Merge branch 'for-2.6.39/stack-plug' into for-2.6.39/core
[pandora-kernel.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52         bh->b_end_io = handler;
53         bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56
57 static int sleep_on_buffer(void *word)
58 {
59         io_schedule();
60         return 0;
61 }
62
63 void __lock_buffer(struct buffer_head *bh)
64 {
65         wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
66                                                         TASK_UNINTERRUPTIBLE);
67 }
68 EXPORT_SYMBOL(__lock_buffer);
69
70 void unlock_buffer(struct buffer_head *bh)
71 {
72         clear_bit_unlock(BH_Lock, &bh->b_state);
73         smp_mb__after_clear_bit();
74         wake_up_bit(&bh->b_state, BH_Lock);
75 }
76 EXPORT_SYMBOL(unlock_buffer);
77
78 /*
79  * Block until a buffer comes unlocked.  This doesn't stop it
80  * from becoming locked again - you have to lock it yourself
81  * if you want to preserve its state.
82  */
83 void __wait_on_buffer(struct buffer_head * bh)
84 {
85         wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
86 }
87 EXPORT_SYMBOL(__wait_on_buffer);
88
89 static void
90 __clear_page_buffers(struct page *page)
91 {
92         ClearPagePrivate(page);
93         set_page_private(page, 0);
94         page_cache_release(page);
95 }
96
97
98 static int quiet_error(struct buffer_head *bh)
99 {
100         if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
101                 return 0;
102         return 1;
103 }
104
105
106 static void buffer_io_error(struct buffer_head *bh)
107 {
108         char b[BDEVNAME_SIZE];
109         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
110                         bdevname(bh->b_bdev, b),
111                         (unsigned long long)bh->b_blocknr);
112 }
113
114 /*
115  * End-of-IO handler helper function which does not touch the bh after
116  * unlocking it.
117  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
118  * a race there is benign: unlock_buffer() only use the bh's address for
119  * hashing after unlocking the buffer, so it doesn't actually touch the bh
120  * itself.
121  */
122 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
123 {
124         if (uptodate) {
125                 set_buffer_uptodate(bh);
126         } else {
127                 /* This happens, due to failed READA attempts. */
128                 clear_buffer_uptodate(bh);
129         }
130         unlock_buffer(bh);
131 }
132
133 /*
134  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
135  * unlock the buffer. This is what ll_rw_block uses too.
136  */
137 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
138 {
139         __end_buffer_read_notouch(bh, uptodate);
140         put_bh(bh);
141 }
142 EXPORT_SYMBOL(end_buffer_read_sync);
143
144 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
145 {
146         char b[BDEVNAME_SIZE];
147
148         if (uptodate) {
149                 set_buffer_uptodate(bh);
150         } else {
151                 if (!quiet_error(bh)) {
152                         buffer_io_error(bh);
153                         printk(KERN_WARNING "lost page write due to "
154                                         "I/O error on %s\n",
155                                        bdevname(bh->b_bdev, b));
156                 }
157                 set_buffer_write_io_error(bh);
158                 clear_buffer_uptodate(bh);
159         }
160         unlock_buffer(bh);
161         put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_write_sync);
164
165 /*
166  * Various filesystems appear to want __find_get_block to be non-blocking.
167  * But it's the page lock which protects the buffers.  To get around this,
168  * we get exclusion from try_to_free_buffers with the blockdev mapping's
169  * private_lock.
170  *
171  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
172  * may be quite high.  This code could TryLock the page, and if that
173  * succeeds, there is no need to take private_lock. (But if
174  * private_lock is contended then so is mapping->tree_lock).
175  */
176 static struct buffer_head *
177 __find_get_block_slow(struct block_device *bdev, sector_t block)
178 {
179         struct inode *bd_inode = bdev->bd_inode;
180         struct address_space *bd_mapping = bd_inode->i_mapping;
181         struct buffer_head *ret = NULL;
182         pgoff_t index;
183         struct buffer_head *bh;
184         struct buffer_head *head;
185         struct page *page;
186         int all_mapped = 1;
187
188         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
189         page = find_get_page(bd_mapping, index);
190         if (!page)
191                 goto out;
192
193         spin_lock(&bd_mapping->private_lock);
194         if (!page_has_buffers(page))
195                 goto out_unlock;
196         head = page_buffers(page);
197         bh = head;
198         do {
199                 if (!buffer_mapped(bh))
200                         all_mapped = 0;
201                 else if (bh->b_blocknr == block) {
202                         ret = bh;
203                         get_bh(bh);
204                         goto out_unlock;
205                 }
206                 bh = bh->b_this_page;
207         } while (bh != head);
208
209         /* we might be here because some of the buffers on this page are
210          * not mapped.  This is due to various races between
211          * file io on the block device and getblk.  It gets dealt with
212          * elsewhere, don't buffer_error if we had some unmapped buffers
213          */
214         if (all_mapped) {
215                 printk("__find_get_block_slow() failed. "
216                         "block=%llu, b_blocknr=%llu\n",
217                         (unsigned long long)block,
218                         (unsigned long long)bh->b_blocknr);
219                 printk("b_state=0x%08lx, b_size=%zu\n",
220                         bh->b_state, bh->b_size);
221                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
222         }
223 out_unlock:
224         spin_unlock(&bd_mapping->private_lock);
225         page_cache_release(page);
226 out:
227         return ret;
228 }
229
230 /* If invalidate_buffers() will trash dirty buffers, it means some kind
231    of fs corruption is going on. Trashing dirty data always imply losing
232    information that was supposed to be just stored on the physical layer
233    by the user.
234
235    Thus invalidate_buffers in general usage is not allwowed to trash
236    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
237    be preserved.  These buffers are simply skipped.
238   
239    We also skip buffers which are still in use.  For example this can
240    happen if a userspace program is reading the block device.
241
242    NOTE: In the case where the user removed a removable-media-disk even if
243    there's still dirty data not synced on disk (due a bug in the device driver
244    or due an error of the user), by not destroying the dirty buffers we could
245    generate corruption also on the next media inserted, thus a parameter is
246    necessary to handle this case in the most safe way possible (trying
247    to not corrupt also the new disk inserted with the data belonging to
248    the old now corrupted disk). Also for the ramdisk the natural thing
249    to do in order to release the ramdisk memory is to destroy dirty buffers.
250
251    These are two special cases. Normal usage imply the device driver
252    to issue a sync on the device (without waiting I/O completion) and
253    then an invalidate_buffers call that doesn't trash dirty buffers.
254
255    For handling cache coherency with the blkdev pagecache the 'update' case
256    is been introduced. It is needed to re-read from disk any pinned
257    buffer. NOTE: re-reading from disk is destructive so we can do it only
258    when we assume nobody is changing the buffercache under our I/O and when
259    we think the disk contains more recent information than the buffercache.
260    The update == 1 pass marks the buffers we need to update, the update == 2
261    pass does the actual I/O. */
262 void invalidate_bdev(struct block_device *bdev)
263 {
264         struct address_space *mapping = bdev->bd_inode->i_mapping;
265
266         if (mapping->nrpages == 0)
267                 return;
268
269         invalidate_bh_lrus();
270         lru_add_drain_all();    /* make sure all lru add caches are flushed */
271         invalidate_mapping_pages(mapping, 0, -1);
272 }
273 EXPORT_SYMBOL(invalidate_bdev);
274
275 /*
276  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
277  */
278 static void free_more_memory(void)
279 {
280         struct zone *zone;
281         int nid;
282
283         wakeup_flusher_threads(1024);
284         yield();
285
286         for_each_online_node(nid) {
287                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
288                                                 gfp_zone(GFP_NOFS), NULL,
289                                                 &zone);
290                 if (zone)
291                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
292                                                 GFP_NOFS, NULL);
293         }
294 }
295
296 /*
297  * I/O completion handler for block_read_full_page() - pages
298  * which come unlocked at the end of I/O.
299  */
300 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
301 {
302         unsigned long flags;
303         struct buffer_head *first;
304         struct buffer_head *tmp;
305         struct page *page;
306         int page_uptodate = 1;
307
308         BUG_ON(!buffer_async_read(bh));
309
310         page = bh->b_page;
311         if (uptodate) {
312                 set_buffer_uptodate(bh);
313         } else {
314                 clear_buffer_uptodate(bh);
315                 if (!quiet_error(bh))
316                         buffer_io_error(bh);
317                 SetPageError(page);
318         }
319
320         /*
321          * Be _very_ careful from here on. Bad things can happen if
322          * two buffer heads end IO at almost the same time and both
323          * decide that the page is now completely done.
324          */
325         first = page_buffers(page);
326         local_irq_save(flags);
327         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
328         clear_buffer_async_read(bh);
329         unlock_buffer(bh);
330         tmp = bh;
331         do {
332                 if (!buffer_uptodate(tmp))
333                         page_uptodate = 0;
334                 if (buffer_async_read(tmp)) {
335                         BUG_ON(!buffer_locked(tmp));
336                         goto still_busy;
337                 }
338                 tmp = tmp->b_this_page;
339         } while (tmp != bh);
340         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
341         local_irq_restore(flags);
342
343         /*
344          * If none of the buffers had errors and they are all
345          * uptodate then we can set the page uptodate.
346          */
347         if (page_uptodate && !PageError(page))
348                 SetPageUptodate(page);
349         unlock_page(page);
350         return;
351
352 still_busy:
353         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
354         local_irq_restore(flags);
355         return;
356 }
357
358 /*
359  * Completion handler for block_write_full_page() - pages which are unlocked
360  * during I/O, and which have PageWriteback cleared upon I/O completion.
361  */
362 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
363 {
364         char b[BDEVNAME_SIZE];
365         unsigned long flags;
366         struct buffer_head *first;
367         struct buffer_head *tmp;
368         struct page *page;
369
370         BUG_ON(!buffer_async_write(bh));
371
372         page = bh->b_page;
373         if (uptodate) {
374                 set_buffer_uptodate(bh);
375         } else {
376                 if (!quiet_error(bh)) {
377                         buffer_io_error(bh);
378                         printk(KERN_WARNING "lost page write due to "
379                                         "I/O error on %s\n",
380                                bdevname(bh->b_bdev, b));
381                 }
382                 set_bit(AS_EIO, &page->mapping->flags);
383                 set_buffer_write_io_error(bh);
384                 clear_buffer_uptodate(bh);
385                 SetPageError(page);
386         }
387
388         first = page_buffers(page);
389         local_irq_save(flags);
390         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
391
392         clear_buffer_async_write(bh);
393         unlock_buffer(bh);
394         tmp = bh->b_this_page;
395         while (tmp != bh) {
396                 if (buffer_async_write(tmp)) {
397                         BUG_ON(!buffer_locked(tmp));
398                         goto still_busy;
399                 }
400                 tmp = tmp->b_this_page;
401         }
402         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
403         local_irq_restore(flags);
404         end_page_writeback(page);
405         return;
406
407 still_busy:
408         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
409         local_irq_restore(flags);
410         return;
411 }
412 EXPORT_SYMBOL(end_buffer_async_write);
413
414 /*
415  * If a page's buffers are under async readin (end_buffer_async_read
416  * completion) then there is a possibility that another thread of
417  * control could lock one of the buffers after it has completed
418  * but while some of the other buffers have not completed.  This
419  * locked buffer would confuse end_buffer_async_read() into not unlocking
420  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
421  * that this buffer is not under async I/O.
422  *
423  * The page comes unlocked when it has no locked buffer_async buffers
424  * left.
425  *
426  * PageLocked prevents anyone starting new async I/O reads any of
427  * the buffers.
428  *
429  * PageWriteback is used to prevent simultaneous writeout of the same
430  * page.
431  *
432  * PageLocked prevents anyone from starting writeback of a page which is
433  * under read I/O (PageWriteback is only ever set against a locked page).
434  */
435 static void mark_buffer_async_read(struct buffer_head *bh)
436 {
437         bh->b_end_io = end_buffer_async_read;
438         set_buffer_async_read(bh);
439 }
440
441 static void mark_buffer_async_write_endio(struct buffer_head *bh,
442                                           bh_end_io_t *handler)
443 {
444         bh->b_end_io = handler;
445         set_buffer_async_write(bh);
446 }
447
448 void mark_buffer_async_write(struct buffer_head *bh)
449 {
450         mark_buffer_async_write_endio(bh, end_buffer_async_write);
451 }
452 EXPORT_SYMBOL(mark_buffer_async_write);
453
454
455 /*
456  * fs/buffer.c contains helper functions for buffer-backed address space's
457  * fsync functions.  A common requirement for buffer-based filesystems is
458  * that certain data from the backing blockdev needs to be written out for
459  * a successful fsync().  For example, ext2 indirect blocks need to be
460  * written back and waited upon before fsync() returns.
461  *
462  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
463  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
464  * management of a list of dependent buffers at ->i_mapping->private_list.
465  *
466  * Locking is a little subtle: try_to_free_buffers() will remove buffers
467  * from their controlling inode's queue when they are being freed.  But
468  * try_to_free_buffers() will be operating against the *blockdev* mapping
469  * at the time, not against the S_ISREG file which depends on those buffers.
470  * So the locking for private_list is via the private_lock in the address_space
471  * which backs the buffers.  Which is different from the address_space 
472  * against which the buffers are listed.  So for a particular address_space,
473  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
474  * mapping->private_list will always be protected by the backing blockdev's
475  * ->private_lock.
476  *
477  * Which introduces a requirement: all buffers on an address_space's
478  * ->private_list must be from the same address_space: the blockdev's.
479  *
480  * address_spaces which do not place buffers at ->private_list via these
481  * utility functions are free to use private_lock and private_list for
482  * whatever they want.  The only requirement is that list_empty(private_list)
483  * be true at clear_inode() time.
484  *
485  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
486  * filesystems should do that.  invalidate_inode_buffers() should just go
487  * BUG_ON(!list_empty).
488  *
489  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
490  * take an address_space, not an inode.  And it should be called
491  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
492  * queued up.
493  *
494  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
495  * list if it is already on a list.  Because if the buffer is on a list,
496  * it *must* already be on the right one.  If not, the filesystem is being
497  * silly.  This will save a ton of locking.  But first we have to ensure
498  * that buffers are taken *off* the old inode's list when they are freed
499  * (presumably in truncate).  That requires careful auditing of all
500  * filesystems (do it inside bforget()).  It could also be done by bringing
501  * b_inode back.
502  */
503
504 /*
505  * The buffer's backing address_space's private_lock must be held
506  */
507 static void __remove_assoc_queue(struct buffer_head *bh)
508 {
509         list_del_init(&bh->b_assoc_buffers);
510         WARN_ON(!bh->b_assoc_map);
511         if (buffer_write_io_error(bh))
512                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
513         bh->b_assoc_map = NULL;
514 }
515
516 int inode_has_buffers(struct inode *inode)
517 {
518         return !list_empty(&inode->i_data.private_list);
519 }
520
521 /*
522  * osync is designed to support O_SYNC io.  It waits synchronously for
523  * all already-submitted IO to complete, but does not queue any new
524  * writes to the disk.
525  *
526  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
527  * you dirty the buffers, and then use osync_inode_buffers to wait for
528  * completion.  Any other dirty buffers which are not yet queued for
529  * write will not be flushed to disk by the osync.
530  */
531 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
532 {
533         struct buffer_head *bh;
534         struct list_head *p;
535         int err = 0;
536
537         spin_lock(lock);
538 repeat:
539         list_for_each_prev(p, list) {
540                 bh = BH_ENTRY(p);
541                 if (buffer_locked(bh)) {
542                         get_bh(bh);
543                         spin_unlock(lock);
544                         wait_on_buffer(bh);
545                         if (!buffer_uptodate(bh))
546                                 err = -EIO;
547                         brelse(bh);
548                         spin_lock(lock);
549                         goto repeat;
550                 }
551         }
552         spin_unlock(lock);
553         return err;
554 }
555
556 static void do_thaw_one(struct super_block *sb, void *unused)
557 {
558         char b[BDEVNAME_SIZE];
559         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
560                 printk(KERN_WARNING "Emergency Thaw on %s\n",
561                        bdevname(sb->s_bdev, b));
562 }
563
564 static void do_thaw_all(struct work_struct *work)
565 {
566         iterate_supers(do_thaw_one, NULL);
567         kfree(work);
568         printk(KERN_WARNING "Emergency Thaw complete\n");
569 }
570
571 /**
572  * emergency_thaw_all -- forcibly thaw every frozen filesystem
573  *
574  * Used for emergency unfreeze of all filesystems via SysRq
575  */
576 void emergency_thaw_all(void)
577 {
578         struct work_struct *work;
579
580         work = kmalloc(sizeof(*work), GFP_ATOMIC);
581         if (work) {
582                 INIT_WORK(work, do_thaw_all);
583                 schedule_work(work);
584         }
585 }
586
587 /**
588  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
589  * @mapping: the mapping which wants those buffers written
590  *
591  * Starts I/O against the buffers at mapping->private_list, and waits upon
592  * that I/O.
593  *
594  * Basically, this is a convenience function for fsync().
595  * @mapping is a file or directory which needs those buffers to be written for
596  * a successful fsync().
597  */
598 int sync_mapping_buffers(struct address_space *mapping)
599 {
600         struct address_space *buffer_mapping = mapping->assoc_mapping;
601
602         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
603                 return 0;
604
605         return fsync_buffers_list(&buffer_mapping->private_lock,
606                                         &mapping->private_list);
607 }
608 EXPORT_SYMBOL(sync_mapping_buffers);
609
610 /*
611  * Called when we've recently written block `bblock', and it is known that
612  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
613  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
614  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
615  */
616 void write_boundary_block(struct block_device *bdev,
617                         sector_t bblock, unsigned blocksize)
618 {
619         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
620         if (bh) {
621                 if (buffer_dirty(bh))
622                         ll_rw_block(WRITE, 1, &bh);
623                 put_bh(bh);
624         }
625 }
626
627 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
628 {
629         struct address_space *mapping = inode->i_mapping;
630         struct address_space *buffer_mapping = bh->b_page->mapping;
631
632         mark_buffer_dirty(bh);
633         if (!mapping->assoc_mapping) {
634                 mapping->assoc_mapping = buffer_mapping;
635         } else {
636                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
637         }
638         if (!bh->b_assoc_map) {
639                 spin_lock(&buffer_mapping->private_lock);
640                 list_move_tail(&bh->b_assoc_buffers,
641                                 &mapping->private_list);
642                 bh->b_assoc_map = mapping;
643                 spin_unlock(&buffer_mapping->private_lock);
644         }
645 }
646 EXPORT_SYMBOL(mark_buffer_dirty_inode);
647
648 /*
649  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
650  * dirty.
651  *
652  * If warn is true, then emit a warning if the page is not uptodate and has
653  * not been truncated.
654  */
655 static void __set_page_dirty(struct page *page,
656                 struct address_space *mapping, int warn)
657 {
658         spin_lock_irq(&mapping->tree_lock);
659         if (page->mapping) {    /* Race with truncate? */
660                 WARN_ON_ONCE(warn && !PageUptodate(page));
661                 account_page_dirtied(page, mapping);
662                 radix_tree_tag_set(&mapping->page_tree,
663                                 page_index(page), PAGECACHE_TAG_DIRTY);
664         }
665         spin_unlock_irq(&mapping->tree_lock);
666         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
667 }
668
669 /*
670  * Add a page to the dirty page list.
671  *
672  * It is a sad fact of life that this function is called from several places
673  * deeply under spinlocking.  It may not sleep.
674  *
675  * If the page has buffers, the uptodate buffers are set dirty, to preserve
676  * dirty-state coherency between the page and the buffers.  It the page does
677  * not have buffers then when they are later attached they will all be set
678  * dirty.
679  *
680  * The buffers are dirtied before the page is dirtied.  There's a small race
681  * window in which a writepage caller may see the page cleanness but not the
682  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
683  * before the buffers, a concurrent writepage caller could clear the page dirty
684  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
685  * page on the dirty page list.
686  *
687  * We use private_lock to lock against try_to_free_buffers while using the
688  * page's buffer list.  Also use this to protect against clean buffers being
689  * added to the page after it was set dirty.
690  *
691  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
692  * address_space though.
693  */
694 int __set_page_dirty_buffers(struct page *page)
695 {
696         int newly_dirty;
697         struct address_space *mapping = page_mapping(page);
698
699         if (unlikely(!mapping))
700                 return !TestSetPageDirty(page);
701
702         spin_lock(&mapping->private_lock);
703         if (page_has_buffers(page)) {
704                 struct buffer_head *head = page_buffers(page);
705                 struct buffer_head *bh = head;
706
707                 do {
708                         set_buffer_dirty(bh);
709                         bh = bh->b_this_page;
710                 } while (bh != head);
711         }
712         newly_dirty = !TestSetPageDirty(page);
713         spin_unlock(&mapping->private_lock);
714
715         if (newly_dirty)
716                 __set_page_dirty(page, mapping, 1);
717         return newly_dirty;
718 }
719 EXPORT_SYMBOL(__set_page_dirty_buffers);
720
721 /*
722  * Write out and wait upon a list of buffers.
723  *
724  * We have conflicting pressures: we want to make sure that all
725  * initially dirty buffers get waited on, but that any subsequently
726  * dirtied buffers don't.  After all, we don't want fsync to last
727  * forever if somebody is actively writing to the file.
728  *
729  * Do this in two main stages: first we copy dirty buffers to a
730  * temporary inode list, queueing the writes as we go.  Then we clean
731  * up, waiting for those writes to complete.
732  * 
733  * During this second stage, any subsequent updates to the file may end
734  * up refiling the buffer on the original inode's dirty list again, so
735  * there is a chance we will end up with a buffer queued for write but
736  * not yet completed on that list.  So, as a final cleanup we go through
737  * the osync code to catch these locked, dirty buffers without requeuing
738  * any newly dirty buffers for write.
739  */
740 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
741 {
742         struct buffer_head *bh;
743         struct list_head tmp;
744         struct address_space *mapping;
745         int err = 0, err2;
746
747         INIT_LIST_HEAD(&tmp);
748
749         spin_lock(lock);
750         while (!list_empty(list)) {
751                 bh = BH_ENTRY(list->next);
752                 mapping = bh->b_assoc_map;
753                 __remove_assoc_queue(bh);
754                 /* Avoid race with mark_buffer_dirty_inode() which does
755                  * a lockless check and we rely on seeing the dirty bit */
756                 smp_mb();
757                 if (buffer_dirty(bh) || buffer_locked(bh)) {
758                         list_add(&bh->b_assoc_buffers, &tmp);
759                         bh->b_assoc_map = mapping;
760                         if (buffer_dirty(bh)) {
761                                 get_bh(bh);
762                                 spin_unlock(lock);
763                                 /*
764                                  * Ensure any pending I/O completes so that
765                                  * write_dirty_buffer() actually writes the
766                                  * current contents - it is a noop if I/O is
767                                  * still in flight on potentially older
768                                  * contents.
769                                  */
770                                 write_dirty_buffer(bh, WRITE_SYNC);
771
772                                 /*
773                                  * Kick off IO for the previous mapping. Note
774                                  * that we will not run the very last mapping,
775                                  * wait_on_buffer() will do that for us
776                                  * through sync_buffer().
777                                  */
778                                 brelse(bh);
779                                 spin_lock(lock);
780                         }
781                 }
782         }
783
784         while (!list_empty(&tmp)) {
785                 bh = BH_ENTRY(tmp.prev);
786                 get_bh(bh);
787                 mapping = bh->b_assoc_map;
788                 __remove_assoc_queue(bh);
789                 /* Avoid race with mark_buffer_dirty_inode() which does
790                  * a lockless check and we rely on seeing the dirty bit */
791                 smp_mb();
792                 if (buffer_dirty(bh)) {
793                         list_add(&bh->b_assoc_buffers,
794                                  &mapping->private_list);
795                         bh->b_assoc_map = mapping;
796                 }
797                 spin_unlock(lock);
798                 wait_on_buffer(bh);
799                 if (!buffer_uptodate(bh))
800                         err = -EIO;
801                 brelse(bh);
802                 spin_lock(lock);
803         }
804         
805         spin_unlock(lock);
806         err2 = osync_buffers_list(lock, list);
807         if (err)
808                 return err;
809         else
810                 return err2;
811 }
812
813 /*
814  * Invalidate any and all dirty buffers on a given inode.  We are
815  * probably unmounting the fs, but that doesn't mean we have already
816  * done a sync().  Just drop the buffers from the inode list.
817  *
818  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
819  * assumes that all the buffers are against the blockdev.  Not true
820  * for reiserfs.
821  */
822 void invalidate_inode_buffers(struct inode *inode)
823 {
824         if (inode_has_buffers(inode)) {
825                 struct address_space *mapping = &inode->i_data;
826                 struct list_head *list = &mapping->private_list;
827                 struct address_space *buffer_mapping = mapping->assoc_mapping;
828
829                 spin_lock(&buffer_mapping->private_lock);
830                 while (!list_empty(list))
831                         __remove_assoc_queue(BH_ENTRY(list->next));
832                 spin_unlock(&buffer_mapping->private_lock);
833         }
834 }
835 EXPORT_SYMBOL(invalidate_inode_buffers);
836
837 /*
838  * Remove any clean buffers from the inode's buffer list.  This is called
839  * when we're trying to free the inode itself.  Those buffers can pin it.
840  *
841  * Returns true if all buffers were removed.
842  */
843 int remove_inode_buffers(struct inode *inode)
844 {
845         int ret = 1;
846
847         if (inode_has_buffers(inode)) {
848                 struct address_space *mapping = &inode->i_data;
849                 struct list_head *list = &mapping->private_list;
850                 struct address_space *buffer_mapping = mapping->assoc_mapping;
851
852                 spin_lock(&buffer_mapping->private_lock);
853                 while (!list_empty(list)) {
854                         struct buffer_head *bh = BH_ENTRY(list->next);
855                         if (buffer_dirty(bh)) {
856                                 ret = 0;
857                                 break;
858                         }
859                         __remove_assoc_queue(bh);
860                 }
861                 spin_unlock(&buffer_mapping->private_lock);
862         }
863         return ret;
864 }
865
866 /*
867  * Create the appropriate buffers when given a page for data area and
868  * the size of each buffer.. Use the bh->b_this_page linked list to
869  * follow the buffers created.  Return NULL if unable to create more
870  * buffers.
871  *
872  * The retry flag is used to differentiate async IO (paging, swapping)
873  * which may not fail from ordinary buffer allocations.
874  */
875 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
876                 int retry)
877 {
878         struct buffer_head *bh, *head;
879         long offset;
880
881 try_again:
882         head = NULL;
883         offset = PAGE_SIZE;
884         while ((offset -= size) >= 0) {
885                 bh = alloc_buffer_head(GFP_NOFS);
886                 if (!bh)
887                         goto no_grow;
888
889                 bh->b_bdev = NULL;
890                 bh->b_this_page = head;
891                 bh->b_blocknr = -1;
892                 head = bh;
893
894                 bh->b_state = 0;
895                 atomic_set(&bh->b_count, 0);
896                 bh->b_size = size;
897
898                 /* Link the buffer to its page */
899                 set_bh_page(bh, page, offset);
900
901                 init_buffer(bh, NULL, NULL);
902         }
903         return head;
904 /*
905  * In case anything failed, we just free everything we got.
906  */
907 no_grow:
908         if (head) {
909                 do {
910                         bh = head;
911                         head = head->b_this_page;
912                         free_buffer_head(bh);
913                 } while (head);
914         }
915
916         /*
917          * Return failure for non-async IO requests.  Async IO requests
918          * are not allowed to fail, so we have to wait until buffer heads
919          * become available.  But we don't want tasks sleeping with 
920          * partially complete buffers, so all were released above.
921          */
922         if (!retry)
923                 return NULL;
924
925         /* We're _really_ low on memory. Now we just
926          * wait for old buffer heads to become free due to
927          * finishing IO.  Since this is an async request and
928          * the reserve list is empty, we're sure there are 
929          * async buffer heads in use.
930          */
931         free_more_memory();
932         goto try_again;
933 }
934 EXPORT_SYMBOL_GPL(alloc_page_buffers);
935
936 static inline void
937 link_dev_buffers(struct page *page, struct buffer_head *head)
938 {
939         struct buffer_head *bh, *tail;
940
941         bh = head;
942         do {
943                 tail = bh;
944                 bh = bh->b_this_page;
945         } while (bh);
946         tail->b_this_page = head;
947         attach_page_buffers(page, head);
948 }
949
950 /*
951  * Initialise the state of a blockdev page's buffers.
952  */ 
953 static void
954 init_page_buffers(struct page *page, struct block_device *bdev,
955                         sector_t block, int size)
956 {
957         struct buffer_head *head = page_buffers(page);
958         struct buffer_head *bh = head;
959         int uptodate = PageUptodate(page);
960
961         do {
962                 if (!buffer_mapped(bh)) {
963                         init_buffer(bh, NULL, NULL);
964                         bh->b_bdev = bdev;
965                         bh->b_blocknr = block;
966                         if (uptodate)
967                                 set_buffer_uptodate(bh);
968                         set_buffer_mapped(bh);
969                 }
970                 block++;
971                 bh = bh->b_this_page;
972         } while (bh != head);
973 }
974
975 /*
976  * Create the page-cache page that contains the requested block.
977  *
978  * This is user purely for blockdev mappings.
979  */
980 static struct page *
981 grow_dev_page(struct block_device *bdev, sector_t block,
982                 pgoff_t index, int size)
983 {
984         struct inode *inode = bdev->bd_inode;
985         struct page *page;
986         struct buffer_head *bh;
987
988         page = find_or_create_page(inode->i_mapping, index,
989                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
990         if (!page)
991                 return NULL;
992
993         BUG_ON(!PageLocked(page));
994
995         if (page_has_buffers(page)) {
996                 bh = page_buffers(page);
997                 if (bh->b_size == size) {
998                         init_page_buffers(page, bdev, block, size);
999                         return page;
1000                 }
1001                 if (!try_to_free_buffers(page))
1002                         goto failed;
1003         }
1004
1005         /*
1006          * Allocate some buffers for this page
1007          */
1008         bh = alloc_page_buffers(page, size, 0);
1009         if (!bh)
1010                 goto failed;
1011
1012         /*
1013          * Link the page to the buffers and initialise them.  Take the
1014          * lock to be atomic wrt __find_get_block(), which does not
1015          * run under the page lock.
1016          */
1017         spin_lock(&inode->i_mapping->private_lock);
1018         link_dev_buffers(page, bh);
1019         init_page_buffers(page, bdev, block, size);
1020         spin_unlock(&inode->i_mapping->private_lock);
1021         return page;
1022
1023 failed:
1024         BUG();
1025         unlock_page(page);
1026         page_cache_release(page);
1027         return NULL;
1028 }
1029
1030 /*
1031  * Create buffers for the specified block device block's page.  If
1032  * that page was dirty, the buffers are set dirty also.
1033  */
1034 static int
1035 grow_buffers(struct block_device *bdev, sector_t block, int size)
1036 {
1037         struct page *page;
1038         pgoff_t index;
1039         int sizebits;
1040
1041         sizebits = -1;
1042         do {
1043                 sizebits++;
1044         } while ((size << sizebits) < PAGE_SIZE);
1045
1046         index = block >> sizebits;
1047
1048         /*
1049          * Check for a block which wants to lie outside our maximum possible
1050          * pagecache index.  (this comparison is done using sector_t types).
1051          */
1052         if (unlikely(index != block >> sizebits)) {
1053                 char b[BDEVNAME_SIZE];
1054
1055                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1056                         "device %s\n",
1057                         __func__, (unsigned long long)block,
1058                         bdevname(bdev, b));
1059                 return -EIO;
1060         }
1061         block = index << sizebits;
1062         /* Create a page with the proper size buffers.. */
1063         page = grow_dev_page(bdev, block, index, size);
1064         if (!page)
1065                 return 0;
1066         unlock_page(page);
1067         page_cache_release(page);
1068         return 1;
1069 }
1070
1071 static struct buffer_head *
1072 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1073 {
1074         /* Size must be multiple of hard sectorsize */
1075         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1076                         (size < 512 || size > PAGE_SIZE))) {
1077                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1078                                         size);
1079                 printk(KERN_ERR "logical block size: %d\n",
1080                                         bdev_logical_block_size(bdev));
1081
1082                 dump_stack();
1083                 return NULL;
1084         }
1085
1086         for (;;) {
1087                 struct buffer_head * bh;
1088                 int ret;
1089
1090                 bh = __find_get_block(bdev, block, size);
1091                 if (bh)
1092                         return bh;
1093
1094                 ret = grow_buffers(bdev, block, size);
1095                 if (ret < 0)
1096                         return NULL;
1097                 if (ret == 0)
1098                         free_more_memory();
1099         }
1100 }
1101
1102 /*
1103  * The relationship between dirty buffers and dirty pages:
1104  *
1105  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1106  * the page is tagged dirty in its radix tree.
1107  *
1108  * At all times, the dirtiness of the buffers represents the dirtiness of
1109  * subsections of the page.  If the page has buffers, the page dirty bit is
1110  * merely a hint about the true dirty state.
1111  *
1112  * When a page is set dirty in its entirety, all its buffers are marked dirty
1113  * (if the page has buffers).
1114  *
1115  * When a buffer is marked dirty, its page is dirtied, but the page's other
1116  * buffers are not.
1117  *
1118  * Also.  When blockdev buffers are explicitly read with bread(), they
1119  * individually become uptodate.  But their backing page remains not
1120  * uptodate - even if all of its buffers are uptodate.  A subsequent
1121  * block_read_full_page() against that page will discover all the uptodate
1122  * buffers, will set the page uptodate and will perform no I/O.
1123  */
1124
1125 /**
1126  * mark_buffer_dirty - mark a buffer_head as needing writeout
1127  * @bh: the buffer_head to mark dirty
1128  *
1129  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1130  * backing page dirty, then tag the page as dirty in its address_space's radix
1131  * tree and then attach the address_space's inode to its superblock's dirty
1132  * inode list.
1133  *
1134  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1135  * mapping->tree_lock and the global inode_lock.
1136  */
1137 void mark_buffer_dirty(struct buffer_head *bh)
1138 {
1139         WARN_ON_ONCE(!buffer_uptodate(bh));
1140
1141         /*
1142          * Very *carefully* optimize the it-is-already-dirty case.
1143          *
1144          * Don't let the final "is it dirty" escape to before we
1145          * perhaps modified the buffer.
1146          */
1147         if (buffer_dirty(bh)) {
1148                 smp_mb();
1149                 if (buffer_dirty(bh))
1150                         return;
1151         }
1152
1153         if (!test_set_buffer_dirty(bh)) {
1154                 struct page *page = bh->b_page;
1155                 if (!TestSetPageDirty(page)) {
1156                         struct address_space *mapping = page_mapping(page);
1157                         if (mapping)
1158                                 __set_page_dirty(page, mapping, 0);
1159                 }
1160         }
1161 }
1162 EXPORT_SYMBOL(mark_buffer_dirty);
1163
1164 /*
1165  * Decrement a buffer_head's reference count.  If all buffers against a page
1166  * have zero reference count, are clean and unlocked, and if the page is clean
1167  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1168  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1169  * a page but it ends up not being freed, and buffers may later be reattached).
1170  */
1171 void __brelse(struct buffer_head * buf)
1172 {
1173         if (atomic_read(&buf->b_count)) {
1174                 put_bh(buf);
1175                 return;
1176         }
1177         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1178 }
1179 EXPORT_SYMBOL(__brelse);
1180
1181 /*
1182  * bforget() is like brelse(), except it discards any
1183  * potentially dirty data.
1184  */
1185 void __bforget(struct buffer_head *bh)
1186 {
1187         clear_buffer_dirty(bh);
1188         if (bh->b_assoc_map) {
1189                 struct address_space *buffer_mapping = bh->b_page->mapping;
1190
1191                 spin_lock(&buffer_mapping->private_lock);
1192                 list_del_init(&bh->b_assoc_buffers);
1193                 bh->b_assoc_map = NULL;
1194                 spin_unlock(&buffer_mapping->private_lock);
1195         }
1196         __brelse(bh);
1197 }
1198 EXPORT_SYMBOL(__bforget);
1199
1200 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1201 {
1202         lock_buffer(bh);
1203         if (buffer_uptodate(bh)) {
1204                 unlock_buffer(bh);
1205                 return bh;
1206         } else {
1207                 get_bh(bh);
1208                 bh->b_end_io = end_buffer_read_sync;
1209                 submit_bh(READ, bh);
1210                 wait_on_buffer(bh);
1211                 if (buffer_uptodate(bh))
1212                         return bh;
1213         }
1214         brelse(bh);
1215         return NULL;
1216 }
1217
1218 /*
1219  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1220  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1221  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1222  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1223  * CPU's LRUs at the same time.
1224  *
1225  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1226  * sb_find_get_block().
1227  *
1228  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1229  * a local interrupt disable for that.
1230  */
1231
1232 #define BH_LRU_SIZE     8
1233
1234 struct bh_lru {
1235         struct buffer_head *bhs[BH_LRU_SIZE];
1236 };
1237
1238 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1239
1240 #ifdef CONFIG_SMP
1241 #define bh_lru_lock()   local_irq_disable()
1242 #define bh_lru_unlock() local_irq_enable()
1243 #else
1244 #define bh_lru_lock()   preempt_disable()
1245 #define bh_lru_unlock() preempt_enable()
1246 #endif
1247
1248 static inline void check_irqs_on(void)
1249 {
1250 #ifdef irqs_disabled
1251         BUG_ON(irqs_disabled());
1252 #endif
1253 }
1254
1255 /*
1256  * The LRU management algorithm is dopey-but-simple.  Sorry.
1257  */
1258 static void bh_lru_install(struct buffer_head *bh)
1259 {
1260         struct buffer_head *evictee = NULL;
1261
1262         check_irqs_on();
1263         bh_lru_lock();
1264         if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1265                 struct buffer_head *bhs[BH_LRU_SIZE];
1266                 int in;
1267                 int out = 0;
1268
1269                 get_bh(bh);
1270                 bhs[out++] = bh;
1271                 for (in = 0; in < BH_LRU_SIZE; in++) {
1272                         struct buffer_head *bh2 =
1273                                 __this_cpu_read(bh_lrus.bhs[in]);
1274
1275                         if (bh2 == bh) {
1276                                 __brelse(bh2);
1277                         } else {
1278                                 if (out >= BH_LRU_SIZE) {
1279                                         BUG_ON(evictee != NULL);
1280                                         evictee = bh2;
1281                                 } else {
1282                                         bhs[out++] = bh2;
1283                                 }
1284                         }
1285                 }
1286                 while (out < BH_LRU_SIZE)
1287                         bhs[out++] = NULL;
1288                 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1289         }
1290         bh_lru_unlock();
1291
1292         if (evictee)
1293                 __brelse(evictee);
1294 }
1295
1296 /*
1297  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1298  */
1299 static struct buffer_head *
1300 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1301 {
1302         struct buffer_head *ret = NULL;
1303         unsigned int i;
1304
1305         check_irqs_on();
1306         bh_lru_lock();
1307         for (i = 0; i < BH_LRU_SIZE; i++) {
1308                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1309
1310                 if (bh && bh->b_bdev == bdev &&
1311                                 bh->b_blocknr == block && bh->b_size == size) {
1312                         if (i) {
1313                                 while (i) {
1314                                         __this_cpu_write(bh_lrus.bhs[i],
1315                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1316                                         i--;
1317                                 }
1318                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1319                         }
1320                         get_bh(bh);
1321                         ret = bh;
1322                         break;
1323                 }
1324         }
1325         bh_lru_unlock();
1326         return ret;
1327 }
1328
1329 /*
1330  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1331  * it in the LRU and mark it as accessed.  If it is not present then return
1332  * NULL
1333  */
1334 struct buffer_head *
1335 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1336 {
1337         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1338
1339         if (bh == NULL) {
1340                 bh = __find_get_block_slow(bdev, block);
1341                 if (bh)
1342                         bh_lru_install(bh);
1343         }
1344         if (bh)
1345                 touch_buffer(bh);
1346         return bh;
1347 }
1348 EXPORT_SYMBOL(__find_get_block);
1349
1350 /*
1351  * __getblk will locate (and, if necessary, create) the buffer_head
1352  * which corresponds to the passed block_device, block and size. The
1353  * returned buffer has its reference count incremented.
1354  *
1355  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1356  * illegal block number, __getblk() will happily return a buffer_head
1357  * which represents the non-existent block.  Very weird.
1358  *
1359  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1360  * attempt is failing.  FIXME, perhaps?
1361  */
1362 struct buffer_head *
1363 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1364 {
1365         struct buffer_head *bh = __find_get_block(bdev, block, size);
1366
1367         might_sleep();
1368         if (bh == NULL)
1369                 bh = __getblk_slow(bdev, block, size);
1370         return bh;
1371 }
1372 EXPORT_SYMBOL(__getblk);
1373
1374 /*
1375  * Do async read-ahead on a buffer..
1376  */
1377 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1378 {
1379         struct buffer_head *bh = __getblk(bdev, block, size);
1380         if (likely(bh)) {
1381                 ll_rw_block(READA, 1, &bh);
1382                 brelse(bh);
1383         }
1384 }
1385 EXPORT_SYMBOL(__breadahead);
1386
1387 /**
1388  *  __bread() - reads a specified block and returns the bh
1389  *  @bdev: the block_device to read from
1390  *  @block: number of block
1391  *  @size: size (in bytes) to read
1392  * 
1393  *  Reads a specified block, and returns buffer head that contains it.
1394  *  It returns NULL if the block was unreadable.
1395  */
1396 struct buffer_head *
1397 __bread(struct block_device *bdev, sector_t block, unsigned size)
1398 {
1399         struct buffer_head *bh = __getblk(bdev, block, size);
1400
1401         if (likely(bh) && !buffer_uptodate(bh))
1402                 bh = __bread_slow(bh);
1403         return bh;
1404 }
1405 EXPORT_SYMBOL(__bread);
1406
1407 /*
1408  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1409  * This doesn't race because it runs in each cpu either in irq
1410  * or with preempt disabled.
1411  */
1412 static void invalidate_bh_lru(void *arg)
1413 {
1414         struct bh_lru *b = &get_cpu_var(bh_lrus);
1415         int i;
1416
1417         for (i = 0; i < BH_LRU_SIZE; i++) {
1418                 brelse(b->bhs[i]);
1419                 b->bhs[i] = NULL;
1420         }
1421         put_cpu_var(bh_lrus);
1422 }
1423         
1424 void invalidate_bh_lrus(void)
1425 {
1426         on_each_cpu(invalidate_bh_lru, NULL, 1);
1427 }
1428 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1429
1430 void set_bh_page(struct buffer_head *bh,
1431                 struct page *page, unsigned long offset)
1432 {
1433         bh->b_page = page;
1434         BUG_ON(offset >= PAGE_SIZE);
1435         if (PageHighMem(page))
1436                 /*
1437                  * This catches illegal uses and preserves the offset:
1438                  */
1439                 bh->b_data = (char *)(0 + offset);
1440         else
1441                 bh->b_data = page_address(page) + offset;
1442 }
1443 EXPORT_SYMBOL(set_bh_page);
1444
1445 /*
1446  * Called when truncating a buffer on a page completely.
1447  */
1448 static void discard_buffer(struct buffer_head * bh)
1449 {
1450         lock_buffer(bh);
1451         clear_buffer_dirty(bh);
1452         bh->b_bdev = NULL;
1453         clear_buffer_mapped(bh);
1454         clear_buffer_req(bh);
1455         clear_buffer_new(bh);
1456         clear_buffer_delay(bh);
1457         clear_buffer_unwritten(bh);
1458         unlock_buffer(bh);
1459 }
1460
1461 /**
1462  * block_invalidatepage - invalidate part of all of a buffer-backed page
1463  *
1464  * @page: the page which is affected
1465  * @offset: the index of the truncation point
1466  *
1467  * block_invalidatepage() is called when all or part of the page has become
1468  * invalidatedby a truncate operation.
1469  *
1470  * block_invalidatepage() does not have to release all buffers, but it must
1471  * ensure that no dirty buffer is left outside @offset and that no I/O
1472  * is underway against any of the blocks which are outside the truncation
1473  * point.  Because the caller is about to free (and possibly reuse) those
1474  * blocks on-disk.
1475  */
1476 void block_invalidatepage(struct page *page, unsigned long offset)
1477 {
1478         struct buffer_head *head, *bh, *next;
1479         unsigned int curr_off = 0;
1480
1481         BUG_ON(!PageLocked(page));
1482         if (!page_has_buffers(page))
1483                 goto out;
1484
1485         head = page_buffers(page);
1486         bh = head;
1487         do {
1488                 unsigned int next_off = curr_off + bh->b_size;
1489                 next = bh->b_this_page;
1490
1491                 /*
1492                  * is this block fully invalidated?
1493                  */
1494                 if (offset <= curr_off)
1495                         discard_buffer(bh);
1496                 curr_off = next_off;
1497                 bh = next;
1498         } while (bh != head);
1499
1500         /*
1501          * We release buffers only if the entire page is being invalidated.
1502          * The get_block cached value has been unconditionally invalidated,
1503          * so real IO is not possible anymore.
1504          */
1505         if (offset == 0)
1506                 try_to_release_page(page, 0);
1507 out:
1508         return;
1509 }
1510 EXPORT_SYMBOL(block_invalidatepage);
1511
1512 /*
1513  * We attach and possibly dirty the buffers atomically wrt
1514  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1515  * is already excluded via the page lock.
1516  */
1517 void create_empty_buffers(struct page *page,
1518                         unsigned long blocksize, unsigned long b_state)
1519 {
1520         struct buffer_head *bh, *head, *tail;
1521
1522         head = alloc_page_buffers(page, blocksize, 1);
1523         bh = head;
1524         do {
1525                 bh->b_state |= b_state;
1526                 tail = bh;
1527                 bh = bh->b_this_page;
1528         } while (bh);
1529         tail->b_this_page = head;
1530
1531         spin_lock(&page->mapping->private_lock);
1532         if (PageUptodate(page) || PageDirty(page)) {
1533                 bh = head;
1534                 do {
1535                         if (PageDirty(page))
1536                                 set_buffer_dirty(bh);
1537                         if (PageUptodate(page))
1538                                 set_buffer_uptodate(bh);
1539                         bh = bh->b_this_page;
1540                 } while (bh != head);
1541         }
1542         attach_page_buffers(page, head);
1543         spin_unlock(&page->mapping->private_lock);
1544 }
1545 EXPORT_SYMBOL(create_empty_buffers);
1546
1547 /*
1548  * We are taking a block for data and we don't want any output from any
1549  * buffer-cache aliases starting from return from that function and
1550  * until the moment when something will explicitly mark the buffer
1551  * dirty (hopefully that will not happen until we will free that block ;-)
1552  * We don't even need to mark it not-uptodate - nobody can expect
1553  * anything from a newly allocated buffer anyway. We used to used
1554  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1555  * don't want to mark the alias unmapped, for example - it would confuse
1556  * anyone who might pick it with bread() afterwards...
1557  *
1558  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1559  * be writeout I/O going on against recently-freed buffers.  We don't
1560  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1561  * only if we really need to.  That happens here.
1562  */
1563 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1564 {
1565         struct buffer_head *old_bh;
1566
1567         might_sleep();
1568
1569         old_bh = __find_get_block_slow(bdev, block);
1570         if (old_bh) {
1571                 clear_buffer_dirty(old_bh);
1572                 wait_on_buffer(old_bh);
1573                 clear_buffer_req(old_bh);
1574                 __brelse(old_bh);
1575         }
1576 }
1577 EXPORT_SYMBOL(unmap_underlying_metadata);
1578
1579 /*
1580  * NOTE! All mapped/uptodate combinations are valid:
1581  *
1582  *      Mapped  Uptodate        Meaning
1583  *
1584  *      No      No              "unknown" - must do get_block()
1585  *      No      Yes             "hole" - zero-filled
1586  *      Yes     No              "allocated" - allocated on disk, not read in
1587  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1588  *
1589  * "Dirty" is valid only with the last case (mapped+uptodate).
1590  */
1591
1592 /*
1593  * While block_write_full_page is writing back the dirty buffers under
1594  * the page lock, whoever dirtied the buffers may decide to clean them
1595  * again at any time.  We handle that by only looking at the buffer
1596  * state inside lock_buffer().
1597  *
1598  * If block_write_full_page() is called for regular writeback
1599  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1600  * locked buffer.   This only can happen if someone has written the buffer
1601  * directly, with submit_bh().  At the address_space level PageWriteback
1602  * prevents this contention from occurring.
1603  *
1604  * If block_write_full_page() is called with wbc->sync_mode ==
1605  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1606  * causes the writes to be flagged as synchronous writes.
1607  */
1608 static int __block_write_full_page(struct inode *inode, struct page *page,
1609                         get_block_t *get_block, struct writeback_control *wbc,
1610                         bh_end_io_t *handler)
1611 {
1612         int err;
1613         sector_t block;
1614         sector_t last_block;
1615         struct buffer_head *bh, *head;
1616         const unsigned blocksize = 1 << inode->i_blkbits;
1617         int nr_underway = 0;
1618         int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1619                         WRITE_SYNC : WRITE);
1620
1621         BUG_ON(!PageLocked(page));
1622
1623         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1624
1625         if (!page_has_buffers(page)) {
1626                 create_empty_buffers(page, blocksize,
1627                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1628         }
1629
1630         /*
1631          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1632          * here, and the (potentially unmapped) buffers may become dirty at
1633          * any time.  If a buffer becomes dirty here after we've inspected it
1634          * then we just miss that fact, and the page stays dirty.
1635          *
1636          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1637          * handle that here by just cleaning them.
1638          */
1639
1640         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1641         head = page_buffers(page);
1642         bh = head;
1643
1644         /*
1645          * Get all the dirty buffers mapped to disk addresses and
1646          * handle any aliases from the underlying blockdev's mapping.
1647          */
1648         do {
1649                 if (block > last_block) {
1650                         /*
1651                          * mapped buffers outside i_size will occur, because
1652                          * this page can be outside i_size when there is a
1653                          * truncate in progress.
1654                          */
1655                         /*
1656                          * The buffer was zeroed by block_write_full_page()
1657                          */
1658                         clear_buffer_dirty(bh);
1659                         set_buffer_uptodate(bh);
1660                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1661                            buffer_dirty(bh)) {
1662                         WARN_ON(bh->b_size != blocksize);
1663                         err = get_block(inode, block, bh, 1);
1664                         if (err)
1665                                 goto recover;
1666                         clear_buffer_delay(bh);
1667                         if (buffer_new(bh)) {
1668                                 /* blockdev mappings never come here */
1669                                 clear_buffer_new(bh);
1670                                 unmap_underlying_metadata(bh->b_bdev,
1671                                                         bh->b_blocknr);
1672                         }
1673                 }
1674                 bh = bh->b_this_page;
1675                 block++;
1676         } while (bh != head);
1677
1678         do {
1679                 if (!buffer_mapped(bh))
1680                         continue;
1681                 /*
1682                  * If it's a fully non-blocking write attempt and we cannot
1683                  * lock the buffer then redirty the page.  Note that this can
1684                  * potentially cause a busy-wait loop from writeback threads
1685                  * and kswapd activity, but those code paths have their own
1686                  * higher-level throttling.
1687                  */
1688                 if (wbc->sync_mode != WB_SYNC_NONE) {
1689                         lock_buffer(bh);
1690                 } else if (!trylock_buffer(bh)) {
1691                         redirty_page_for_writepage(wbc, page);
1692                         continue;
1693                 }
1694                 if (test_clear_buffer_dirty(bh)) {
1695                         mark_buffer_async_write_endio(bh, handler);
1696                 } else {
1697                         unlock_buffer(bh);
1698                 }
1699         } while ((bh = bh->b_this_page) != head);
1700
1701         /*
1702          * The page and its buffers are protected by PageWriteback(), so we can
1703          * drop the bh refcounts early.
1704          */
1705         BUG_ON(PageWriteback(page));
1706         set_page_writeback(page);
1707
1708         do {
1709                 struct buffer_head *next = bh->b_this_page;
1710                 if (buffer_async_write(bh)) {
1711                         submit_bh(write_op, bh);
1712                         nr_underway++;
1713                 }
1714                 bh = next;
1715         } while (bh != head);
1716         unlock_page(page);
1717
1718         err = 0;
1719 done:
1720         if (nr_underway == 0) {
1721                 /*
1722                  * The page was marked dirty, but the buffers were
1723                  * clean.  Someone wrote them back by hand with
1724                  * ll_rw_block/submit_bh.  A rare case.
1725                  */
1726                 end_page_writeback(page);
1727
1728                 /*
1729                  * The page and buffer_heads can be released at any time from
1730                  * here on.
1731                  */
1732         }
1733         return err;
1734
1735 recover:
1736         /*
1737          * ENOSPC, or some other error.  We may already have added some
1738          * blocks to the file, so we need to write these out to avoid
1739          * exposing stale data.
1740          * The page is currently locked and not marked for writeback
1741          */
1742         bh = head;
1743         /* Recovery: lock and submit the mapped buffers */
1744         do {
1745                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1746                     !buffer_delay(bh)) {
1747                         lock_buffer(bh);
1748                         mark_buffer_async_write_endio(bh, handler);
1749                 } else {
1750                         /*
1751                          * The buffer may have been set dirty during
1752                          * attachment to a dirty page.
1753                          */
1754                         clear_buffer_dirty(bh);
1755                 }
1756         } while ((bh = bh->b_this_page) != head);
1757         SetPageError(page);
1758         BUG_ON(PageWriteback(page));
1759         mapping_set_error(page->mapping, err);
1760         set_page_writeback(page);
1761         do {
1762                 struct buffer_head *next = bh->b_this_page;
1763                 if (buffer_async_write(bh)) {
1764                         clear_buffer_dirty(bh);
1765                         submit_bh(write_op, bh);
1766                         nr_underway++;
1767                 }
1768                 bh = next;
1769         } while (bh != head);
1770         unlock_page(page);
1771         goto done;
1772 }
1773
1774 /*
1775  * If a page has any new buffers, zero them out here, and mark them uptodate
1776  * and dirty so they'll be written out (in order to prevent uninitialised
1777  * block data from leaking). And clear the new bit.
1778  */
1779 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1780 {
1781         unsigned int block_start, block_end;
1782         struct buffer_head *head, *bh;
1783
1784         BUG_ON(!PageLocked(page));
1785         if (!page_has_buffers(page))
1786                 return;
1787
1788         bh = head = page_buffers(page);
1789         block_start = 0;
1790         do {
1791                 block_end = block_start + bh->b_size;
1792
1793                 if (buffer_new(bh)) {
1794                         if (block_end > from && block_start < to) {
1795                                 if (!PageUptodate(page)) {
1796                                         unsigned start, size;
1797
1798                                         start = max(from, block_start);
1799                                         size = min(to, block_end) - start;
1800
1801                                         zero_user(page, start, size);
1802                                         set_buffer_uptodate(bh);
1803                                 }
1804
1805                                 clear_buffer_new(bh);
1806                                 mark_buffer_dirty(bh);
1807                         }
1808                 }
1809
1810                 block_start = block_end;
1811                 bh = bh->b_this_page;
1812         } while (bh != head);
1813 }
1814 EXPORT_SYMBOL(page_zero_new_buffers);
1815
1816 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1817                 get_block_t *get_block)
1818 {
1819         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1820         unsigned to = from + len;
1821         struct inode *inode = page->mapping->host;
1822         unsigned block_start, block_end;
1823         sector_t block;
1824         int err = 0;
1825         unsigned blocksize, bbits;
1826         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1827
1828         BUG_ON(!PageLocked(page));
1829         BUG_ON(from > PAGE_CACHE_SIZE);
1830         BUG_ON(to > PAGE_CACHE_SIZE);
1831         BUG_ON(from > to);
1832
1833         blocksize = 1 << inode->i_blkbits;
1834         if (!page_has_buffers(page))
1835                 create_empty_buffers(page, blocksize, 0);
1836         head = page_buffers(page);
1837
1838         bbits = inode->i_blkbits;
1839         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1840
1841         for(bh = head, block_start = 0; bh != head || !block_start;
1842             block++, block_start=block_end, bh = bh->b_this_page) {
1843                 block_end = block_start + blocksize;
1844                 if (block_end <= from || block_start >= to) {
1845                         if (PageUptodate(page)) {
1846                                 if (!buffer_uptodate(bh))
1847                                         set_buffer_uptodate(bh);
1848                         }
1849                         continue;
1850                 }
1851                 if (buffer_new(bh))
1852                         clear_buffer_new(bh);
1853                 if (!buffer_mapped(bh)) {
1854                         WARN_ON(bh->b_size != blocksize);
1855                         err = get_block(inode, block, bh, 1);
1856                         if (err)
1857                                 break;
1858                         if (buffer_new(bh)) {
1859                                 unmap_underlying_metadata(bh->b_bdev,
1860                                                         bh->b_blocknr);
1861                                 if (PageUptodate(page)) {
1862                                         clear_buffer_new(bh);
1863                                         set_buffer_uptodate(bh);
1864                                         mark_buffer_dirty(bh);
1865                                         continue;
1866                                 }
1867                                 if (block_end > to || block_start < from)
1868                                         zero_user_segments(page,
1869                                                 to, block_end,
1870                                                 block_start, from);
1871                                 continue;
1872                         }
1873                 }
1874                 if (PageUptodate(page)) {
1875                         if (!buffer_uptodate(bh))
1876                                 set_buffer_uptodate(bh);
1877                         continue; 
1878                 }
1879                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1880                     !buffer_unwritten(bh) &&
1881                      (block_start < from || block_end > to)) {
1882                         ll_rw_block(READ, 1, &bh);
1883                         *wait_bh++=bh;
1884                 }
1885         }
1886         /*
1887          * If we issued read requests - let them complete.
1888          */
1889         while(wait_bh > wait) {
1890                 wait_on_buffer(*--wait_bh);
1891                 if (!buffer_uptodate(*wait_bh))
1892                         err = -EIO;
1893         }
1894         if (unlikely(err)) {
1895                 page_zero_new_buffers(page, from, to);
1896                 ClearPageUptodate(page);
1897         }
1898         return err;
1899 }
1900 EXPORT_SYMBOL(__block_write_begin);
1901
1902 static int __block_commit_write(struct inode *inode, struct page *page,
1903                 unsigned from, unsigned to)
1904 {
1905         unsigned block_start, block_end;
1906         int partial = 0;
1907         unsigned blocksize;
1908         struct buffer_head *bh, *head;
1909
1910         blocksize = 1 << inode->i_blkbits;
1911
1912         for(bh = head = page_buffers(page), block_start = 0;
1913             bh != head || !block_start;
1914             block_start=block_end, bh = bh->b_this_page) {
1915                 block_end = block_start + blocksize;
1916                 if (block_end <= from || block_start >= to) {
1917                         if (!buffer_uptodate(bh))
1918                                 partial = 1;
1919                 } else {
1920                         set_buffer_uptodate(bh);
1921                         mark_buffer_dirty(bh);
1922                 }
1923                 clear_buffer_new(bh);
1924         }
1925
1926         /*
1927          * If this is a partial write which happened to make all buffers
1928          * uptodate then we can optimize away a bogus readpage() for
1929          * the next read(). Here we 'discover' whether the page went
1930          * uptodate as a result of this (potentially partial) write.
1931          */
1932         if (!partial)
1933                 SetPageUptodate(page);
1934         return 0;
1935 }
1936
1937 /*
1938  * block_write_begin takes care of the basic task of block allocation and
1939  * bringing partial write blocks uptodate first.
1940  *
1941  * The filesystem needs to handle block truncation upon failure.
1942  */
1943 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1944                 unsigned flags, struct page **pagep, get_block_t *get_block)
1945 {
1946         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1947         struct page *page;
1948         int status;
1949
1950         page = grab_cache_page_write_begin(mapping, index, flags);
1951         if (!page)
1952                 return -ENOMEM;
1953
1954         status = __block_write_begin(page, pos, len, get_block);
1955         if (unlikely(status)) {
1956                 unlock_page(page);
1957                 page_cache_release(page);
1958                 page = NULL;
1959         }
1960
1961         *pagep = page;
1962         return status;
1963 }
1964 EXPORT_SYMBOL(block_write_begin);
1965
1966 int block_write_end(struct file *file, struct address_space *mapping,
1967                         loff_t pos, unsigned len, unsigned copied,
1968                         struct page *page, void *fsdata)
1969 {
1970         struct inode *inode = mapping->host;
1971         unsigned start;
1972
1973         start = pos & (PAGE_CACHE_SIZE - 1);
1974
1975         if (unlikely(copied < len)) {
1976                 /*
1977                  * The buffers that were written will now be uptodate, so we
1978                  * don't have to worry about a readpage reading them and
1979                  * overwriting a partial write. However if we have encountered
1980                  * a short write and only partially written into a buffer, it
1981                  * will not be marked uptodate, so a readpage might come in and
1982                  * destroy our partial write.
1983                  *
1984                  * Do the simplest thing, and just treat any short write to a
1985                  * non uptodate page as a zero-length write, and force the
1986                  * caller to redo the whole thing.
1987                  */
1988                 if (!PageUptodate(page))
1989                         copied = 0;
1990
1991                 page_zero_new_buffers(page, start+copied, start+len);
1992         }
1993         flush_dcache_page(page);
1994
1995         /* This could be a short (even 0-length) commit */
1996         __block_commit_write(inode, page, start, start+copied);
1997
1998         return copied;
1999 }
2000 EXPORT_SYMBOL(block_write_end);
2001
2002 int generic_write_end(struct file *file, struct address_space *mapping,
2003                         loff_t pos, unsigned len, unsigned copied,
2004                         struct page *page, void *fsdata)
2005 {
2006         struct inode *inode = mapping->host;
2007         int i_size_changed = 0;
2008
2009         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2010
2011         /*
2012          * No need to use i_size_read() here, the i_size
2013          * cannot change under us because we hold i_mutex.
2014          *
2015          * But it's important to update i_size while still holding page lock:
2016          * page writeout could otherwise come in and zero beyond i_size.
2017          */
2018         if (pos+copied > inode->i_size) {
2019                 i_size_write(inode, pos+copied);
2020                 i_size_changed = 1;
2021         }
2022
2023         unlock_page(page);
2024         page_cache_release(page);
2025
2026         /*
2027          * Don't mark the inode dirty under page lock. First, it unnecessarily
2028          * makes the holding time of page lock longer. Second, it forces lock
2029          * ordering of page lock and transaction start for journaling
2030          * filesystems.
2031          */
2032         if (i_size_changed)
2033                 mark_inode_dirty(inode);
2034
2035         return copied;
2036 }
2037 EXPORT_SYMBOL(generic_write_end);
2038
2039 /*
2040  * block_is_partially_uptodate checks whether buffers within a page are
2041  * uptodate or not.
2042  *
2043  * Returns true if all buffers which correspond to a file portion
2044  * we want to read are uptodate.
2045  */
2046 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2047                                         unsigned long from)
2048 {
2049         struct inode *inode = page->mapping->host;
2050         unsigned block_start, block_end, blocksize;
2051         unsigned to;
2052         struct buffer_head *bh, *head;
2053         int ret = 1;
2054
2055         if (!page_has_buffers(page))
2056                 return 0;
2057
2058         blocksize = 1 << inode->i_blkbits;
2059         to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2060         to = from + to;
2061         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2062                 return 0;
2063
2064         head = page_buffers(page);
2065         bh = head;
2066         block_start = 0;
2067         do {
2068                 block_end = block_start + blocksize;
2069                 if (block_end > from && block_start < to) {
2070                         if (!buffer_uptodate(bh)) {
2071                                 ret = 0;
2072                                 break;
2073                         }
2074                         if (block_end >= to)
2075                                 break;
2076                 }
2077                 block_start = block_end;
2078                 bh = bh->b_this_page;
2079         } while (bh != head);
2080
2081         return ret;
2082 }
2083 EXPORT_SYMBOL(block_is_partially_uptodate);
2084
2085 /*
2086  * Generic "read page" function for block devices that have the normal
2087  * get_block functionality. This is most of the block device filesystems.
2088  * Reads the page asynchronously --- the unlock_buffer() and
2089  * set/clear_buffer_uptodate() functions propagate buffer state into the
2090  * page struct once IO has completed.
2091  */
2092 int block_read_full_page(struct page *page, get_block_t *get_block)
2093 {
2094         struct inode *inode = page->mapping->host;
2095         sector_t iblock, lblock;
2096         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2097         unsigned int blocksize;
2098         int nr, i;
2099         int fully_mapped = 1;
2100
2101         BUG_ON(!PageLocked(page));
2102         blocksize = 1 << inode->i_blkbits;
2103         if (!page_has_buffers(page))
2104                 create_empty_buffers(page, blocksize, 0);
2105         head = page_buffers(page);
2106
2107         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2108         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2109         bh = head;
2110         nr = 0;
2111         i = 0;
2112
2113         do {
2114                 if (buffer_uptodate(bh))
2115                         continue;
2116
2117                 if (!buffer_mapped(bh)) {
2118                         int err = 0;
2119
2120                         fully_mapped = 0;
2121                         if (iblock < lblock) {
2122                                 WARN_ON(bh->b_size != blocksize);
2123                                 err = get_block(inode, iblock, bh, 0);
2124                                 if (err)
2125                                         SetPageError(page);
2126                         }
2127                         if (!buffer_mapped(bh)) {
2128                                 zero_user(page, i * blocksize, blocksize);
2129                                 if (!err)
2130                                         set_buffer_uptodate(bh);
2131                                 continue;
2132                         }
2133                         /*
2134                          * get_block() might have updated the buffer
2135                          * synchronously
2136                          */
2137                         if (buffer_uptodate(bh))
2138                                 continue;
2139                 }
2140                 arr[nr++] = bh;
2141         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2142
2143         if (fully_mapped)
2144                 SetPageMappedToDisk(page);
2145
2146         if (!nr) {
2147                 /*
2148                  * All buffers are uptodate - we can set the page uptodate
2149                  * as well. But not if get_block() returned an error.
2150                  */
2151                 if (!PageError(page))
2152                         SetPageUptodate(page);
2153                 unlock_page(page);
2154                 return 0;
2155         }
2156
2157         /* Stage two: lock the buffers */
2158         for (i = 0; i < nr; i++) {
2159                 bh = arr[i];
2160                 lock_buffer(bh);
2161                 mark_buffer_async_read(bh);
2162         }
2163
2164         /*
2165          * Stage 3: start the IO.  Check for uptodateness
2166          * inside the buffer lock in case another process reading
2167          * the underlying blockdev brought it uptodate (the sct fix).
2168          */
2169         for (i = 0; i < nr; i++) {
2170                 bh = arr[i];
2171                 if (buffer_uptodate(bh))
2172                         end_buffer_async_read(bh, 1);
2173                 else
2174                         submit_bh(READ, bh);
2175         }
2176         return 0;
2177 }
2178 EXPORT_SYMBOL(block_read_full_page);
2179
2180 /* utility function for filesystems that need to do work on expanding
2181  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2182  * deal with the hole.  
2183  */
2184 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2185 {
2186         struct address_space *mapping = inode->i_mapping;
2187         struct page *page;
2188         void *fsdata;
2189         int err;
2190
2191         err = inode_newsize_ok(inode, size);
2192         if (err)
2193                 goto out;
2194
2195         err = pagecache_write_begin(NULL, mapping, size, 0,
2196                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2197                                 &page, &fsdata);
2198         if (err)
2199                 goto out;
2200
2201         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2202         BUG_ON(err > 0);
2203
2204 out:
2205         return err;
2206 }
2207 EXPORT_SYMBOL(generic_cont_expand_simple);
2208
2209 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2210                             loff_t pos, loff_t *bytes)
2211 {
2212         struct inode *inode = mapping->host;
2213         unsigned blocksize = 1 << inode->i_blkbits;
2214         struct page *page;
2215         void *fsdata;
2216         pgoff_t index, curidx;
2217         loff_t curpos;
2218         unsigned zerofrom, offset, len;
2219         int err = 0;
2220
2221         index = pos >> PAGE_CACHE_SHIFT;
2222         offset = pos & ~PAGE_CACHE_MASK;
2223
2224         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2225                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2226                 if (zerofrom & (blocksize-1)) {
2227                         *bytes |= (blocksize-1);
2228                         (*bytes)++;
2229                 }
2230                 len = PAGE_CACHE_SIZE - zerofrom;
2231
2232                 err = pagecache_write_begin(file, mapping, curpos, len,
2233                                                 AOP_FLAG_UNINTERRUPTIBLE,
2234                                                 &page, &fsdata);
2235                 if (err)
2236                         goto out;
2237                 zero_user(page, zerofrom, len);
2238                 err = pagecache_write_end(file, mapping, curpos, len, len,
2239                                                 page, fsdata);
2240                 if (err < 0)
2241                         goto out;
2242                 BUG_ON(err != len);
2243                 err = 0;
2244
2245                 balance_dirty_pages_ratelimited(mapping);
2246         }
2247
2248         /* page covers the boundary, find the boundary offset */
2249         if (index == curidx) {
2250                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2251                 /* if we will expand the thing last block will be filled */
2252                 if (offset <= zerofrom) {
2253                         goto out;
2254                 }
2255                 if (zerofrom & (blocksize-1)) {
2256                         *bytes |= (blocksize-1);
2257                         (*bytes)++;
2258                 }
2259                 len = offset - zerofrom;
2260
2261                 err = pagecache_write_begin(file, mapping, curpos, len,
2262                                                 AOP_FLAG_UNINTERRUPTIBLE,
2263                                                 &page, &fsdata);
2264                 if (err)
2265                         goto out;
2266                 zero_user(page, zerofrom, len);
2267                 err = pagecache_write_end(file, mapping, curpos, len, len,
2268                                                 page, fsdata);
2269                 if (err < 0)
2270                         goto out;
2271                 BUG_ON(err != len);
2272                 err = 0;
2273         }
2274 out:
2275         return err;
2276 }
2277
2278 /*
2279  * For moronic filesystems that do not allow holes in file.
2280  * We may have to extend the file.
2281  */
2282 int cont_write_begin(struct file *file, struct address_space *mapping,
2283                         loff_t pos, unsigned len, unsigned flags,
2284                         struct page **pagep, void **fsdata,
2285                         get_block_t *get_block, loff_t *bytes)
2286 {
2287         struct inode *inode = mapping->host;
2288         unsigned blocksize = 1 << inode->i_blkbits;
2289         unsigned zerofrom;
2290         int err;
2291
2292         err = cont_expand_zero(file, mapping, pos, bytes);
2293         if (err)
2294                 return err;
2295
2296         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2297         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2298                 *bytes |= (blocksize-1);
2299                 (*bytes)++;
2300         }
2301
2302         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2303 }
2304 EXPORT_SYMBOL(cont_write_begin);
2305
2306 int block_commit_write(struct page *page, unsigned from, unsigned to)
2307 {
2308         struct inode *inode = page->mapping->host;
2309         __block_commit_write(inode,page,from,to);
2310         return 0;
2311 }
2312 EXPORT_SYMBOL(block_commit_write);
2313
2314 /*
2315  * block_page_mkwrite() is not allowed to change the file size as it gets
2316  * called from a page fault handler when a page is first dirtied. Hence we must
2317  * be careful to check for EOF conditions here. We set the page up correctly
2318  * for a written page which means we get ENOSPC checking when writing into
2319  * holes and correct delalloc and unwritten extent mapping on filesystems that
2320  * support these features.
2321  *
2322  * We are not allowed to take the i_mutex here so we have to play games to
2323  * protect against truncate races as the page could now be beyond EOF.  Because
2324  * truncate writes the inode size before removing pages, once we have the
2325  * page lock we can determine safely if the page is beyond EOF. If it is not
2326  * beyond EOF, then the page is guaranteed safe against truncation until we
2327  * unlock the page.
2328  */
2329 int
2330 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2331                    get_block_t get_block)
2332 {
2333         struct page *page = vmf->page;
2334         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2335         unsigned long end;
2336         loff_t size;
2337         int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
2338
2339         lock_page(page);
2340         size = i_size_read(inode);
2341         if ((page->mapping != inode->i_mapping) ||
2342             (page_offset(page) > size)) {
2343                 /* page got truncated out from underneath us */
2344                 unlock_page(page);
2345                 goto out;
2346         }
2347
2348         /* page is wholly or partially inside EOF */
2349         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2350                 end = size & ~PAGE_CACHE_MASK;
2351         else
2352                 end = PAGE_CACHE_SIZE;
2353
2354         ret = __block_write_begin(page, 0, end, get_block);
2355         if (!ret)
2356                 ret = block_commit_write(page, 0, end);
2357
2358         if (unlikely(ret)) {
2359                 unlock_page(page);
2360                 if (ret == -ENOMEM)
2361                         ret = VM_FAULT_OOM;
2362                 else /* -ENOSPC, -EIO, etc */
2363                         ret = VM_FAULT_SIGBUS;
2364         } else
2365                 ret = VM_FAULT_LOCKED;
2366
2367 out:
2368         return ret;
2369 }
2370 EXPORT_SYMBOL(block_page_mkwrite);
2371
2372 /*
2373  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2374  * immediately, while under the page lock.  So it needs a special end_io
2375  * handler which does not touch the bh after unlocking it.
2376  */
2377 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2378 {
2379         __end_buffer_read_notouch(bh, uptodate);
2380 }
2381
2382 /*
2383  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2384  * the page (converting it to circular linked list and taking care of page
2385  * dirty races).
2386  */
2387 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2388 {
2389         struct buffer_head *bh;
2390
2391         BUG_ON(!PageLocked(page));
2392
2393         spin_lock(&page->mapping->private_lock);
2394         bh = head;
2395         do {
2396                 if (PageDirty(page))
2397                         set_buffer_dirty(bh);
2398                 if (!bh->b_this_page)
2399                         bh->b_this_page = head;
2400                 bh = bh->b_this_page;
2401         } while (bh != head);
2402         attach_page_buffers(page, head);
2403         spin_unlock(&page->mapping->private_lock);
2404 }
2405
2406 /*
2407  * On entry, the page is fully not uptodate.
2408  * On exit the page is fully uptodate in the areas outside (from,to)
2409  * The filesystem needs to handle block truncation upon failure.
2410  */
2411 int nobh_write_begin(struct address_space *mapping,
2412                         loff_t pos, unsigned len, unsigned flags,
2413                         struct page **pagep, void **fsdata,
2414                         get_block_t *get_block)
2415 {
2416         struct inode *inode = mapping->host;
2417         const unsigned blkbits = inode->i_blkbits;
2418         const unsigned blocksize = 1 << blkbits;
2419         struct buffer_head *head, *bh;
2420         struct page *page;
2421         pgoff_t index;
2422         unsigned from, to;
2423         unsigned block_in_page;
2424         unsigned block_start, block_end;
2425         sector_t block_in_file;
2426         int nr_reads = 0;
2427         int ret = 0;
2428         int is_mapped_to_disk = 1;
2429
2430         index = pos >> PAGE_CACHE_SHIFT;
2431         from = pos & (PAGE_CACHE_SIZE - 1);
2432         to = from + len;
2433
2434         page = grab_cache_page_write_begin(mapping, index, flags);
2435         if (!page)
2436                 return -ENOMEM;
2437         *pagep = page;
2438         *fsdata = NULL;
2439
2440         if (page_has_buffers(page)) {
2441                 ret = __block_write_begin(page, pos, len, get_block);
2442                 if (unlikely(ret))
2443                         goto out_release;
2444                 return ret;
2445         }
2446
2447         if (PageMappedToDisk(page))
2448                 return 0;
2449
2450         /*
2451          * Allocate buffers so that we can keep track of state, and potentially
2452          * attach them to the page if an error occurs. In the common case of
2453          * no error, they will just be freed again without ever being attached
2454          * to the page (which is all OK, because we're under the page lock).
2455          *
2456          * Be careful: the buffer linked list is a NULL terminated one, rather
2457          * than the circular one we're used to.
2458          */
2459         head = alloc_page_buffers(page, blocksize, 0);
2460         if (!head) {
2461                 ret = -ENOMEM;
2462                 goto out_release;
2463         }
2464
2465         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2466
2467         /*
2468          * We loop across all blocks in the page, whether or not they are
2469          * part of the affected region.  This is so we can discover if the
2470          * page is fully mapped-to-disk.
2471          */
2472         for (block_start = 0, block_in_page = 0, bh = head;
2473                   block_start < PAGE_CACHE_SIZE;
2474                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2475                 int create;
2476
2477                 block_end = block_start + blocksize;
2478                 bh->b_state = 0;
2479                 create = 1;
2480                 if (block_start >= to)
2481                         create = 0;
2482                 ret = get_block(inode, block_in_file + block_in_page,
2483                                         bh, create);
2484                 if (ret)
2485                         goto failed;
2486                 if (!buffer_mapped(bh))
2487                         is_mapped_to_disk = 0;
2488                 if (buffer_new(bh))
2489                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2490                 if (PageUptodate(page)) {
2491                         set_buffer_uptodate(bh);
2492                         continue;
2493                 }
2494                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2495                         zero_user_segments(page, block_start, from,
2496                                                         to, block_end);
2497                         continue;
2498                 }
2499                 if (buffer_uptodate(bh))
2500                         continue;       /* reiserfs does this */
2501                 if (block_start < from || block_end > to) {
2502                         lock_buffer(bh);
2503                         bh->b_end_io = end_buffer_read_nobh;
2504                         submit_bh(READ, bh);
2505                         nr_reads++;
2506                 }
2507         }
2508
2509         if (nr_reads) {
2510                 /*
2511                  * The page is locked, so these buffers are protected from
2512                  * any VM or truncate activity.  Hence we don't need to care
2513                  * for the buffer_head refcounts.
2514                  */
2515                 for (bh = head; bh; bh = bh->b_this_page) {
2516                         wait_on_buffer(bh);
2517                         if (!buffer_uptodate(bh))
2518                                 ret = -EIO;
2519                 }
2520                 if (ret)
2521                         goto failed;
2522         }
2523
2524         if (is_mapped_to_disk)
2525                 SetPageMappedToDisk(page);
2526
2527         *fsdata = head; /* to be released by nobh_write_end */
2528
2529         return 0;
2530
2531 failed:
2532         BUG_ON(!ret);
2533         /*
2534          * Error recovery is a bit difficult. We need to zero out blocks that
2535          * were newly allocated, and dirty them to ensure they get written out.
2536          * Buffers need to be attached to the page at this point, otherwise
2537          * the handling of potential IO errors during writeout would be hard
2538          * (could try doing synchronous writeout, but what if that fails too?)
2539          */
2540         attach_nobh_buffers(page, head);
2541         page_zero_new_buffers(page, from, to);
2542
2543 out_release:
2544         unlock_page(page);
2545         page_cache_release(page);
2546         *pagep = NULL;
2547
2548         return ret;
2549 }
2550 EXPORT_SYMBOL(nobh_write_begin);
2551
2552 int nobh_write_end(struct file *file, struct address_space *mapping,
2553                         loff_t pos, unsigned len, unsigned copied,
2554                         struct page *page, void *fsdata)
2555 {
2556         struct inode *inode = page->mapping->host;
2557         struct buffer_head *head = fsdata;
2558         struct buffer_head *bh;
2559         BUG_ON(fsdata != NULL && page_has_buffers(page));
2560
2561         if (unlikely(copied < len) && head)
2562                 attach_nobh_buffers(page, head);
2563         if (page_has_buffers(page))
2564                 return generic_write_end(file, mapping, pos, len,
2565                                         copied, page, fsdata);
2566
2567         SetPageUptodate(page);
2568         set_page_dirty(page);
2569         if (pos+copied > inode->i_size) {
2570                 i_size_write(inode, pos+copied);
2571                 mark_inode_dirty(inode);
2572         }
2573
2574         unlock_page(page);
2575         page_cache_release(page);
2576
2577         while (head) {
2578                 bh = head;
2579                 head = head->b_this_page;
2580                 free_buffer_head(bh);
2581         }
2582
2583         return copied;
2584 }
2585 EXPORT_SYMBOL(nobh_write_end);
2586
2587 /*
2588  * nobh_writepage() - based on block_full_write_page() except
2589  * that it tries to operate without attaching bufferheads to
2590  * the page.
2591  */
2592 int nobh_writepage(struct page *page, get_block_t *get_block,
2593                         struct writeback_control *wbc)
2594 {
2595         struct inode * const inode = page->mapping->host;
2596         loff_t i_size = i_size_read(inode);
2597         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2598         unsigned offset;
2599         int ret;
2600
2601         /* Is the page fully inside i_size? */
2602         if (page->index < end_index)
2603                 goto out;
2604
2605         /* Is the page fully outside i_size? (truncate in progress) */
2606         offset = i_size & (PAGE_CACHE_SIZE-1);
2607         if (page->index >= end_index+1 || !offset) {
2608                 /*
2609                  * The page may have dirty, unmapped buffers.  For example,
2610                  * they may have been added in ext3_writepage().  Make them
2611                  * freeable here, so the page does not leak.
2612                  */
2613 #if 0
2614                 /* Not really sure about this  - do we need this ? */
2615                 if (page->mapping->a_ops->invalidatepage)
2616                         page->mapping->a_ops->invalidatepage(page, offset);
2617 #endif
2618                 unlock_page(page);
2619                 return 0; /* don't care */
2620         }
2621
2622         /*
2623          * The page straddles i_size.  It must be zeroed out on each and every
2624          * writepage invocation because it may be mmapped.  "A file is mapped
2625          * in multiples of the page size.  For a file that is not a multiple of
2626          * the  page size, the remaining memory is zeroed when mapped, and
2627          * writes to that region are not written out to the file."
2628          */
2629         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2630 out:
2631         ret = mpage_writepage(page, get_block, wbc);
2632         if (ret == -EAGAIN)
2633                 ret = __block_write_full_page(inode, page, get_block, wbc,
2634                                               end_buffer_async_write);
2635         return ret;
2636 }
2637 EXPORT_SYMBOL(nobh_writepage);
2638
2639 int nobh_truncate_page(struct address_space *mapping,
2640                         loff_t from, get_block_t *get_block)
2641 {
2642         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2643         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2644         unsigned blocksize;
2645         sector_t iblock;
2646         unsigned length, pos;
2647         struct inode *inode = mapping->host;
2648         struct page *page;
2649         struct buffer_head map_bh;
2650         int err;
2651
2652         blocksize = 1 << inode->i_blkbits;
2653         length = offset & (blocksize - 1);
2654
2655         /* Block boundary? Nothing to do */
2656         if (!length)
2657                 return 0;
2658
2659         length = blocksize - length;
2660         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2661
2662         page = grab_cache_page(mapping, index);
2663         err = -ENOMEM;
2664         if (!page)
2665                 goto out;
2666
2667         if (page_has_buffers(page)) {
2668 has_buffers:
2669                 unlock_page(page);
2670                 page_cache_release(page);
2671                 return block_truncate_page(mapping, from, get_block);
2672         }
2673
2674         /* Find the buffer that contains "offset" */
2675         pos = blocksize;
2676         while (offset >= pos) {
2677                 iblock++;
2678                 pos += blocksize;
2679         }
2680
2681         map_bh.b_size = blocksize;
2682         map_bh.b_state = 0;
2683         err = get_block(inode, iblock, &map_bh, 0);
2684         if (err)
2685                 goto unlock;
2686         /* unmapped? It's a hole - nothing to do */
2687         if (!buffer_mapped(&map_bh))
2688                 goto unlock;
2689
2690         /* Ok, it's mapped. Make sure it's up-to-date */
2691         if (!PageUptodate(page)) {
2692                 err = mapping->a_ops->readpage(NULL, page);
2693                 if (err) {
2694                         page_cache_release(page);
2695                         goto out;
2696                 }
2697                 lock_page(page);
2698                 if (!PageUptodate(page)) {
2699                         err = -EIO;
2700                         goto unlock;
2701                 }
2702                 if (page_has_buffers(page))
2703                         goto has_buffers;
2704         }
2705         zero_user(page, offset, length);
2706         set_page_dirty(page);
2707         err = 0;
2708
2709 unlock:
2710         unlock_page(page);
2711         page_cache_release(page);
2712 out:
2713         return err;
2714 }
2715 EXPORT_SYMBOL(nobh_truncate_page);
2716
2717 int block_truncate_page(struct address_space *mapping,
2718                         loff_t from, get_block_t *get_block)
2719 {
2720         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2721         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2722         unsigned blocksize;
2723         sector_t iblock;
2724         unsigned length, pos;
2725         struct inode *inode = mapping->host;
2726         struct page *page;
2727         struct buffer_head *bh;
2728         int err;
2729
2730         blocksize = 1 << inode->i_blkbits;
2731         length = offset & (blocksize - 1);
2732
2733         /* Block boundary? Nothing to do */
2734         if (!length)
2735                 return 0;
2736
2737         length = blocksize - length;
2738         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2739         
2740         page = grab_cache_page(mapping, index);
2741         err = -ENOMEM;
2742         if (!page)
2743                 goto out;
2744
2745         if (!page_has_buffers(page))
2746                 create_empty_buffers(page, blocksize, 0);
2747
2748         /* Find the buffer that contains "offset" */
2749         bh = page_buffers(page);
2750         pos = blocksize;
2751         while (offset >= pos) {
2752                 bh = bh->b_this_page;
2753                 iblock++;
2754                 pos += blocksize;
2755         }
2756
2757         err = 0;
2758         if (!buffer_mapped(bh)) {
2759                 WARN_ON(bh->b_size != blocksize);
2760                 err = get_block(inode, iblock, bh, 0);
2761                 if (err)
2762                         goto unlock;
2763                 /* unmapped? It's a hole - nothing to do */
2764                 if (!buffer_mapped(bh))
2765                         goto unlock;
2766         }
2767
2768         /* Ok, it's mapped. Make sure it's up-to-date */
2769         if (PageUptodate(page))
2770                 set_buffer_uptodate(bh);
2771
2772         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2773                 err = -EIO;
2774                 ll_rw_block(READ, 1, &bh);
2775                 wait_on_buffer(bh);
2776                 /* Uhhuh. Read error. Complain and punt. */
2777                 if (!buffer_uptodate(bh))
2778                         goto unlock;
2779         }
2780
2781         zero_user(page, offset, length);
2782         mark_buffer_dirty(bh);
2783         err = 0;
2784
2785 unlock:
2786         unlock_page(page);
2787         page_cache_release(page);
2788 out:
2789         return err;
2790 }
2791 EXPORT_SYMBOL(block_truncate_page);
2792
2793 /*
2794  * The generic ->writepage function for buffer-backed address_spaces
2795  * this form passes in the end_io handler used to finish the IO.
2796  */
2797 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2798                         struct writeback_control *wbc, bh_end_io_t *handler)
2799 {
2800         struct inode * const inode = page->mapping->host;
2801         loff_t i_size = i_size_read(inode);
2802         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2803         unsigned offset;
2804
2805         /* Is the page fully inside i_size? */
2806         if (page->index < end_index)
2807                 return __block_write_full_page(inode, page, get_block, wbc,
2808                                                handler);
2809
2810         /* Is the page fully outside i_size? (truncate in progress) */
2811         offset = i_size & (PAGE_CACHE_SIZE-1);
2812         if (page->index >= end_index+1 || !offset) {
2813                 /*
2814                  * The page may have dirty, unmapped buffers.  For example,
2815                  * they may have been added in ext3_writepage().  Make them
2816                  * freeable here, so the page does not leak.
2817                  */
2818                 do_invalidatepage(page, 0);
2819                 unlock_page(page);
2820                 return 0; /* don't care */
2821         }
2822
2823         /*
2824          * The page straddles i_size.  It must be zeroed out on each and every
2825          * writepage invocation because it may be mmapped.  "A file is mapped
2826          * in multiples of the page size.  For a file that is not a multiple of
2827          * the  page size, the remaining memory is zeroed when mapped, and
2828          * writes to that region are not written out to the file."
2829          */
2830         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2831         return __block_write_full_page(inode, page, get_block, wbc, handler);
2832 }
2833 EXPORT_SYMBOL(block_write_full_page_endio);
2834
2835 /*
2836  * The generic ->writepage function for buffer-backed address_spaces
2837  */
2838 int block_write_full_page(struct page *page, get_block_t *get_block,
2839                         struct writeback_control *wbc)
2840 {
2841         return block_write_full_page_endio(page, get_block, wbc,
2842                                            end_buffer_async_write);
2843 }
2844 EXPORT_SYMBOL(block_write_full_page);
2845
2846 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2847                             get_block_t *get_block)
2848 {
2849         struct buffer_head tmp;
2850         struct inode *inode = mapping->host;
2851         tmp.b_state = 0;
2852         tmp.b_blocknr = 0;
2853         tmp.b_size = 1 << inode->i_blkbits;
2854         get_block(inode, block, &tmp, 0);
2855         return tmp.b_blocknr;
2856 }
2857 EXPORT_SYMBOL(generic_block_bmap);
2858
2859 static void end_bio_bh_io_sync(struct bio *bio, int err)
2860 {
2861         struct buffer_head *bh = bio->bi_private;
2862
2863         if (err == -EOPNOTSUPP) {
2864                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2865         }
2866
2867         if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2868                 set_bit(BH_Quiet, &bh->b_state);
2869
2870         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2871         bio_put(bio);
2872 }
2873
2874 int submit_bh(int rw, struct buffer_head * bh)
2875 {
2876         struct bio *bio;
2877         int ret = 0;
2878
2879         BUG_ON(!buffer_locked(bh));
2880         BUG_ON(!buffer_mapped(bh));
2881         BUG_ON(!bh->b_end_io);
2882         BUG_ON(buffer_delay(bh));
2883         BUG_ON(buffer_unwritten(bh));
2884
2885         /*
2886          * Only clear out a write error when rewriting
2887          */
2888         if (test_set_buffer_req(bh) && (rw & WRITE))
2889                 clear_buffer_write_io_error(bh);
2890
2891         /*
2892          * from here on down, it's all bio -- do the initial mapping,
2893          * submit_bio -> generic_make_request may further map this bio around
2894          */
2895         bio = bio_alloc(GFP_NOIO, 1);
2896
2897         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2898         bio->bi_bdev = bh->b_bdev;
2899         bio->bi_io_vec[0].bv_page = bh->b_page;
2900         bio->bi_io_vec[0].bv_len = bh->b_size;
2901         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2902
2903         bio->bi_vcnt = 1;
2904         bio->bi_idx = 0;
2905         bio->bi_size = bh->b_size;
2906
2907         bio->bi_end_io = end_bio_bh_io_sync;
2908         bio->bi_private = bh;
2909
2910         bio_get(bio);
2911         submit_bio(rw, bio);
2912
2913         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2914                 ret = -EOPNOTSUPP;
2915
2916         bio_put(bio);
2917         return ret;
2918 }
2919 EXPORT_SYMBOL(submit_bh);
2920
2921 /**
2922  * ll_rw_block: low-level access to block devices (DEPRECATED)
2923  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2924  * @nr: number of &struct buffer_heads in the array
2925  * @bhs: array of pointers to &struct buffer_head
2926  *
2927  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2928  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2929  * %READA option is described in the documentation for generic_make_request()
2930  * which ll_rw_block() calls.
2931  *
2932  * This function drops any buffer that it cannot get a lock on (with the
2933  * BH_Lock state bit), any buffer that appears to be clean when doing a write
2934  * request, and any buffer that appears to be up-to-date when doing read
2935  * request.  Further it marks as clean buffers that are processed for
2936  * writing (the buffer cache won't assume that they are actually clean
2937  * until the buffer gets unlocked).
2938  *
2939  * ll_rw_block sets b_end_io to simple completion handler that marks
2940  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2941  * any waiters. 
2942  *
2943  * All of the buffers must be for the same device, and must also be a
2944  * multiple of the current approved size for the device.
2945  */
2946 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2947 {
2948         int i;
2949
2950         for (i = 0; i < nr; i++) {
2951                 struct buffer_head *bh = bhs[i];
2952
2953                 if (!trylock_buffer(bh))
2954                         continue;
2955                 if (rw == WRITE) {
2956                         if (test_clear_buffer_dirty(bh)) {
2957                                 bh->b_end_io = end_buffer_write_sync;
2958                                 get_bh(bh);
2959                                 submit_bh(WRITE, bh);
2960                                 continue;
2961                         }
2962                 } else {
2963                         if (!buffer_uptodate(bh)) {
2964                                 bh->b_end_io = end_buffer_read_sync;
2965                                 get_bh(bh);
2966                                 submit_bh(rw, bh);
2967                                 continue;
2968                         }
2969                 }
2970                 unlock_buffer(bh);
2971         }
2972 }
2973 EXPORT_SYMBOL(ll_rw_block);
2974
2975 void write_dirty_buffer(struct buffer_head *bh, int rw)
2976 {
2977         lock_buffer(bh);
2978         if (!test_clear_buffer_dirty(bh)) {
2979                 unlock_buffer(bh);
2980                 return;
2981         }
2982         bh->b_end_io = end_buffer_write_sync;
2983         get_bh(bh);
2984         submit_bh(rw, bh);
2985 }
2986 EXPORT_SYMBOL(write_dirty_buffer);
2987
2988 /*
2989  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2990  * and then start new I/O and then wait upon it.  The caller must have a ref on
2991  * the buffer_head.
2992  */
2993 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
2994 {
2995         int ret = 0;
2996
2997         WARN_ON(atomic_read(&bh->b_count) < 1);
2998         lock_buffer(bh);
2999         if (test_clear_buffer_dirty(bh)) {
3000                 get_bh(bh);
3001                 bh->b_end_io = end_buffer_write_sync;
3002                 ret = submit_bh(rw, bh);
3003                 wait_on_buffer(bh);
3004                 if (!ret && !buffer_uptodate(bh))
3005                         ret = -EIO;
3006         } else {
3007                 unlock_buffer(bh);
3008         }
3009         return ret;
3010 }
3011 EXPORT_SYMBOL(__sync_dirty_buffer);
3012
3013 int sync_dirty_buffer(struct buffer_head *bh)
3014 {
3015         return __sync_dirty_buffer(bh, WRITE_SYNC);
3016 }
3017 EXPORT_SYMBOL(sync_dirty_buffer);
3018
3019 /*
3020  * try_to_free_buffers() checks if all the buffers on this particular page
3021  * are unused, and releases them if so.
3022  *
3023  * Exclusion against try_to_free_buffers may be obtained by either
3024  * locking the page or by holding its mapping's private_lock.
3025  *
3026  * If the page is dirty but all the buffers are clean then we need to
3027  * be sure to mark the page clean as well.  This is because the page
3028  * may be against a block device, and a later reattachment of buffers
3029  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3030  * filesystem data on the same device.
3031  *
3032  * The same applies to regular filesystem pages: if all the buffers are
3033  * clean then we set the page clean and proceed.  To do that, we require
3034  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3035  * private_lock.
3036  *
3037  * try_to_free_buffers() is non-blocking.
3038  */
3039 static inline int buffer_busy(struct buffer_head *bh)
3040 {
3041         return atomic_read(&bh->b_count) |
3042                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3043 }
3044
3045 static int
3046 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3047 {
3048         struct buffer_head *head = page_buffers(page);
3049         struct buffer_head *bh;
3050
3051         bh = head;
3052         do {
3053                 if (buffer_write_io_error(bh) && page->mapping)
3054                         set_bit(AS_EIO, &page->mapping->flags);
3055                 if (buffer_busy(bh))
3056                         goto failed;
3057                 bh = bh->b_this_page;
3058         } while (bh != head);
3059
3060         do {
3061                 struct buffer_head *next = bh->b_this_page;
3062
3063                 if (bh->b_assoc_map)
3064                         __remove_assoc_queue(bh);
3065                 bh = next;
3066         } while (bh != head);
3067         *buffers_to_free = head;
3068         __clear_page_buffers(page);
3069         return 1;
3070 failed:
3071         return 0;
3072 }
3073
3074 int try_to_free_buffers(struct page *page)
3075 {
3076         struct address_space * const mapping = page->mapping;
3077         struct buffer_head *buffers_to_free = NULL;
3078         int ret = 0;
3079
3080         BUG_ON(!PageLocked(page));
3081         if (PageWriteback(page))
3082                 return 0;
3083
3084         if (mapping == NULL) {          /* can this still happen? */
3085                 ret = drop_buffers(page, &buffers_to_free);
3086                 goto out;
3087         }
3088
3089         spin_lock(&mapping->private_lock);
3090         ret = drop_buffers(page, &buffers_to_free);
3091
3092         /*
3093          * If the filesystem writes its buffers by hand (eg ext3)
3094          * then we can have clean buffers against a dirty page.  We
3095          * clean the page here; otherwise the VM will never notice
3096          * that the filesystem did any IO at all.
3097          *
3098          * Also, during truncate, discard_buffer will have marked all
3099          * the page's buffers clean.  We discover that here and clean
3100          * the page also.
3101          *
3102          * private_lock must be held over this entire operation in order
3103          * to synchronise against __set_page_dirty_buffers and prevent the
3104          * dirty bit from being lost.
3105          */
3106         if (ret)
3107                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3108         spin_unlock(&mapping->private_lock);
3109 out:
3110         if (buffers_to_free) {
3111                 struct buffer_head *bh = buffers_to_free;
3112
3113                 do {
3114                         struct buffer_head *next = bh->b_this_page;
3115                         free_buffer_head(bh);
3116                         bh = next;
3117                 } while (bh != buffers_to_free);
3118         }
3119         return ret;
3120 }
3121 EXPORT_SYMBOL(try_to_free_buffers);
3122
3123 /*
3124  * There are no bdflush tunables left.  But distributions are
3125  * still running obsolete flush daemons, so we terminate them here.
3126  *
3127  * Use of bdflush() is deprecated and will be removed in a future kernel.
3128  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3129  */
3130 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3131 {
3132         static int msg_count;
3133
3134         if (!capable(CAP_SYS_ADMIN))
3135                 return -EPERM;
3136
3137         if (msg_count < 5) {
3138                 msg_count++;
3139                 printk(KERN_INFO
3140                         "warning: process `%s' used the obsolete bdflush"
3141                         " system call\n", current->comm);
3142                 printk(KERN_INFO "Fix your initscripts?\n");
3143         }
3144
3145         if (func == 1)
3146                 do_exit(0);
3147         return 0;
3148 }
3149
3150 /*
3151  * Buffer-head allocation
3152  */
3153 static struct kmem_cache *bh_cachep;
3154
3155 /*
3156  * Once the number of bh's in the machine exceeds this level, we start
3157  * stripping them in writeback.
3158  */
3159 static int max_buffer_heads;
3160
3161 int buffer_heads_over_limit;
3162
3163 struct bh_accounting {
3164         int nr;                 /* Number of live bh's */
3165         int ratelimit;          /* Limit cacheline bouncing */
3166 };
3167
3168 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3169
3170 static void recalc_bh_state(void)
3171 {
3172         int i;
3173         int tot = 0;
3174
3175         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3176                 return;
3177         __this_cpu_write(bh_accounting.ratelimit, 0);
3178         for_each_online_cpu(i)
3179                 tot += per_cpu(bh_accounting, i).nr;
3180         buffer_heads_over_limit = (tot > max_buffer_heads);
3181 }
3182
3183 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3184 {
3185         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3186         if (ret) {
3187                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3188                 preempt_disable();
3189                 __this_cpu_inc(bh_accounting.nr);
3190                 recalc_bh_state();
3191                 preempt_enable();
3192         }
3193         return ret;
3194 }
3195 EXPORT_SYMBOL(alloc_buffer_head);
3196
3197 void free_buffer_head(struct buffer_head *bh)
3198 {
3199         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3200         kmem_cache_free(bh_cachep, bh);
3201         preempt_disable();
3202         __this_cpu_dec(bh_accounting.nr);
3203         recalc_bh_state();
3204         preempt_enable();
3205 }
3206 EXPORT_SYMBOL(free_buffer_head);
3207
3208 static void buffer_exit_cpu(int cpu)
3209 {
3210         int i;
3211         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3212
3213         for (i = 0; i < BH_LRU_SIZE; i++) {
3214                 brelse(b->bhs[i]);
3215                 b->bhs[i] = NULL;
3216         }
3217         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3218         per_cpu(bh_accounting, cpu).nr = 0;
3219 }
3220
3221 static int buffer_cpu_notify(struct notifier_block *self,
3222                               unsigned long action, void *hcpu)
3223 {
3224         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3225                 buffer_exit_cpu((unsigned long)hcpu);
3226         return NOTIFY_OK;
3227 }
3228
3229 /**
3230  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3231  * @bh: struct buffer_head
3232  *
3233  * Return true if the buffer is up-to-date and false,
3234  * with the buffer locked, if not.
3235  */
3236 int bh_uptodate_or_lock(struct buffer_head *bh)
3237 {
3238         if (!buffer_uptodate(bh)) {
3239                 lock_buffer(bh);
3240                 if (!buffer_uptodate(bh))
3241                         return 0;
3242                 unlock_buffer(bh);
3243         }
3244         return 1;
3245 }
3246 EXPORT_SYMBOL(bh_uptodate_or_lock);
3247
3248 /**
3249  * bh_submit_read - Submit a locked buffer for reading
3250  * @bh: struct buffer_head
3251  *
3252  * Returns zero on success and -EIO on error.
3253  */
3254 int bh_submit_read(struct buffer_head *bh)
3255 {
3256         BUG_ON(!buffer_locked(bh));
3257
3258         if (buffer_uptodate(bh)) {
3259                 unlock_buffer(bh);
3260                 return 0;
3261         }
3262
3263         get_bh(bh);
3264         bh->b_end_io = end_buffer_read_sync;
3265         submit_bh(READ, bh);
3266         wait_on_buffer(bh);
3267         if (buffer_uptodate(bh))
3268                 return 0;
3269         return -EIO;
3270 }
3271 EXPORT_SYMBOL(bh_submit_read);
3272
3273 void __init buffer_init(void)
3274 {
3275         int nrpages;
3276
3277         bh_cachep = kmem_cache_create("buffer_head",
3278                         sizeof(struct buffer_head), 0,
3279                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3280                                 SLAB_MEM_SPREAD),
3281                                 NULL);
3282
3283         /*
3284          * Limit the bh occupancy to 10% of ZONE_NORMAL
3285          */
3286         nrpages = (nr_free_buffer_pages() * 10) / 100;
3287         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3288         hotcpu_notifier(buffer_cpu_notify, 0);
3289 }