Btrfs: ClearPageError during writepage and clean_tree_block
[pandora-kernel.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31
32 #define BTRFS_ROOT_TRANS_TAG 0
33
34 static noinline void put_transaction(struct btrfs_transaction *transaction)
35 {
36         WARN_ON(atomic_read(&transaction->use_count) == 0);
37         if (atomic_dec_and_test(&transaction->use_count)) {
38                 BUG_ON(!list_empty(&transaction->list));
39                 memset(transaction, 0, sizeof(*transaction));
40                 kmem_cache_free(btrfs_transaction_cachep, transaction);
41         }
42 }
43
44 static noinline void switch_commit_root(struct btrfs_root *root)
45 {
46         free_extent_buffer(root->commit_root);
47         root->commit_root = btrfs_root_node(root);
48 }
49
50 /*
51  * either allocate a new transaction or hop into the existing one
52  */
53 static noinline int join_transaction(struct btrfs_root *root, int nofail)
54 {
55         struct btrfs_transaction *cur_trans;
56
57         spin_lock(&root->fs_info->trans_lock);
58         if (root->fs_info->trans_no_join) {
59                 if (!nofail) {
60                         spin_unlock(&root->fs_info->trans_lock);
61                         return -EBUSY;
62                 }
63         }
64
65         cur_trans = root->fs_info->running_transaction;
66         if (cur_trans) {
67                 atomic_inc(&cur_trans->use_count);
68                 atomic_inc(&cur_trans->num_writers);
69                 cur_trans->num_joined++;
70                 spin_unlock(&root->fs_info->trans_lock);
71                 return 0;
72         }
73         spin_unlock(&root->fs_info->trans_lock);
74
75         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
76         if (!cur_trans)
77                 return -ENOMEM;
78         spin_lock(&root->fs_info->trans_lock);
79         if (root->fs_info->running_transaction) {
80                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
81                 cur_trans = root->fs_info->running_transaction;
82                 atomic_inc(&cur_trans->use_count);
83                 atomic_inc(&cur_trans->num_writers);
84                 cur_trans->num_joined++;
85                 spin_unlock(&root->fs_info->trans_lock);
86                 return 0;
87         }
88         atomic_set(&cur_trans->num_writers, 1);
89         cur_trans->num_joined = 0;
90         init_waitqueue_head(&cur_trans->writer_wait);
91         init_waitqueue_head(&cur_trans->commit_wait);
92         cur_trans->in_commit = 0;
93         cur_trans->blocked = 0;
94         /*
95          * One for this trans handle, one so it will live on until we
96          * commit the transaction.
97          */
98         atomic_set(&cur_trans->use_count, 2);
99         cur_trans->commit_done = 0;
100         cur_trans->start_time = get_seconds();
101
102         cur_trans->delayed_refs.root = RB_ROOT;
103         cur_trans->delayed_refs.num_entries = 0;
104         cur_trans->delayed_refs.num_heads_ready = 0;
105         cur_trans->delayed_refs.num_heads = 0;
106         cur_trans->delayed_refs.flushing = 0;
107         cur_trans->delayed_refs.run_delayed_start = 0;
108         spin_lock_init(&cur_trans->commit_lock);
109         spin_lock_init(&cur_trans->delayed_refs.lock);
110
111         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
112         list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
113         extent_io_tree_init(&cur_trans->dirty_pages,
114                              root->fs_info->btree_inode->i_mapping);
115         root->fs_info->generation++;
116         cur_trans->transid = root->fs_info->generation;
117         root->fs_info->running_transaction = cur_trans;
118         spin_unlock(&root->fs_info->trans_lock);
119
120         return 0;
121 }
122
123 /*
124  * this does all the record keeping required to make sure that a reference
125  * counted root is properly recorded in a given transaction.  This is required
126  * to make sure the old root from before we joined the transaction is deleted
127  * when the transaction commits
128  */
129 static int record_root_in_trans(struct btrfs_trans_handle *trans,
130                                struct btrfs_root *root)
131 {
132         if (root->ref_cows && root->last_trans < trans->transid) {
133                 WARN_ON(root == root->fs_info->extent_root);
134                 WARN_ON(root->commit_root != root->node);
135
136                 /*
137                  * see below for in_trans_setup usage rules
138                  * we have the reloc mutex held now, so there
139                  * is only one writer in this function
140                  */
141                 root->in_trans_setup = 1;
142
143                 /* make sure readers find in_trans_setup before
144                  * they find our root->last_trans update
145                  */
146                 smp_wmb();
147
148                 spin_lock(&root->fs_info->fs_roots_radix_lock);
149                 if (root->last_trans == trans->transid) {
150                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
151                         return 0;
152                 }
153                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
154                            (unsigned long)root->root_key.objectid,
155                            BTRFS_ROOT_TRANS_TAG);
156                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
157                 root->last_trans = trans->transid;
158
159                 /* this is pretty tricky.  We don't want to
160                  * take the relocation lock in btrfs_record_root_in_trans
161                  * unless we're really doing the first setup for this root in
162                  * this transaction.
163                  *
164                  * Normally we'd use root->last_trans as a flag to decide
165                  * if we want to take the expensive mutex.
166                  *
167                  * But, we have to set root->last_trans before we
168                  * init the relocation root, otherwise, we trip over warnings
169                  * in ctree.c.  The solution used here is to flag ourselves
170                  * with root->in_trans_setup.  When this is 1, we're still
171                  * fixing up the reloc trees and everyone must wait.
172                  *
173                  * When this is zero, they can trust root->last_trans and fly
174                  * through btrfs_record_root_in_trans without having to take the
175                  * lock.  smp_wmb() makes sure that all the writes above are
176                  * done before we pop in the zero below
177                  */
178                 btrfs_init_reloc_root(trans, root);
179                 smp_wmb();
180                 root->in_trans_setup = 0;
181         }
182         return 0;
183 }
184
185
186 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
187                                struct btrfs_root *root)
188 {
189         if (!root->ref_cows)
190                 return 0;
191
192         /*
193          * see record_root_in_trans for comments about in_trans_setup usage
194          * and barriers
195          */
196         smp_rmb();
197         if (root->last_trans == trans->transid &&
198             !root->in_trans_setup)
199                 return 0;
200
201         mutex_lock(&root->fs_info->reloc_mutex);
202         record_root_in_trans(trans, root);
203         mutex_unlock(&root->fs_info->reloc_mutex);
204
205         return 0;
206 }
207
208 /* wait for commit against the current transaction to become unblocked
209  * when this is done, it is safe to start a new transaction, but the current
210  * transaction might not be fully on disk.
211  */
212 static void wait_current_trans(struct btrfs_root *root)
213 {
214         struct btrfs_transaction *cur_trans;
215
216         spin_lock(&root->fs_info->trans_lock);
217         cur_trans = root->fs_info->running_transaction;
218         if (cur_trans && cur_trans->blocked) {
219                 atomic_inc(&cur_trans->use_count);
220                 spin_unlock(&root->fs_info->trans_lock);
221
222                 wait_event(root->fs_info->transaction_wait,
223                            !cur_trans->blocked);
224                 put_transaction(cur_trans);
225         } else {
226                 spin_unlock(&root->fs_info->trans_lock);
227         }
228 }
229
230 enum btrfs_trans_type {
231         TRANS_START,
232         TRANS_JOIN,
233         TRANS_USERSPACE,
234         TRANS_JOIN_NOLOCK,
235 };
236
237 static int may_wait_transaction(struct btrfs_root *root, int type)
238 {
239         if (root->fs_info->log_root_recovering)
240                 return 0;
241
242         if (type == TRANS_USERSPACE)
243                 return 1;
244
245         if (type == TRANS_START &&
246             !atomic_read(&root->fs_info->open_ioctl_trans))
247                 return 1;
248
249         return 0;
250 }
251
252 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
253                                                     u64 num_items, int type)
254 {
255         struct btrfs_trans_handle *h;
256         struct btrfs_transaction *cur_trans;
257         u64 num_bytes = 0;
258         int ret;
259
260         if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
261                 return ERR_PTR(-EROFS);
262
263         if (current->journal_info) {
264                 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
265                 h = current->journal_info;
266                 h->use_count++;
267                 h->orig_rsv = h->block_rsv;
268                 h->block_rsv = NULL;
269                 goto got_it;
270         }
271
272         /*
273          * Do the reservation before we join the transaction so we can do all
274          * the appropriate flushing if need be.
275          */
276         if (num_items > 0 && root != root->fs_info->chunk_root) {
277                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
278                 ret = btrfs_block_rsv_add(root,
279                                           &root->fs_info->trans_block_rsv,
280                                           num_bytes);
281                 if (ret)
282                         return ERR_PTR(ret);
283         }
284 again:
285         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
286         if (!h)
287                 return ERR_PTR(-ENOMEM);
288
289         if (may_wait_transaction(root, type))
290                 wait_current_trans(root);
291
292         do {
293                 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
294                 if (ret == -EBUSY)
295                         wait_current_trans(root);
296         } while (ret == -EBUSY);
297
298         if (ret < 0) {
299                 kmem_cache_free(btrfs_trans_handle_cachep, h);
300                 return ERR_PTR(ret);
301         }
302
303         cur_trans = root->fs_info->running_transaction;
304
305         h->transid = cur_trans->transid;
306         h->transaction = cur_trans;
307         h->blocks_used = 0;
308         h->bytes_reserved = 0;
309         h->delayed_ref_updates = 0;
310         h->use_count = 1;
311         h->block_rsv = NULL;
312         h->orig_rsv = NULL;
313
314         smp_mb();
315         if (cur_trans->blocked && may_wait_transaction(root, type)) {
316                 btrfs_commit_transaction(h, root);
317                 goto again;
318         }
319
320         if (num_bytes) {
321                 h->block_rsv = &root->fs_info->trans_block_rsv;
322                 h->bytes_reserved = num_bytes;
323         }
324
325 got_it:
326         btrfs_record_root_in_trans(h, root);
327
328         if (!current->journal_info && type != TRANS_USERSPACE)
329                 current->journal_info = h;
330         return h;
331 }
332
333 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
334                                                    int num_items)
335 {
336         return start_transaction(root, num_items, TRANS_START);
337 }
338 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
339 {
340         return start_transaction(root, 0, TRANS_JOIN);
341 }
342
343 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
344 {
345         return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
346 }
347
348 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
349 {
350         return start_transaction(root, 0, TRANS_USERSPACE);
351 }
352
353 /* wait for a transaction commit to be fully complete */
354 static noinline void wait_for_commit(struct btrfs_root *root,
355                                     struct btrfs_transaction *commit)
356 {
357         wait_event(commit->commit_wait, commit->commit_done);
358 }
359
360 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
361 {
362         struct btrfs_transaction *cur_trans = NULL, *t;
363         int ret;
364
365         ret = 0;
366         if (transid) {
367                 if (transid <= root->fs_info->last_trans_committed)
368                         goto out;
369
370                 /* find specified transaction */
371                 spin_lock(&root->fs_info->trans_lock);
372                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
373                         if (t->transid == transid) {
374                                 cur_trans = t;
375                                 atomic_inc(&cur_trans->use_count);
376                                 break;
377                         }
378                         if (t->transid > transid)
379                                 break;
380                 }
381                 spin_unlock(&root->fs_info->trans_lock);
382                 ret = -EINVAL;
383                 if (!cur_trans)
384                         goto out;  /* bad transid */
385         } else {
386                 /* find newest transaction that is committing | committed */
387                 spin_lock(&root->fs_info->trans_lock);
388                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
389                                             list) {
390                         if (t->in_commit) {
391                                 if (t->commit_done)
392                                         break;
393                                 cur_trans = t;
394                                 atomic_inc(&cur_trans->use_count);
395                                 break;
396                         }
397                 }
398                 spin_unlock(&root->fs_info->trans_lock);
399                 if (!cur_trans)
400                         goto out;  /* nothing committing|committed */
401         }
402
403         wait_for_commit(root, cur_trans);
404
405         put_transaction(cur_trans);
406         ret = 0;
407 out:
408         return ret;
409 }
410
411 void btrfs_throttle(struct btrfs_root *root)
412 {
413         if (!atomic_read(&root->fs_info->open_ioctl_trans))
414                 wait_current_trans(root);
415 }
416
417 static int should_end_transaction(struct btrfs_trans_handle *trans,
418                                   struct btrfs_root *root)
419 {
420         int ret;
421
422         ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
423         return ret ? 1 : 0;
424 }
425
426 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
427                                  struct btrfs_root *root)
428 {
429         struct btrfs_transaction *cur_trans = trans->transaction;
430         struct btrfs_block_rsv *rsv = trans->block_rsv;
431         int updates;
432
433         smp_mb();
434         if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
435                 return 1;
436
437         /*
438          * We need to do this in case we're deleting csums so the global block
439          * rsv get's used instead of the csum block rsv.
440          */
441         trans->block_rsv = NULL;
442
443         updates = trans->delayed_ref_updates;
444         trans->delayed_ref_updates = 0;
445         if (updates)
446                 btrfs_run_delayed_refs(trans, root, updates);
447
448         trans->block_rsv = rsv;
449
450         return should_end_transaction(trans, root);
451 }
452
453 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
454                           struct btrfs_root *root, int throttle, int lock)
455 {
456         struct btrfs_transaction *cur_trans = trans->transaction;
457         struct btrfs_fs_info *info = root->fs_info;
458         int count = 0;
459
460         if (--trans->use_count) {
461                 trans->block_rsv = trans->orig_rsv;
462                 return 0;
463         }
464
465         btrfs_trans_release_metadata(trans, root);
466         trans->block_rsv = NULL;
467         while (count < 4) {
468                 unsigned long cur = trans->delayed_ref_updates;
469                 trans->delayed_ref_updates = 0;
470                 if (cur &&
471                     trans->transaction->delayed_refs.num_heads_ready > 64) {
472                         trans->delayed_ref_updates = 0;
473
474                         /*
475                          * do a full flush if the transaction is trying
476                          * to close
477                          */
478                         if (trans->transaction->delayed_refs.flushing)
479                                 cur = 0;
480                         btrfs_run_delayed_refs(trans, root, cur);
481                 } else {
482                         break;
483                 }
484                 count++;
485         }
486
487         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
488             should_end_transaction(trans, root)) {
489                 trans->transaction->blocked = 1;
490                 smp_wmb();
491         }
492
493         if (lock && cur_trans->blocked && !cur_trans->in_commit) {
494                 if (throttle) {
495                         /*
496                          * We may race with somebody else here so end up having
497                          * to call end_transaction on ourselves again, so inc
498                          * our use_count.
499                          */
500                         trans->use_count++;
501                         return btrfs_commit_transaction(trans, root);
502                 } else {
503                         wake_up_process(info->transaction_kthread);
504                 }
505         }
506
507         WARN_ON(cur_trans != info->running_transaction);
508         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
509         atomic_dec(&cur_trans->num_writers);
510
511         smp_mb();
512         if (waitqueue_active(&cur_trans->writer_wait))
513                 wake_up(&cur_trans->writer_wait);
514         put_transaction(cur_trans);
515
516         if (current->journal_info == trans)
517                 current->journal_info = NULL;
518         memset(trans, 0, sizeof(*trans));
519         kmem_cache_free(btrfs_trans_handle_cachep, trans);
520
521         if (throttle)
522                 btrfs_run_delayed_iputs(root);
523
524         return 0;
525 }
526
527 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
528                           struct btrfs_root *root)
529 {
530         int ret;
531
532         ret = __btrfs_end_transaction(trans, root, 0, 1);
533         if (ret)
534                 return ret;
535         return 0;
536 }
537
538 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
539                                    struct btrfs_root *root)
540 {
541         int ret;
542
543         ret = __btrfs_end_transaction(trans, root, 1, 1);
544         if (ret)
545                 return ret;
546         return 0;
547 }
548
549 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
550                                  struct btrfs_root *root)
551 {
552         int ret;
553
554         ret = __btrfs_end_transaction(trans, root, 0, 0);
555         if (ret)
556                 return ret;
557         return 0;
558 }
559
560 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
561                                 struct btrfs_root *root)
562 {
563         return __btrfs_end_transaction(trans, root, 1, 1);
564 }
565
566 /*
567  * when btree blocks are allocated, they have some corresponding bits set for
568  * them in one of two extent_io trees.  This is used to make sure all of
569  * those extents are sent to disk but does not wait on them
570  */
571 int btrfs_write_marked_extents(struct btrfs_root *root,
572                                struct extent_io_tree *dirty_pages, int mark)
573 {
574         int err = 0;
575         int werr = 0;
576         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
577         u64 start = 0;
578         u64 end;
579
580         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
581                                       mark)) {
582                 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
583                                    GFP_NOFS);
584                 err = filemap_fdatawrite_range(mapping, start, end);
585                 if (err)
586                         werr = err;
587                 cond_resched();
588                 start = end + 1;
589         }
590         if (err)
591                 werr = err;
592         return werr;
593 }
594
595 /*
596  * when btree blocks are allocated, they have some corresponding bits set for
597  * them in one of two extent_io trees.  This is used to make sure all of
598  * those extents are on disk for transaction or log commit.  We wait
599  * on all the pages and clear them from the dirty pages state tree
600  */
601 int btrfs_wait_marked_extents(struct btrfs_root *root,
602                               struct extent_io_tree *dirty_pages, int mark)
603 {
604         int err = 0;
605         int werr = 0;
606         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
607         u64 start = 0;
608         u64 end;
609
610         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
611                                       EXTENT_NEED_WAIT)) {
612                 clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
613                 err = filemap_fdatawait_range(mapping, start, end);
614                 if (err)
615                         werr = err;
616                 cond_resched();
617                 start = end + 1;
618         }
619         if (err)
620                 werr = err;
621         return werr;
622 }
623
624 /*
625  * when btree blocks are allocated, they have some corresponding bits set for
626  * them in one of two extent_io trees.  This is used to make sure all of
627  * those extents are on disk for transaction or log commit
628  */
629 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
630                                 struct extent_io_tree *dirty_pages, int mark)
631 {
632         int ret;
633         int ret2;
634
635         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
636         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
637
638         if (ret)
639                 return ret;
640         if (ret2)
641                 return ret2;
642         return 0;
643 }
644
645 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
646                                      struct btrfs_root *root)
647 {
648         if (!trans || !trans->transaction) {
649                 struct inode *btree_inode;
650                 btree_inode = root->fs_info->btree_inode;
651                 return filemap_write_and_wait(btree_inode->i_mapping);
652         }
653         return btrfs_write_and_wait_marked_extents(root,
654                                            &trans->transaction->dirty_pages,
655                                            EXTENT_DIRTY);
656 }
657
658 /*
659  * this is used to update the root pointer in the tree of tree roots.
660  *
661  * But, in the case of the extent allocation tree, updating the root
662  * pointer may allocate blocks which may change the root of the extent
663  * allocation tree.
664  *
665  * So, this loops and repeats and makes sure the cowonly root didn't
666  * change while the root pointer was being updated in the metadata.
667  */
668 static int update_cowonly_root(struct btrfs_trans_handle *trans,
669                                struct btrfs_root *root)
670 {
671         int ret;
672         u64 old_root_bytenr;
673         u64 old_root_used;
674         struct btrfs_root *tree_root = root->fs_info->tree_root;
675
676         old_root_used = btrfs_root_used(&root->root_item);
677         btrfs_write_dirty_block_groups(trans, root);
678
679         while (1) {
680                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
681                 if (old_root_bytenr == root->node->start &&
682                     old_root_used == btrfs_root_used(&root->root_item))
683                         break;
684
685                 btrfs_set_root_node(&root->root_item, root->node);
686                 ret = btrfs_update_root(trans, tree_root,
687                                         &root->root_key,
688                                         &root->root_item);
689                 BUG_ON(ret);
690
691                 old_root_used = btrfs_root_used(&root->root_item);
692                 ret = btrfs_write_dirty_block_groups(trans, root);
693                 BUG_ON(ret);
694         }
695
696         if (root != root->fs_info->extent_root)
697                 switch_commit_root(root);
698
699         return 0;
700 }
701
702 /*
703  * update all the cowonly tree roots on disk
704  */
705 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
706                                          struct btrfs_root *root)
707 {
708         struct btrfs_fs_info *fs_info = root->fs_info;
709         struct list_head *next;
710         struct extent_buffer *eb;
711         int ret;
712
713         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
714         BUG_ON(ret);
715
716         eb = btrfs_lock_root_node(fs_info->tree_root);
717         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
718         btrfs_tree_unlock(eb);
719         free_extent_buffer(eb);
720
721         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
722         BUG_ON(ret);
723
724         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
725                 next = fs_info->dirty_cowonly_roots.next;
726                 list_del_init(next);
727                 root = list_entry(next, struct btrfs_root, dirty_list);
728
729                 update_cowonly_root(trans, root);
730         }
731
732         down_write(&fs_info->extent_commit_sem);
733         switch_commit_root(fs_info->extent_root);
734         up_write(&fs_info->extent_commit_sem);
735
736         return 0;
737 }
738
739 /*
740  * dead roots are old snapshots that need to be deleted.  This allocates
741  * a dirty root struct and adds it into the list of dead roots that need to
742  * be deleted
743  */
744 int btrfs_add_dead_root(struct btrfs_root *root)
745 {
746         spin_lock(&root->fs_info->trans_lock);
747         list_add(&root->root_list, &root->fs_info->dead_roots);
748         spin_unlock(&root->fs_info->trans_lock);
749         return 0;
750 }
751
752 /*
753  * update all the cowonly tree roots on disk
754  */
755 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
756                                     struct btrfs_root *root)
757 {
758         struct btrfs_root *gang[8];
759         struct btrfs_fs_info *fs_info = root->fs_info;
760         int i;
761         int ret;
762         int err = 0;
763
764         spin_lock(&fs_info->fs_roots_radix_lock);
765         while (1) {
766                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
767                                                  (void **)gang, 0,
768                                                  ARRAY_SIZE(gang),
769                                                  BTRFS_ROOT_TRANS_TAG);
770                 if (ret == 0)
771                         break;
772                 for (i = 0; i < ret; i++) {
773                         root = gang[i];
774                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
775                                         (unsigned long)root->root_key.objectid,
776                                         BTRFS_ROOT_TRANS_TAG);
777                         spin_unlock(&fs_info->fs_roots_radix_lock);
778
779                         btrfs_free_log(trans, root);
780                         btrfs_update_reloc_root(trans, root);
781                         btrfs_orphan_commit_root(trans, root);
782
783                         btrfs_save_ino_cache(root, trans);
784
785                         if (root->commit_root != root->node) {
786                                 mutex_lock(&root->fs_commit_mutex);
787                                 switch_commit_root(root);
788                                 btrfs_unpin_free_ino(root);
789                                 mutex_unlock(&root->fs_commit_mutex);
790
791                                 btrfs_set_root_node(&root->root_item,
792                                                     root->node);
793                         }
794
795                         err = btrfs_update_root(trans, fs_info->tree_root,
796                                                 &root->root_key,
797                                                 &root->root_item);
798                         spin_lock(&fs_info->fs_roots_radix_lock);
799                         if (err)
800                                 break;
801                 }
802         }
803         spin_unlock(&fs_info->fs_roots_radix_lock);
804         return err;
805 }
806
807 /*
808  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
809  * otherwise every leaf in the btree is read and defragged.
810  */
811 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
812 {
813         struct btrfs_fs_info *info = root->fs_info;
814         struct btrfs_trans_handle *trans;
815         int ret;
816         unsigned long nr;
817
818         if (xchg(&root->defrag_running, 1))
819                 return 0;
820
821         while (1) {
822                 trans = btrfs_start_transaction(root, 0);
823                 if (IS_ERR(trans))
824                         return PTR_ERR(trans);
825
826                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
827
828                 nr = trans->blocks_used;
829                 btrfs_end_transaction(trans, root);
830                 btrfs_btree_balance_dirty(info->tree_root, nr);
831                 cond_resched();
832
833                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
834                         break;
835         }
836         root->defrag_running = 0;
837         return ret;
838 }
839
840 /*
841  * new snapshots need to be created at a very specific time in the
842  * transaction commit.  This does the actual creation
843  */
844 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
845                                    struct btrfs_fs_info *fs_info,
846                                    struct btrfs_pending_snapshot *pending)
847 {
848         struct btrfs_key key;
849         struct btrfs_root_item *new_root_item;
850         struct btrfs_root *tree_root = fs_info->tree_root;
851         struct btrfs_root *root = pending->root;
852         struct btrfs_root *parent_root;
853         struct btrfs_block_rsv *rsv;
854         struct inode *parent_inode;
855         struct dentry *parent;
856         struct dentry *dentry;
857         struct extent_buffer *tmp;
858         struct extent_buffer *old;
859         int ret;
860         u64 to_reserve = 0;
861         u64 index = 0;
862         u64 objectid;
863         u64 root_flags;
864
865         rsv = trans->block_rsv;
866
867         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
868         if (!new_root_item) {
869                 pending->error = -ENOMEM;
870                 goto fail;
871         }
872
873         ret = btrfs_find_free_objectid(tree_root, &objectid);
874         if (ret) {
875                 pending->error = ret;
876                 goto fail;
877         }
878
879         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
880
881         if (to_reserve > 0) {
882                 ret = btrfs_block_rsv_add(root, &pending->block_rsv,
883                                           to_reserve);
884                 if (ret) {
885                         pending->error = ret;
886                         goto fail;
887                 }
888         }
889
890         key.objectid = objectid;
891         key.offset = (u64)-1;
892         key.type = BTRFS_ROOT_ITEM_KEY;
893
894         trans->block_rsv = &pending->block_rsv;
895
896         dentry = pending->dentry;
897         parent = dget_parent(dentry);
898         parent_inode = parent->d_inode;
899         parent_root = BTRFS_I(parent_inode)->root;
900         record_root_in_trans(trans, parent_root);
901
902         /*
903          * insert the directory item
904          */
905         ret = btrfs_set_inode_index(parent_inode, &index);
906         BUG_ON(ret);
907         ret = btrfs_insert_dir_item(trans, parent_root,
908                                 dentry->d_name.name, dentry->d_name.len,
909                                 parent_inode, &key,
910                                 BTRFS_FT_DIR, index);
911         BUG_ON(ret);
912
913         btrfs_i_size_write(parent_inode, parent_inode->i_size +
914                                          dentry->d_name.len * 2);
915         ret = btrfs_update_inode(trans, parent_root, parent_inode);
916         BUG_ON(ret);
917
918         /*
919          * pull in the delayed directory update
920          * and the delayed inode item
921          * otherwise we corrupt the FS during
922          * snapshot
923          */
924         ret = btrfs_run_delayed_items(trans, root);
925         BUG_ON(ret);
926
927         record_root_in_trans(trans, root);
928         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
929         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
930         btrfs_check_and_init_root_item(new_root_item);
931
932         root_flags = btrfs_root_flags(new_root_item);
933         if (pending->readonly)
934                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
935         else
936                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
937         btrfs_set_root_flags(new_root_item, root_flags);
938
939         old = btrfs_lock_root_node(root);
940         btrfs_cow_block(trans, root, old, NULL, 0, &old);
941         btrfs_set_lock_blocking(old);
942
943         btrfs_copy_root(trans, root, old, &tmp, objectid);
944         btrfs_tree_unlock(old);
945         free_extent_buffer(old);
946
947         btrfs_set_root_node(new_root_item, tmp);
948         /* record when the snapshot was created in key.offset */
949         key.offset = trans->transid;
950         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
951         btrfs_tree_unlock(tmp);
952         free_extent_buffer(tmp);
953         BUG_ON(ret);
954
955         /*
956          * insert root back/forward references
957          */
958         ret = btrfs_add_root_ref(trans, tree_root, objectid,
959                                  parent_root->root_key.objectid,
960                                  btrfs_ino(parent_inode), index,
961                                  dentry->d_name.name, dentry->d_name.len);
962         BUG_ON(ret);
963         dput(parent);
964
965         key.offset = (u64)-1;
966         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
967         BUG_ON(IS_ERR(pending->snap));
968
969         btrfs_reloc_post_snapshot(trans, pending);
970 fail:
971         kfree(new_root_item);
972         trans->block_rsv = rsv;
973         btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
974         return 0;
975 }
976
977 /*
978  * create all the snapshots we've scheduled for creation
979  */
980 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
981                                              struct btrfs_fs_info *fs_info)
982 {
983         struct btrfs_pending_snapshot *pending;
984         struct list_head *head = &trans->transaction->pending_snapshots;
985         int ret;
986
987         list_for_each_entry(pending, head, list) {
988                 ret = create_pending_snapshot(trans, fs_info, pending);
989                 BUG_ON(ret);
990         }
991         return 0;
992 }
993
994 static void update_super_roots(struct btrfs_root *root)
995 {
996         struct btrfs_root_item *root_item;
997         struct btrfs_super_block *super;
998
999         super = root->fs_info->super_copy;
1000
1001         root_item = &root->fs_info->chunk_root->root_item;
1002         super->chunk_root = root_item->bytenr;
1003         super->chunk_root_generation = root_item->generation;
1004         super->chunk_root_level = root_item->level;
1005
1006         root_item = &root->fs_info->tree_root->root_item;
1007         super->root = root_item->bytenr;
1008         super->generation = root_item->generation;
1009         super->root_level = root_item->level;
1010         if (btrfs_test_opt(root, SPACE_CACHE))
1011                 super->cache_generation = root_item->generation;
1012 }
1013
1014 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1015 {
1016         int ret = 0;
1017         spin_lock(&info->trans_lock);
1018         if (info->running_transaction)
1019                 ret = info->running_transaction->in_commit;
1020         spin_unlock(&info->trans_lock);
1021         return ret;
1022 }
1023
1024 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1025 {
1026         int ret = 0;
1027         spin_lock(&info->trans_lock);
1028         if (info->running_transaction)
1029                 ret = info->running_transaction->blocked;
1030         spin_unlock(&info->trans_lock);
1031         return ret;
1032 }
1033
1034 /*
1035  * wait for the current transaction commit to start and block subsequent
1036  * transaction joins
1037  */
1038 static void wait_current_trans_commit_start(struct btrfs_root *root,
1039                                             struct btrfs_transaction *trans)
1040 {
1041         wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1042 }
1043
1044 /*
1045  * wait for the current transaction to start and then become unblocked.
1046  * caller holds ref.
1047  */
1048 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1049                                          struct btrfs_transaction *trans)
1050 {
1051         wait_event(root->fs_info->transaction_wait,
1052                    trans->commit_done || (trans->in_commit && !trans->blocked));
1053 }
1054
1055 /*
1056  * commit transactions asynchronously. once btrfs_commit_transaction_async
1057  * returns, any subsequent transaction will not be allowed to join.
1058  */
1059 struct btrfs_async_commit {
1060         struct btrfs_trans_handle *newtrans;
1061         struct btrfs_root *root;
1062         struct delayed_work work;
1063 };
1064
1065 static void do_async_commit(struct work_struct *work)
1066 {
1067         struct btrfs_async_commit *ac =
1068                 container_of(work, struct btrfs_async_commit, work.work);
1069
1070         btrfs_commit_transaction(ac->newtrans, ac->root);
1071         kfree(ac);
1072 }
1073
1074 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1075                                    struct btrfs_root *root,
1076                                    int wait_for_unblock)
1077 {
1078         struct btrfs_async_commit *ac;
1079         struct btrfs_transaction *cur_trans;
1080
1081         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1082         if (!ac)
1083                 return -ENOMEM;
1084
1085         INIT_DELAYED_WORK(&ac->work, do_async_commit);
1086         ac->root = root;
1087         ac->newtrans = btrfs_join_transaction(root);
1088         if (IS_ERR(ac->newtrans)) {
1089                 int err = PTR_ERR(ac->newtrans);
1090                 kfree(ac);
1091                 return err;
1092         }
1093
1094         /* take transaction reference */
1095         cur_trans = trans->transaction;
1096         atomic_inc(&cur_trans->use_count);
1097
1098         btrfs_end_transaction(trans, root);
1099         schedule_delayed_work(&ac->work, 0);
1100
1101         /* wait for transaction to start and unblock */
1102         if (wait_for_unblock)
1103                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1104         else
1105                 wait_current_trans_commit_start(root, cur_trans);
1106
1107         if (current->journal_info == trans)
1108                 current->journal_info = NULL;
1109
1110         put_transaction(cur_trans);
1111         return 0;
1112 }
1113
1114 /*
1115  * btrfs_transaction state sequence:
1116  *    in_commit = 0, blocked = 0  (initial)
1117  *    in_commit = 1, blocked = 1
1118  *    blocked = 0
1119  *    commit_done = 1
1120  */
1121 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1122                              struct btrfs_root *root)
1123 {
1124         unsigned long joined = 0;
1125         struct btrfs_transaction *cur_trans;
1126         struct btrfs_transaction *prev_trans = NULL;
1127         DEFINE_WAIT(wait);
1128         int ret;
1129         int should_grow = 0;
1130         unsigned long now = get_seconds();
1131         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1132
1133         btrfs_run_ordered_operations(root, 0);
1134
1135         btrfs_trans_release_metadata(trans, root);
1136         trans->block_rsv = NULL;
1137
1138         /* make a pass through all the delayed refs we have so far
1139          * any runnings procs may add more while we are here
1140          */
1141         ret = btrfs_run_delayed_refs(trans, root, 0);
1142         BUG_ON(ret);
1143
1144         cur_trans = trans->transaction;
1145         /*
1146          * set the flushing flag so procs in this transaction have to
1147          * start sending their work down.
1148          */
1149         cur_trans->delayed_refs.flushing = 1;
1150
1151         ret = btrfs_run_delayed_refs(trans, root, 0);
1152         BUG_ON(ret);
1153
1154         spin_lock(&cur_trans->commit_lock);
1155         if (cur_trans->in_commit) {
1156                 spin_unlock(&cur_trans->commit_lock);
1157                 atomic_inc(&cur_trans->use_count);
1158                 btrfs_end_transaction(trans, root);
1159
1160                 wait_for_commit(root, cur_trans);
1161
1162                 put_transaction(cur_trans);
1163
1164                 return 0;
1165         }
1166
1167         trans->transaction->in_commit = 1;
1168         trans->transaction->blocked = 1;
1169         spin_unlock(&cur_trans->commit_lock);
1170         wake_up(&root->fs_info->transaction_blocked_wait);
1171
1172         spin_lock(&root->fs_info->trans_lock);
1173         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1174                 prev_trans = list_entry(cur_trans->list.prev,
1175                                         struct btrfs_transaction, list);
1176                 if (!prev_trans->commit_done) {
1177                         atomic_inc(&prev_trans->use_count);
1178                         spin_unlock(&root->fs_info->trans_lock);
1179
1180                         wait_for_commit(root, prev_trans);
1181
1182                         put_transaction(prev_trans);
1183                 } else {
1184                         spin_unlock(&root->fs_info->trans_lock);
1185                 }
1186         } else {
1187                 spin_unlock(&root->fs_info->trans_lock);
1188         }
1189
1190         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1191                 should_grow = 1;
1192
1193         do {
1194                 int snap_pending = 0;
1195
1196                 joined = cur_trans->num_joined;
1197                 if (!list_empty(&trans->transaction->pending_snapshots))
1198                         snap_pending = 1;
1199
1200                 WARN_ON(cur_trans != trans->transaction);
1201
1202                 if (flush_on_commit || snap_pending) {
1203                         btrfs_start_delalloc_inodes(root, 1);
1204                         ret = btrfs_wait_ordered_extents(root, 0, 1);
1205                         BUG_ON(ret);
1206                 }
1207
1208                 ret = btrfs_run_delayed_items(trans, root);
1209                 BUG_ON(ret);
1210
1211                 /*
1212                  * rename don't use btrfs_join_transaction, so, once we
1213                  * set the transaction to blocked above, we aren't going
1214                  * to get any new ordered operations.  We can safely run
1215                  * it here and no for sure that nothing new will be added
1216                  * to the list
1217                  */
1218                 btrfs_run_ordered_operations(root, 1);
1219
1220                 prepare_to_wait(&cur_trans->writer_wait, &wait,
1221                                 TASK_UNINTERRUPTIBLE);
1222
1223                 if (atomic_read(&cur_trans->num_writers) > 1)
1224                         schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1225                 else if (should_grow)
1226                         schedule_timeout(1);
1227
1228                 finish_wait(&cur_trans->writer_wait, &wait);
1229         } while (atomic_read(&cur_trans->num_writers) > 1 ||
1230                  (should_grow && cur_trans->num_joined != joined));
1231
1232         /*
1233          * Ok now we need to make sure to block out any other joins while we
1234          * commit the transaction.  We could have started a join before setting
1235          * no_join so make sure to wait for num_writers to == 1 again.
1236          */
1237         spin_lock(&root->fs_info->trans_lock);
1238         root->fs_info->trans_no_join = 1;
1239         spin_unlock(&root->fs_info->trans_lock);
1240         wait_event(cur_trans->writer_wait,
1241                    atomic_read(&cur_trans->num_writers) == 1);
1242
1243         /*
1244          * the reloc mutex makes sure that we stop
1245          * the balancing code from coming in and moving
1246          * extents around in the middle of the commit
1247          */
1248         mutex_lock(&root->fs_info->reloc_mutex);
1249
1250         ret = btrfs_run_delayed_items(trans, root);
1251         BUG_ON(ret);
1252
1253         ret = create_pending_snapshots(trans, root->fs_info);
1254         BUG_ON(ret);
1255
1256         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1257         BUG_ON(ret);
1258
1259         /*
1260          * make sure none of the code above managed to slip in a
1261          * delayed item
1262          */
1263         btrfs_assert_delayed_root_empty(root);
1264
1265         WARN_ON(cur_trans != trans->transaction);
1266
1267         btrfs_scrub_pause(root);
1268         /* btrfs_commit_tree_roots is responsible for getting the
1269          * various roots consistent with each other.  Every pointer
1270          * in the tree of tree roots has to point to the most up to date
1271          * root for every subvolume and other tree.  So, we have to keep
1272          * the tree logging code from jumping in and changing any
1273          * of the trees.
1274          *
1275          * At this point in the commit, there can't be any tree-log
1276          * writers, but a little lower down we drop the trans mutex
1277          * and let new people in.  By holding the tree_log_mutex
1278          * from now until after the super is written, we avoid races
1279          * with the tree-log code.
1280          */
1281         mutex_lock(&root->fs_info->tree_log_mutex);
1282
1283         ret = commit_fs_roots(trans, root);
1284         BUG_ON(ret);
1285
1286         /* commit_fs_roots gets rid of all the tree log roots, it is now
1287          * safe to free the root of tree log roots
1288          */
1289         btrfs_free_log_root_tree(trans, root->fs_info);
1290
1291         ret = commit_cowonly_roots(trans, root);
1292         BUG_ON(ret);
1293
1294         btrfs_prepare_extent_commit(trans, root);
1295
1296         cur_trans = root->fs_info->running_transaction;
1297
1298         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1299                             root->fs_info->tree_root->node);
1300         switch_commit_root(root->fs_info->tree_root);
1301
1302         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1303                             root->fs_info->chunk_root->node);
1304         switch_commit_root(root->fs_info->chunk_root);
1305
1306         update_super_roots(root);
1307
1308         if (!root->fs_info->log_root_recovering) {
1309                 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1310                 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1311         }
1312
1313         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1314                sizeof(*root->fs_info->super_copy));
1315
1316         trans->transaction->blocked = 0;
1317         spin_lock(&root->fs_info->trans_lock);
1318         root->fs_info->running_transaction = NULL;
1319         root->fs_info->trans_no_join = 0;
1320         spin_unlock(&root->fs_info->trans_lock);
1321         mutex_unlock(&root->fs_info->reloc_mutex);
1322
1323         wake_up(&root->fs_info->transaction_wait);
1324
1325         ret = btrfs_write_and_wait_transaction(trans, root);
1326         BUG_ON(ret);
1327         write_ctree_super(trans, root, 0);
1328
1329         /*
1330          * the super is written, we can safely allow the tree-loggers
1331          * to go about their business
1332          */
1333         mutex_unlock(&root->fs_info->tree_log_mutex);
1334
1335         btrfs_finish_extent_commit(trans, root);
1336
1337         cur_trans->commit_done = 1;
1338
1339         root->fs_info->last_trans_committed = cur_trans->transid;
1340
1341         wake_up(&cur_trans->commit_wait);
1342
1343         spin_lock(&root->fs_info->trans_lock);
1344         list_del_init(&cur_trans->list);
1345         spin_unlock(&root->fs_info->trans_lock);
1346
1347         put_transaction(cur_trans);
1348         put_transaction(cur_trans);
1349
1350         trace_btrfs_transaction_commit(root);
1351
1352         btrfs_scrub_continue(root);
1353
1354         if (current->journal_info == trans)
1355                 current->journal_info = NULL;
1356
1357         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1358
1359         if (current != root->fs_info->transaction_kthread)
1360                 btrfs_run_delayed_iputs(root);
1361
1362         return ret;
1363 }
1364
1365 /*
1366  * interface function to delete all the snapshots we have scheduled for deletion
1367  */
1368 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1369 {
1370         LIST_HEAD(list);
1371         struct btrfs_fs_info *fs_info = root->fs_info;
1372
1373         spin_lock(&fs_info->trans_lock);
1374         list_splice_init(&fs_info->dead_roots, &list);
1375         spin_unlock(&fs_info->trans_lock);
1376
1377         while (!list_empty(&list)) {
1378                 root = list_entry(list.next, struct btrfs_root, root_list);
1379                 list_del(&root->root_list);
1380
1381                 btrfs_kill_all_delayed_nodes(root);
1382
1383                 if (btrfs_header_backref_rev(root->node) <
1384                     BTRFS_MIXED_BACKREF_REV)
1385                         btrfs_drop_snapshot(root, NULL, 0);
1386                 else
1387                         btrfs_drop_snapshot(root, NULL, 1);
1388         }
1389         return 0;
1390 }