Btrfs: nuke fs wide allocation mutex V2
[pandora-kernel.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "locking.h"
27 #include "ref-cache.h"
28 #include "tree-log.h"
29
30 static int total_trans = 0;
31 extern struct kmem_cache *btrfs_trans_handle_cachep;
32 extern struct kmem_cache *btrfs_transaction_cachep;
33
34 #define BTRFS_ROOT_TRANS_TAG 0
35
36 static noinline void put_transaction(struct btrfs_transaction *transaction)
37 {
38         WARN_ON(transaction->use_count == 0);
39         transaction->use_count--;
40         if (transaction->use_count == 0) {
41                 WARN_ON(total_trans == 0);
42                 total_trans--;
43                 list_del_init(&transaction->list);
44                 memset(transaction, 0, sizeof(*transaction));
45                 kmem_cache_free(btrfs_transaction_cachep, transaction);
46         }
47 }
48
49 /*
50  * either allocate a new transaction or hop into the existing one
51  */
52 static noinline int join_transaction(struct btrfs_root *root)
53 {
54         struct btrfs_transaction *cur_trans;
55         cur_trans = root->fs_info->running_transaction;
56         if (!cur_trans) {
57                 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
58                                              GFP_NOFS);
59                 total_trans++;
60                 BUG_ON(!cur_trans);
61                 root->fs_info->generation++;
62                 root->fs_info->last_alloc = 0;
63                 root->fs_info->last_data_alloc = 0;
64                 cur_trans->num_writers = 1;
65                 cur_trans->num_joined = 0;
66                 cur_trans->transid = root->fs_info->generation;
67                 init_waitqueue_head(&cur_trans->writer_wait);
68                 init_waitqueue_head(&cur_trans->commit_wait);
69                 cur_trans->in_commit = 0;
70                 cur_trans->blocked = 0;
71                 cur_trans->use_count = 1;
72                 cur_trans->commit_done = 0;
73                 cur_trans->start_time = get_seconds();
74                 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
75                 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
76                 extent_io_tree_init(&cur_trans->dirty_pages,
77                                      root->fs_info->btree_inode->i_mapping,
78                                      GFP_NOFS);
79                 spin_lock(&root->fs_info->new_trans_lock);
80                 root->fs_info->running_transaction = cur_trans;
81                 spin_unlock(&root->fs_info->new_trans_lock);
82         } else {
83                 cur_trans->num_writers++;
84                 cur_trans->num_joined++;
85         }
86
87         return 0;
88 }
89
90 /*
91  * this does all the record keeping required to make sure that a
92  * reference counted root is properly recorded in a given transaction.
93  * This is required to make sure the old root from before we joined the transaction
94  * is deleted when the transaction commits
95  */
96 noinline int btrfs_record_root_in_trans(struct btrfs_root *root)
97 {
98         struct btrfs_dirty_root *dirty;
99         u64 running_trans_id = root->fs_info->running_transaction->transid;
100         if (root->ref_cows && root->last_trans < running_trans_id) {
101                 WARN_ON(root == root->fs_info->extent_root);
102                 if (root->root_item.refs != 0) {
103                         radix_tree_tag_set(&root->fs_info->fs_roots_radix,
104                                    (unsigned long)root->root_key.objectid,
105                                    BTRFS_ROOT_TRANS_TAG);
106
107                         dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
108                         BUG_ON(!dirty);
109                         dirty->root = kmalloc(sizeof(*dirty->root), GFP_NOFS);
110                         BUG_ON(!dirty->root);
111                         dirty->latest_root = root;
112                         INIT_LIST_HEAD(&dirty->list);
113
114                         root->commit_root = btrfs_root_node(root);
115
116                         memcpy(dirty->root, root, sizeof(*root));
117                         spin_lock_init(&dirty->root->node_lock);
118                         spin_lock_init(&dirty->root->list_lock);
119                         mutex_init(&dirty->root->objectid_mutex);
120                         mutex_init(&dirty->root->log_mutex);
121                         INIT_LIST_HEAD(&dirty->root->dead_list);
122                         dirty->root->node = root->commit_root;
123                         dirty->root->commit_root = NULL;
124
125                         spin_lock(&root->list_lock);
126                         list_add(&dirty->root->dead_list, &root->dead_list);
127                         spin_unlock(&root->list_lock);
128
129                         root->dirty_root = dirty;
130                 } else {
131                         WARN_ON(1);
132                 }
133                 root->last_trans = running_trans_id;
134         }
135         return 0;
136 }
137
138 /* wait for commit against the current transaction to become unblocked
139  * when this is done, it is safe to start a new transaction, but the current
140  * transaction might not be fully on disk.
141  */
142 static void wait_current_trans(struct btrfs_root *root)
143 {
144         struct btrfs_transaction *cur_trans;
145
146         cur_trans = root->fs_info->running_transaction;
147         if (cur_trans && cur_trans->blocked) {
148                 DEFINE_WAIT(wait);
149                 cur_trans->use_count++;
150                 while(1) {
151                         prepare_to_wait(&root->fs_info->transaction_wait, &wait,
152                                         TASK_UNINTERRUPTIBLE);
153                         if (cur_trans->blocked) {
154                                 mutex_unlock(&root->fs_info->trans_mutex);
155                                 schedule();
156                                 mutex_lock(&root->fs_info->trans_mutex);
157                                 finish_wait(&root->fs_info->transaction_wait,
158                                             &wait);
159                         } else {
160                                 finish_wait(&root->fs_info->transaction_wait,
161                                             &wait);
162                                 break;
163                         }
164                 }
165                 put_transaction(cur_trans);
166         }
167 }
168
169 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
170                                              int num_blocks, int wait)
171 {
172         struct btrfs_trans_handle *h =
173                 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
174         int ret;
175
176         mutex_lock(&root->fs_info->trans_mutex);
177         if (!root->fs_info->log_root_recovering &&
178             ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2))
179                 wait_current_trans(root);
180         ret = join_transaction(root);
181         BUG_ON(ret);
182
183         btrfs_record_root_in_trans(root);
184         h->transid = root->fs_info->running_transaction->transid;
185         h->transaction = root->fs_info->running_transaction;
186         h->blocks_reserved = num_blocks;
187         h->blocks_used = 0;
188         h->block_group = NULL;
189         h->alloc_exclude_nr = 0;
190         h->alloc_exclude_start = 0;
191         root->fs_info->running_transaction->use_count++;
192         mutex_unlock(&root->fs_info->trans_mutex);
193         return h;
194 }
195
196 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
197                                                    int num_blocks)
198 {
199         return start_transaction(root, num_blocks, 1);
200 }
201 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
202                                                    int num_blocks)
203 {
204         return start_transaction(root, num_blocks, 0);
205 }
206
207 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
208                                                          int num_blocks)
209 {
210         return start_transaction(r, num_blocks, 2);
211 }
212
213 /* wait for a transaction commit to be fully complete */
214 static noinline int wait_for_commit(struct btrfs_root *root,
215                                     struct btrfs_transaction *commit)
216 {
217         DEFINE_WAIT(wait);
218         mutex_lock(&root->fs_info->trans_mutex);
219         while(!commit->commit_done) {
220                 prepare_to_wait(&commit->commit_wait, &wait,
221                                 TASK_UNINTERRUPTIBLE);
222                 if (commit->commit_done)
223                         break;
224                 mutex_unlock(&root->fs_info->trans_mutex);
225                 schedule();
226                 mutex_lock(&root->fs_info->trans_mutex);
227         }
228         mutex_unlock(&root->fs_info->trans_mutex);
229         finish_wait(&commit->commit_wait, &wait);
230         return 0;
231 }
232
233 /*
234  * rate limit against the drop_snapshot code.  This helps to slow down new operations
235  * if the drop_snapshot code isn't able to keep up.
236  */
237 static void throttle_on_drops(struct btrfs_root *root)
238 {
239         struct btrfs_fs_info *info = root->fs_info;
240         int harder_count = 0;
241
242 harder:
243         if (atomic_read(&info->throttles)) {
244                 DEFINE_WAIT(wait);
245                 int thr;
246                 thr = atomic_read(&info->throttle_gen);
247
248                 do {
249                         prepare_to_wait(&info->transaction_throttle,
250                                         &wait, TASK_UNINTERRUPTIBLE);
251                         if (!atomic_read(&info->throttles)) {
252                                 finish_wait(&info->transaction_throttle, &wait);
253                                 break;
254                         }
255                         schedule();
256                         finish_wait(&info->transaction_throttle, &wait);
257                 } while (thr == atomic_read(&info->throttle_gen));
258                 harder_count++;
259
260                 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
261                     harder_count < 2)
262                         goto harder;
263
264                 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
265                     harder_count < 10)
266                         goto harder;
267
268                 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
269                     harder_count < 20)
270                         goto harder;
271         }
272 }
273
274 void btrfs_throttle(struct btrfs_root *root)
275 {
276         mutex_lock(&root->fs_info->trans_mutex);
277         if (!root->fs_info->open_ioctl_trans)
278                 wait_current_trans(root);
279         mutex_unlock(&root->fs_info->trans_mutex);
280
281         throttle_on_drops(root);
282 }
283
284 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
285                           struct btrfs_root *root, int throttle)
286 {
287         struct btrfs_transaction *cur_trans;
288         struct btrfs_fs_info *info = root->fs_info;
289
290         mutex_lock(&info->trans_mutex);
291         cur_trans = info->running_transaction;
292         WARN_ON(cur_trans != trans->transaction);
293         WARN_ON(cur_trans->num_writers < 1);
294         cur_trans->num_writers--;
295
296         if (waitqueue_active(&cur_trans->writer_wait))
297                 wake_up(&cur_trans->writer_wait);
298         put_transaction(cur_trans);
299         mutex_unlock(&info->trans_mutex);
300         memset(trans, 0, sizeof(*trans));
301         kmem_cache_free(btrfs_trans_handle_cachep, trans);
302
303         if (throttle)
304                 throttle_on_drops(root);
305
306         return 0;
307 }
308
309 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
310                           struct btrfs_root *root)
311 {
312         return __btrfs_end_transaction(trans, root, 0);
313 }
314
315 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
316                                    struct btrfs_root *root)
317 {
318         return __btrfs_end_transaction(trans, root, 1);
319 }
320
321 /*
322  * when btree blocks are allocated, they have some corresponding bits set for
323  * them in one of two extent_io trees.  This is used to make sure all of
324  * those extents are on disk for transaction or log commit
325  */
326 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
327                                         struct extent_io_tree *dirty_pages)
328 {
329         int ret;
330         int err = 0;
331         int werr = 0;
332         struct page *page;
333         struct inode *btree_inode = root->fs_info->btree_inode;
334         u64 start = 0;
335         u64 end;
336         unsigned long index;
337
338         while(1) {
339                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
340                                             EXTENT_DIRTY);
341                 if (ret)
342                         break;
343                 while(start <= end) {
344                         cond_resched();
345
346                         index = start >> PAGE_CACHE_SHIFT;
347                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
348                         page = find_get_page(btree_inode->i_mapping, index);
349                         if (!page)
350                                 continue;
351
352                         btree_lock_page_hook(page);
353                         if (!page->mapping) {
354                                 unlock_page(page);
355                                 page_cache_release(page);
356                                 continue;
357                         }
358
359                         if (PageWriteback(page)) {
360                                 if (PageDirty(page))
361                                         wait_on_page_writeback(page);
362                                 else {
363                                         unlock_page(page);
364                                         page_cache_release(page);
365                                         continue;
366                                 }
367                         }
368                         err = write_one_page(page, 0);
369                         if (err)
370                                 werr = err;
371                         page_cache_release(page);
372                 }
373         }
374         while(1) {
375                 ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
376                                             EXTENT_DIRTY);
377                 if (ret)
378                         break;
379
380                 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
381                 while(start <= end) {
382                         index = start >> PAGE_CACHE_SHIFT;
383                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
384                         page = find_get_page(btree_inode->i_mapping, index);
385                         if (!page)
386                                 continue;
387                         if (PageDirty(page)) {
388                                 btree_lock_page_hook(page);
389                                 wait_on_page_writeback(page);
390                                 err = write_one_page(page, 0);
391                                 if (err)
392                                         werr = err;
393                         }
394                         wait_on_page_writeback(page);
395                         page_cache_release(page);
396                         cond_resched();
397                 }
398         }
399         if (err)
400                 werr = err;
401         return werr;
402 }
403
404 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
405                                      struct btrfs_root *root)
406 {
407         if (!trans || !trans->transaction) {
408                 struct inode *btree_inode;
409                 btree_inode = root->fs_info->btree_inode;
410                 return filemap_write_and_wait(btree_inode->i_mapping);
411         }
412         return btrfs_write_and_wait_marked_extents(root,
413                                            &trans->transaction->dirty_pages);
414 }
415
416 /*
417  * this is used to update the root pointer in the tree of tree roots.
418  *
419  * But, in the case of the extent allocation tree, updating the root
420  * pointer may allocate blocks which may change the root of the extent
421  * allocation tree.
422  *
423  * So, this loops and repeats and makes sure the cowonly root didn't
424  * change while the root pointer was being updated in the metadata.
425  */
426 static int update_cowonly_root(struct btrfs_trans_handle *trans,
427                                struct btrfs_root *root)
428 {
429         int ret;
430         u64 old_root_bytenr;
431         struct btrfs_root *tree_root = root->fs_info->tree_root;
432
433         btrfs_write_dirty_block_groups(trans, root);
434         while(1) {
435                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
436                 if (old_root_bytenr == root->node->start)
437                         break;
438                 btrfs_set_root_bytenr(&root->root_item,
439                                        root->node->start);
440                 btrfs_set_root_level(&root->root_item,
441                                      btrfs_header_level(root->node));
442                 ret = btrfs_update_root(trans, tree_root,
443                                         &root->root_key,
444                                         &root->root_item);
445                 BUG_ON(ret);
446                 btrfs_write_dirty_block_groups(trans, root);
447         }
448         return 0;
449 }
450
451 /*
452  * update all the cowonly tree roots on disk
453  */
454 int btrfs_commit_tree_roots(struct btrfs_trans_handle *trans,
455                             struct btrfs_root *root)
456 {
457         struct btrfs_fs_info *fs_info = root->fs_info;
458         struct list_head *next;
459
460         while(!list_empty(&fs_info->dirty_cowonly_roots)) {
461                 next = fs_info->dirty_cowonly_roots.next;
462                 list_del_init(next);
463                 root = list_entry(next, struct btrfs_root, dirty_list);
464                 update_cowonly_root(trans, root);
465         }
466         return 0;
467 }
468
469 /*
470  * dead roots are old snapshots that need to be deleted.  This allocates
471  * a dirty root struct and adds it into the list of dead roots that need to
472  * be deleted
473  */
474 int btrfs_add_dead_root(struct btrfs_root *root, struct btrfs_root *latest)
475 {
476         struct btrfs_dirty_root *dirty;
477
478         dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
479         if (!dirty)
480                 return -ENOMEM;
481         dirty->root = root;
482         dirty->latest_root = latest;
483
484         mutex_lock(&root->fs_info->trans_mutex);
485         list_add(&dirty->list, &latest->fs_info->dead_roots);
486         mutex_unlock(&root->fs_info->trans_mutex);
487         return 0;
488 }
489
490 /*
491  * at transaction commit time we need to schedule the old roots for
492  * deletion via btrfs_drop_snapshot.  This runs through all the
493  * reference counted roots that were modified in the current
494  * transaction and puts them into the drop list
495  */
496 static noinline int add_dirty_roots(struct btrfs_trans_handle *trans,
497                                     struct radix_tree_root *radix,
498                                     struct list_head *list)
499 {
500         struct btrfs_dirty_root *dirty;
501         struct btrfs_root *gang[8];
502         struct btrfs_root *root;
503         int i;
504         int ret;
505         int err = 0;
506         u32 refs;
507
508         while(1) {
509                 ret = radix_tree_gang_lookup_tag(radix, (void **)gang, 0,
510                                                  ARRAY_SIZE(gang),
511                                                  BTRFS_ROOT_TRANS_TAG);
512                 if (ret == 0)
513                         break;
514                 for (i = 0; i < ret; i++) {
515                         root = gang[i];
516                         radix_tree_tag_clear(radix,
517                                      (unsigned long)root->root_key.objectid,
518                                      BTRFS_ROOT_TRANS_TAG);
519
520                         BUG_ON(!root->ref_tree);
521                         dirty = root->dirty_root;
522
523                         btrfs_free_log(trans, root);
524                         btrfs_free_reloc_root(trans, root);
525
526                         if (root->commit_root == root->node) {
527                                 WARN_ON(root->node->start !=
528                                         btrfs_root_bytenr(&root->root_item));
529
530                                 free_extent_buffer(root->commit_root);
531                                 root->commit_root = NULL;
532                                 root->dirty_root = NULL;
533
534                                 spin_lock(&root->list_lock);
535                                 list_del_init(&dirty->root->dead_list);
536                                 spin_unlock(&root->list_lock);
537
538                                 kfree(dirty->root);
539                                 kfree(dirty);
540
541                                 /* make sure to update the root on disk
542                                  * so we get any updates to the block used
543                                  * counts
544                                  */
545                                 err = btrfs_update_root(trans,
546                                                 root->fs_info->tree_root,
547                                                 &root->root_key,
548                                                 &root->root_item);
549                                 continue;
550                         }
551
552                         memset(&root->root_item.drop_progress, 0,
553                                sizeof(struct btrfs_disk_key));
554                         root->root_item.drop_level = 0;
555                         root->commit_root = NULL;
556                         root->dirty_root = NULL;
557                         root->root_key.offset = root->fs_info->generation;
558                         btrfs_set_root_bytenr(&root->root_item,
559                                               root->node->start);
560                         btrfs_set_root_level(&root->root_item,
561                                              btrfs_header_level(root->node));
562                         err = btrfs_insert_root(trans, root->fs_info->tree_root,
563                                                 &root->root_key,
564                                                 &root->root_item);
565                         if (err)
566                                 break;
567
568                         refs = btrfs_root_refs(&dirty->root->root_item);
569                         btrfs_set_root_refs(&dirty->root->root_item, refs - 1);
570                         err = btrfs_update_root(trans, root->fs_info->tree_root,
571                                                 &dirty->root->root_key,
572                                                 &dirty->root->root_item);
573
574                         BUG_ON(err);
575                         if (refs == 1) {
576                                 list_add(&dirty->list, list);
577                         } else {
578                                 WARN_ON(1);
579                                 free_extent_buffer(dirty->root->node);
580                                 kfree(dirty->root);
581                                 kfree(dirty);
582                         }
583                 }
584         }
585         return err;
586 }
587
588 /*
589  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
590  * otherwise every leaf in the btree is read and defragged.
591  */
592 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
593 {
594         struct btrfs_fs_info *info = root->fs_info;
595         int ret;
596         struct btrfs_trans_handle *trans;
597         unsigned long nr;
598
599         smp_mb();
600         if (root->defrag_running)
601                 return 0;
602         trans = btrfs_start_transaction(root, 1);
603         while (1) {
604                 root->defrag_running = 1;
605                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
606                 nr = trans->blocks_used;
607                 btrfs_end_transaction(trans, root);
608                 btrfs_btree_balance_dirty(info->tree_root, nr);
609                 cond_resched();
610
611                 trans = btrfs_start_transaction(root, 1);
612                 if (root->fs_info->closing || ret != -EAGAIN)
613                         break;
614         }
615         root->defrag_running = 0;
616         smp_mb();
617         btrfs_end_transaction(trans, root);
618         return 0;
619 }
620
621 /*
622  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
623  * all of them
624  */
625 static noinline int drop_dirty_roots(struct btrfs_root *tree_root,
626                                      struct list_head *list)
627 {
628         struct btrfs_dirty_root *dirty;
629         struct btrfs_trans_handle *trans;
630         unsigned long nr;
631         u64 num_bytes;
632         u64 bytes_used;
633         u64 max_useless;
634         int ret = 0;
635         int err;
636
637         while(!list_empty(list)) {
638                 struct btrfs_root *root;
639
640                 dirty = list_entry(list->prev, struct btrfs_dirty_root, list);
641                 list_del_init(&dirty->list);
642
643                 num_bytes = btrfs_root_used(&dirty->root->root_item);
644                 root = dirty->latest_root;
645                 atomic_inc(&root->fs_info->throttles);
646
647                 while(1) {
648                         trans = btrfs_start_transaction(tree_root, 1);
649                         mutex_lock(&root->fs_info->drop_mutex);
650                         ret = btrfs_drop_snapshot(trans, dirty->root);
651                         if (ret != -EAGAIN) {
652                                 break;
653                         }
654                         mutex_unlock(&root->fs_info->drop_mutex);
655
656                         err = btrfs_update_root(trans,
657                                         tree_root,
658                                         &dirty->root->root_key,
659                                         &dirty->root->root_item);
660                         if (err)
661                                 ret = err;
662                         nr = trans->blocks_used;
663                         ret = btrfs_end_transaction(trans, tree_root);
664                         BUG_ON(ret);
665
666                         btrfs_btree_balance_dirty(tree_root, nr);
667                         cond_resched();
668                 }
669                 BUG_ON(ret);
670                 atomic_dec(&root->fs_info->throttles);
671                 wake_up(&root->fs_info->transaction_throttle);
672
673                 num_bytes -= btrfs_root_used(&dirty->root->root_item);
674                 bytes_used = btrfs_root_used(&root->root_item);
675                 if (num_bytes) {
676                         btrfs_record_root_in_trans(root);
677                         btrfs_set_root_used(&root->root_item,
678                                             bytes_used - num_bytes);
679                 }
680
681                 ret = btrfs_del_root(trans, tree_root, &dirty->root->root_key);
682                 if (ret) {
683                         BUG();
684                         break;
685                 }
686                 mutex_unlock(&root->fs_info->drop_mutex);
687
688                 spin_lock(&root->list_lock);
689                 list_del_init(&dirty->root->dead_list);
690                 if (!list_empty(&root->dead_list)) {
691                         struct btrfs_root *oldest;
692                         oldest = list_entry(root->dead_list.prev,
693                                             struct btrfs_root, dead_list);
694                         max_useless = oldest->root_key.offset - 1;
695                 } else {
696                         max_useless = root->root_key.offset - 1;
697                 }
698                 spin_unlock(&root->list_lock);
699
700                 nr = trans->blocks_used;
701                 ret = btrfs_end_transaction(trans, tree_root);
702                 BUG_ON(ret);
703
704                 ret = btrfs_remove_leaf_refs(root, max_useless, 0);
705                 BUG_ON(ret);
706
707                 free_extent_buffer(dirty->root->node);
708                 kfree(dirty->root);
709                 kfree(dirty);
710
711                 btrfs_btree_balance_dirty(tree_root, nr);
712                 cond_resched();
713         }
714         return ret;
715 }
716
717 /*
718  * new snapshots need to be created at a very specific time in the
719  * transaction commit.  This does the actual creation
720  */
721 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
722                                    struct btrfs_fs_info *fs_info,
723                                    struct btrfs_pending_snapshot *pending)
724 {
725         struct btrfs_key key;
726         struct btrfs_root_item *new_root_item;
727         struct btrfs_root *tree_root = fs_info->tree_root;
728         struct btrfs_root *root = pending->root;
729         struct extent_buffer *tmp;
730         struct extent_buffer *old;
731         int ret;
732         int namelen;
733         u64 objectid;
734
735         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
736         if (!new_root_item) {
737                 ret = -ENOMEM;
738                 goto fail;
739         }
740         ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
741         if (ret)
742                 goto fail;
743
744         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
745
746         key.objectid = objectid;
747         key.offset = trans->transid;
748         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
749
750         old = btrfs_lock_root_node(root);
751         btrfs_cow_block(trans, root, old, NULL, 0, &old, 0);
752
753         btrfs_copy_root(trans, root, old, &tmp, objectid);
754         btrfs_tree_unlock(old);
755         free_extent_buffer(old);
756
757         btrfs_set_root_bytenr(new_root_item, tmp->start);
758         btrfs_set_root_level(new_root_item, btrfs_header_level(tmp));
759         ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
760                                 new_root_item);
761         btrfs_tree_unlock(tmp);
762         free_extent_buffer(tmp);
763         if (ret)
764                 goto fail;
765
766         /*
767          * insert the directory item
768          */
769         key.offset = (u64)-1;
770         namelen = strlen(pending->name);
771         ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root,
772                                     pending->name, namelen,
773                                     root->fs_info->sb->s_root->d_inode->i_ino,
774                                     &key, BTRFS_FT_DIR, 0);
775
776         if (ret)
777                 goto fail;
778
779         ret = btrfs_insert_inode_ref(trans, root->fs_info->tree_root,
780                              pending->name, strlen(pending->name), objectid,
781                              root->fs_info->sb->s_root->d_inode->i_ino, 0);
782
783         /* Invalidate existing dcache entry for new snapshot. */
784         btrfs_invalidate_dcache_root(root, pending->name, namelen);
785
786 fail:
787         kfree(new_root_item);
788         return ret;
789 }
790
791 /*
792  * create all the snapshots we've scheduled for creation
793  */
794 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
795                                              struct btrfs_fs_info *fs_info)
796 {
797         struct btrfs_pending_snapshot *pending;
798         struct list_head *head = &trans->transaction->pending_snapshots;
799         int ret;
800
801         while(!list_empty(head)) {
802                 pending = list_entry(head->next,
803                                      struct btrfs_pending_snapshot, list);
804                 ret = create_pending_snapshot(trans, fs_info, pending);
805                 BUG_ON(ret);
806                 list_del(&pending->list);
807                 kfree(pending->name);
808                 kfree(pending);
809         }
810         return 0;
811 }
812
813 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
814                              struct btrfs_root *root)
815 {
816         unsigned long joined = 0;
817         unsigned long timeout = 1;
818         struct btrfs_transaction *cur_trans;
819         struct btrfs_transaction *prev_trans = NULL;
820         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
821         struct list_head dirty_fs_roots;
822         struct extent_io_tree *pinned_copy;
823         DEFINE_WAIT(wait);
824         int ret;
825
826         INIT_LIST_HEAD(&dirty_fs_roots);
827         mutex_lock(&root->fs_info->trans_mutex);
828         if (trans->transaction->in_commit) {
829                 cur_trans = trans->transaction;
830                 trans->transaction->use_count++;
831                 mutex_unlock(&root->fs_info->trans_mutex);
832                 btrfs_end_transaction(trans, root);
833
834                 ret = wait_for_commit(root, cur_trans);
835                 BUG_ON(ret);
836
837                 mutex_lock(&root->fs_info->trans_mutex);
838                 put_transaction(cur_trans);
839                 mutex_unlock(&root->fs_info->trans_mutex);
840
841                 return 0;
842         }
843
844         pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS);
845         if (!pinned_copy)
846                 return -ENOMEM;
847
848         extent_io_tree_init(pinned_copy,
849                              root->fs_info->btree_inode->i_mapping, GFP_NOFS);
850
851         trans->transaction->in_commit = 1;
852         trans->transaction->blocked = 1;
853         cur_trans = trans->transaction;
854         if (cur_trans->list.prev != &root->fs_info->trans_list) {
855                 prev_trans = list_entry(cur_trans->list.prev,
856                                         struct btrfs_transaction, list);
857                 if (!prev_trans->commit_done) {
858                         prev_trans->use_count++;
859                         mutex_unlock(&root->fs_info->trans_mutex);
860
861                         wait_for_commit(root, prev_trans);
862
863                         mutex_lock(&root->fs_info->trans_mutex);
864                         put_transaction(prev_trans);
865                 }
866         }
867
868         do {
869                 int snap_pending = 0;
870                 joined = cur_trans->num_joined;
871                 if (!list_empty(&trans->transaction->pending_snapshots))
872                         snap_pending = 1;
873
874                 WARN_ON(cur_trans != trans->transaction);
875                 prepare_to_wait(&cur_trans->writer_wait, &wait,
876                                 TASK_UNINTERRUPTIBLE);
877
878                 if (cur_trans->num_writers > 1)
879                         timeout = MAX_SCHEDULE_TIMEOUT;
880                 else
881                         timeout = 1;
882
883                 mutex_unlock(&root->fs_info->trans_mutex);
884
885                 if (snap_pending) {
886                         ret = btrfs_wait_ordered_extents(root, 1);
887                         BUG_ON(ret);
888                 }
889
890                 schedule_timeout(timeout);
891
892                 mutex_lock(&root->fs_info->trans_mutex);
893                 finish_wait(&cur_trans->writer_wait, &wait);
894         } while (cur_trans->num_writers > 1 ||
895                  (cur_trans->num_joined != joined));
896
897         ret = create_pending_snapshots(trans, root->fs_info);
898         BUG_ON(ret);
899
900         WARN_ON(cur_trans != trans->transaction);
901
902         /* btrfs_commit_tree_roots is responsible for getting the
903          * various roots consistent with each other.  Every pointer
904          * in the tree of tree roots has to point to the most up to date
905          * root for every subvolume and other tree.  So, we have to keep
906          * the tree logging code from jumping in and changing any
907          * of the trees.
908          *
909          * At this point in the commit, there can't be any tree-log
910          * writers, but a little lower down we drop the trans mutex
911          * and let new people in.  By holding the tree_log_mutex
912          * from now until after the super is written, we avoid races
913          * with the tree-log code.
914          */
915         mutex_lock(&root->fs_info->tree_log_mutex);
916         /*
917          * keep tree reloc code from adding new reloc trees
918          */
919         mutex_lock(&root->fs_info->tree_reloc_mutex);
920
921
922         ret = add_dirty_roots(trans, &root->fs_info->fs_roots_radix,
923                               &dirty_fs_roots);
924         BUG_ON(ret);
925
926         /* add_dirty_roots gets rid of all the tree log roots, it is now
927          * safe to free the root of tree log roots
928          */
929         btrfs_free_log_root_tree(trans, root->fs_info);
930
931         ret = btrfs_commit_tree_roots(trans, root);
932         BUG_ON(ret);
933
934         cur_trans = root->fs_info->running_transaction;
935         spin_lock(&root->fs_info->new_trans_lock);
936         root->fs_info->running_transaction = NULL;
937         spin_unlock(&root->fs_info->new_trans_lock);
938         btrfs_set_super_generation(&root->fs_info->super_copy,
939                                    cur_trans->transid);
940         btrfs_set_super_root(&root->fs_info->super_copy,
941                              root->fs_info->tree_root->node->start);
942         btrfs_set_super_root_level(&root->fs_info->super_copy,
943                            btrfs_header_level(root->fs_info->tree_root->node));
944
945         btrfs_set_super_chunk_root(&root->fs_info->super_copy,
946                                    chunk_root->node->start);
947         btrfs_set_super_chunk_root_level(&root->fs_info->super_copy,
948                                          btrfs_header_level(chunk_root->node));
949
950         if (!root->fs_info->log_root_recovering) {
951                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
952                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
953         }
954
955         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
956                sizeof(root->fs_info->super_copy));
957
958         btrfs_copy_pinned(root, pinned_copy);
959
960         trans->transaction->blocked = 0;
961         wake_up(&root->fs_info->transaction_throttle);
962         wake_up(&root->fs_info->transaction_wait);
963
964         mutex_unlock(&root->fs_info->trans_mutex);
965         ret = btrfs_write_and_wait_transaction(trans, root);
966         BUG_ON(ret);
967         write_ctree_super(trans, root);
968
969         /*
970          * the super is written, we can safely allow the tree-loggers
971          * to go about their business
972          */
973         mutex_unlock(&root->fs_info->tree_log_mutex);
974
975         btrfs_finish_extent_commit(trans, root, pinned_copy);
976         kfree(pinned_copy);
977
978         btrfs_drop_dead_reloc_roots(root);
979         mutex_unlock(&root->fs_info->tree_reloc_mutex);
980
981         mutex_lock(&root->fs_info->trans_mutex);
982
983         cur_trans->commit_done = 1;
984         root->fs_info->last_trans_committed = cur_trans->transid;
985         wake_up(&cur_trans->commit_wait);
986         put_transaction(cur_trans);
987         put_transaction(cur_trans);
988
989         list_splice_init(&dirty_fs_roots, &root->fs_info->dead_roots);
990         if (root->fs_info->closing)
991                 list_splice_init(&root->fs_info->dead_roots, &dirty_fs_roots);
992
993         mutex_unlock(&root->fs_info->trans_mutex);
994         kmem_cache_free(btrfs_trans_handle_cachep, trans);
995
996         if (root->fs_info->closing) {
997                 drop_dirty_roots(root->fs_info->tree_root, &dirty_fs_roots);
998         }
999         return ret;
1000 }
1001
1002 /*
1003  * interface function to delete all the snapshots we have scheduled for deletion
1004  */
1005 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1006 {
1007         struct list_head dirty_roots;
1008         INIT_LIST_HEAD(&dirty_roots);
1009 again:
1010         mutex_lock(&root->fs_info->trans_mutex);
1011         list_splice_init(&root->fs_info->dead_roots, &dirty_roots);
1012         mutex_unlock(&root->fs_info->trans_mutex);
1013
1014         if (!list_empty(&dirty_roots)) {
1015                 drop_dirty_roots(root, &dirty_roots);
1016                 goto again;
1017         }
1018         return 0;
1019 }