block: clean up blkdev_get() wrappers and their users
[pandora-kernel.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <asm/div64.h>
26 #include "compat.h"
27 #include "ctree.h"
28 #include "extent_map.h"
29 #include "disk-io.h"
30 #include "transaction.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "async-thread.h"
34
35 struct map_lookup {
36         u64 type;
37         int io_align;
38         int io_width;
39         int stripe_len;
40         int sector_size;
41         int num_stripes;
42         int sub_stripes;
43         struct btrfs_bio_stripe stripes[];
44 };
45
46 static int init_first_rw_device(struct btrfs_trans_handle *trans,
47                                 struct btrfs_root *root,
48                                 struct btrfs_device *device);
49 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
50
51 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
52                             (sizeof(struct btrfs_bio_stripe) * (n)))
53
54 static DEFINE_MUTEX(uuid_mutex);
55 static LIST_HEAD(fs_uuids);
56
57 void btrfs_lock_volumes(void)
58 {
59         mutex_lock(&uuid_mutex);
60 }
61
62 void btrfs_unlock_volumes(void)
63 {
64         mutex_unlock(&uuid_mutex);
65 }
66
67 static void lock_chunks(struct btrfs_root *root)
68 {
69         mutex_lock(&root->fs_info->chunk_mutex);
70 }
71
72 static void unlock_chunks(struct btrfs_root *root)
73 {
74         mutex_unlock(&root->fs_info->chunk_mutex);
75 }
76
77 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
78 {
79         struct btrfs_device *device;
80         WARN_ON(fs_devices->opened);
81         while (!list_empty(&fs_devices->devices)) {
82                 device = list_entry(fs_devices->devices.next,
83                                     struct btrfs_device, dev_list);
84                 list_del(&device->dev_list);
85                 kfree(device->name);
86                 kfree(device);
87         }
88         kfree(fs_devices);
89 }
90
91 int btrfs_cleanup_fs_uuids(void)
92 {
93         struct btrfs_fs_devices *fs_devices;
94
95         while (!list_empty(&fs_uuids)) {
96                 fs_devices = list_entry(fs_uuids.next,
97                                         struct btrfs_fs_devices, list);
98                 list_del(&fs_devices->list);
99                 free_fs_devices(fs_devices);
100         }
101         return 0;
102 }
103
104 static noinline struct btrfs_device *__find_device(struct list_head *head,
105                                                    u64 devid, u8 *uuid)
106 {
107         struct btrfs_device *dev;
108
109         list_for_each_entry(dev, head, dev_list) {
110                 if (dev->devid == devid &&
111                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
112                         return dev;
113                 }
114         }
115         return NULL;
116 }
117
118 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
119 {
120         struct btrfs_fs_devices *fs_devices;
121
122         list_for_each_entry(fs_devices, &fs_uuids, list) {
123                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
124                         return fs_devices;
125         }
126         return NULL;
127 }
128
129 static void requeue_list(struct btrfs_pending_bios *pending_bios,
130                         struct bio *head, struct bio *tail)
131 {
132
133         struct bio *old_head;
134
135         old_head = pending_bios->head;
136         pending_bios->head = head;
137         if (pending_bios->tail)
138                 tail->bi_next = old_head;
139         else
140                 pending_bios->tail = tail;
141 }
142
143 /*
144  * we try to collect pending bios for a device so we don't get a large
145  * number of procs sending bios down to the same device.  This greatly
146  * improves the schedulers ability to collect and merge the bios.
147  *
148  * But, it also turns into a long list of bios to process and that is sure
149  * to eventually make the worker thread block.  The solution here is to
150  * make some progress and then put this work struct back at the end of
151  * the list if the block device is congested.  This way, multiple devices
152  * can make progress from a single worker thread.
153  */
154 static noinline int run_scheduled_bios(struct btrfs_device *device)
155 {
156         struct bio *pending;
157         struct backing_dev_info *bdi;
158         struct btrfs_fs_info *fs_info;
159         struct btrfs_pending_bios *pending_bios;
160         struct bio *tail;
161         struct bio *cur;
162         int again = 0;
163         unsigned long num_run;
164         unsigned long num_sync_run;
165         unsigned long batch_run = 0;
166         unsigned long limit;
167         unsigned long last_waited = 0;
168         int force_reg = 0;
169
170         bdi = blk_get_backing_dev_info(device->bdev);
171         fs_info = device->dev_root->fs_info;
172         limit = btrfs_async_submit_limit(fs_info);
173         limit = limit * 2 / 3;
174
175         /* we want to make sure that every time we switch from the sync
176          * list to the normal list, we unplug
177          */
178         num_sync_run = 0;
179
180 loop:
181         spin_lock(&device->io_lock);
182
183 loop_lock:
184         num_run = 0;
185
186         /* take all the bios off the list at once and process them
187          * later on (without the lock held).  But, remember the
188          * tail and other pointers so the bios can be properly reinserted
189          * into the list if we hit congestion
190          */
191         if (!force_reg && device->pending_sync_bios.head) {
192                 pending_bios = &device->pending_sync_bios;
193                 force_reg = 1;
194         } else {
195                 pending_bios = &device->pending_bios;
196                 force_reg = 0;
197         }
198
199         pending = pending_bios->head;
200         tail = pending_bios->tail;
201         WARN_ON(pending && !tail);
202
203         /*
204          * if pending was null this time around, no bios need processing
205          * at all and we can stop.  Otherwise it'll loop back up again
206          * and do an additional check so no bios are missed.
207          *
208          * device->running_pending is used to synchronize with the
209          * schedule_bio code.
210          */
211         if (device->pending_sync_bios.head == NULL &&
212             device->pending_bios.head == NULL) {
213                 again = 0;
214                 device->running_pending = 0;
215         } else {
216                 again = 1;
217                 device->running_pending = 1;
218         }
219
220         pending_bios->head = NULL;
221         pending_bios->tail = NULL;
222
223         spin_unlock(&device->io_lock);
224
225         /*
226          * if we're doing the regular priority list, make sure we unplug
227          * for any high prio bios we've sent down
228          */
229         if (pending_bios == &device->pending_bios && num_sync_run > 0) {
230                 num_sync_run = 0;
231                 blk_run_backing_dev(bdi, NULL);
232         }
233
234         while (pending) {
235
236                 rmb();
237                 /* we want to work on both lists, but do more bios on the
238                  * sync list than the regular list
239                  */
240                 if ((num_run > 32 &&
241                     pending_bios != &device->pending_sync_bios &&
242                     device->pending_sync_bios.head) ||
243                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
244                     device->pending_bios.head)) {
245                         spin_lock(&device->io_lock);
246                         requeue_list(pending_bios, pending, tail);
247                         goto loop_lock;
248                 }
249
250                 cur = pending;
251                 pending = pending->bi_next;
252                 cur->bi_next = NULL;
253                 atomic_dec(&fs_info->nr_async_bios);
254
255                 if (atomic_read(&fs_info->nr_async_bios) < limit &&
256                     waitqueue_active(&fs_info->async_submit_wait))
257                         wake_up(&fs_info->async_submit_wait);
258
259                 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
260
261                 if (cur->bi_rw & REQ_SYNC)
262                         num_sync_run++;
263
264                 submit_bio(cur->bi_rw, cur);
265                 num_run++;
266                 batch_run++;
267                 if (need_resched()) {
268                         if (num_sync_run) {
269                                 blk_run_backing_dev(bdi, NULL);
270                                 num_sync_run = 0;
271                         }
272                         cond_resched();
273                 }
274
275                 /*
276                  * we made progress, there is more work to do and the bdi
277                  * is now congested.  Back off and let other work structs
278                  * run instead
279                  */
280                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
281                     fs_info->fs_devices->open_devices > 1) {
282                         struct io_context *ioc;
283
284                         ioc = current->io_context;
285
286                         /*
287                          * the main goal here is that we don't want to
288                          * block if we're going to be able to submit
289                          * more requests without blocking.
290                          *
291                          * This code does two great things, it pokes into
292                          * the elevator code from a filesystem _and_
293                          * it makes assumptions about how batching works.
294                          */
295                         if (ioc && ioc->nr_batch_requests > 0 &&
296                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
297                             (last_waited == 0 ||
298                              ioc->last_waited == last_waited)) {
299                                 /*
300                                  * we want to go through our batch of
301                                  * requests and stop.  So, we copy out
302                                  * the ioc->last_waited time and test
303                                  * against it before looping
304                                  */
305                                 last_waited = ioc->last_waited;
306                                 if (need_resched()) {
307                                         if (num_sync_run) {
308                                                 blk_run_backing_dev(bdi, NULL);
309                                                 num_sync_run = 0;
310                                         }
311                                         cond_resched();
312                                 }
313                                 continue;
314                         }
315                         spin_lock(&device->io_lock);
316                         requeue_list(pending_bios, pending, tail);
317                         device->running_pending = 1;
318
319                         spin_unlock(&device->io_lock);
320                         btrfs_requeue_work(&device->work);
321                         goto done;
322                 }
323         }
324
325         if (num_sync_run) {
326                 num_sync_run = 0;
327                 blk_run_backing_dev(bdi, NULL);
328         }
329         /*
330          * IO has already been through a long path to get here.  Checksumming,
331          * async helper threads, perhaps compression.  We've done a pretty
332          * good job of collecting a batch of IO and should just unplug
333          * the device right away.
334          *
335          * This will help anyone who is waiting on the IO, they might have
336          * already unplugged, but managed to do so before the bio they
337          * cared about found its way down here.
338          */
339         blk_run_backing_dev(bdi, NULL);
340
341         cond_resched();
342         if (again)
343                 goto loop;
344
345         spin_lock(&device->io_lock);
346         if (device->pending_bios.head || device->pending_sync_bios.head)
347                 goto loop_lock;
348         spin_unlock(&device->io_lock);
349
350 done:
351         return 0;
352 }
353
354 static void pending_bios_fn(struct btrfs_work *work)
355 {
356         struct btrfs_device *device;
357
358         device = container_of(work, struct btrfs_device, work);
359         run_scheduled_bios(device);
360 }
361
362 static noinline int device_list_add(const char *path,
363                            struct btrfs_super_block *disk_super,
364                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
365 {
366         struct btrfs_device *device;
367         struct btrfs_fs_devices *fs_devices;
368         u64 found_transid = btrfs_super_generation(disk_super);
369         char *name;
370
371         fs_devices = find_fsid(disk_super->fsid);
372         if (!fs_devices) {
373                 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
374                 if (!fs_devices)
375                         return -ENOMEM;
376                 INIT_LIST_HEAD(&fs_devices->devices);
377                 INIT_LIST_HEAD(&fs_devices->alloc_list);
378                 list_add(&fs_devices->list, &fs_uuids);
379                 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
380                 fs_devices->latest_devid = devid;
381                 fs_devices->latest_trans = found_transid;
382                 mutex_init(&fs_devices->device_list_mutex);
383                 device = NULL;
384         } else {
385                 device = __find_device(&fs_devices->devices, devid,
386                                        disk_super->dev_item.uuid);
387         }
388         if (!device) {
389                 if (fs_devices->opened)
390                         return -EBUSY;
391
392                 device = kzalloc(sizeof(*device), GFP_NOFS);
393                 if (!device) {
394                         /* we can safely leave the fs_devices entry around */
395                         return -ENOMEM;
396                 }
397                 device->devid = devid;
398                 device->work.func = pending_bios_fn;
399                 memcpy(device->uuid, disk_super->dev_item.uuid,
400                        BTRFS_UUID_SIZE);
401                 spin_lock_init(&device->io_lock);
402                 device->name = kstrdup(path, GFP_NOFS);
403                 if (!device->name) {
404                         kfree(device);
405                         return -ENOMEM;
406                 }
407                 INIT_LIST_HEAD(&device->dev_alloc_list);
408
409                 mutex_lock(&fs_devices->device_list_mutex);
410                 list_add(&device->dev_list, &fs_devices->devices);
411                 mutex_unlock(&fs_devices->device_list_mutex);
412
413                 device->fs_devices = fs_devices;
414                 fs_devices->num_devices++;
415         } else if (strcmp(device->name, path)) {
416                 name = kstrdup(path, GFP_NOFS);
417                 if (!name)
418                         return -ENOMEM;
419                 kfree(device->name);
420                 device->name = name;
421         }
422
423         if (found_transid > fs_devices->latest_trans) {
424                 fs_devices->latest_devid = devid;
425                 fs_devices->latest_trans = found_transid;
426         }
427         *fs_devices_ret = fs_devices;
428         return 0;
429 }
430
431 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
432 {
433         struct btrfs_fs_devices *fs_devices;
434         struct btrfs_device *device;
435         struct btrfs_device *orig_dev;
436
437         fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
438         if (!fs_devices)
439                 return ERR_PTR(-ENOMEM);
440
441         INIT_LIST_HEAD(&fs_devices->devices);
442         INIT_LIST_HEAD(&fs_devices->alloc_list);
443         INIT_LIST_HEAD(&fs_devices->list);
444         mutex_init(&fs_devices->device_list_mutex);
445         fs_devices->latest_devid = orig->latest_devid;
446         fs_devices->latest_trans = orig->latest_trans;
447         memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
448
449         mutex_lock(&orig->device_list_mutex);
450         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
451                 device = kzalloc(sizeof(*device), GFP_NOFS);
452                 if (!device)
453                         goto error;
454
455                 device->name = kstrdup(orig_dev->name, GFP_NOFS);
456                 if (!device->name) {
457                         kfree(device);
458                         goto error;
459                 }
460
461                 device->devid = orig_dev->devid;
462                 device->work.func = pending_bios_fn;
463                 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
464                 spin_lock_init(&device->io_lock);
465                 INIT_LIST_HEAD(&device->dev_list);
466                 INIT_LIST_HEAD(&device->dev_alloc_list);
467
468                 list_add(&device->dev_list, &fs_devices->devices);
469                 device->fs_devices = fs_devices;
470                 fs_devices->num_devices++;
471         }
472         mutex_unlock(&orig->device_list_mutex);
473         return fs_devices;
474 error:
475         mutex_unlock(&orig->device_list_mutex);
476         free_fs_devices(fs_devices);
477         return ERR_PTR(-ENOMEM);
478 }
479
480 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
481 {
482         struct btrfs_device *device, *next;
483
484         mutex_lock(&uuid_mutex);
485 again:
486         mutex_lock(&fs_devices->device_list_mutex);
487         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
488                 if (device->in_fs_metadata)
489                         continue;
490
491                 if (device->bdev) {
492                         blkdev_put(device->bdev, device->mode);
493                         device->bdev = NULL;
494                         fs_devices->open_devices--;
495                 }
496                 if (device->writeable) {
497                         list_del_init(&device->dev_alloc_list);
498                         device->writeable = 0;
499                         fs_devices->rw_devices--;
500                 }
501                 list_del_init(&device->dev_list);
502                 fs_devices->num_devices--;
503                 kfree(device->name);
504                 kfree(device);
505         }
506         mutex_unlock(&fs_devices->device_list_mutex);
507
508         if (fs_devices->seed) {
509                 fs_devices = fs_devices->seed;
510                 goto again;
511         }
512
513         mutex_unlock(&uuid_mutex);
514         return 0;
515 }
516
517 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
518 {
519         struct btrfs_device *device;
520
521         if (--fs_devices->opened > 0)
522                 return 0;
523
524         list_for_each_entry(device, &fs_devices->devices, dev_list) {
525                 if (device->bdev) {
526                         blkdev_put(device->bdev, device->mode);
527                         fs_devices->open_devices--;
528                 }
529                 if (device->writeable) {
530                         list_del_init(&device->dev_alloc_list);
531                         fs_devices->rw_devices--;
532                 }
533
534                 device->bdev = NULL;
535                 device->writeable = 0;
536                 device->in_fs_metadata = 0;
537         }
538         WARN_ON(fs_devices->open_devices);
539         WARN_ON(fs_devices->rw_devices);
540         fs_devices->opened = 0;
541         fs_devices->seeding = 0;
542
543         return 0;
544 }
545
546 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
547 {
548         struct btrfs_fs_devices *seed_devices = NULL;
549         int ret;
550
551         mutex_lock(&uuid_mutex);
552         ret = __btrfs_close_devices(fs_devices);
553         if (!fs_devices->opened) {
554                 seed_devices = fs_devices->seed;
555                 fs_devices->seed = NULL;
556         }
557         mutex_unlock(&uuid_mutex);
558
559         while (seed_devices) {
560                 fs_devices = seed_devices;
561                 seed_devices = fs_devices->seed;
562                 __btrfs_close_devices(fs_devices);
563                 free_fs_devices(fs_devices);
564         }
565         return ret;
566 }
567
568 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
569                                 fmode_t flags, void *holder)
570 {
571         struct block_device *bdev;
572         struct list_head *head = &fs_devices->devices;
573         struct btrfs_device *device;
574         struct block_device *latest_bdev = NULL;
575         struct buffer_head *bh;
576         struct btrfs_super_block *disk_super;
577         u64 latest_devid = 0;
578         u64 latest_transid = 0;
579         u64 devid;
580         int seeding = 1;
581         int ret = 0;
582
583         flags |= FMODE_EXCL;
584
585         list_for_each_entry(device, head, dev_list) {
586                 if (device->bdev)
587                         continue;
588                 if (!device->name)
589                         continue;
590
591                 bdev = blkdev_get_by_path(device->name, flags, holder);
592                 if (IS_ERR(bdev)) {
593                         printk(KERN_INFO "open %s failed\n", device->name);
594                         goto error;
595                 }
596                 set_blocksize(bdev, 4096);
597
598                 bh = btrfs_read_dev_super(bdev);
599                 if (!bh)
600                         goto error_close;
601
602                 disk_super = (struct btrfs_super_block *)bh->b_data;
603                 devid = btrfs_stack_device_id(&disk_super->dev_item);
604                 if (devid != device->devid)
605                         goto error_brelse;
606
607                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
608                            BTRFS_UUID_SIZE))
609                         goto error_brelse;
610
611                 device->generation = btrfs_super_generation(disk_super);
612                 if (!latest_transid || device->generation > latest_transid) {
613                         latest_devid = devid;
614                         latest_transid = device->generation;
615                         latest_bdev = bdev;
616                 }
617
618                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
619                         device->writeable = 0;
620                 } else {
621                         device->writeable = !bdev_read_only(bdev);
622                         seeding = 0;
623                 }
624
625                 device->bdev = bdev;
626                 device->in_fs_metadata = 0;
627                 device->mode = flags;
628
629                 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
630                         fs_devices->rotating = 1;
631
632                 fs_devices->open_devices++;
633                 if (device->writeable) {
634                         fs_devices->rw_devices++;
635                         list_add(&device->dev_alloc_list,
636                                  &fs_devices->alloc_list);
637                 }
638                 continue;
639
640 error_brelse:
641                 brelse(bh);
642 error_close:
643                 blkdev_put(bdev, flags);
644 error:
645                 continue;
646         }
647         if (fs_devices->open_devices == 0) {
648                 ret = -EIO;
649                 goto out;
650         }
651         fs_devices->seeding = seeding;
652         fs_devices->opened = 1;
653         fs_devices->latest_bdev = latest_bdev;
654         fs_devices->latest_devid = latest_devid;
655         fs_devices->latest_trans = latest_transid;
656         fs_devices->total_rw_bytes = 0;
657 out:
658         return ret;
659 }
660
661 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
662                        fmode_t flags, void *holder)
663 {
664         int ret;
665
666         mutex_lock(&uuid_mutex);
667         if (fs_devices->opened) {
668                 fs_devices->opened++;
669                 ret = 0;
670         } else {
671                 ret = __btrfs_open_devices(fs_devices, flags, holder);
672         }
673         mutex_unlock(&uuid_mutex);
674         return ret;
675 }
676
677 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
678                           struct btrfs_fs_devices **fs_devices_ret)
679 {
680         struct btrfs_super_block *disk_super;
681         struct block_device *bdev;
682         struct buffer_head *bh;
683         int ret;
684         u64 devid;
685         u64 transid;
686
687         mutex_lock(&uuid_mutex);
688
689         flags |= FMODE_EXCL;
690         bdev = blkdev_get_by_path(path, flags, holder);
691
692         if (IS_ERR(bdev)) {
693                 ret = PTR_ERR(bdev);
694                 goto error;
695         }
696
697         ret = set_blocksize(bdev, 4096);
698         if (ret)
699                 goto error_close;
700         bh = btrfs_read_dev_super(bdev);
701         if (!bh) {
702                 ret = -EIO;
703                 goto error_close;
704         }
705         disk_super = (struct btrfs_super_block *)bh->b_data;
706         devid = btrfs_stack_device_id(&disk_super->dev_item);
707         transid = btrfs_super_generation(disk_super);
708         if (disk_super->label[0])
709                 printk(KERN_INFO "device label %s ", disk_super->label);
710         else {
711                 /* FIXME, make a readl uuid parser */
712                 printk(KERN_INFO "device fsid %llx-%llx ",
713                        *(unsigned long long *)disk_super->fsid,
714                        *(unsigned long long *)(disk_super->fsid + 8));
715         }
716         printk(KERN_CONT "devid %llu transid %llu %s\n",
717                (unsigned long long)devid, (unsigned long long)transid, path);
718         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
719
720         brelse(bh);
721 error_close:
722         blkdev_put(bdev, flags);
723 error:
724         mutex_unlock(&uuid_mutex);
725         return ret;
726 }
727
728 /*
729  * this uses a pretty simple search, the expectation is that it is
730  * called very infrequently and that a given device has a small number
731  * of extents
732  */
733 int find_free_dev_extent(struct btrfs_trans_handle *trans,
734                          struct btrfs_device *device, u64 num_bytes,
735                          u64 *start, u64 *max_avail)
736 {
737         struct btrfs_key key;
738         struct btrfs_root *root = device->dev_root;
739         struct btrfs_dev_extent *dev_extent = NULL;
740         struct btrfs_path *path;
741         u64 hole_size = 0;
742         u64 last_byte = 0;
743         u64 search_start = 0;
744         u64 search_end = device->total_bytes;
745         int ret;
746         int slot = 0;
747         int start_found;
748         struct extent_buffer *l;
749
750         path = btrfs_alloc_path();
751         if (!path)
752                 return -ENOMEM;
753         path->reada = 2;
754         start_found = 0;
755
756         /* FIXME use last free of some kind */
757
758         /* we don't want to overwrite the superblock on the drive,
759          * so we make sure to start at an offset of at least 1MB
760          */
761         search_start = max((u64)1024 * 1024, search_start);
762
763         if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
764                 search_start = max(root->fs_info->alloc_start, search_start);
765
766         key.objectid = device->devid;
767         key.offset = search_start;
768         key.type = BTRFS_DEV_EXTENT_KEY;
769         ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
770         if (ret < 0)
771                 goto error;
772         if (ret > 0) {
773                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
774                 if (ret < 0)
775                         goto error;
776                 if (ret > 0)
777                         start_found = 1;
778         }
779         l = path->nodes[0];
780         btrfs_item_key_to_cpu(l, &key, path->slots[0]);
781         while (1) {
782                 l = path->nodes[0];
783                 slot = path->slots[0];
784                 if (slot >= btrfs_header_nritems(l)) {
785                         ret = btrfs_next_leaf(root, path);
786                         if (ret == 0)
787                                 continue;
788                         if (ret < 0)
789                                 goto error;
790 no_more_items:
791                         if (!start_found) {
792                                 if (search_start >= search_end) {
793                                         ret = -ENOSPC;
794                                         goto error;
795                                 }
796                                 *start = search_start;
797                                 start_found = 1;
798                                 goto check_pending;
799                         }
800                         *start = last_byte > search_start ?
801                                 last_byte : search_start;
802                         if (search_end <= *start) {
803                                 ret = -ENOSPC;
804                                 goto error;
805                         }
806                         goto check_pending;
807                 }
808                 btrfs_item_key_to_cpu(l, &key, slot);
809
810                 if (key.objectid < device->devid)
811                         goto next;
812
813                 if (key.objectid > device->devid)
814                         goto no_more_items;
815
816                 if (key.offset >= search_start && key.offset > last_byte &&
817                     start_found) {
818                         if (last_byte < search_start)
819                                 last_byte = search_start;
820                         hole_size = key.offset - last_byte;
821
822                         if (hole_size > *max_avail)
823                                 *max_avail = hole_size;
824
825                         if (key.offset > last_byte &&
826                             hole_size >= num_bytes) {
827                                 *start = last_byte;
828                                 goto check_pending;
829                         }
830                 }
831                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
832                         goto next;
833
834                 start_found = 1;
835                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
836                 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
837 next:
838                 path->slots[0]++;
839                 cond_resched();
840         }
841 check_pending:
842         /* we have to make sure we didn't find an extent that has already
843          * been allocated by the map tree or the original allocation
844          */
845         BUG_ON(*start < search_start);
846
847         if (*start + num_bytes > search_end) {
848                 ret = -ENOSPC;
849                 goto error;
850         }
851         /* check for pending inserts here */
852         ret = 0;
853
854 error:
855         btrfs_free_path(path);
856         return ret;
857 }
858
859 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
860                           struct btrfs_device *device,
861                           u64 start)
862 {
863         int ret;
864         struct btrfs_path *path;
865         struct btrfs_root *root = device->dev_root;
866         struct btrfs_key key;
867         struct btrfs_key found_key;
868         struct extent_buffer *leaf = NULL;
869         struct btrfs_dev_extent *extent = NULL;
870
871         path = btrfs_alloc_path();
872         if (!path)
873                 return -ENOMEM;
874
875         key.objectid = device->devid;
876         key.offset = start;
877         key.type = BTRFS_DEV_EXTENT_KEY;
878
879         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
880         if (ret > 0) {
881                 ret = btrfs_previous_item(root, path, key.objectid,
882                                           BTRFS_DEV_EXTENT_KEY);
883                 BUG_ON(ret);
884                 leaf = path->nodes[0];
885                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
886                 extent = btrfs_item_ptr(leaf, path->slots[0],
887                                         struct btrfs_dev_extent);
888                 BUG_ON(found_key.offset > start || found_key.offset +
889                        btrfs_dev_extent_length(leaf, extent) < start);
890                 ret = 0;
891         } else if (ret == 0) {
892                 leaf = path->nodes[0];
893                 extent = btrfs_item_ptr(leaf, path->slots[0],
894                                         struct btrfs_dev_extent);
895         }
896         BUG_ON(ret);
897
898         if (device->bytes_used > 0)
899                 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
900         ret = btrfs_del_item(trans, root, path);
901         BUG_ON(ret);
902
903         btrfs_free_path(path);
904         return ret;
905 }
906
907 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
908                            struct btrfs_device *device,
909                            u64 chunk_tree, u64 chunk_objectid,
910                            u64 chunk_offset, u64 start, u64 num_bytes)
911 {
912         int ret;
913         struct btrfs_path *path;
914         struct btrfs_root *root = device->dev_root;
915         struct btrfs_dev_extent *extent;
916         struct extent_buffer *leaf;
917         struct btrfs_key key;
918
919         WARN_ON(!device->in_fs_metadata);
920         path = btrfs_alloc_path();
921         if (!path)
922                 return -ENOMEM;
923
924         key.objectid = device->devid;
925         key.offset = start;
926         key.type = BTRFS_DEV_EXTENT_KEY;
927         ret = btrfs_insert_empty_item(trans, root, path, &key,
928                                       sizeof(*extent));
929         BUG_ON(ret);
930
931         leaf = path->nodes[0];
932         extent = btrfs_item_ptr(leaf, path->slots[0],
933                                 struct btrfs_dev_extent);
934         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
935         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
936         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
937
938         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
939                     (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
940                     BTRFS_UUID_SIZE);
941
942         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
943         btrfs_mark_buffer_dirty(leaf);
944         btrfs_free_path(path);
945         return ret;
946 }
947
948 static noinline int find_next_chunk(struct btrfs_root *root,
949                                     u64 objectid, u64 *offset)
950 {
951         struct btrfs_path *path;
952         int ret;
953         struct btrfs_key key;
954         struct btrfs_chunk *chunk;
955         struct btrfs_key found_key;
956
957         path = btrfs_alloc_path();
958         BUG_ON(!path);
959
960         key.objectid = objectid;
961         key.offset = (u64)-1;
962         key.type = BTRFS_CHUNK_ITEM_KEY;
963
964         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
965         if (ret < 0)
966                 goto error;
967
968         BUG_ON(ret == 0);
969
970         ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
971         if (ret) {
972                 *offset = 0;
973         } else {
974                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
975                                       path->slots[0]);
976                 if (found_key.objectid != objectid)
977                         *offset = 0;
978                 else {
979                         chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
980                                                struct btrfs_chunk);
981                         *offset = found_key.offset +
982                                 btrfs_chunk_length(path->nodes[0], chunk);
983                 }
984         }
985         ret = 0;
986 error:
987         btrfs_free_path(path);
988         return ret;
989 }
990
991 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
992 {
993         int ret;
994         struct btrfs_key key;
995         struct btrfs_key found_key;
996         struct btrfs_path *path;
997
998         root = root->fs_info->chunk_root;
999
1000         path = btrfs_alloc_path();
1001         if (!path)
1002                 return -ENOMEM;
1003
1004         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1005         key.type = BTRFS_DEV_ITEM_KEY;
1006         key.offset = (u64)-1;
1007
1008         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1009         if (ret < 0)
1010                 goto error;
1011
1012         BUG_ON(ret == 0);
1013
1014         ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1015                                   BTRFS_DEV_ITEM_KEY);
1016         if (ret) {
1017                 *objectid = 1;
1018         } else {
1019                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1020                                       path->slots[0]);
1021                 *objectid = found_key.offset + 1;
1022         }
1023         ret = 0;
1024 error:
1025         btrfs_free_path(path);
1026         return ret;
1027 }
1028
1029 /*
1030  * the device information is stored in the chunk root
1031  * the btrfs_device struct should be fully filled in
1032  */
1033 int btrfs_add_device(struct btrfs_trans_handle *trans,
1034                      struct btrfs_root *root,
1035                      struct btrfs_device *device)
1036 {
1037         int ret;
1038         struct btrfs_path *path;
1039         struct btrfs_dev_item *dev_item;
1040         struct extent_buffer *leaf;
1041         struct btrfs_key key;
1042         unsigned long ptr;
1043
1044         root = root->fs_info->chunk_root;
1045
1046         path = btrfs_alloc_path();
1047         if (!path)
1048                 return -ENOMEM;
1049
1050         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1051         key.type = BTRFS_DEV_ITEM_KEY;
1052         key.offset = device->devid;
1053
1054         ret = btrfs_insert_empty_item(trans, root, path, &key,
1055                                       sizeof(*dev_item));
1056         if (ret)
1057                 goto out;
1058
1059         leaf = path->nodes[0];
1060         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1061
1062         btrfs_set_device_id(leaf, dev_item, device->devid);
1063         btrfs_set_device_generation(leaf, dev_item, 0);
1064         btrfs_set_device_type(leaf, dev_item, device->type);
1065         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1066         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1067         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1068         btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1069         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1070         btrfs_set_device_group(leaf, dev_item, 0);
1071         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1072         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1073         btrfs_set_device_start_offset(leaf, dev_item, 0);
1074
1075         ptr = (unsigned long)btrfs_device_uuid(dev_item);
1076         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1077         ptr = (unsigned long)btrfs_device_fsid(dev_item);
1078         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1079         btrfs_mark_buffer_dirty(leaf);
1080
1081         ret = 0;
1082 out:
1083         btrfs_free_path(path);
1084         return ret;
1085 }
1086
1087 static int btrfs_rm_dev_item(struct btrfs_root *root,
1088                              struct btrfs_device *device)
1089 {
1090         int ret;
1091         struct btrfs_path *path;
1092         struct btrfs_key key;
1093         struct btrfs_trans_handle *trans;
1094
1095         root = root->fs_info->chunk_root;
1096
1097         path = btrfs_alloc_path();
1098         if (!path)
1099                 return -ENOMEM;
1100
1101         trans = btrfs_start_transaction(root, 0);
1102         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1103         key.type = BTRFS_DEV_ITEM_KEY;
1104         key.offset = device->devid;
1105         lock_chunks(root);
1106
1107         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1108         if (ret < 0)
1109                 goto out;
1110
1111         if (ret > 0) {
1112                 ret = -ENOENT;
1113                 goto out;
1114         }
1115
1116         ret = btrfs_del_item(trans, root, path);
1117         if (ret)
1118                 goto out;
1119 out:
1120         btrfs_free_path(path);
1121         unlock_chunks(root);
1122         btrfs_commit_transaction(trans, root);
1123         return ret;
1124 }
1125
1126 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1127 {
1128         struct btrfs_device *device;
1129         struct btrfs_device *next_device;
1130         struct block_device *bdev;
1131         struct buffer_head *bh = NULL;
1132         struct btrfs_super_block *disk_super;
1133         u64 all_avail;
1134         u64 devid;
1135         u64 num_devices;
1136         u8 *dev_uuid;
1137         int ret = 0;
1138
1139         mutex_lock(&uuid_mutex);
1140         mutex_lock(&root->fs_info->volume_mutex);
1141
1142         all_avail = root->fs_info->avail_data_alloc_bits |
1143                 root->fs_info->avail_system_alloc_bits |
1144                 root->fs_info->avail_metadata_alloc_bits;
1145
1146         if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1147             root->fs_info->fs_devices->num_devices <= 4) {
1148                 printk(KERN_ERR "btrfs: unable to go below four devices "
1149                        "on raid10\n");
1150                 ret = -EINVAL;
1151                 goto out;
1152         }
1153
1154         if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1155             root->fs_info->fs_devices->num_devices <= 2) {
1156                 printk(KERN_ERR "btrfs: unable to go below two "
1157                        "devices on raid1\n");
1158                 ret = -EINVAL;
1159                 goto out;
1160         }
1161
1162         if (strcmp(device_path, "missing") == 0) {
1163                 struct list_head *devices;
1164                 struct btrfs_device *tmp;
1165
1166                 device = NULL;
1167                 devices = &root->fs_info->fs_devices->devices;
1168                 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1169                 list_for_each_entry(tmp, devices, dev_list) {
1170                         if (tmp->in_fs_metadata && !tmp->bdev) {
1171                                 device = tmp;
1172                                 break;
1173                         }
1174                 }
1175                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1176                 bdev = NULL;
1177                 bh = NULL;
1178                 disk_super = NULL;
1179                 if (!device) {
1180                         printk(KERN_ERR "btrfs: no missing devices found to "
1181                                "remove\n");
1182                         goto out;
1183                 }
1184         } else {
1185                 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1186                                           root->fs_info->bdev_holder);
1187                 if (IS_ERR(bdev)) {
1188                         ret = PTR_ERR(bdev);
1189                         goto out;
1190                 }
1191
1192                 set_blocksize(bdev, 4096);
1193                 bh = btrfs_read_dev_super(bdev);
1194                 if (!bh) {
1195                         ret = -EIO;
1196                         goto error_close;
1197                 }
1198                 disk_super = (struct btrfs_super_block *)bh->b_data;
1199                 devid = btrfs_stack_device_id(&disk_super->dev_item);
1200                 dev_uuid = disk_super->dev_item.uuid;
1201                 device = btrfs_find_device(root, devid, dev_uuid,
1202                                            disk_super->fsid);
1203                 if (!device) {
1204                         ret = -ENOENT;
1205                         goto error_brelse;
1206                 }
1207         }
1208
1209         if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1210                 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1211                        "device\n");
1212                 ret = -EINVAL;
1213                 goto error_brelse;
1214         }
1215
1216         if (device->writeable) {
1217                 list_del_init(&device->dev_alloc_list);
1218                 root->fs_info->fs_devices->rw_devices--;
1219         }
1220
1221         ret = btrfs_shrink_device(device, 0);
1222         if (ret)
1223                 goto error_brelse;
1224
1225         ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1226         if (ret)
1227                 goto error_brelse;
1228
1229         device->in_fs_metadata = 0;
1230
1231         /*
1232          * the device list mutex makes sure that we don't change
1233          * the device list while someone else is writing out all
1234          * the device supers.
1235          */
1236         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1237         list_del_init(&device->dev_list);
1238         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1239
1240         device->fs_devices->num_devices--;
1241
1242         next_device = list_entry(root->fs_info->fs_devices->devices.next,
1243                                  struct btrfs_device, dev_list);
1244         if (device->bdev == root->fs_info->sb->s_bdev)
1245                 root->fs_info->sb->s_bdev = next_device->bdev;
1246         if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1247                 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1248
1249         if (device->bdev) {
1250                 blkdev_put(device->bdev, device->mode);
1251                 device->bdev = NULL;
1252                 device->fs_devices->open_devices--;
1253         }
1254
1255         num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1256         btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1257
1258         if (device->fs_devices->open_devices == 0) {
1259                 struct btrfs_fs_devices *fs_devices;
1260                 fs_devices = root->fs_info->fs_devices;
1261                 while (fs_devices) {
1262                         if (fs_devices->seed == device->fs_devices)
1263                                 break;
1264                         fs_devices = fs_devices->seed;
1265                 }
1266                 fs_devices->seed = device->fs_devices->seed;
1267                 device->fs_devices->seed = NULL;
1268                 __btrfs_close_devices(device->fs_devices);
1269                 free_fs_devices(device->fs_devices);
1270         }
1271
1272         /*
1273          * at this point, the device is zero sized.  We want to
1274          * remove it from the devices list and zero out the old super
1275          */
1276         if (device->writeable) {
1277                 /* make sure this device isn't detected as part of
1278                  * the FS anymore
1279                  */
1280                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1281                 set_buffer_dirty(bh);
1282                 sync_dirty_buffer(bh);
1283         }
1284
1285         kfree(device->name);
1286         kfree(device);
1287         ret = 0;
1288
1289 error_brelse:
1290         brelse(bh);
1291 error_close:
1292         if (bdev)
1293                 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1294 out:
1295         mutex_unlock(&root->fs_info->volume_mutex);
1296         mutex_unlock(&uuid_mutex);
1297         return ret;
1298 }
1299
1300 /*
1301  * does all the dirty work required for changing file system's UUID.
1302  */
1303 static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1304                                 struct btrfs_root *root)
1305 {
1306         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1307         struct btrfs_fs_devices *old_devices;
1308         struct btrfs_fs_devices *seed_devices;
1309         struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1310         struct btrfs_device *device;
1311         u64 super_flags;
1312
1313         BUG_ON(!mutex_is_locked(&uuid_mutex));
1314         if (!fs_devices->seeding)
1315                 return -EINVAL;
1316
1317         seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1318         if (!seed_devices)
1319                 return -ENOMEM;
1320
1321         old_devices = clone_fs_devices(fs_devices);
1322         if (IS_ERR(old_devices)) {
1323                 kfree(seed_devices);
1324                 return PTR_ERR(old_devices);
1325         }
1326
1327         list_add(&old_devices->list, &fs_uuids);
1328
1329         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1330         seed_devices->opened = 1;
1331         INIT_LIST_HEAD(&seed_devices->devices);
1332         INIT_LIST_HEAD(&seed_devices->alloc_list);
1333         mutex_init(&seed_devices->device_list_mutex);
1334         list_splice_init(&fs_devices->devices, &seed_devices->devices);
1335         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1336         list_for_each_entry(device, &seed_devices->devices, dev_list) {
1337                 device->fs_devices = seed_devices;
1338         }
1339
1340         fs_devices->seeding = 0;
1341         fs_devices->num_devices = 0;
1342         fs_devices->open_devices = 0;
1343         fs_devices->seed = seed_devices;
1344
1345         generate_random_uuid(fs_devices->fsid);
1346         memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1347         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1348         super_flags = btrfs_super_flags(disk_super) &
1349                       ~BTRFS_SUPER_FLAG_SEEDING;
1350         btrfs_set_super_flags(disk_super, super_flags);
1351
1352         return 0;
1353 }
1354
1355 /*
1356  * strore the expected generation for seed devices in device items.
1357  */
1358 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1359                                struct btrfs_root *root)
1360 {
1361         struct btrfs_path *path;
1362         struct extent_buffer *leaf;
1363         struct btrfs_dev_item *dev_item;
1364         struct btrfs_device *device;
1365         struct btrfs_key key;
1366         u8 fs_uuid[BTRFS_UUID_SIZE];
1367         u8 dev_uuid[BTRFS_UUID_SIZE];
1368         u64 devid;
1369         int ret;
1370
1371         path = btrfs_alloc_path();
1372         if (!path)
1373                 return -ENOMEM;
1374
1375         root = root->fs_info->chunk_root;
1376         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1377         key.offset = 0;
1378         key.type = BTRFS_DEV_ITEM_KEY;
1379
1380         while (1) {
1381                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1382                 if (ret < 0)
1383                         goto error;
1384
1385                 leaf = path->nodes[0];
1386 next_slot:
1387                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1388                         ret = btrfs_next_leaf(root, path);
1389                         if (ret > 0)
1390                                 break;
1391                         if (ret < 0)
1392                                 goto error;
1393                         leaf = path->nodes[0];
1394                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1395                         btrfs_release_path(root, path);
1396                         continue;
1397                 }
1398
1399                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1400                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1401                     key.type != BTRFS_DEV_ITEM_KEY)
1402                         break;
1403
1404                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1405                                           struct btrfs_dev_item);
1406                 devid = btrfs_device_id(leaf, dev_item);
1407                 read_extent_buffer(leaf, dev_uuid,
1408                                    (unsigned long)btrfs_device_uuid(dev_item),
1409                                    BTRFS_UUID_SIZE);
1410                 read_extent_buffer(leaf, fs_uuid,
1411                                    (unsigned long)btrfs_device_fsid(dev_item),
1412                                    BTRFS_UUID_SIZE);
1413                 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1414                 BUG_ON(!device);
1415
1416                 if (device->fs_devices->seeding) {
1417                         btrfs_set_device_generation(leaf, dev_item,
1418                                                     device->generation);
1419                         btrfs_mark_buffer_dirty(leaf);
1420                 }
1421
1422                 path->slots[0]++;
1423                 goto next_slot;
1424         }
1425         ret = 0;
1426 error:
1427         btrfs_free_path(path);
1428         return ret;
1429 }
1430
1431 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1432 {
1433         struct btrfs_trans_handle *trans;
1434         struct btrfs_device *device;
1435         struct block_device *bdev;
1436         struct list_head *devices;
1437         struct super_block *sb = root->fs_info->sb;
1438         u64 total_bytes;
1439         int seeding_dev = 0;
1440         int ret = 0;
1441
1442         if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1443                 return -EINVAL;
1444
1445         bdev = blkdev_get_by_path(device_path, FMODE_EXCL,
1446                                   root->fs_info->bdev_holder);
1447         if (IS_ERR(bdev))
1448                 return PTR_ERR(bdev);
1449
1450         if (root->fs_info->fs_devices->seeding) {
1451                 seeding_dev = 1;
1452                 down_write(&sb->s_umount);
1453                 mutex_lock(&uuid_mutex);
1454         }
1455
1456         filemap_write_and_wait(bdev->bd_inode->i_mapping);
1457         mutex_lock(&root->fs_info->volume_mutex);
1458
1459         devices = &root->fs_info->fs_devices->devices;
1460         /*
1461          * we have the volume lock, so we don't need the extra
1462          * device list mutex while reading the list here.
1463          */
1464         list_for_each_entry(device, devices, dev_list) {
1465                 if (device->bdev == bdev) {
1466                         ret = -EEXIST;
1467                         goto error;
1468                 }
1469         }
1470
1471         device = kzalloc(sizeof(*device), GFP_NOFS);
1472         if (!device) {
1473                 /* we can safely leave the fs_devices entry around */
1474                 ret = -ENOMEM;
1475                 goto error;
1476         }
1477
1478         device->name = kstrdup(device_path, GFP_NOFS);
1479         if (!device->name) {
1480                 kfree(device);
1481                 ret = -ENOMEM;
1482                 goto error;
1483         }
1484
1485         ret = find_next_devid(root, &device->devid);
1486         if (ret) {
1487                 kfree(device);
1488                 goto error;
1489         }
1490
1491         trans = btrfs_start_transaction(root, 0);
1492         lock_chunks(root);
1493
1494         device->writeable = 1;
1495         device->work.func = pending_bios_fn;
1496         generate_random_uuid(device->uuid);
1497         spin_lock_init(&device->io_lock);
1498         device->generation = trans->transid;
1499         device->io_width = root->sectorsize;
1500         device->io_align = root->sectorsize;
1501         device->sector_size = root->sectorsize;
1502         device->total_bytes = i_size_read(bdev->bd_inode);
1503         device->disk_total_bytes = device->total_bytes;
1504         device->dev_root = root->fs_info->dev_root;
1505         device->bdev = bdev;
1506         device->in_fs_metadata = 1;
1507         device->mode = 0;
1508         set_blocksize(device->bdev, 4096);
1509
1510         if (seeding_dev) {
1511                 sb->s_flags &= ~MS_RDONLY;
1512                 ret = btrfs_prepare_sprout(trans, root);
1513                 BUG_ON(ret);
1514         }
1515
1516         device->fs_devices = root->fs_info->fs_devices;
1517
1518         /*
1519          * we don't want write_supers to jump in here with our device
1520          * half setup
1521          */
1522         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1523         list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1524         list_add(&device->dev_alloc_list,
1525                  &root->fs_info->fs_devices->alloc_list);
1526         root->fs_info->fs_devices->num_devices++;
1527         root->fs_info->fs_devices->open_devices++;
1528         root->fs_info->fs_devices->rw_devices++;
1529         root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1530
1531         if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1532                 root->fs_info->fs_devices->rotating = 1;
1533
1534         total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1535         btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1536                                     total_bytes + device->total_bytes);
1537
1538         total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1539         btrfs_set_super_num_devices(&root->fs_info->super_copy,
1540                                     total_bytes + 1);
1541         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1542
1543         if (seeding_dev) {
1544                 ret = init_first_rw_device(trans, root, device);
1545                 BUG_ON(ret);
1546                 ret = btrfs_finish_sprout(trans, root);
1547                 BUG_ON(ret);
1548         } else {
1549                 ret = btrfs_add_device(trans, root, device);
1550         }
1551
1552         /*
1553          * we've got more storage, clear any full flags on the space
1554          * infos
1555          */
1556         btrfs_clear_space_info_full(root->fs_info);
1557
1558         unlock_chunks(root);
1559         btrfs_commit_transaction(trans, root);
1560
1561         if (seeding_dev) {
1562                 mutex_unlock(&uuid_mutex);
1563                 up_write(&sb->s_umount);
1564
1565                 ret = btrfs_relocate_sys_chunks(root);
1566                 BUG_ON(ret);
1567         }
1568 out:
1569         mutex_unlock(&root->fs_info->volume_mutex);
1570         return ret;
1571 error:
1572         blkdev_put(bdev, FMODE_EXCL);
1573         if (seeding_dev) {
1574                 mutex_unlock(&uuid_mutex);
1575                 up_write(&sb->s_umount);
1576         }
1577         goto out;
1578 }
1579
1580 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1581                                         struct btrfs_device *device)
1582 {
1583         int ret;
1584         struct btrfs_path *path;
1585         struct btrfs_root *root;
1586         struct btrfs_dev_item *dev_item;
1587         struct extent_buffer *leaf;
1588         struct btrfs_key key;
1589
1590         root = device->dev_root->fs_info->chunk_root;
1591
1592         path = btrfs_alloc_path();
1593         if (!path)
1594                 return -ENOMEM;
1595
1596         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1597         key.type = BTRFS_DEV_ITEM_KEY;
1598         key.offset = device->devid;
1599
1600         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1601         if (ret < 0)
1602                 goto out;
1603
1604         if (ret > 0) {
1605                 ret = -ENOENT;
1606                 goto out;
1607         }
1608
1609         leaf = path->nodes[0];
1610         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1611
1612         btrfs_set_device_id(leaf, dev_item, device->devid);
1613         btrfs_set_device_type(leaf, dev_item, device->type);
1614         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1615         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1616         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1617         btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1618         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1619         btrfs_mark_buffer_dirty(leaf);
1620
1621 out:
1622         btrfs_free_path(path);
1623         return ret;
1624 }
1625
1626 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1627                       struct btrfs_device *device, u64 new_size)
1628 {
1629         struct btrfs_super_block *super_copy =
1630                 &device->dev_root->fs_info->super_copy;
1631         u64 old_total = btrfs_super_total_bytes(super_copy);
1632         u64 diff = new_size - device->total_bytes;
1633
1634         if (!device->writeable)
1635                 return -EACCES;
1636         if (new_size <= device->total_bytes)
1637                 return -EINVAL;
1638
1639         btrfs_set_super_total_bytes(super_copy, old_total + diff);
1640         device->fs_devices->total_rw_bytes += diff;
1641
1642         device->total_bytes = new_size;
1643         device->disk_total_bytes = new_size;
1644         btrfs_clear_space_info_full(device->dev_root->fs_info);
1645
1646         return btrfs_update_device(trans, device);
1647 }
1648
1649 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1650                       struct btrfs_device *device, u64 new_size)
1651 {
1652         int ret;
1653         lock_chunks(device->dev_root);
1654         ret = __btrfs_grow_device(trans, device, new_size);
1655         unlock_chunks(device->dev_root);
1656         return ret;
1657 }
1658
1659 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1660                             struct btrfs_root *root,
1661                             u64 chunk_tree, u64 chunk_objectid,
1662                             u64 chunk_offset)
1663 {
1664         int ret;
1665         struct btrfs_path *path;
1666         struct btrfs_key key;
1667
1668         root = root->fs_info->chunk_root;
1669         path = btrfs_alloc_path();
1670         if (!path)
1671                 return -ENOMEM;
1672
1673         key.objectid = chunk_objectid;
1674         key.offset = chunk_offset;
1675         key.type = BTRFS_CHUNK_ITEM_KEY;
1676
1677         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1678         BUG_ON(ret);
1679
1680         ret = btrfs_del_item(trans, root, path);
1681         BUG_ON(ret);
1682
1683         btrfs_free_path(path);
1684         return 0;
1685 }
1686
1687 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1688                         chunk_offset)
1689 {
1690         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1691         struct btrfs_disk_key *disk_key;
1692         struct btrfs_chunk *chunk;
1693         u8 *ptr;
1694         int ret = 0;
1695         u32 num_stripes;
1696         u32 array_size;
1697         u32 len = 0;
1698         u32 cur;
1699         struct btrfs_key key;
1700
1701         array_size = btrfs_super_sys_array_size(super_copy);
1702
1703         ptr = super_copy->sys_chunk_array;
1704         cur = 0;
1705
1706         while (cur < array_size) {
1707                 disk_key = (struct btrfs_disk_key *)ptr;
1708                 btrfs_disk_key_to_cpu(&key, disk_key);
1709
1710                 len = sizeof(*disk_key);
1711
1712                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1713                         chunk = (struct btrfs_chunk *)(ptr + len);
1714                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1715                         len += btrfs_chunk_item_size(num_stripes);
1716                 } else {
1717                         ret = -EIO;
1718                         break;
1719                 }
1720                 if (key.objectid == chunk_objectid &&
1721                     key.offset == chunk_offset) {
1722                         memmove(ptr, ptr + len, array_size - (cur + len));
1723                         array_size -= len;
1724                         btrfs_set_super_sys_array_size(super_copy, array_size);
1725                 } else {
1726                         ptr += len;
1727                         cur += len;
1728                 }
1729         }
1730         return ret;
1731 }
1732
1733 static int btrfs_relocate_chunk(struct btrfs_root *root,
1734                          u64 chunk_tree, u64 chunk_objectid,
1735                          u64 chunk_offset)
1736 {
1737         struct extent_map_tree *em_tree;
1738         struct btrfs_root *extent_root;
1739         struct btrfs_trans_handle *trans;
1740         struct extent_map *em;
1741         struct map_lookup *map;
1742         int ret;
1743         int i;
1744
1745         root = root->fs_info->chunk_root;
1746         extent_root = root->fs_info->extent_root;
1747         em_tree = &root->fs_info->mapping_tree.map_tree;
1748
1749         ret = btrfs_can_relocate(extent_root, chunk_offset);
1750         if (ret)
1751                 return -ENOSPC;
1752
1753         /* step one, relocate all the extents inside this chunk */
1754         ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1755         if (ret)
1756                 return ret;
1757
1758         trans = btrfs_start_transaction(root, 0);
1759         BUG_ON(!trans);
1760
1761         lock_chunks(root);
1762
1763         /*
1764          * step two, delete the device extents and the
1765          * chunk tree entries
1766          */
1767         read_lock(&em_tree->lock);
1768         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1769         read_unlock(&em_tree->lock);
1770
1771         BUG_ON(em->start > chunk_offset ||
1772                em->start + em->len < chunk_offset);
1773         map = (struct map_lookup *)em->bdev;
1774
1775         for (i = 0; i < map->num_stripes; i++) {
1776                 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1777                                             map->stripes[i].physical);
1778                 BUG_ON(ret);
1779
1780                 if (map->stripes[i].dev) {
1781                         ret = btrfs_update_device(trans, map->stripes[i].dev);
1782                         BUG_ON(ret);
1783                 }
1784         }
1785         ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1786                                chunk_offset);
1787
1788         BUG_ON(ret);
1789
1790         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1791                 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1792                 BUG_ON(ret);
1793         }
1794
1795         ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1796         BUG_ON(ret);
1797
1798         write_lock(&em_tree->lock);
1799         remove_extent_mapping(em_tree, em);
1800         write_unlock(&em_tree->lock);
1801
1802         kfree(map);
1803         em->bdev = NULL;
1804
1805         /* once for the tree */
1806         free_extent_map(em);
1807         /* once for us */
1808         free_extent_map(em);
1809
1810         unlock_chunks(root);
1811         btrfs_end_transaction(trans, root);
1812         return 0;
1813 }
1814
1815 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1816 {
1817         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1818         struct btrfs_path *path;
1819         struct extent_buffer *leaf;
1820         struct btrfs_chunk *chunk;
1821         struct btrfs_key key;
1822         struct btrfs_key found_key;
1823         u64 chunk_tree = chunk_root->root_key.objectid;
1824         u64 chunk_type;
1825         bool retried = false;
1826         int failed = 0;
1827         int ret;
1828
1829         path = btrfs_alloc_path();
1830         if (!path)
1831                 return -ENOMEM;
1832
1833 again:
1834         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1835         key.offset = (u64)-1;
1836         key.type = BTRFS_CHUNK_ITEM_KEY;
1837
1838         while (1) {
1839                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1840                 if (ret < 0)
1841                         goto error;
1842                 BUG_ON(ret == 0);
1843
1844                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1845                                           key.type);
1846                 if (ret < 0)
1847                         goto error;
1848                 if (ret > 0)
1849                         break;
1850
1851                 leaf = path->nodes[0];
1852                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1853
1854                 chunk = btrfs_item_ptr(leaf, path->slots[0],
1855                                        struct btrfs_chunk);
1856                 chunk_type = btrfs_chunk_type(leaf, chunk);
1857                 btrfs_release_path(chunk_root, path);
1858
1859                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1860                         ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1861                                                    found_key.objectid,
1862                                                    found_key.offset);
1863                         if (ret == -ENOSPC)
1864                                 failed++;
1865                         else if (ret)
1866                                 BUG();
1867                 }
1868
1869                 if (found_key.offset == 0)
1870                         break;
1871                 key.offset = found_key.offset - 1;
1872         }
1873         ret = 0;
1874         if (failed && !retried) {
1875                 failed = 0;
1876                 retried = true;
1877                 goto again;
1878         } else if (failed && retried) {
1879                 WARN_ON(1);
1880                 ret = -ENOSPC;
1881         }
1882 error:
1883         btrfs_free_path(path);
1884         return ret;
1885 }
1886
1887 static u64 div_factor(u64 num, int factor)
1888 {
1889         if (factor == 10)
1890                 return num;
1891         num *= factor;
1892         do_div(num, 10);
1893         return num;
1894 }
1895
1896 int btrfs_balance(struct btrfs_root *dev_root)
1897 {
1898         int ret;
1899         struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1900         struct btrfs_device *device;
1901         u64 old_size;
1902         u64 size_to_free;
1903         struct btrfs_path *path;
1904         struct btrfs_key key;
1905         struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1906         struct btrfs_trans_handle *trans;
1907         struct btrfs_key found_key;
1908
1909         if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
1910                 return -EROFS;
1911
1912         mutex_lock(&dev_root->fs_info->volume_mutex);
1913         dev_root = dev_root->fs_info->dev_root;
1914
1915         /* step one make some room on all the devices */
1916         list_for_each_entry(device, devices, dev_list) {
1917                 old_size = device->total_bytes;
1918                 size_to_free = div_factor(old_size, 1);
1919                 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
1920                 if (!device->writeable ||
1921                     device->total_bytes - device->bytes_used > size_to_free)
1922                         continue;
1923
1924                 ret = btrfs_shrink_device(device, old_size - size_to_free);
1925                 if (ret == -ENOSPC)
1926                         break;
1927                 BUG_ON(ret);
1928
1929                 trans = btrfs_start_transaction(dev_root, 0);
1930                 BUG_ON(!trans);
1931
1932                 ret = btrfs_grow_device(trans, device, old_size);
1933                 BUG_ON(ret);
1934
1935                 btrfs_end_transaction(trans, dev_root);
1936         }
1937
1938         /* step two, relocate all the chunks */
1939         path = btrfs_alloc_path();
1940         BUG_ON(!path);
1941
1942         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1943         key.offset = (u64)-1;
1944         key.type = BTRFS_CHUNK_ITEM_KEY;
1945
1946         while (1) {
1947                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1948                 if (ret < 0)
1949                         goto error;
1950
1951                 /*
1952                  * this shouldn't happen, it means the last relocate
1953                  * failed
1954                  */
1955                 if (ret == 0)
1956                         break;
1957
1958                 ret = btrfs_previous_item(chunk_root, path, 0,
1959                                           BTRFS_CHUNK_ITEM_KEY);
1960                 if (ret)
1961                         break;
1962
1963                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1964                                       path->slots[0]);
1965                 if (found_key.objectid != key.objectid)
1966                         break;
1967
1968                 /* chunk zero is special */
1969                 if (found_key.offset == 0)
1970                         break;
1971
1972                 btrfs_release_path(chunk_root, path);
1973                 ret = btrfs_relocate_chunk(chunk_root,
1974                                            chunk_root->root_key.objectid,
1975                                            found_key.objectid,
1976                                            found_key.offset);
1977                 BUG_ON(ret && ret != -ENOSPC);
1978                 key.offset = found_key.offset - 1;
1979         }
1980         ret = 0;
1981 error:
1982         btrfs_free_path(path);
1983         mutex_unlock(&dev_root->fs_info->volume_mutex);
1984         return ret;
1985 }
1986
1987 /*
1988  * shrinking a device means finding all of the device extents past
1989  * the new size, and then following the back refs to the chunks.
1990  * The chunk relocation code actually frees the device extent
1991  */
1992 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
1993 {
1994         struct btrfs_trans_handle *trans;
1995         struct btrfs_root *root = device->dev_root;
1996         struct btrfs_dev_extent *dev_extent = NULL;
1997         struct btrfs_path *path;
1998         u64 length;
1999         u64 chunk_tree;
2000         u64 chunk_objectid;
2001         u64 chunk_offset;
2002         int ret;
2003         int slot;
2004         int failed = 0;
2005         bool retried = false;
2006         struct extent_buffer *l;
2007         struct btrfs_key key;
2008         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2009         u64 old_total = btrfs_super_total_bytes(super_copy);
2010         u64 old_size = device->total_bytes;
2011         u64 diff = device->total_bytes - new_size;
2012
2013         if (new_size >= device->total_bytes)
2014                 return -EINVAL;
2015
2016         path = btrfs_alloc_path();
2017         if (!path)
2018                 return -ENOMEM;
2019
2020         path->reada = 2;
2021
2022         lock_chunks(root);
2023
2024         device->total_bytes = new_size;
2025         if (device->writeable)
2026                 device->fs_devices->total_rw_bytes -= diff;
2027         unlock_chunks(root);
2028
2029 again:
2030         key.objectid = device->devid;
2031         key.offset = (u64)-1;
2032         key.type = BTRFS_DEV_EXTENT_KEY;
2033
2034         while (1) {
2035                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2036                 if (ret < 0)
2037                         goto done;
2038
2039                 ret = btrfs_previous_item(root, path, 0, key.type);
2040                 if (ret < 0)
2041                         goto done;
2042                 if (ret) {
2043                         ret = 0;
2044                         btrfs_release_path(root, path);
2045                         break;
2046                 }
2047
2048                 l = path->nodes[0];
2049                 slot = path->slots[0];
2050                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2051
2052                 if (key.objectid != device->devid) {
2053                         btrfs_release_path(root, path);
2054                         break;
2055                 }
2056
2057                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2058                 length = btrfs_dev_extent_length(l, dev_extent);
2059
2060                 if (key.offset + length <= new_size) {
2061                         btrfs_release_path(root, path);
2062                         break;
2063                 }
2064
2065                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2066                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2067                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2068                 btrfs_release_path(root, path);
2069
2070                 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2071                                            chunk_offset);
2072                 if (ret && ret != -ENOSPC)
2073                         goto done;
2074                 if (ret == -ENOSPC)
2075                         failed++;
2076                 key.offset -= 1;
2077         }
2078
2079         if (failed && !retried) {
2080                 failed = 0;
2081                 retried = true;
2082                 goto again;
2083         } else if (failed && retried) {
2084                 ret = -ENOSPC;
2085                 lock_chunks(root);
2086
2087                 device->total_bytes = old_size;
2088                 if (device->writeable)
2089                         device->fs_devices->total_rw_bytes += diff;
2090                 unlock_chunks(root);
2091                 goto done;
2092         }
2093
2094         /* Shrinking succeeded, else we would be at "done". */
2095         trans = btrfs_start_transaction(root, 0);
2096         lock_chunks(root);
2097
2098         device->disk_total_bytes = new_size;
2099         /* Now btrfs_update_device() will change the on-disk size. */
2100         ret = btrfs_update_device(trans, device);
2101         if (ret) {
2102                 unlock_chunks(root);
2103                 btrfs_end_transaction(trans, root);
2104                 goto done;
2105         }
2106         WARN_ON(diff > old_total);
2107         btrfs_set_super_total_bytes(super_copy, old_total - diff);
2108         unlock_chunks(root);
2109         btrfs_end_transaction(trans, root);
2110 done:
2111         btrfs_free_path(path);
2112         return ret;
2113 }
2114
2115 static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2116                            struct btrfs_root *root,
2117                            struct btrfs_key *key,
2118                            struct btrfs_chunk *chunk, int item_size)
2119 {
2120         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2121         struct btrfs_disk_key disk_key;
2122         u32 array_size;
2123         u8 *ptr;
2124
2125         array_size = btrfs_super_sys_array_size(super_copy);
2126         if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2127                 return -EFBIG;
2128
2129         ptr = super_copy->sys_chunk_array + array_size;
2130         btrfs_cpu_key_to_disk(&disk_key, key);
2131         memcpy(ptr, &disk_key, sizeof(disk_key));
2132         ptr += sizeof(disk_key);
2133         memcpy(ptr, chunk, item_size);
2134         item_size += sizeof(disk_key);
2135         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2136         return 0;
2137 }
2138
2139 static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
2140                                         int num_stripes, int sub_stripes)
2141 {
2142         if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2143                 return calc_size;
2144         else if (type & BTRFS_BLOCK_GROUP_RAID10)
2145                 return calc_size * (num_stripes / sub_stripes);
2146         else
2147                 return calc_size * num_stripes;
2148 }
2149
2150 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2151                                struct btrfs_root *extent_root,
2152                                struct map_lookup **map_ret,
2153                                u64 *num_bytes, u64 *stripe_size,
2154                                u64 start, u64 type)
2155 {
2156         struct btrfs_fs_info *info = extent_root->fs_info;
2157         struct btrfs_device *device = NULL;
2158         struct btrfs_fs_devices *fs_devices = info->fs_devices;
2159         struct list_head *cur;
2160         struct map_lookup *map = NULL;
2161         struct extent_map_tree *em_tree;
2162         struct extent_map *em;
2163         struct list_head private_devs;
2164         int min_stripe_size = 1 * 1024 * 1024;
2165         u64 calc_size = 1024 * 1024 * 1024;
2166         u64 max_chunk_size = calc_size;
2167         u64 min_free;
2168         u64 avail;
2169         u64 max_avail = 0;
2170         u64 dev_offset;
2171         int num_stripes = 1;
2172         int min_stripes = 1;
2173         int sub_stripes = 0;
2174         int looped = 0;
2175         int ret;
2176         int index;
2177         int stripe_len = 64 * 1024;
2178
2179         if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2180             (type & BTRFS_BLOCK_GROUP_DUP)) {
2181                 WARN_ON(1);
2182                 type &= ~BTRFS_BLOCK_GROUP_DUP;
2183         }
2184         if (list_empty(&fs_devices->alloc_list))
2185                 return -ENOSPC;
2186
2187         if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2188                 num_stripes = fs_devices->rw_devices;
2189                 min_stripes = 2;
2190         }
2191         if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2192                 num_stripes = 2;
2193                 min_stripes = 2;
2194         }
2195         if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2196                 if (fs_devices->rw_devices < 2)
2197                         return -ENOSPC;
2198                 num_stripes = 2;
2199                 min_stripes = 2;
2200         }
2201         if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2202                 num_stripes = fs_devices->rw_devices;
2203                 if (num_stripes < 4)
2204                         return -ENOSPC;
2205                 num_stripes &= ~(u32)1;
2206                 sub_stripes = 2;
2207                 min_stripes = 4;
2208         }
2209
2210         if (type & BTRFS_BLOCK_GROUP_DATA) {
2211                 max_chunk_size = 10 * calc_size;
2212                 min_stripe_size = 64 * 1024 * 1024;
2213         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2214                 max_chunk_size = 256 * 1024 * 1024;
2215                 min_stripe_size = 32 * 1024 * 1024;
2216         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2217                 calc_size = 8 * 1024 * 1024;
2218                 max_chunk_size = calc_size * 2;
2219                 min_stripe_size = 1 * 1024 * 1024;
2220         }
2221
2222         /* we don't want a chunk larger than 10% of writeable space */
2223         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2224                              max_chunk_size);
2225
2226 again:
2227         max_avail = 0;
2228         if (!map || map->num_stripes != num_stripes) {
2229                 kfree(map);
2230                 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2231                 if (!map)
2232                         return -ENOMEM;
2233                 map->num_stripes = num_stripes;
2234         }
2235
2236         if (calc_size * num_stripes > max_chunk_size) {
2237                 calc_size = max_chunk_size;
2238                 do_div(calc_size, num_stripes);
2239                 do_div(calc_size, stripe_len);
2240                 calc_size *= stripe_len;
2241         }
2242
2243         /* we don't want tiny stripes */
2244         if (!looped)
2245                 calc_size = max_t(u64, min_stripe_size, calc_size);
2246
2247         /*
2248          * we're about to do_div by the stripe_len so lets make sure
2249          * we end up with something bigger than a stripe
2250          */
2251         calc_size = max_t(u64, calc_size, stripe_len * 4);
2252
2253         do_div(calc_size, stripe_len);
2254         calc_size *= stripe_len;
2255
2256         cur = fs_devices->alloc_list.next;
2257         index = 0;
2258
2259         if (type & BTRFS_BLOCK_GROUP_DUP)
2260                 min_free = calc_size * 2;
2261         else
2262                 min_free = calc_size;
2263
2264         /*
2265          * we add 1MB because we never use the first 1MB of the device, unless
2266          * we've looped, then we are likely allocating the maximum amount of
2267          * space left already
2268          */
2269         if (!looped)
2270                 min_free += 1024 * 1024;
2271
2272         INIT_LIST_HEAD(&private_devs);
2273         while (index < num_stripes) {
2274                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2275                 BUG_ON(!device->writeable);
2276                 if (device->total_bytes > device->bytes_used)
2277                         avail = device->total_bytes - device->bytes_used;
2278                 else
2279                         avail = 0;
2280                 cur = cur->next;
2281
2282                 if (device->in_fs_metadata && avail >= min_free) {
2283                         ret = find_free_dev_extent(trans, device,
2284                                                    min_free, &dev_offset,
2285                                                    &max_avail);
2286                         if (ret == 0) {
2287                                 list_move_tail(&device->dev_alloc_list,
2288                                                &private_devs);
2289                                 map->stripes[index].dev = device;
2290                                 map->stripes[index].physical = dev_offset;
2291                                 index++;
2292                                 if (type & BTRFS_BLOCK_GROUP_DUP) {
2293                                         map->stripes[index].dev = device;
2294                                         map->stripes[index].physical =
2295                                                 dev_offset + calc_size;
2296                                         index++;
2297                                 }
2298                         }
2299                 } else if (device->in_fs_metadata && avail > max_avail)
2300                         max_avail = avail;
2301                 if (cur == &fs_devices->alloc_list)
2302                         break;
2303         }
2304         list_splice(&private_devs, &fs_devices->alloc_list);
2305         if (index < num_stripes) {
2306                 if (index >= min_stripes) {
2307                         num_stripes = index;
2308                         if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2309                                 num_stripes /= sub_stripes;
2310                                 num_stripes *= sub_stripes;
2311                         }
2312                         looped = 1;
2313                         goto again;
2314                 }
2315                 if (!looped && max_avail > 0) {
2316                         looped = 1;
2317                         calc_size = max_avail;
2318                         goto again;
2319                 }
2320                 kfree(map);
2321                 return -ENOSPC;
2322         }
2323         map->sector_size = extent_root->sectorsize;
2324         map->stripe_len = stripe_len;
2325         map->io_align = stripe_len;
2326         map->io_width = stripe_len;
2327         map->type = type;
2328         map->num_stripes = num_stripes;
2329         map->sub_stripes = sub_stripes;
2330
2331         *map_ret = map;
2332         *stripe_size = calc_size;
2333         *num_bytes = chunk_bytes_by_type(type, calc_size,
2334                                          num_stripes, sub_stripes);
2335
2336         em = alloc_extent_map(GFP_NOFS);
2337         if (!em) {
2338                 kfree(map);
2339                 return -ENOMEM;
2340         }
2341         em->bdev = (struct block_device *)map;
2342         em->start = start;
2343         em->len = *num_bytes;
2344         em->block_start = 0;
2345         em->block_len = em->len;
2346
2347         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2348         write_lock(&em_tree->lock);
2349         ret = add_extent_mapping(em_tree, em);
2350         write_unlock(&em_tree->lock);
2351         BUG_ON(ret);
2352         free_extent_map(em);
2353
2354         ret = btrfs_make_block_group(trans, extent_root, 0, type,
2355                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2356                                      start, *num_bytes);
2357         BUG_ON(ret);
2358
2359         index = 0;
2360         while (index < map->num_stripes) {
2361                 device = map->stripes[index].dev;
2362                 dev_offset = map->stripes[index].physical;
2363
2364                 ret = btrfs_alloc_dev_extent(trans, device,
2365                                 info->chunk_root->root_key.objectid,
2366                                 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2367                                 start, dev_offset, calc_size);
2368                 BUG_ON(ret);
2369                 index++;
2370         }
2371
2372         return 0;
2373 }
2374
2375 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2376                                 struct btrfs_root *extent_root,
2377                                 struct map_lookup *map, u64 chunk_offset,
2378                                 u64 chunk_size, u64 stripe_size)
2379 {
2380         u64 dev_offset;
2381         struct btrfs_key key;
2382         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2383         struct btrfs_device *device;
2384         struct btrfs_chunk *chunk;
2385         struct btrfs_stripe *stripe;
2386         size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2387         int index = 0;
2388         int ret;
2389
2390         chunk = kzalloc(item_size, GFP_NOFS);
2391         if (!chunk)
2392                 return -ENOMEM;
2393
2394         index = 0;
2395         while (index < map->num_stripes) {
2396                 device = map->stripes[index].dev;
2397                 device->bytes_used += stripe_size;
2398                 ret = btrfs_update_device(trans, device);
2399                 BUG_ON(ret);
2400                 index++;
2401         }
2402
2403         index = 0;
2404         stripe = &chunk->stripe;
2405         while (index < map->num_stripes) {
2406                 device = map->stripes[index].dev;
2407                 dev_offset = map->stripes[index].physical;
2408
2409                 btrfs_set_stack_stripe_devid(stripe, device->devid);
2410                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2411                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2412                 stripe++;
2413                 index++;
2414         }
2415
2416         btrfs_set_stack_chunk_length(chunk, chunk_size);
2417         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2418         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2419         btrfs_set_stack_chunk_type(chunk, map->type);
2420         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2421         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2422         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2423         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2424         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2425
2426         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2427         key.type = BTRFS_CHUNK_ITEM_KEY;
2428         key.offset = chunk_offset;
2429
2430         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2431         BUG_ON(ret);
2432
2433         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2434                 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2435                                              item_size);
2436                 BUG_ON(ret);
2437         }
2438         kfree(chunk);
2439         return 0;
2440 }
2441
2442 /*
2443  * Chunk allocation falls into two parts. The first part does works
2444  * that make the new allocated chunk useable, but not do any operation
2445  * that modifies the chunk tree. The second part does the works that
2446  * require modifying the chunk tree. This division is important for the
2447  * bootstrap process of adding storage to a seed btrfs.
2448  */
2449 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2450                       struct btrfs_root *extent_root, u64 type)
2451 {
2452         u64 chunk_offset;
2453         u64 chunk_size;
2454         u64 stripe_size;
2455         struct map_lookup *map;
2456         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2457         int ret;
2458
2459         ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2460                               &chunk_offset);
2461         if (ret)
2462                 return ret;
2463
2464         ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2465                                   &stripe_size, chunk_offset, type);
2466         if (ret)
2467                 return ret;
2468
2469         ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2470                                    chunk_size, stripe_size);
2471         BUG_ON(ret);
2472         return 0;
2473 }
2474
2475 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2476                                          struct btrfs_root *root,
2477                                          struct btrfs_device *device)
2478 {
2479         u64 chunk_offset;
2480         u64 sys_chunk_offset;
2481         u64 chunk_size;
2482         u64 sys_chunk_size;
2483         u64 stripe_size;
2484         u64 sys_stripe_size;
2485         u64 alloc_profile;
2486         struct map_lookup *map;
2487         struct map_lookup *sys_map;
2488         struct btrfs_fs_info *fs_info = root->fs_info;
2489         struct btrfs_root *extent_root = fs_info->extent_root;
2490         int ret;
2491
2492         ret = find_next_chunk(fs_info->chunk_root,
2493                               BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2494         BUG_ON(ret);
2495
2496         alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2497                         (fs_info->metadata_alloc_profile &
2498                          fs_info->avail_metadata_alloc_bits);
2499         alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2500
2501         ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2502                                   &stripe_size, chunk_offset, alloc_profile);
2503         BUG_ON(ret);
2504
2505         sys_chunk_offset = chunk_offset + chunk_size;
2506
2507         alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2508                         (fs_info->system_alloc_profile &
2509                          fs_info->avail_system_alloc_bits);
2510         alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2511
2512         ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2513                                   &sys_chunk_size, &sys_stripe_size,
2514                                   sys_chunk_offset, alloc_profile);
2515         BUG_ON(ret);
2516
2517         ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2518         BUG_ON(ret);
2519
2520         /*
2521          * Modifying chunk tree needs allocating new blocks from both
2522          * system block group and metadata block group. So we only can
2523          * do operations require modifying the chunk tree after both
2524          * block groups were created.
2525          */
2526         ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2527                                    chunk_size, stripe_size);
2528         BUG_ON(ret);
2529
2530         ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2531                                    sys_chunk_offset, sys_chunk_size,
2532                                    sys_stripe_size);
2533         BUG_ON(ret);
2534         return 0;
2535 }
2536
2537 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2538 {
2539         struct extent_map *em;
2540         struct map_lookup *map;
2541         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2542         int readonly = 0;
2543         int i;
2544
2545         read_lock(&map_tree->map_tree.lock);
2546         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2547         read_unlock(&map_tree->map_tree.lock);
2548         if (!em)
2549                 return 1;
2550
2551         if (btrfs_test_opt(root, DEGRADED)) {
2552                 free_extent_map(em);
2553                 return 0;
2554         }
2555
2556         map = (struct map_lookup *)em->bdev;
2557         for (i = 0; i < map->num_stripes; i++) {
2558                 if (!map->stripes[i].dev->writeable) {
2559                         readonly = 1;
2560                         break;
2561                 }
2562         }
2563         free_extent_map(em);
2564         return readonly;
2565 }
2566
2567 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2568 {
2569         extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2570 }
2571
2572 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2573 {
2574         struct extent_map *em;
2575
2576         while (1) {
2577                 write_lock(&tree->map_tree.lock);
2578                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2579                 if (em)
2580                         remove_extent_mapping(&tree->map_tree, em);
2581                 write_unlock(&tree->map_tree.lock);
2582                 if (!em)
2583                         break;
2584                 kfree(em->bdev);
2585                 /* once for us */
2586                 free_extent_map(em);
2587                 /* once for the tree */
2588                 free_extent_map(em);
2589         }
2590 }
2591
2592 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2593 {
2594         struct extent_map *em;
2595         struct map_lookup *map;
2596         struct extent_map_tree *em_tree = &map_tree->map_tree;
2597         int ret;
2598
2599         read_lock(&em_tree->lock);
2600         em = lookup_extent_mapping(em_tree, logical, len);
2601         read_unlock(&em_tree->lock);
2602         BUG_ON(!em);
2603
2604         BUG_ON(em->start > logical || em->start + em->len < logical);
2605         map = (struct map_lookup *)em->bdev;
2606         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2607                 ret = map->num_stripes;
2608         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2609                 ret = map->sub_stripes;
2610         else
2611                 ret = 1;
2612         free_extent_map(em);
2613         return ret;
2614 }
2615
2616 static int find_live_mirror(struct map_lookup *map, int first, int num,
2617                             int optimal)
2618 {
2619         int i;
2620         if (map->stripes[optimal].dev->bdev)
2621                 return optimal;
2622         for (i = first; i < first + num; i++) {
2623                 if (map->stripes[i].dev->bdev)
2624                         return i;
2625         }
2626         /* we couldn't find one that doesn't fail.  Just return something
2627          * and the io error handling code will clean up eventually
2628          */
2629         return optimal;
2630 }
2631
2632 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2633                              u64 logical, u64 *length,
2634                              struct btrfs_multi_bio **multi_ret,
2635                              int mirror_num, struct page *unplug_page)
2636 {
2637         struct extent_map *em;
2638         struct map_lookup *map;
2639         struct extent_map_tree *em_tree = &map_tree->map_tree;
2640         u64 offset;
2641         u64 stripe_offset;
2642         u64 stripe_nr;
2643         int stripes_allocated = 8;
2644         int stripes_required = 1;
2645         int stripe_index;
2646         int i;
2647         int num_stripes;
2648         int max_errors = 0;
2649         struct btrfs_multi_bio *multi = NULL;
2650
2651         if (multi_ret && !(rw & REQ_WRITE))
2652                 stripes_allocated = 1;
2653 again:
2654         if (multi_ret) {
2655                 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2656                                 GFP_NOFS);
2657                 if (!multi)
2658                         return -ENOMEM;
2659
2660                 atomic_set(&multi->error, 0);
2661         }
2662
2663         read_lock(&em_tree->lock);
2664         em = lookup_extent_mapping(em_tree, logical, *length);
2665         read_unlock(&em_tree->lock);
2666
2667         if (!em && unplug_page) {
2668                 kfree(multi);
2669                 return 0;
2670         }
2671
2672         if (!em) {
2673                 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2674                        (unsigned long long)logical,
2675                        (unsigned long long)*length);
2676                 BUG();
2677         }
2678
2679         BUG_ON(em->start > logical || em->start + em->len < logical);
2680         map = (struct map_lookup *)em->bdev;
2681         offset = logical - em->start;
2682
2683         if (mirror_num > map->num_stripes)
2684                 mirror_num = 0;
2685
2686         /* if our multi bio struct is too small, back off and try again */
2687         if (rw & REQ_WRITE) {
2688                 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2689                                  BTRFS_BLOCK_GROUP_DUP)) {
2690                         stripes_required = map->num_stripes;
2691                         max_errors = 1;
2692                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2693                         stripes_required = map->sub_stripes;
2694                         max_errors = 1;
2695                 }
2696         }
2697         if (multi_ret && (rw & REQ_WRITE) &&
2698             stripes_allocated < stripes_required) {
2699                 stripes_allocated = map->num_stripes;
2700                 free_extent_map(em);
2701                 kfree(multi);
2702                 goto again;
2703         }
2704         stripe_nr = offset;
2705         /*
2706          * stripe_nr counts the total number of stripes we have to stride
2707          * to get to this block
2708          */
2709         do_div(stripe_nr, map->stripe_len);
2710
2711         stripe_offset = stripe_nr * map->stripe_len;
2712         BUG_ON(offset < stripe_offset);
2713
2714         /* stripe_offset is the offset of this block in its stripe*/
2715         stripe_offset = offset - stripe_offset;
2716
2717         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2718                          BTRFS_BLOCK_GROUP_RAID10 |
2719                          BTRFS_BLOCK_GROUP_DUP)) {
2720                 /* we limit the length of each bio to what fits in a stripe */
2721                 *length = min_t(u64, em->len - offset,
2722                               map->stripe_len - stripe_offset);
2723         } else {
2724                 *length = em->len - offset;
2725         }
2726
2727         if (!multi_ret && !unplug_page)
2728                 goto out;
2729
2730         num_stripes = 1;
2731         stripe_index = 0;
2732         if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2733                 if (unplug_page || (rw & REQ_WRITE))
2734                         num_stripes = map->num_stripes;
2735                 else if (mirror_num)
2736                         stripe_index = mirror_num - 1;
2737                 else {
2738                         stripe_index = find_live_mirror(map, 0,
2739                                             map->num_stripes,
2740                                             current->pid % map->num_stripes);
2741                 }
2742
2743         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2744                 if (rw & REQ_WRITE)
2745                         num_stripes = map->num_stripes;
2746                 else if (mirror_num)
2747                         stripe_index = mirror_num - 1;
2748
2749         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2750                 int factor = map->num_stripes / map->sub_stripes;
2751
2752                 stripe_index = do_div(stripe_nr, factor);
2753                 stripe_index *= map->sub_stripes;
2754
2755                 if (unplug_page || (rw & REQ_WRITE))
2756                         num_stripes = map->sub_stripes;
2757                 else if (mirror_num)
2758                         stripe_index += mirror_num - 1;
2759                 else {
2760                         stripe_index = find_live_mirror(map, stripe_index,
2761                                               map->sub_stripes, stripe_index +
2762                                               current->pid % map->sub_stripes);
2763                 }
2764         } else {
2765                 /*
2766                  * after this do_div call, stripe_nr is the number of stripes
2767                  * on this device we have to walk to find the data, and
2768                  * stripe_index is the number of our device in the stripe array
2769                  */
2770                 stripe_index = do_div(stripe_nr, map->num_stripes);
2771         }
2772         BUG_ON(stripe_index >= map->num_stripes);
2773
2774         for (i = 0; i < num_stripes; i++) {
2775                 if (unplug_page) {
2776                         struct btrfs_device *device;
2777                         struct backing_dev_info *bdi;
2778
2779                         device = map->stripes[stripe_index].dev;
2780                         if (device->bdev) {
2781                                 bdi = blk_get_backing_dev_info(device->bdev);
2782                                 if (bdi->unplug_io_fn)
2783                                         bdi->unplug_io_fn(bdi, unplug_page);
2784                         }
2785                 } else {
2786                         multi->stripes[i].physical =
2787                                 map->stripes[stripe_index].physical +
2788                                 stripe_offset + stripe_nr * map->stripe_len;
2789                         multi->stripes[i].dev = map->stripes[stripe_index].dev;
2790                 }
2791                 stripe_index++;
2792         }
2793         if (multi_ret) {
2794                 *multi_ret = multi;
2795                 multi->num_stripes = num_stripes;
2796                 multi->max_errors = max_errors;
2797         }
2798 out:
2799         free_extent_map(em);
2800         return 0;
2801 }
2802
2803 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2804                       u64 logical, u64 *length,
2805                       struct btrfs_multi_bio **multi_ret, int mirror_num)
2806 {
2807         return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
2808                                  mirror_num, NULL);
2809 }
2810
2811 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
2812                      u64 chunk_start, u64 physical, u64 devid,
2813                      u64 **logical, int *naddrs, int *stripe_len)
2814 {
2815         struct extent_map_tree *em_tree = &map_tree->map_tree;
2816         struct extent_map *em;
2817         struct map_lookup *map;
2818         u64 *buf;
2819         u64 bytenr;
2820         u64 length;
2821         u64 stripe_nr;
2822         int i, j, nr = 0;
2823
2824         read_lock(&em_tree->lock);
2825         em = lookup_extent_mapping(em_tree, chunk_start, 1);
2826         read_unlock(&em_tree->lock);
2827
2828         BUG_ON(!em || em->start != chunk_start);
2829         map = (struct map_lookup *)em->bdev;
2830
2831         length = em->len;
2832         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2833                 do_div(length, map->num_stripes / map->sub_stripes);
2834         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
2835                 do_div(length, map->num_stripes);
2836
2837         buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
2838         BUG_ON(!buf);
2839
2840         for (i = 0; i < map->num_stripes; i++) {
2841                 if (devid && map->stripes[i].dev->devid != devid)
2842                         continue;
2843                 if (map->stripes[i].physical > physical ||
2844                     map->stripes[i].physical + length <= physical)
2845                         continue;
2846
2847                 stripe_nr = physical - map->stripes[i].physical;
2848                 do_div(stripe_nr, map->stripe_len);
2849
2850                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2851                         stripe_nr = stripe_nr * map->num_stripes + i;
2852                         do_div(stripe_nr, map->sub_stripes);
2853                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2854                         stripe_nr = stripe_nr * map->num_stripes + i;
2855                 }
2856                 bytenr = chunk_start + stripe_nr * map->stripe_len;
2857                 WARN_ON(nr >= map->num_stripes);
2858                 for (j = 0; j < nr; j++) {
2859                         if (buf[j] == bytenr)
2860                                 break;
2861                 }
2862                 if (j == nr) {
2863                         WARN_ON(nr >= map->num_stripes);
2864                         buf[nr++] = bytenr;
2865                 }
2866         }
2867
2868         *logical = buf;
2869         *naddrs = nr;
2870         *stripe_len = map->stripe_len;
2871
2872         free_extent_map(em);
2873         return 0;
2874 }
2875
2876 int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
2877                       u64 logical, struct page *page)
2878 {
2879         u64 length = PAGE_CACHE_SIZE;
2880         return __btrfs_map_block(map_tree, READ, logical, &length,
2881                                  NULL, 0, page);
2882 }
2883
2884 static void end_bio_multi_stripe(struct bio *bio, int err)
2885 {
2886         struct btrfs_multi_bio *multi = bio->bi_private;
2887         int is_orig_bio = 0;
2888
2889         if (err)
2890                 atomic_inc(&multi->error);
2891
2892         if (bio == multi->orig_bio)
2893                 is_orig_bio = 1;
2894
2895         if (atomic_dec_and_test(&multi->stripes_pending)) {
2896                 if (!is_orig_bio) {
2897                         bio_put(bio);
2898                         bio = multi->orig_bio;
2899                 }
2900                 bio->bi_private = multi->private;
2901                 bio->bi_end_io = multi->end_io;
2902                 /* only send an error to the higher layers if it is
2903                  * beyond the tolerance of the multi-bio
2904                  */
2905                 if (atomic_read(&multi->error) > multi->max_errors) {
2906                         err = -EIO;
2907                 } else if (err) {
2908                         /*
2909                          * this bio is actually up to date, we didn't
2910                          * go over the max number of errors
2911                          */
2912                         set_bit(BIO_UPTODATE, &bio->bi_flags);
2913                         err = 0;
2914                 }
2915                 kfree(multi);
2916
2917                 bio_endio(bio, err);
2918         } else if (!is_orig_bio) {
2919                 bio_put(bio);
2920         }
2921 }
2922
2923 struct async_sched {
2924         struct bio *bio;
2925         int rw;
2926         struct btrfs_fs_info *info;
2927         struct btrfs_work work;
2928 };
2929
2930 /*
2931  * see run_scheduled_bios for a description of why bios are collected for
2932  * async submit.
2933  *
2934  * This will add one bio to the pending list for a device and make sure
2935  * the work struct is scheduled.
2936  */
2937 static noinline int schedule_bio(struct btrfs_root *root,
2938                                  struct btrfs_device *device,
2939                                  int rw, struct bio *bio)
2940 {
2941         int should_queue = 1;
2942         struct btrfs_pending_bios *pending_bios;
2943
2944         /* don't bother with additional async steps for reads, right now */
2945         if (!(rw & REQ_WRITE)) {
2946                 bio_get(bio);
2947                 submit_bio(rw, bio);
2948                 bio_put(bio);
2949                 return 0;
2950         }
2951
2952         /*
2953          * nr_async_bios allows us to reliably return congestion to the
2954          * higher layers.  Otherwise, the async bio makes it appear we have
2955          * made progress against dirty pages when we've really just put it
2956          * on a queue for later
2957          */
2958         atomic_inc(&root->fs_info->nr_async_bios);
2959         WARN_ON(bio->bi_next);
2960         bio->bi_next = NULL;
2961         bio->bi_rw |= rw;
2962
2963         spin_lock(&device->io_lock);
2964         if (bio->bi_rw & REQ_SYNC)
2965                 pending_bios = &device->pending_sync_bios;
2966         else
2967                 pending_bios = &device->pending_bios;
2968
2969         if (pending_bios->tail)
2970                 pending_bios->tail->bi_next = bio;
2971
2972         pending_bios->tail = bio;
2973         if (!pending_bios->head)
2974                 pending_bios->head = bio;
2975         if (device->running_pending)
2976                 should_queue = 0;
2977
2978         spin_unlock(&device->io_lock);
2979
2980         if (should_queue)
2981                 btrfs_queue_worker(&root->fs_info->submit_workers,
2982                                    &device->work);
2983         return 0;
2984 }
2985
2986 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
2987                   int mirror_num, int async_submit)
2988 {
2989         struct btrfs_mapping_tree *map_tree;
2990         struct btrfs_device *dev;
2991         struct bio *first_bio = bio;
2992         u64 logical = (u64)bio->bi_sector << 9;
2993         u64 length = 0;
2994         u64 map_length;
2995         struct btrfs_multi_bio *multi = NULL;
2996         int ret;
2997         int dev_nr = 0;
2998         int total_devs = 1;
2999
3000         length = bio->bi_size;
3001         map_tree = &root->fs_info->mapping_tree;
3002         map_length = length;
3003
3004         ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
3005                               mirror_num);
3006         BUG_ON(ret);
3007
3008         total_devs = multi->num_stripes;
3009         if (map_length < length) {
3010                 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
3011                        "len %llu\n", (unsigned long long)logical,
3012                        (unsigned long long)length,
3013                        (unsigned long long)map_length);
3014                 BUG();
3015         }
3016         multi->end_io = first_bio->bi_end_io;
3017         multi->private = first_bio->bi_private;
3018         multi->orig_bio = first_bio;
3019         atomic_set(&multi->stripes_pending, multi->num_stripes);
3020
3021         while (dev_nr < total_devs) {
3022                 if (total_devs > 1) {
3023                         if (dev_nr < total_devs - 1) {
3024                                 bio = bio_clone(first_bio, GFP_NOFS);
3025                                 BUG_ON(!bio);
3026                         } else {
3027                                 bio = first_bio;
3028                         }
3029                         bio->bi_private = multi;
3030                         bio->bi_end_io = end_bio_multi_stripe;
3031                 }
3032                 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
3033                 dev = multi->stripes[dev_nr].dev;
3034                 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
3035                         bio->bi_bdev = dev->bdev;
3036                         if (async_submit)
3037                                 schedule_bio(root, dev, rw, bio);
3038                         else
3039                                 submit_bio(rw, bio);
3040                 } else {
3041                         bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3042                         bio->bi_sector = logical >> 9;
3043                         bio_endio(bio, -EIO);
3044                 }
3045                 dev_nr++;
3046         }
3047         if (total_devs == 1)
3048                 kfree(multi);
3049         return 0;
3050 }
3051
3052 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
3053                                        u8 *uuid, u8 *fsid)
3054 {
3055         struct btrfs_device *device;
3056         struct btrfs_fs_devices *cur_devices;
3057
3058         cur_devices = root->fs_info->fs_devices;
3059         while (cur_devices) {
3060                 if (!fsid ||
3061                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3062                         device = __find_device(&cur_devices->devices,
3063                                                devid, uuid);
3064                         if (device)
3065                                 return device;
3066                 }
3067                 cur_devices = cur_devices->seed;
3068         }
3069         return NULL;
3070 }
3071
3072 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3073                                             u64 devid, u8 *dev_uuid)
3074 {
3075         struct btrfs_device *device;
3076         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3077
3078         device = kzalloc(sizeof(*device), GFP_NOFS);
3079         if (!device)
3080                 return NULL;
3081         list_add(&device->dev_list,
3082                  &fs_devices->devices);
3083         device->dev_root = root->fs_info->dev_root;
3084         device->devid = devid;
3085         device->work.func = pending_bios_fn;
3086         device->fs_devices = fs_devices;
3087         fs_devices->num_devices++;
3088         spin_lock_init(&device->io_lock);
3089         INIT_LIST_HEAD(&device->dev_alloc_list);
3090         memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3091         return device;
3092 }
3093
3094 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3095                           struct extent_buffer *leaf,
3096                           struct btrfs_chunk *chunk)
3097 {
3098         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3099         struct map_lookup *map;
3100         struct extent_map *em;
3101         u64 logical;
3102         u64 length;
3103         u64 devid;
3104         u8 uuid[BTRFS_UUID_SIZE];
3105         int num_stripes;
3106         int ret;
3107         int i;
3108
3109         logical = key->offset;
3110         length = btrfs_chunk_length(leaf, chunk);
3111
3112         read_lock(&map_tree->map_tree.lock);
3113         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
3114         read_unlock(&map_tree->map_tree.lock);
3115
3116         /* already mapped? */
3117         if (em && em->start <= logical && em->start + em->len > logical) {
3118                 free_extent_map(em);
3119                 return 0;
3120         } else if (em) {
3121                 free_extent_map(em);
3122         }
3123
3124         em = alloc_extent_map(GFP_NOFS);
3125         if (!em)
3126                 return -ENOMEM;
3127         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3128         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3129         if (!map) {
3130                 free_extent_map(em);
3131                 return -ENOMEM;
3132         }
3133
3134         em->bdev = (struct block_device *)map;
3135         em->start = logical;
3136         em->len = length;
3137         em->block_start = 0;
3138         em->block_len = em->len;
3139
3140         map->num_stripes = num_stripes;
3141         map->io_width = btrfs_chunk_io_width(leaf, chunk);
3142         map->io_align = btrfs_chunk_io_align(leaf, chunk);
3143         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3144         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3145         map->type = btrfs_chunk_type(leaf, chunk);
3146         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
3147         for (i = 0; i < num_stripes; i++) {
3148                 map->stripes[i].physical =
3149                         btrfs_stripe_offset_nr(leaf, chunk, i);
3150                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
3151                 read_extent_buffer(leaf, uuid, (unsigned long)
3152                                    btrfs_stripe_dev_uuid_nr(chunk, i),
3153                                    BTRFS_UUID_SIZE);
3154                 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3155                                                         NULL);
3156                 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
3157                         kfree(map);
3158                         free_extent_map(em);
3159                         return -EIO;
3160                 }
3161                 if (!map->stripes[i].dev) {
3162                         map->stripes[i].dev =
3163                                 add_missing_dev(root, devid, uuid);
3164                         if (!map->stripes[i].dev) {
3165                                 kfree(map);
3166                                 free_extent_map(em);
3167                                 return -EIO;
3168                         }
3169                 }
3170                 map->stripes[i].dev->in_fs_metadata = 1;
3171         }
3172
3173         write_lock(&map_tree->map_tree.lock);
3174         ret = add_extent_mapping(&map_tree->map_tree, em);
3175         write_unlock(&map_tree->map_tree.lock);
3176         BUG_ON(ret);
3177         free_extent_map(em);
3178
3179         return 0;
3180 }
3181
3182 static int fill_device_from_item(struct extent_buffer *leaf,
3183                                  struct btrfs_dev_item *dev_item,
3184                                  struct btrfs_device *device)
3185 {
3186         unsigned long ptr;
3187
3188         device->devid = btrfs_device_id(leaf, dev_item);
3189         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3190         device->total_bytes = device->disk_total_bytes;
3191         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3192         device->type = btrfs_device_type(leaf, dev_item);
3193         device->io_align = btrfs_device_io_align(leaf, dev_item);
3194         device->io_width = btrfs_device_io_width(leaf, dev_item);
3195         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
3196
3197         ptr = (unsigned long)btrfs_device_uuid(dev_item);
3198         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3199
3200         return 0;
3201 }
3202
3203 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3204 {
3205         struct btrfs_fs_devices *fs_devices;
3206         int ret;
3207
3208         mutex_lock(&uuid_mutex);
3209
3210         fs_devices = root->fs_info->fs_devices->seed;
3211         while (fs_devices) {
3212                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3213                         ret = 0;
3214                         goto out;
3215                 }
3216                 fs_devices = fs_devices->seed;
3217         }
3218
3219         fs_devices = find_fsid(fsid);
3220         if (!fs_devices) {
3221                 ret = -ENOENT;
3222                 goto out;
3223         }
3224
3225         fs_devices = clone_fs_devices(fs_devices);
3226         if (IS_ERR(fs_devices)) {
3227                 ret = PTR_ERR(fs_devices);
3228                 goto out;
3229         }
3230
3231         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3232                                    root->fs_info->bdev_holder);
3233         if (ret)
3234                 goto out;
3235
3236         if (!fs_devices->seeding) {
3237                 __btrfs_close_devices(fs_devices);
3238                 free_fs_devices(fs_devices);
3239                 ret = -EINVAL;
3240                 goto out;
3241         }
3242
3243         fs_devices->seed = root->fs_info->fs_devices->seed;
3244         root->fs_info->fs_devices->seed = fs_devices;
3245 out:
3246         mutex_unlock(&uuid_mutex);
3247         return ret;
3248 }
3249
3250 static int read_one_dev(struct btrfs_root *root,
3251                         struct extent_buffer *leaf,
3252                         struct btrfs_dev_item *dev_item)
3253 {
3254         struct btrfs_device *device;
3255         u64 devid;
3256         int ret;
3257         u8 fs_uuid[BTRFS_UUID_SIZE];
3258         u8 dev_uuid[BTRFS_UUID_SIZE];
3259
3260         devid = btrfs_device_id(leaf, dev_item);
3261         read_extent_buffer(leaf, dev_uuid,
3262                            (unsigned long)btrfs_device_uuid(dev_item),
3263                            BTRFS_UUID_SIZE);
3264         read_extent_buffer(leaf, fs_uuid,
3265                            (unsigned long)btrfs_device_fsid(dev_item),
3266                            BTRFS_UUID_SIZE);
3267
3268         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3269                 ret = open_seed_devices(root, fs_uuid);
3270                 if (ret && !btrfs_test_opt(root, DEGRADED))
3271                         return ret;
3272         }
3273
3274         device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3275         if (!device || !device->bdev) {
3276                 if (!btrfs_test_opt(root, DEGRADED))
3277                         return -EIO;
3278
3279                 if (!device) {
3280                         printk(KERN_WARNING "warning devid %llu missing\n",
3281                                (unsigned long long)devid);
3282                         device = add_missing_dev(root, devid, dev_uuid);
3283                         if (!device)
3284                                 return -ENOMEM;
3285                 }
3286         }
3287
3288         if (device->fs_devices != root->fs_info->fs_devices) {
3289                 BUG_ON(device->writeable);
3290                 if (device->generation !=
3291                     btrfs_device_generation(leaf, dev_item))
3292                         return -EINVAL;
3293         }
3294
3295         fill_device_from_item(leaf, dev_item, device);
3296         device->dev_root = root->fs_info->dev_root;
3297         device->in_fs_metadata = 1;
3298         if (device->writeable)
3299                 device->fs_devices->total_rw_bytes += device->total_bytes;
3300         ret = 0;
3301         return ret;
3302 }
3303
3304 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3305 {
3306         struct btrfs_dev_item *dev_item;
3307
3308         dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3309                                                      dev_item);
3310         return read_one_dev(root, buf, dev_item);
3311 }
3312
3313 int btrfs_read_sys_array(struct btrfs_root *root)
3314 {
3315         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3316         struct extent_buffer *sb;
3317         struct btrfs_disk_key *disk_key;
3318         struct btrfs_chunk *chunk;
3319         u8 *ptr;
3320         unsigned long sb_ptr;
3321         int ret = 0;
3322         u32 num_stripes;
3323         u32 array_size;
3324         u32 len = 0;
3325         u32 cur;
3326         struct btrfs_key key;
3327
3328         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3329                                           BTRFS_SUPER_INFO_SIZE);
3330         if (!sb)
3331                 return -ENOMEM;
3332         btrfs_set_buffer_uptodate(sb);
3333         btrfs_set_buffer_lockdep_class(sb, 0);
3334
3335         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3336         array_size = btrfs_super_sys_array_size(super_copy);
3337
3338         ptr = super_copy->sys_chunk_array;
3339         sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3340         cur = 0;
3341
3342         while (cur < array_size) {
3343                 disk_key = (struct btrfs_disk_key *)ptr;
3344                 btrfs_disk_key_to_cpu(&key, disk_key);
3345
3346                 len = sizeof(*disk_key); ptr += len;
3347                 sb_ptr += len;
3348                 cur += len;
3349
3350                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3351                         chunk = (struct btrfs_chunk *)sb_ptr;
3352                         ret = read_one_chunk(root, &key, sb, chunk);
3353                         if (ret)
3354                                 break;
3355                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3356                         len = btrfs_chunk_item_size(num_stripes);
3357                 } else {
3358                         ret = -EIO;
3359                         break;
3360                 }
3361                 ptr += len;
3362                 sb_ptr += len;
3363                 cur += len;
3364         }
3365         free_extent_buffer(sb);
3366         return ret;
3367 }
3368
3369 int btrfs_read_chunk_tree(struct btrfs_root *root)
3370 {
3371         struct btrfs_path *path;
3372         struct extent_buffer *leaf;
3373         struct btrfs_key key;
3374         struct btrfs_key found_key;
3375         int ret;
3376         int slot;
3377
3378         root = root->fs_info->chunk_root;
3379
3380         path = btrfs_alloc_path();
3381         if (!path)
3382                 return -ENOMEM;
3383
3384         /* first we search for all of the device items, and then we
3385          * read in all of the chunk items.  This way we can create chunk
3386          * mappings that reference all of the devices that are afound
3387          */
3388         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3389         key.offset = 0;
3390         key.type = 0;
3391 again:
3392         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3393         if (ret < 0)
3394                 goto error;
3395         while (1) {
3396                 leaf = path->nodes[0];
3397                 slot = path->slots[0];
3398                 if (slot >= btrfs_header_nritems(leaf)) {
3399                         ret = btrfs_next_leaf(root, path);
3400                         if (ret == 0)
3401                                 continue;
3402                         if (ret < 0)
3403                                 goto error;
3404                         break;
3405                 }
3406                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3407                 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3408                         if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3409                                 break;
3410                         if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3411                                 struct btrfs_dev_item *dev_item;
3412                                 dev_item = btrfs_item_ptr(leaf, slot,
3413                                                   struct btrfs_dev_item);
3414                                 ret = read_one_dev(root, leaf, dev_item);
3415                                 if (ret)
3416                                         goto error;
3417                         }
3418                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3419                         struct btrfs_chunk *chunk;
3420                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3421                         ret = read_one_chunk(root, &found_key, leaf, chunk);
3422                         if (ret)
3423                                 goto error;
3424                 }
3425                 path->slots[0]++;
3426         }
3427         if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3428                 key.objectid = 0;
3429                 btrfs_release_path(root, path);
3430                 goto again;
3431         }
3432         ret = 0;
3433 error:
3434         btrfs_free_path(path);
3435         return ret;
3436 }