Btrfs: use the transactions block_rsv for the csum root
[pandora-kernel.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31
32 #define BTRFS_ROOT_TRANS_TAG 0
33
34 static noinline void put_transaction(struct btrfs_transaction *transaction)
35 {
36         WARN_ON(atomic_read(&transaction->use_count) == 0);
37         if (atomic_dec_and_test(&transaction->use_count)) {
38                 BUG_ON(!list_empty(&transaction->list));
39                 memset(transaction, 0, sizeof(*transaction));
40                 kmem_cache_free(btrfs_transaction_cachep, transaction);
41         }
42 }
43
44 static noinline void switch_commit_root(struct btrfs_root *root)
45 {
46         free_extent_buffer(root->commit_root);
47         root->commit_root = btrfs_root_node(root);
48 }
49
50 /*
51  * either allocate a new transaction or hop into the existing one
52  */
53 static noinline int join_transaction(struct btrfs_root *root, int nofail)
54 {
55         struct btrfs_transaction *cur_trans;
56
57         spin_lock(&root->fs_info->trans_lock);
58         if (root->fs_info->trans_no_join) {
59                 if (!nofail) {
60                         spin_unlock(&root->fs_info->trans_lock);
61                         return -EBUSY;
62                 }
63         }
64
65         cur_trans = root->fs_info->running_transaction;
66         if (cur_trans) {
67                 atomic_inc(&cur_trans->use_count);
68                 atomic_inc(&cur_trans->num_writers);
69                 cur_trans->num_joined++;
70                 spin_unlock(&root->fs_info->trans_lock);
71                 return 0;
72         }
73         spin_unlock(&root->fs_info->trans_lock);
74
75         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
76         if (!cur_trans)
77                 return -ENOMEM;
78         spin_lock(&root->fs_info->trans_lock);
79         if (root->fs_info->running_transaction) {
80                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
81                 cur_trans = root->fs_info->running_transaction;
82                 atomic_inc(&cur_trans->use_count);
83                 atomic_inc(&cur_trans->num_writers);
84                 cur_trans->num_joined++;
85                 spin_unlock(&root->fs_info->trans_lock);
86                 return 0;
87         }
88         atomic_set(&cur_trans->num_writers, 1);
89         cur_trans->num_joined = 0;
90         init_waitqueue_head(&cur_trans->writer_wait);
91         init_waitqueue_head(&cur_trans->commit_wait);
92         cur_trans->in_commit = 0;
93         cur_trans->blocked = 0;
94         /*
95          * One for this trans handle, one so it will live on until we
96          * commit the transaction.
97          */
98         atomic_set(&cur_trans->use_count, 2);
99         cur_trans->commit_done = 0;
100         cur_trans->start_time = get_seconds();
101
102         cur_trans->delayed_refs.root = RB_ROOT;
103         cur_trans->delayed_refs.num_entries = 0;
104         cur_trans->delayed_refs.num_heads_ready = 0;
105         cur_trans->delayed_refs.num_heads = 0;
106         cur_trans->delayed_refs.flushing = 0;
107         cur_trans->delayed_refs.run_delayed_start = 0;
108         spin_lock_init(&cur_trans->commit_lock);
109         spin_lock_init(&cur_trans->delayed_refs.lock);
110
111         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
112         list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
113         extent_io_tree_init(&cur_trans->dirty_pages,
114                              root->fs_info->btree_inode->i_mapping);
115         root->fs_info->generation++;
116         cur_trans->transid = root->fs_info->generation;
117         root->fs_info->running_transaction = cur_trans;
118         spin_unlock(&root->fs_info->trans_lock);
119
120         return 0;
121 }
122
123 /*
124  * this does all the record keeping required to make sure that a reference
125  * counted root is properly recorded in a given transaction.  This is required
126  * to make sure the old root from before we joined the transaction is deleted
127  * when the transaction commits
128  */
129 static int record_root_in_trans(struct btrfs_trans_handle *trans,
130                                struct btrfs_root *root)
131 {
132         if (root->ref_cows && root->last_trans < trans->transid) {
133                 WARN_ON(root == root->fs_info->extent_root);
134                 WARN_ON(root->commit_root != root->node);
135
136                 /*
137                  * see below for in_trans_setup usage rules
138                  * we have the reloc mutex held now, so there
139                  * is only one writer in this function
140                  */
141                 root->in_trans_setup = 1;
142
143                 /* make sure readers find in_trans_setup before
144                  * they find our root->last_trans update
145                  */
146                 smp_wmb();
147
148                 spin_lock(&root->fs_info->fs_roots_radix_lock);
149                 if (root->last_trans == trans->transid) {
150                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
151                         return 0;
152                 }
153                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
154                            (unsigned long)root->root_key.objectid,
155                            BTRFS_ROOT_TRANS_TAG);
156                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
157                 root->last_trans = trans->transid;
158
159                 /* this is pretty tricky.  We don't want to
160                  * take the relocation lock in btrfs_record_root_in_trans
161                  * unless we're really doing the first setup for this root in
162                  * this transaction.
163                  *
164                  * Normally we'd use root->last_trans as a flag to decide
165                  * if we want to take the expensive mutex.
166                  *
167                  * But, we have to set root->last_trans before we
168                  * init the relocation root, otherwise, we trip over warnings
169                  * in ctree.c.  The solution used here is to flag ourselves
170                  * with root->in_trans_setup.  When this is 1, we're still
171                  * fixing up the reloc trees and everyone must wait.
172                  *
173                  * When this is zero, they can trust root->last_trans and fly
174                  * through btrfs_record_root_in_trans without having to take the
175                  * lock.  smp_wmb() makes sure that all the writes above are
176                  * done before we pop in the zero below
177                  */
178                 btrfs_init_reloc_root(trans, root);
179                 smp_wmb();
180                 root->in_trans_setup = 0;
181         }
182         return 0;
183 }
184
185
186 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
187                                struct btrfs_root *root)
188 {
189         if (!root->ref_cows)
190                 return 0;
191
192         /*
193          * see record_root_in_trans for comments about in_trans_setup usage
194          * and barriers
195          */
196         smp_rmb();
197         if (root->last_trans == trans->transid &&
198             !root->in_trans_setup)
199                 return 0;
200
201         mutex_lock(&root->fs_info->reloc_mutex);
202         record_root_in_trans(trans, root);
203         mutex_unlock(&root->fs_info->reloc_mutex);
204
205         return 0;
206 }
207
208 /* wait for commit against the current transaction to become unblocked
209  * when this is done, it is safe to start a new transaction, but the current
210  * transaction might not be fully on disk.
211  */
212 static void wait_current_trans(struct btrfs_root *root)
213 {
214         struct btrfs_transaction *cur_trans;
215
216         spin_lock(&root->fs_info->trans_lock);
217         cur_trans = root->fs_info->running_transaction;
218         if (cur_trans && cur_trans->blocked) {
219                 atomic_inc(&cur_trans->use_count);
220                 spin_unlock(&root->fs_info->trans_lock);
221
222                 wait_event(root->fs_info->transaction_wait,
223                            !cur_trans->blocked);
224                 put_transaction(cur_trans);
225         } else {
226                 spin_unlock(&root->fs_info->trans_lock);
227         }
228 }
229
230 enum btrfs_trans_type {
231         TRANS_START,
232         TRANS_JOIN,
233         TRANS_USERSPACE,
234         TRANS_JOIN_NOLOCK,
235 };
236
237 static int may_wait_transaction(struct btrfs_root *root, int type)
238 {
239         if (root->fs_info->log_root_recovering)
240                 return 0;
241
242         if (type == TRANS_USERSPACE)
243                 return 1;
244
245         if (type == TRANS_START &&
246             !atomic_read(&root->fs_info->open_ioctl_trans))
247                 return 1;
248
249         return 0;
250 }
251
252 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
253                                                     u64 num_items, int type)
254 {
255         struct btrfs_trans_handle *h;
256         struct btrfs_transaction *cur_trans;
257         u64 num_bytes = 0;
258         int ret;
259
260         if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
261                 return ERR_PTR(-EROFS);
262
263         if (current->journal_info) {
264                 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
265                 h = current->journal_info;
266                 h->use_count++;
267                 h->orig_rsv = h->block_rsv;
268                 h->block_rsv = NULL;
269                 goto got_it;
270         }
271
272         /*
273          * Do the reservation before we join the transaction so we can do all
274          * the appropriate flushing if need be.
275          */
276         if (num_items > 0 && root != root->fs_info->chunk_root) {
277                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
278                 ret = btrfs_block_rsv_add(NULL, root,
279                                           &root->fs_info->trans_block_rsv,
280                                           num_bytes);
281                 if (ret)
282                         return ERR_PTR(ret);
283         }
284 again:
285         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
286         if (!h)
287                 return ERR_PTR(-ENOMEM);
288
289         if (may_wait_transaction(root, type))
290                 wait_current_trans(root);
291
292         do {
293                 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
294                 if (ret == -EBUSY)
295                         wait_current_trans(root);
296         } while (ret == -EBUSY);
297
298         if (ret < 0) {
299                 kmem_cache_free(btrfs_trans_handle_cachep, h);
300                 return ERR_PTR(ret);
301         }
302
303         cur_trans = root->fs_info->running_transaction;
304
305         h->transid = cur_trans->transid;
306         h->transaction = cur_trans;
307         h->blocks_used = 0;
308         h->bytes_reserved = 0;
309         h->delayed_ref_updates = 0;
310         h->use_count = 1;
311         h->block_rsv = NULL;
312         h->orig_rsv = NULL;
313
314         smp_mb();
315         if (cur_trans->blocked && may_wait_transaction(root, type)) {
316                 btrfs_commit_transaction(h, root);
317                 goto again;
318         }
319
320         if (num_bytes) {
321                 h->block_rsv = &root->fs_info->trans_block_rsv;
322                 h->bytes_reserved = num_bytes;
323         }
324
325 got_it:
326         btrfs_record_root_in_trans(h, root);
327
328         if (!current->journal_info && type != TRANS_USERSPACE)
329                 current->journal_info = h;
330         return h;
331 }
332
333 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
334                                                    int num_items)
335 {
336         return start_transaction(root, num_items, TRANS_START);
337 }
338 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
339 {
340         return start_transaction(root, 0, TRANS_JOIN);
341 }
342
343 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
344 {
345         return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
346 }
347
348 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
349 {
350         return start_transaction(root, 0, TRANS_USERSPACE);
351 }
352
353 /* wait for a transaction commit to be fully complete */
354 static noinline void wait_for_commit(struct btrfs_root *root,
355                                     struct btrfs_transaction *commit)
356 {
357         wait_event(commit->commit_wait, commit->commit_done);
358 }
359
360 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
361 {
362         struct btrfs_transaction *cur_trans = NULL, *t;
363         int ret;
364
365         ret = 0;
366         if (transid) {
367                 if (transid <= root->fs_info->last_trans_committed)
368                         goto out;
369
370                 /* find specified transaction */
371                 spin_lock(&root->fs_info->trans_lock);
372                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
373                         if (t->transid == transid) {
374                                 cur_trans = t;
375                                 atomic_inc(&cur_trans->use_count);
376                                 break;
377                         }
378                         if (t->transid > transid)
379                                 break;
380                 }
381                 spin_unlock(&root->fs_info->trans_lock);
382                 ret = -EINVAL;
383                 if (!cur_trans)
384                         goto out;  /* bad transid */
385         } else {
386                 /* find newest transaction that is committing | committed */
387                 spin_lock(&root->fs_info->trans_lock);
388                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
389                                             list) {
390                         if (t->in_commit) {
391                                 if (t->commit_done)
392                                         break;
393                                 cur_trans = t;
394                                 atomic_inc(&cur_trans->use_count);
395                                 break;
396                         }
397                 }
398                 spin_unlock(&root->fs_info->trans_lock);
399                 if (!cur_trans)
400                         goto out;  /* nothing committing|committed */
401         }
402
403         wait_for_commit(root, cur_trans);
404
405         put_transaction(cur_trans);
406         ret = 0;
407 out:
408         return ret;
409 }
410
411 void btrfs_throttle(struct btrfs_root *root)
412 {
413         if (!atomic_read(&root->fs_info->open_ioctl_trans))
414                 wait_current_trans(root);
415 }
416
417 static int should_end_transaction(struct btrfs_trans_handle *trans,
418                                   struct btrfs_root *root)
419 {
420         int ret;
421         ret = btrfs_block_rsv_check(trans, root,
422                                     &root->fs_info->global_block_rsv, 0, 5, 0);
423         return ret ? 1 : 0;
424 }
425
426 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
427                                  struct btrfs_root *root)
428 {
429         struct btrfs_transaction *cur_trans = trans->transaction;
430         int updates;
431
432         smp_mb();
433         if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
434                 return 1;
435
436         updates = trans->delayed_ref_updates;
437         trans->delayed_ref_updates = 0;
438         if (updates)
439                 btrfs_run_delayed_refs(trans, root, updates);
440
441         return should_end_transaction(trans, root);
442 }
443
444 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
445                           struct btrfs_root *root, int throttle, int lock)
446 {
447         struct btrfs_transaction *cur_trans = trans->transaction;
448         struct btrfs_fs_info *info = root->fs_info;
449         int count = 0;
450
451         if (--trans->use_count) {
452                 trans->block_rsv = trans->orig_rsv;
453                 return 0;
454         }
455
456         trans->block_rsv = NULL;
457         while (count < 4) {
458                 unsigned long cur = trans->delayed_ref_updates;
459                 trans->delayed_ref_updates = 0;
460                 if (cur &&
461                     trans->transaction->delayed_refs.num_heads_ready > 64) {
462                         trans->delayed_ref_updates = 0;
463
464                         /*
465                          * do a full flush if the transaction is trying
466                          * to close
467                          */
468                         if (trans->transaction->delayed_refs.flushing)
469                                 cur = 0;
470                         btrfs_run_delayed_refs(trans, root, cur);
471                 } else {
472                         break;
473                 }
474                 count++;
475         }
476
477         btrfs_trans_release_metadata(trans, root);
478
479         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
480             should_end_transaction(trans, root)) {
481                 trans->transaction->blocked = 1;
482                 smp_wmb();
483         }
484
485         if (lock && cur_trans->blocked && !cur_trans->in_commit) {
486                 if (throttle) {
487                         /*
488                          * We may race with somebody else here so end up having
489                          * to call end_transaction on ourselves again, so inc
490                          * our use_count.
491                          */
492                         trans->use_count++;
493                         return btrfs_commit_transaction(trans, root);
494                 } else {
495                         wake_up_process(info->transaction_kthread);
496                 }
497         }
498
499         WARN_ON(cur_trans != info->running_transaction);
500         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
501         atomic_dec(&cur_trans->num_writers);
502
503         smp_mb();
504         if (waitqueue_active(&cur_trans->writer_wait))
505                 wake_up(&cur_trans->writer_wait);
506         put_transaction(cur_trans);
507
508         if (current->journal_info == trans)
509                 current->journal_info = NULL;
510         memset(trans, 0, sizeof(*trans));
511         kmem_cache_free(btrfs_trans_handle_cachep, trans);
512
513         if (throttle)
514                 btrfs_run_delayed_iputs(root);
515
516         return 0;
517 }
518
519 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
520                           struct btrfs_root *root)
521 {
522         int ret;
523
524         ret = __btrfs_end_transaction(trans, root, 0, 1);
525         if (ret)
526                 return ret;
527         return 0;
528 }
529
530 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
531                                    struct btrfs_root *root)
532 {
533         int ret;
534
535         ret = __btrfs_end_transaction(trans, root, 1, 1);
536         if (ret)
537                 return ret;
538         return 0;
539 }
540
541 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
542                                  struct btrfs_root *root)
543 {
544         int ret;
545
546         ret = __btrfs_end_transaction(trans, root, 0, 0);
547         if (ret)
548                 return ret;
549         return 0;
550 }
551
552 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
553                                 struct btrfs_root *root)
554 {
555         return __btrfs_end_transaction(trans, root, 1, 1);
556 }
557
558 /*
559  * when btree blocks are allocated, they have some corresponding bits set for
560  * them in one of two extent_io trees.  This is used to make sure all of
561  * those extents are sent to disk but does not wait on them
562  */
563 int btrfs_write_marked_extents(struct btrfs_root *root,
564                                struct extent_io_tree *dirty_pages, int mark)
565 {
566         int ret;
567         int err = 0;
568         int werr = 0;
569         struct page *page;
570         struct inode *btree_inode = root->fs_info->btree_inode;
571         u64 start = 0;
572         u64 end;
573         unsigned long index;
574
575         while (1) {
576                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
577                                             mark);
578                 if (ret)
579                         break;
580                 while (start <= end) {
581                         cond_resched();
582
583                         index = start >> PAGE_CACHE_SHIFT;
584                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
585                         page = find_get_page(btree_inode->i_mapping, index);
586                         if (!page)
587                                 continue;
588
589                         btree_lock_page_hook(page);
590                         if (!page->mapping) {
591                                 unlock_page(page);
592                                 page_cache_release(page);
593                                 continue;
594                         }
595
596                         if (PageWriteback(page)) {
597                                 if (PageDirty(page))
598                                         wait_on_page_writeback(page);
599                                 else {
600                                         unlock_page(page);
601                                         page_cache_release(page);
602                                         continue;
603                                 }
604                         }
605                         err = write_one_page(page, 0);
606                         if (err)
607                                 werr = err;
608                         page_cache_release(page);
609                 }
610         }
611         if (err)
612                 werr = err;
613         return werr;
614 }
615
616 /*
617  * when btree blocks are allocated, they have some corresponding bits set for
618  * them in one of two extent_io trees.  This is used to make sure all of
619  * those extents are on disk for transaction or log commit.  We wait
620  * on all the pages and clear them from the dirty pages state tree
621  */
622 int btrfs_wait_marked_extents(struct btrfs_root *root,
623                               struct extent_io_tree *dirty_pages, int mark)
624 {
625         int ret;
626         int err = 0;
627         int werr = 0;
628         struct page *page;
629         struct inode *btree_inode = root->fs_info->btree_inode;
630         u64 start = 0;
631         u64 end;
632         unsigned long index;
633
634         while (1) {
635                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
636                                             mark);
637                 if (ret)
638                         break;
639
640                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
641                 while (start <= end) {
642                         index = start >> PAGE_CACHE_SHIFT;
643                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
644                         page = find_get_page(btree_inode->i_mapping, index);
645                         if (!page)
646                                 continue;
647                         if (PageDirty(page)) {
648                                 btree_lock_page_hook(page);
649                                 wait_on_page_writeback(page);
650                                 err = write_one_page(page, 0);
651                                 if (err)
652                                         werr = err;
653                         }
654                         wait_on_page_writeback(page);
655                         page_cache_release(page);
656                         cond_resched();
657                 }
658         }
659         if (err)
660                 werr = err;
661         return werr;
662 }
663
664 /*
665  * when btree blocks are allocated, they have some corresponding bits set for
666  * them in one of two extent_io trees.  This is used to make sure all of
667  * those extents are on disk for transaction or log commit
668  */
669 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
670                                 struct extent_io_tree *dirty_pages, int mark)
671 {
672         int ret;
673         int ret2;
674
675         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
676         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
677         return ret || ret2;
678 }
679
680 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
681                                      struct btrfs_root *root)
682 {
683         if (!trans || !trans->transaction) {
684                 struct inode *btree_inode;
685                 btree_inode = root->fs_info->btree_inode;
686                 return filemap_write_and_wait(btree_inode->i_mapping);
687         }
688         return btrfs_write_and_wait_marked_extents(root,
689                                            &trans->transaction->dirty_pages,
690                                            EXTENT_DIRTY);
691 }
692
693 /*
694  * this is used to update the root pointer in the tree of tree roots.
695  *
696  * But, in the case of the extent allocation tree, updating the root
697  * pointer may allocate blocks which may change the root of the extent
698  * allocation tree.
699  *
700  * So, this loops and repeats and makes sure the cowonly root didn't
701  * change while the root pointer was being updated in the metadata.
702  */
703 static int update_cowonly_root(struct btrfs_trans_handle *trans,
704                                struct btrfs_root *root)
705 {
706         int ret;
707         u64 old_root_bytenr;
708         u64 old_root_used;
709         struct btrfs_root *tree_root = root->fs_info->tree_root;
710
711         old_root_used = btrfs_root_used(&root->root_item);
712         btrfs_write_dirty_block_groups(trans, root);
713
714         while (1) {
715                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
716                 if (old_root_bytenr == root->node->start &&
717                     old_root_used == btrfs_root_used(&root->root_item))
718                         break;
719
720                 btrfs_set_root_node(&root->root_item, root->node);
721                 ret = btrfs_update_root(trans, tree_root,
722                                         &root->root_key,
723                                         &root->root_item);
724                 BUG_ON(ret);
725
726                 old_root_used = btrfs_root_used(&root->root_item);
727                 ret = btrfs_write_dirty_block_groups(trans, root);
728                 BUG_ON(ret);
729         }
730
731         if (root != root->fs_info->extent_root)
732                 switch_commit_root(root);
733
734         return 0;
735 }
736
737 /*
738  * update all the cowonly tree roots on disk
739  */
740 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
741                                          struct btrfs_root *root)
742 {
743         struct btrfs_fs_info *fs_info = root->fs_info;
744         struct list_head *next;
745         struct extent_buffer *eb;
746         int ret;
747
748         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
749         BUG_ON(ret);
750
751         eb = btrfs_lock_root_node(fs_info->tree_root);
752         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
753         btrfs_tree_unlock(eb);
754         free_extent_buffer(eb);
755
756         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
757         BUG_ON(ret);
758
759         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
760                 next = fs_info->dirty_cowonly_roots.next;
761                 list_del_init(next);
762                 root = list_entry(next, struct btrfs_root, dirty_list);
763
764                 update_cowonly_root(trans, root);
765         }
766
767         down_write(&fs_info->extent_commit_sem);
768         switch_commit_root(fs_info->extent_root);
769         up_write(&fs_info->extent_commit_sem);
770
771         return 0;
772 }
773
774 /*
775  * dead roots are old snapshots that need to be deleted.  This allocates
776  * a dirty root struct and adds it into the list of dead roots that need to
777  * be deleted
778  */
779 int btrfs_add_dead_root(struct btrfs_root *root)
780 {
781         spin_lock(&root->fs_info->trans_lock);
782         list_add(&root->root_list, &root->fs_info->dead_roots);
783         spin_unlock(&root->fs_info->trans_lock);
784         return 0;
785 }
786
787 /*
788  * update all the cowonly tree roots on disk
789  */
790 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
791                                     struct btrfs_root *root)
792 {
793         struct btrfs_root *gang[8];
794         struct btrfs_fs_info *fs_info = root->fs_info;
795         int i;
796         int ret;
797         int err = 0;
798
799         spin_lock(&fs_info->fs_roots_radix_lock);
800         while (1) {
801                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
802                                                  (void **)gang, 0,
803                                                  ARRAY_SIZE(gang),
804                                                  BTRFS_ROOT_TRANS_TAG);
805                 if (ret == 0)
806                         break;
807                 for (i = 0; i < ret; i++) {
808                         root = gang[i];
809                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
810                                         (unsigned long)root->root_key.objectid,
811                                         BTRFS_ROOT_TRANS_TAG);
812                         spin_unlock(&fs_info->fs_roots_radix_lock);
813
814                         btrfs_free_log(trans, root);
815                         btrfs_update_reloc_root(trans, root);
816                         btrfs_orphan_commit_root(trans, root);
817
818                         btrfs_save_ino_cache(root, trans);
819
820                         if (root->commit_root != root->node) {
821                                 mutex_lock(&root->fs_commit_mutex);
822                                 switch_commit_root(root);
823                                 btrfs_unpin_free_ino(root);
824                                 mutex_unlock(&root->fs_commit_mutex);
825
826                                 btrfs_set_root_node(&root->root_item,
827                                                     root->node);
828                         }
829
830                         err = btrfs_update_root(trans, fs_info->tree_root,
831                                                 &root->root_key,
832                                                 &root->root_item);
833                         spin_lock(&fs_info->fs_roots_radix_lock);
834                         if (err)
835                                 break;
836                 }
837         }
838         spin_unlock(&fs_info->fs_roots_radix_lock);
839         return err;
840 }
841
842 /*
843  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
844  * otherwise every leaf in the btree is read and defragged.
845  */
846 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
847 {
848         struct btrfs_fs_info *info = root->fs_info;
849         struct btrfs_trans_handle *trans;
850         int ret;
851         unsigned long nr;
852
853         if (xchg(&root->defrag_running, 1))
854                 return 0;
855
856         while (1) {
857                 trans = btrfs_start_transaction(root, 0);
858                 if (IS_ERR(trans))
859                         return PTR_ERR(trans);
860
861                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
862
863                 nr = trans->blocks_used;
864                 btrfs_end_transaction(trans, root);
865                 btrfs_btree_balance_dirty(info->tree_root, nr);
866                 cond_resched();
867
868                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
869                         break;
870         }
871         root->defrag_running = 0;
872         return ret;
873 }
874
875 /*
876  * new snapshots need to be created at a very specific time in the
877  * transaction commit.  This does the actual creation
878  */
879 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
880                                    struct btrfs_fs_info *fs_info,
881                                    struct btrfs_pending_snapshot *pending)
882 {
883         struct btrfs_key key;
884         struct btrfs_root_item *new_root_item;
885         struct btrfs_root *tree_root = fs_info->tree_root;
886         struct btrfs_root *root = pending->root;
887         struct btrfs_root *parent_root;
888         struct btrfs_block_rsv *rsv;
889         struct inode *parent_inode;
890         struct dentry *parent;
891         struct dentry *dentry;
892         struct extent_buffer *tmp;
893         struct extent_buffer *old;
894         int ret;
895         u64 to_reserve = 0;
896         u64 index = 0;
897         u64 objectid;
898         u64 root_flags;
899
900         rsv = trans->block_rsv;
901
902         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
903         if (!new_root_item) {
904                 pending->error = -ENOMEM;
905                 goto fail;
906         }
907
908         ret = btrfs_find_free_objectid(tree_root, &objectid);
909         if (ret) {
910                 pending->error = ret;
911                 goto fail;
912         }
913
914         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
915
916         if (to_reserve > 0) {
917                 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
918                                           to_reserve);
919                 if (ret) {
920                         pending->error = ret;
921                         goto fail;
922                 }
923         }
924
925         key.objectid = objectid;
926         key.offset = (u64)-1;
927         key.type = BTRFS_ROOT_ITEM_KEY;
928
929         trans->block_rsv = &pending->block_rsv;
930
931         dentry = pending->dentry;
932         parent = dget_parent(dentry);
933         parent_inode = parent->d_inode;
934         parent_root = BTRFS_I(parent_inode)->root;
935         record_root_in_trans(trans, parent_root);
936
937         /*
938          * insert the directory item
939          */
940         ret = btrfs_set_inode_index(parent_inode, &index);
941         BUG_ON(ret);
942         ret = btrfs_insert_dir_item(trans, parent_root,
943                                 dentry->d_name.name, dentry->d_name.len,
944                                 parent_inode, &key,
945                                 BTRFS_FT_DIR, index);
946         BUG_ON(ret);
947
948         btrfs_i_size_write(parent_inode, parent_inode->i_size +
949                                          dentry->d_name.len * 2);
950         ret = btrfs_update_inode(trans, parent_root, parent_inode);
951         BUG_ON(ret);
952
953         /*
954          * pull in the delayed directory update
955          * and the delayed inode item
956          * otherwise we corrupt the FS during
957          * snapshot
958          */
959         ret = btrfs_run_delayed_items(trans, root);
960         BUG_ON(ret);
961
962         record_root_in_trans(trans, root);
963         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
964         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
965         btrfs_check_and_init_root_item(new_root_item);
966
967         root_flags = btrfs_root_flags(new_root_item);
968         if (pending->readonly)
969                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
970         else
971                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
972         btrfs_set_root_flags(new_root_item, root_flags);
973
974         old = btrfs_lock_root_node(root);
975         btrfs_cow_block(trans, root, old, NULL, 0, &old);
976         btrfs_set_lock_blocking(old);
977
978         btrfs_copy_root(trans, root, old, &tmp, objectid);
979         btrfs_tree_unlock(old);
980         free_extent_buffer(old);
981
982         btrfs_set_root_node(new_root_item, tmp);
983         /* record when the snapshot was created in key.offset */
984         key.offset = trans->transid;
985         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
986         btrfs_tree_unlock(tmp);
987         free_extent_buffer(tmp);
988         BUG_ON(ret);
989
990         /*
991          * insert root back/forward references
992          */
993         ret = btrfs_add_root_ref(trans, tree_root, objectid,
994                                  parent_root->root_key.objectid,
995                                  btrfs_ino(parent_inode), index,
996                                  dentry->d_name.name, dentry->d_name.len);
997         BUG_ON(ret);
998         dput(parent);
999
1000         key.offset = (u64)-1;
1001         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1002         BUG_ON(IS_ERR(pending->snap));
1003
1004         btrfs_reloc_post_snapshot(trans, pending);
1005 fail:
1006         kfree(new_root_item);
1007         trans->block_rsv = rsv;
1008         btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1009         return 0;
1010 }
1011
1012 /*
1013  * create all the snapshots we've scheduled for creation
1014  */
1015 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1016                                              struct btrfs_fs_info *fs_info)
1017 {
1018         struct btrfs_pending_snapshot *pending;
1019         struct list_head *head = &trans->transaction->pending_snapshots;
1020         int ret;
1021
1022         list_for_each_entry(pending, head, list) {
1023                 ret = create_pending_snapshot(trans, fs_info, pending);
1024                 BUG_ON(ret);
1025         }
1026         return 0;
1027 }
1028
1029 static void update_super_roots(struct btrfs_root *root)
1030 {
1031         struct btrfs_root_item *root_item;
1032         struct btrfs_super_block *super;
1033
1034         super = &root->fs_info->super_copy;
1035
1036         root_item = &root->fs_info->chunk_root->root_item;
1037         super->chunk_root = root_item->bytenr;
1038         super->chunk_root_generation = root_item->generation;
1039         super->chunk_root_level = root_item->level;
1040
1041         root_item = &root->fs_info->tree_root->root_item;
1042         super->root = root_item->bytenr;
1043         super->generation = root_item->generation;
1044         super->root_level = root_item->level;
1045         if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1046                 super->cache_generation = root_item->generation;
1047 }
1048
1049 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1050 {
1051         int ret = 0;
1052         spin_lock(&info->trans_lock);
1053         if (info->running_transaction)
1054                 ret = info->running_transaction->in_commit;
1055         spin_unlock(&info->trans_lock);
1056         return ret;
1057 }
1058
1059 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1060 {
1061         int ret = 0;
1062         spin_lock(&info->trans_lock);
1063         if (info->running_transaction)
1064                 ret = info->running_transaction->blocked;
1065         spin_unlock(&info->trans_lock);
1066         return ret;
1067 }
1068
1069 /*
1070  * wait for the current transaction commit to start and block subsequent
1071  * transaction joins
1072  */
1073 static void wait_current_trans_commit_start(struct btrfs_root *root,
1074                                             struct btrfs_transaction *trans)
1075 {
1076         wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1077 }
1078
1079 /*
1080  * wait for the current transaction to start and then become unblocked.
1081  * caller holds ref.
1082  */
1083 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1084                                          struct btrfs_transaction *trans)
1085 {
1086         wait_event(root->fs_info->transaction_wait,
1087                    trans->commit_done || (trans->in_commit && !trans->blocked));
1088 }
1089
1090 /*
1091  * commit transactions asynchronously. once btrfs_commit_transaction_async
1092  * returns, any subsequent transaction will not be allowed to join.
1093  */
1094 struct btrfs_async_commit {
1095         struct btrfs_trans_handle *newtrans;
1096         struct btrfs_root *root;
1097         struct delayed_work work;
1098 };
1099
1100 static void do_async_commit(struct work_struct *work)
1101 {
1102         struct btrfs_async_commit *ac =
1103                 container_of(work, struct btrfs_async_commit, work.work);
1104
1105         btrfs_commit_transaction(ac->newtrans, ac->root);
1106         kfree(ac);
1107 }
1108
1109 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1110                                    struct btrfs_root *root,
1111                                    int wait_for_unblock)
1112 {
1113         struct btrfs_async_commit *ac;
1114         struct btrfs_transaction *cur_trans;
1115
1116         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1117         if (!ac)
1118                 return -ENOMEM;
1119
1120         INIT_DELAYED_WORK(&ac->work, do_async_commit);
1121         ac->root = root;
1122         ac->newtrans = btrfs_join_transaction(root);
1123         if (IS_ERR(ac->newtrans)) {
1124                 int err = PTR_ERR(ac->newtrans);
1125                 kfree(ac);
1126                 return err;
1127         }
1128
1129         /* take transaction reference */
1130         cur_trans = trans->transaction;
1131         atomic_inc(&cur_trans->use_count);
1132
1133         btrfs_end_transaction(trans, root);
1134         schedule_delayed_work(&ac->work, 0);
1135
1136         /* wait for transaction to start and unblock */
1137         if (wait_for_unblock)
1138                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1139         else
1140                 wait_current_trans_commit_start(root, cur_trans);
1141
1142         if (current->journal_info == trans)
1143                 current->journal_info = NULL;
1144
1145         put_transaction(cur_trans);
1146         return 0;
1147 }
1148
1149 /*
1150  * btrfs_transaction state sequence:
1151  *    in_commit = 0, blocked = 0  (initial)
1152  *    in_commit = 1, blocked = 1
1153  *    blocked = 0
1154  *    commit_done = 1
1155  */
1156 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1157                              struct btrfs_root *root)
1158 {
1159         unsigned long joined = 0;
1160         struct btrfs_transaction *cur_trans;
1161         struct btrfs_transaction *prev_trans = NULL;
1162         DEFINE_WAIT(wait);
1163         int ret;
1164         int should_grow = 0;
1165         unsigned long now = get_seconds();
1166         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1167
1168         btrfs_run_ordered_operations(root, 0);
1169
1170         /* make a pass through all the delayed refs we have so far
1171          * any runnings procs may add more while we are here
1172          */
1173         ret = btrfs_run_delayed_refs(trans, root, 0);
1174         BUG_ON(ret);
1175
1176         btrfs_trans_release_metadata(trans, root);
1177
1178         cur_trans = trans->transaction;
1179         /*
1180          * set the flushing flag so procs in this transaction have to
1181          * start sending their work down.
1182          */
1183         cur_trans->delayed_refs.flushing = 1;
1184
1185         ret = btrfs_run_delayed_refs(trans, root, 0);
1186         BUG_ON(ret);
1187
1188         spin_lock(&cur_trans->commit_lock);
1189         if (cur_trans->in_commit) {
1190                 spin_unlock(&cur_trans->commit_lock);
1191                 atomic_inc(&cur_trans->use_count);
1192                 btrfs_end_transaction(trans, root);
1193
1194                 wait_for_commit(root, cur_trans);
1195
1196                 put_transaction(cur_trans);
1197
1198                 return 0;
1199         }
1200
1201         trans->transaction->in_commit = 1;
1202         trans->transaction->blocked = 1;
1203         spin_unlock(&cur_trans->commit_lock);
1204         wake_up(&root->fs_info->transaction_blocked_wait);
1205
1206         spin_lock(&root->fs_info->trans_lock);
1207         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1208                 prev_trans = list_entry(cur_trans->list.prev,
1209                                         struct btrfs_transaction, list);
1210                 if (!prev_trans->commit_done) {
1211                         atomic_inc(&prev_trans->use_count);
1212                         spin_unlock(&root->fs_info->trans_lock);
1213
1214                         wait_for_commit(root, prev_trans);
1215
1216                         put_transaction(prev_trans);
1217                 } else {
1218                         spin_unlock(&root->fs_info->trans_lock);
1219                 }
1220         } else {
1221                 spin_unlock(&root->fs_info->trans_lock);
1222         }
1223
1224         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1225                 should_grow = 1;
1226
1227         do {
1228                 int snap_pending = 0;
1229
1230                 joined = cur_trans->num_joined;
1231                 if (!list_empty(&trans->transaction->pending_snapshots))
1232                         snap_pending = 1;
1233
1234                 WARN_ON(cur_trans != trans->transaction);
1235
1236                 if (flush_on_commit || snap_pending) {
1237                         btrfs_start_delalloc_inodes(root, 1);
1238                         ret = btrfs_wait_ordered_extents(root, 0, 1);
1239                         BUG_ON(ret);
1240                 }
1241
1242                 ret = btrfs_run_delayed_items(trans, root);
1243                 BUG_ON(ret);
1244
1245                 /*
1246                  * rename don't use btrfs_join_transaction, so, once we
1247                  * set the transaction to blocked above, we aren't going
1248                  * to get any new ordered operations.  We can safely run
1249                  * it here and no for sure that nothing new will be added
1250                  * to the list
1251                  */
1252                 btrfs_run_ordered_operations(root, 1);
1253
1254                 prepare_to_wait(&cur_trans->writer_wait, &wait,
1255                                 TASK_UNINTERRUPTIBLE);
1256
1257                 if (atomic_read(&cur_trans->num_writers) > 1)
1258                         schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1259                 else if (should_grow)
1260                         schedule_timeout(1);
1261
1262                 finish_wait(&cur_trans->writer_wait, &wait);
1263         } while (atomic_read(&cur_trans->num_writers) > 1 ||
1264                  (should_grow && cur_trans->num_joined != joined));
1265
1266         /*
1267          * Ok now we need to make sure to block out any other joins while we
1268          * commit the transaction.  We could have started a join before setting
1269          * no_join so make sure to wait for num_writers to == 1 again.
1270          */
1271         spin_lock(&root->fs_info->trans_lock);
1272         root->fs_info->trans_no_join = 1;
1273         spin_unlock(&root->fs_info->trans_lock);
1274         wait_event(cur_trans->writer_wait,
1275                    atomic_read(&cur_trans->num_writers) == 1);
1276
1277         /*
1278          * the reloc mutex makes sure that we stop
1279          * the balancing code from coming in and moving
1280          * extents around in the middle of the commit
1281          */
1282         mutex_lock(&root->fs_info->reloc_mutex);
1283
1284         ret = btrfs_run_delayed_items(trans, root);
1285         BUG_ON(ret);
1286
1287         ret = create_pending_snapshots(trans, root->fs_info);
1288         BUG_ON(ret);
1289
1290         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1291         BUG_ON(ret);
1292
1293         /*
1294          * make sure none of the code above managed to slip in a
1295          * delayed item
1296          */
1297         btrfs_assert_delayed_root_empty(root);
1298
1299         WARN_ON(cur_trans != trans->transaction);
1300
1301         btrfs_scrub_pause(root);
1302         /* btrfs_commit_tree_roots is responsible for getting the
1303          * various roots consistent with each other.  Every pointer
1304          * in the tree of tree roots has to point to the most up to date
1305          * root for every subvolume and other tree.  So, we have to keep
1306          * the tree logging code from jumping in and changing any
1307          * of the trees.
1308          *
1309          * At this point in the commit, there can't be any tree-log
1310          * writers, but a little lower down we drop the trans mutex
1311          * and let new people in.  By holding the tree_log_mutex
1312          * from now until after the super is written, we avoid races
1313          * with the tree-log code.
1314          */
1315         mutex_lock(&root->fs_info->tree_log_mutex);
1316
1317         ret = commit_fs_roots(trans, root);
1318         BUG_ON(ret);
1319
1320         /* commit_fs_roots gets rid of all the tree log roots, it is now
1321          * safe to free the root of tree log roots
1322          */
1323         btrfs_free_log_root_tree(trans, root->fs_info);
1324
1325         ret = commit_cowonly_roots(trans, root);
1326         BUG_ON(ret);
1327
1328         btrfs_prepare_extent_commit(trans, root);
1329
1330         cur_trans = root->fs_info->running_transaction;
1331
1332         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1333                             root->fs_info->tree_root->node);
1334         switch_commit_root(root->fs_info->tree_root);
1335
1336         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1337                             root->fs_info->chunk_root->node);
1338         switch_commit_root(root->fs_info->chunk_root);
1339
1340         update_super_roots(root);
1341
1342         if (!root->fs_info->log_root_recovering) {
1343                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1344                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1345         }
1346
1347         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1348                sizeof(root->fs_info->super_copy));
1349
1350         trans->transaction->blocked = 0;
1351         spin_lock(&root->fs_info->trans_lock);
1352         root->fs_info->running_transaction = NULL;
1353         root->fs_info->trans_no_join = 0;
1354         spin_unlock(&root->fs_info->trans_lock);
1355         mutex_unlock(&root->fs_info->reloc_mutex);
1356
1357         wake_up(&root->fs_info->transaction_wait);
1358
1359         ret = btrfs_write_and_wait_transaction(trans, root);
1360         BUG_ON(ret);
1361         write_ctree_super(trans, root, 0);
1362
1363         /*
1364          * the super is written, we can safely allow the tree-loggers
1365          * to go about their business
1366          */
1367         mutex_unlock(&root->fs_info->tree_log_mutex);
1368
1369         btrfs_finish_extent_commit(trans, root);
1370
1371         cur_trans->commit_done = 1;
1372
1373         root->fs_info->last_trans_committed = cur_trans->transid;
1374
1375         wake_up(&cur_trans->commit_wait);
1376
1377         spin_lock(&root->fs_info->trans_lock);
1378         list_del_init(&cur_trans->list);
1379         spin_unlock(&root->fs_info->trans_lock);
1380
1381         put_transaction(cur_trans);
1382         put_transaction(cur_trans);
1383
1384         trace_btrfs_transaction_commit(root);
1385
1386         btrfs_scrub_continue(root);
1387
1388         if (current->journal_info == trans)
1389                 current->journal_info = NULL;
1390
1391         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1392
1393         if (current != root->fs_info->transaction_kthread)
1394                 btrfs_run_delayed_iputs(root);
1395
1396         return ret;
1397 }
1398
1399 /*
1400  * interface function to delete all the snapshots we have scheduled for deletion
1401  */
1402 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1403 {
1404         LIST_HEAD(list);
1405         struct btrfs_fs_info *fs_info = root->fs_info;
1406
1407         spin_lock(&fs_info->trans_lock);
1408         list_splice_init(&fs_info->dead_roots, &list);
1409         spin_unlock(&fs_info->trans_lock);
1410
1411         while (!list_empty(&list)) {
1412                 root = list_entry(list.next, struct btrfs_root, root_list);
1413                 list_del(&root->root_list);
1414
1415                 btrfs_kill_all_delayed_nodes(root);
1416
1417                 if (btrfs_header_backref_rev(root->node) <
1418                     BTRFS_MIXED_BACKREF_REV)
1419                         btrfs_drop_snapshot(root, NULL, 0);
1420                 else
1421                         btrfs_drop_snapshot(root, NULL, 1);
1422         }
1423         return 0;
1424 }