2590 * The page may have dirty, unmapped buffers. For example,
2591 * they may have been added in ext3_writepage(). Make them
2592 * freeable here, so the page does not leak.
2594 do_invalidatepage(page, 0);
2596 return 0; /* don't care */
2600 * The page straddles i_size. It must be zeroed out on each and every
2601 * writepage invokation because it may be mmapped. "A file is mapped
2602 * in multiples of the page size. For a file that is not a multiple of
2603 * the page size, the remaining memory is zeroed when mapped, and
2604 * writes to that region are not written out to the file."
2606 kaddr = kmap_atomic(page, KM_USER0);
2607 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2608 flush_dcache_page(page);
2609 kunmap_atomic(kaddr, KM_USER0);
2610 return __block_write_full_page(inode, page, get_block, wbc);
2613 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2614 get_block_t *get_block)
2616 struct buffer_head tmp;
2617 struct inode *inode = mapping->host;
2620 tmp.b_size = 1 << inode->i_blkbits;
2621 get_block(inode, block, &tmp, 0);
2622 return tmp.b_blocknr;
2625 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2627 struct buffer_head *bh = bio->bi_private;
2632 if (err == -EOPNOTSUPP) {
2633 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2634 set_bit(BH_Eopnotsupp, &bh->b_state);
2637 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2642 int submit_bh(int rw, struct buffer_head * bh)
2647 BUG_ON(!buffer_locked(bh));
2648 BUG_ON(!buffer_mapped(bh));
2649 BUG_ON(!bh->b_end_io);
2651 if (buffer_ordered(bh) && (rw == WRITE))
2655 * Only clear out a write error when rewriting, should this
2656 * include WRITE_SYNC as well?
2658 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2659 clear_buffer_write_io_error(bh);
2662 * from here on down, it's all bio -- do the initial mapping,
2663 * submit_bio -> generic_make_request may further map this bio around
2665 bio = bio_alloc(GFP_NOIO, 1);
2667 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2668 bio->bi_bdev = bh->b_bdev;
2669 bio->bi_io_vec[0].bv_page = bh->b_page;
2670 bio->bi_io_vec[0].bv_len = bh->b_size;
2671 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2675 bio->bi_size = bh->b_size;
2677 bio->bi_end_io = end_bio_bh_io_sync;
2678 bio->bi_private = bh;
2681 submit_bio(rw, bio);
2683 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2691 * ll_rw_block: low-level access to block devices (DEPRECATED)
2692 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2693 * @nr: number of &struct buffer_heads in the array
2694 * @bhs: array of pointers to &struct buffer_head
2696 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2697 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2698 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2699 * are sent to disk. The fourth %READA option is described in the documentation
2700 * for generic_make_request() which ll_rw_block() calls.
2702 * This function drops any buffer that it cannot get a lock on (with the
2703 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2704 * clean when doing a write request, and any buffer that appears to be
2705 * up-to-date when doing read request. Further it marks as clean buffers that
2706 * are processed for writing (the buffer cache won't assume that they are
2707 * actually clean until the buffer gets unlocked).
2709 * ll_rw_block sets b_end_io to simple completion handler that marks
2710 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2713 * All of the buffers must be for the same device, and must also be a
2714 * multiple of the current approved size for the device.
2716 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2720 for (i = 0; i < nr; i++) {
2721 struct buffer_head *bh = bhs[i];
2725 else if (test_set_buffer_locked(bh))
2728 if (rw == WRITE || rw == SWRITE) {
2729 if (test_clear_buffer_dirty(bh)) {
2730 bh->b_end_io = end_buffer_write_sync;
2732 submit_bh(WRITE, bh);
2736 if (!buffer_uptodate(bh)) {
2737 bh->b_end_io = end_buffer_read_sync;
2748 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2749 * and then start new I/O and then wait upon it. The caller must have a ref on
2752 int sync_dirty_buffer(struct buffer_head *bh)
2756 WARN_ON(atomic_read(&bh->b_count) < 1);
2758 if (test_clear_buffer_dirty(bh)) {
2760 bh->b_end_io = end_buffer_write_sync;
2761 ret = submit_bh(WRITE, bh);
2763 if (buffer_eopnotsupp(bh)) {
2764 clear_buffer_eopnotsupp(bh);
2767 if (!ret && !buffer_uptodate(bh))
2776 * try_to_free_buffers() checks if all the buffers on this particular page
2777 * are unused, and releases them if so.
2779 * Exclusion against try_to_free_buffers may be obtained by either
2780 * locking the page or by holding its mapping's private_lock.
2782 * If the page is dirty but all the buffers are clean then we need to
2783 * be sure to mark the page clean as well. This is because the page
2784 * may be against a block device, and a later reattachment of buffers
2785 * to a dirty page will set *all* buffers dirty. Which would corrupt
2786 * filesystem data on the same device.
2788 * The same applies to regular filesystem pages: if all the buffers are
2789 * clean then we set the page clean and proceed. To do that, we require
2790 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2793 * try_to_free_buffers() is non-blocking.
2795 static inline int buffer_busy(struct buffer_head *bh)
2797 return atomic_read(&bh->b_count) |
2798 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2802 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2804 struct buffer_head *head = page_buffers(page);
2805 struct buffer_head *bh;
2809 if (buffer_write_io_error(bh) && page->mapping)
2810 set_bit(AS_EIO, &page->mapping->flags);
2811 if (buffer_busy(bh))
2813 bh = bh->b_this_page;
2814 } while (bh != head);
2817 struct buffer_head *next = bh->b_this_page;
2819 if (!list_empty(&bh->b_assoc_buffers))
2820 __remove_assoc_queue(bh);
2822 } while (bh != head);
2823 *buffers_to_free = head;
2824 __clear_page_buffers(page);
2830 int try_to_free_buffers(struct page *page)
2832 struct address_space * const mapping = page->mapping;
2833 struct buffer_head *buffers_to_free = NULL;
2836 BUG_ON(!PageLocked(page));
2837 if (PageWriteback(page))
2840 if (mapping == NULL) { /* can this still happen? */
2841 ret = drop_buffers(page, &buffers_to_free);
2845 spin_lock(&mapping->private_lock);
2846 ret = drop_buffers(page, &buffers_to_free);
2847 spin_unlock(&mapping->private_lock);
2850 * If the filesystem writes its buffers by hand (eg ext3)
2851 * then we can have clean buffers against a dirty page. We
2852 * clean the page here; otherwise later reattachment of buffers
2853 * could encounter a non-uptodate page, which is unresolvable.
2854 * This only applies in the rare case where try_to_free_buffers
2855 * succeeds but the page is not freed.
2857 clear_page_dirty(page);
2860 if (buffers_to_free) {
2861 struct buffer_head *bh = buffers_to_free;
2864 struct buffer_head *next = bh->b_this_page;
2865 free_buffer_head(bh);
2867 } while (bh != buffers_to_free);
2871 EXPORT_SYMBOL(try_to_free_buffers);
2873 void block_sync_page(struct page *page)
2875 struct address_space *mapping;
2878 mapping = page_mapping(page);
2880 blk_run_backing_dev(mapping->backing_dev_info, page);
2884 * There are no bdflush tunables left. But distributions are
2885 * still running obsolete flush daemons, so we terminate them here.
2887 * Use of bdflush() is deprecated and will be removed in a future kernel.
2888 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2890 asmlinkage long sys_bdflush(int func, long data)
2892 static int msg_count;
2894 if (!capable(CAP_SYS_ADMIN))
2897 if (msg_count < 5) {
2900 "warning: process `%s' used the obsolete bdflush"
2901 " system call\n", current->comm);
2902 printk(KERN_INFO "Fix your initscripts?\n");
2911 * Buffer-head allocation
2913 static struct kmem_cache *bh_cachep;
2916 * Once the number of bh's in the machine exceeds this level, we start
2917 * stripping them in writeback.
2919 static int max_buffer_heads;
2921 int buffer_heads_over_limit;
2923 struct bh_accounting {
2924 int nr; /* Number of live bh's */
2925 int ratelimit; /* Limit cacheline bouncing */
2928 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2930 static void recalc_bh_state(void)
2935 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
2937 __get_cpu_var(bh_accounting).ratelimit = 0;
2938 for_each_online_cpu(i)
2939 tot += per_cpu(bh_accounting, i).nr;
2940 buffer_heads_over_limit = (tot > max_buffer_heads);
2943 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2945 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
2947 get_cpu_var(bh_accounting).nr++;
2949 put_cpu_var(bh_accounting);
2953 EXPORT_SYMBOL(alloc_buffer_head);
2955 void free_buffer_head(struct buffer_head *bh)
2957 BUG_ON(!list_empty(&bh->b_assoc_buffers));
2958 kmem_cache_free(bh_cachep, bh);
2959 get_cpu_var(bh_accounting).nr--;
2961 put_cpu_var(bh_accounting);
2963 EXPORT_SYMBOL(free_buffer_head);
2966 init_buffer_head(void *data, struct kmem_cache *cachep, unsigned long flags)
2968 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2969 SLAB_CTOR_CONSTRUCTOR) {
2970 struct buffer_head * bh = (struct buffer_head *)data;
2972 memset(bh, 0, sizeof(*bh));
2973 INIT_LIST_HEAD(&bh->b_assoc_buffers);
2977 static void buffer_exit_cpu(int cpu)
2980 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2982 for (i = 0; i < BH_LRU_SIZE; i++) {
2986 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
2987 per_cpu(bh_accounting, cpu).nr = 0;
2988 put_cpu_var(bh_accounting);
2991 static int buffer_cpu_notify(struct notifier_block *self,
2992 unsigned long action, void *hcpu)
2994 if (action == CPU_DEAD)
2995 buffer_exit_cpu((unsigned long)hcpu);
2999 void __init buffer_init(void)
3003 bh_cachep = kmem_cache_create("buffer_head",
3004 sizeof(struct buffer_head), 0,
3005 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3011 * Limit the bh occupancy to 10% of ZONE_NORMAL
3013 nrpages = (nr_free_buffer_pages() * 10) / 100;
3014 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3015 hotcpu_notifier(buffer_cpu_notify, 0);
3018 EXPORT_SYMBOL(__bforget);
3019 EXPORT_SYMBOL(__brelse);
3020 EXPORT_SYMBOL(__wait_on_buffer);
3021 EXPORT_SYMBOL(block_commit_write);
3022 EXPORT_SYMBOL(block_prepare_write);
3023 EXPORT_SYMBOL(block_read_full_page);
3024 EXPORT_SYMBOL(block_sync_page);
3025 EXPORT_SYMBOL(block_truncate_page);
3026 EXPORT_SYMBOL(block_write_full_page);
3027 EXPORT_SYMBOL(cont_prepare_write);
3028 EXPORT_SYMBOL(end_buffer_read_sync);
3029 EXPORT_SYMBOL(end_buffer_write_sync);
3030 EXPORT_SYMBOL(file_fsync);
3031 EXPORT_SYMBOL(fsync_bdev);
3032 EXPORT_SYMBOL(generic_block_bmap);
3033 EXPORT_SYMBOL(generic_commit_write);
3034 EXPORT_SYMBOL(generic_cont_expand);
3035 EXPORT_SYMBOL(generic_cont_expand_simple);
3036 EXPORT_SYMBOL(init_buffer);
3037 EXPORT_SYMBOL(invalidate_bdev);
3038 EXPORT_SYMBOL(ll_rw_block);
3039 EXPORT_SYMBOL(mark_buffer_dirty);
3040 EXPORT_SYMBOL(submit_bh);
3041 EXPORT_SYMBOL(sync_dirty_buffer);
3042 EXPORT_SYMBOL(unlock_buffer);