Btrfs: switch back to wait_on_page_writeback to wait on metadata writes
[pandora-kernel.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "ref-cache.h"
29 #include "tree-log.h"
30
31 static int total_trans = 0;
32 extern struct kmem_cache *btrfs_trans_handle_cachep;
33 extern struct kmem_cache *btrfs_transaction_cachep;
34
35 #define BTRFS_ROOT_TRANS_TAG 0
36
37 static noinline void put_transaction(struct btrfs_transaction *transaction)
38 {
39         WARN_ON(transaction->use_count == 0);
40         transaction->use_count--;
41         if (transaction->use_count == 0) {
42                 WARN_ON(total_trans == 0);
43                 total_trans--;
44                 list_del_init(&transaction->list);
45                 memset(transaction, 0, sizeof(*transaction));
46                 kmem_cache_free(btrfs_transaction_cachep, transaction);
47         }
48 }
49
50 /*
51  * either allocate a new transaction or hop into the existing one
52  */
53 static noinline int join_transaction(struct btrfs_root *root)
54 {
55         struct btrfs_transaction *cur_trans;
56         cur_trans = root->fs_info->running_transaction;
57         if (!cur_trans) {
58                 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
59                                              GFP_NOFS);
60                 total_trans++;
61                 BUG_ON(!cur_trans);
62                 root->fs_info->generation++;
63                 root->fs_info->last_alloc = 0;
64                 root->fs_info->last_data_alloc = 0;
65                 cur_trans->num_writers = 1;
66                 cur_trans->num_joined = 0;
67                 cur_trans->transid = root->fs_info->generation;
68                 init_waitqueue_head(&cur_trans->writer_wait);
69                 init_waitqueue_head(&cur_trans->commit_wait);
70                 cur_trans->in_commit = 0;
71                 cur_trans->blocked = 0;
72                 cur_trans->use_count = 1;
73                 cur_trans->commit_done = 0;
74                 cur_trans->start_time = get_seconds();
75                 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
76                 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
77                 extent_io_tree_init(&cur_trans->dirty_pages,
78                                      root->fs_info->btree_inode->i_mapping,
79                                      GFP_NOFS);
80                 spin_lock(&root->fs_info->new_trans_lock);
81                 root->fs_info->running_transaction = cur_trans;
82                 spin_unlock(&root->fs_info->new_trans_lock);
83         } else {
84                 cur_trans->num_writers++;
85                 cur_trans->num_joined++;
86         }
87
88         return 0;
89 }
90
91 /*
92  * this does all the record keeping required to make sure that a
93  * reference counted root is properly recorded in a given transaction.
94  * This is required to make sure the old root from before we joined the transaction
95  * is deleted when the transaction commits
96  */
97 noinline int btrfs_record_root_in_trans(struct btrfs_root *root)
98 {
99         struct btrfs_dirty_root *dirty;
100         u64 running_trans_id = root->fs_info->running_transaction->transid;
101         if (root->ref_cows && root->last_trans < running_trans_id) {
102                 WARN_ON(root == root->fs_info->extent_root);
103                 if (root->root_item.refs != 0) {
104                         radix_tree_tag_set(&root->fs_info->fs_roots_radix,
105                                    (unsigned long)root->root_key.objectid,
106                                    BTRFS_ROOT_TRANS_TAG);
107
108                         dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
109                         BUG_ON(!dirty);
110                         dirty->root = kmalloc(sizeof(*dirty->root), GFP_NOFS);
111                         BUG_ON(!dirty->root);
112                         dirty->latest_root = root;
113                         INIT_LIST_HEAD(&dirty->list);
114
115                         root->commit_root = btrfs_root_node(root);
116
117                         memcpy(dirty->root, root, sizeof(*root));
118                         spin_lock_init(&dirty->root->node_lock);
119                         spin_lock_init(&dirty->root->list_lock);
120                         mutex_init(&dirty->root->objectid_mutex);
121                         mutex_init(&dirty->root->log_mutex);
122                         INIT_LIST_HEAD(&dirty->root->dead_list);
123                         dirty->root->node = root->commit_root;
124                         dirty->root->commit_root = NULL;
125
126                         spin_lock(&root->list_lock);
127                         list_add(&dirty->root->dead_list, &root->dead_list);
128                         spin_unlock(&root->list_lock);
129
130                         root->dirty_root = dirty;
131                 } else {
132                         WARN_ON(1);
133                 }
134                 root->last_trans = running_trans_id;
135         }
136         return 0;
137 }
138
139 /* wait for commit against the current transaction to become unblocked
140  * when this is done, it is safe to start a new transaction, but the current
141  * transaction might not be fully on disk.
142  */
143 static void wait_current_trans(struct btrfs_root *root)
144 {
145         struct btrfs_transaction *cur_trans;
146
147         cur_trans = root->fs_info->running_transaction;
148         if (cur_trans && cur_trans->blocked) {
149                 DEFINE_WAIT(wait);
150                 cur_trans->use_count++;
151                 while(1) {
152                         prepare_to_wait(&root->fs_info->transaction_wait, &wait,
153                                         TASK_UNINTERRUPTIBLE);
154                         if (cur_trans->blocked) {
155                                 mutex_unlock(&root->fs_info->trans_mutex);
156                                 schedule();
157                                 mutex_lock(&root->fs_info->trans_mutex);
158                                 finish_wait(&root->fs_info->transaction_wait,
159                                             &wait);
160                         } else {
161                                 finish_wait(&root->fs_info->transaction_wait,
162                                             &wait);
163                                 break;
164                         }
165                 }
166                 put_transaction(cur_trans);
167         }
168 }
169
170 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
171                                              int num_blocks, int wait)
172 {
173         struct btrfs_trans_handle *h =
174                 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
175         int ret;
176
177         mutex_lock(&root->fs_info->trans_mutex);
178         if (!root->fs_info->log_root_recovering &&
179             ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2))
180                 wait_current_trans(root);
181         ret = join_transaction(root);
182         BUG_ON(ret);
183
184         btrfs_record_root_in_trans(root);
185         h->transid = root->fs_info->running_transaction->transid;
186         h->transaction = root->fs_info->running_transaction;
187         h->blocks_reserved = num_blocks;
188         h->blocks_used = 0;
189         h->block_group = NULL;
190         h->alloc_exclude_nr = 0;
191         h->alloc_exclude_start = 0;
192         root->fs_info->running_transaction->use_count++;
193         mutex_unlock(&root->fs_info->trans_mutex);
194         return h;
195 }
196
197 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
198                                                    int num_blocks)
199 {
200         return start_transaction(root, num_blocks, 1);
201 }
202 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
203                                                    int num_blocks)
204 {
205         return start_transaction(root, num_blocks, 0);
206 }
207
208 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
209                                                          int num_blocks)
210 {
211         return start_transaction(r, num_blocks, 2);
212 }
213
214 /* wait for a transaction commit to be fully complete */
215 static noinline int wait_for_commit(struct btrfs_root *root,
216                                     struct btrfs_transaction *commit)
217 {
218         DEFINE_WAIT(wait);
219         mutex_lock(&root->fs_info->trans_mutex);
220         while(!commit->commit_done) {
221                 prepare_to_wait(&commit->commit_wait, &wait,
222                                 TASK_UNINTERRUPTIBLE);
223                 if (commit->commit_done)
224                         break;
225                 mutex_unlock(&root->fs_info->trans_mutex);
226                 schedule();
227                 mutex_lock(&root->fs_info->trans_mutex);
228         }
229         mutex_unlock(&root->fs_info->trans_mutex);
230         finish_wait(&commit->commit_wait, &wait);
231         return 0;
232 }
233
234 /*
235  * rate limit against the drop_snapshot code.  This helps to slow down new operations
236  * if the drop_snapshot code isn't able to keep up.
237  */
238 static void throttle_on_drops(struct btrfs_root *root)
239 {
240         struct btrfs_fs_info *info = root->fs_info;
241         int harder_count = 0;
242
243 harder:
244         if (atomic_read(&info->throttles)) {
245                 DEFINE_WAIT(wait);
246                 int thr;
247                 thr = atomic_read(&info->throttle_gen);
248
249                 do {
250                         prepare_to_wait(&info->transaction_throttle,
251                                         &wait, TASK_UNINTERRUPTIBLE);
252                         if (!atomic_read(&info->throttles)) {
253                                 finish_wait(&info->transaction_throttle, &wait);
254                                 break;
255                         }
256                         schedule();
257                         finish_wait(&info->transaction_throttle, &wait);
258                 } while (thr == atomic_read(&info->throttle_gen));
259                 harder_count++;
260
261                 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
262                     harder_count < 2)
263                         goto harder;
264
265                 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
266                     harder_count < 10)
267                         goto harder;
268
269                 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
270                     harder_count < 20)
271                         goto harder;
272         }
273 }
274
275 void btrfs_throttle(struct btrfs_root *root)
276 {
277         mutex_lock(&root->fs_info->trans_mutex);
278         if (!root->fs_info->open_ioctl_trans)
279                 wait_current_trans(root);
280         mutex_unlock(&root->fs_info->trans_mutex);
281
282         throttle_on_drops(root);
283 }
284
285 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
286                           struct btrfs_root *root, int throttle)
287 {
288         struct btrfs_transaction *cur_trans;
289         struct btrfs_fs_info *info = root->fs_info;
290
291         mutex_lock(&info->trans_mutex);
292         cur_trans = info->running_transaction;
293         WARN_ON(cur_trans != trans->transaction);
294         WARN_ON(cur_trans->num_writers < 1);
295         cur_trans->num_writers--;
296
297         if (waitqueue_active(&cur_trans->writer_wait))
298                 wake_up(&cur_trans->writer_wait);
299         put_transaction(cur_trans);
300         mutex_unlock(&info->trans_mutex);
301         memset(trans, 0, sizeof(*trans));
302         kmem_cache_free(btrfs_trans_handle_cachep, trans);
303
304         if (throttle)
305                 throttle_on_drops(root);
306
307         return 0;
308 }
309
310 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
311                           struct btrfs_root *root)
312 {
313         return __btrfs_end_transaction(trans, root, 0);
314 }
315
316 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
317                                    struct btrfs_root *root)
318 {
319         return __btrfs_end_transaction(trans, root, 1);
320 }
321
322 /*
323  * when btree blocks are allocated, they have some corresponding bits set for
324  * them in one of two extent_io trees.  This is used to make sure all of
325  * those extents are on disk for transaction or log commit
326  */
327 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
328                                         struct extent_io_tree *dirty_pages)
329 {
330         int ret;
331         int err = 0;
332         int werr = 0;
333         struct page *page;
334         struct inode *btree_inode = root->fs_info->btree_inode;
335         u64 start = 0;
336         u64 end;
337         unsigned long index;
338
339         while(1) {
340                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
341                                             EXTENT_DIRTY);
342                 if (ret)
343                         break;
344                 while(start <= end) {
345                         cond_resched();
346
347                         index = start >> PAGE_CACHE_SHIFT;
348                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
349                         page = find_get_page(btree_inode->i_mapping, index);
350                         if (!page)
351                                 continue;
352
353                         btree_lock_page_hook(page);
354                         if (!page->mapping) {
355                                 unlock_page(page);
356                                 page_cache_release(page);
357                                 continue;
358                         }
359
360                         if (PageWriteback(page)) {
361                                 if (PageDirty(page))
362                                         wait_on_page_writeback(page);
363                                 else {
364                                         unlock_page(page);
365                                         page_cache_release(page);
366                                         continue;
367                                 }
368                         }
369                         err = write_one_page(page, 0);
370                         if (err)
371                                 werr = err;
372                         page_cache_release(page);
373                 }
374         }
375         while(1) {
376                 ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
377                                             EXTENT_DIRTY);
378                 if (ret)
379                         break;
380
381                 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
382                 while(start <= end) {
383                         index = start >> PAGE_CACHE_SHIFT;
384                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
385                         page = find_get_page(btree_inode->i_mapping, index);
386                         if (!page)
387                                 continue;
388                         if (PageDirty(page)) {
389                                 btree_lock_page_hook(page);
390                                 wait_on_page_writeback(page);
391                                 err = write_one_page(page, 0);
392                                 if (err)
393                                         werr = err;
394                         }
395                         wait_on_page_writeback(page);
396                         page_cache_release(page);
397                         cond_resched();
398                 }
399         }
400         if (err)
401                 werr = err;
402         return werr;
403 }
404
405 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
406                                      struct btrfs_root *root)
407 {
408         if (!trans || !trans->transaction) {
409                 struct inode *btree_inode;
410                 btree_inode = root->fs_info->btree_inode;
411                 return filemap_write_and_wait(btree_inode->i_mapping);
412         }
413         return btrfs_write_and_wait_marked_extents(root,
414                                            &trans->transaction->dirty_pages);
415 }
416
417 /*
418  * this is used to update the root pointer in the tree of tree roots.
419  *
420  * But, in the case of the extent allocation tree, updating the root
421  * pointer may allocate blocks which may change the root of the extent
422  * allocation tree.
423  *
424  * So, this loops and repeats and makes sure the cowonly root didn't
425  * change while the root pointer was being updated in the metadata.
426  */
427 static int update_cowonly_root(struct btrfs_trans_handle *trans,
428                                struct btrfs_root *root)
429 {
430         int ret;
431         u64 old_root_bytenr;
432         struct btrfs_root *tree_root = root->fs_info->tree_root;
433
434         btrfs_extent_post_op(trans, root);
435         btrfs_write_dirty_block_groups(trans, root);
436         btrfs_extent_post_op(trans, root);
437
438         while(1) {
439                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
440                 if (old_root_bytenr == root->node->start)
441                         break;
442                 btrfs_set_root_bytenr(&root->root_item,
443                                        root->node->start);
444                 btrfs_set_root_level(&root->root_item,
445                                      btrfs_header_level(root->node));
446                 btrfs_set_root_generation(&root->root_item, trans->transid);
447
448                 btrfs_extent_post_op(trans, root);
449
450                 ret = btrfs_update_root(trans, tree_root,
451                                         &root->root_key,
452                                         &root->root_item);
453                 BUG_ON(ret);
454                 btrfs_write_dirty_block_groups(trans, root);
455                 btrfs_extent_post_op(trans, root);
456         }
457         return 0;
458 }
459
460 /*
461  * update all the cowonly tree roots on disk
462  */
463 int btrfs_commit_tree_roots(struct btrfs_trans_handle *trans,
464                             struct btrfs_root *root)
465 {
466         struct btrfs_fs_info *fs_info = root->fs_info;
467         struct list_head *next;
468         struct extent_buffer *eb;
469
470         btrfs_extent_post_op(trans, fs_info->tree_root);
471
472         eb = btrfs_lock_root_node(fs_info->tree_root);
473         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb, 0);
474         btrfs_tree_unlock(eb);
475         free_extent_buffer(eb);
476
477         btrfs_extent_post_op(trans, fs_info->tree_root);
478
479         while(!list_empty(&fs_info->dirty_cowonly_roots)) {
480                 next = fs_info->dirty_cowonly_roots.next;
481                 list_del_init(next);
482                 root = list_entry(next, struct btrfs_root, dirty_list);
483
484                 update_cowonly_root(trans, root);
485         }
486         return 0;
487 }
488
489 /*
490  * dead roots are old snapshots that need to be deleted.  This allocates
491  * a dirty root struct and adds it into the list of dead roots that need to
492  * be deleted
493  */
494 int btrfs_add_dead_root(struct btrfs_root *root, struct btrfs_root *latest)
495 {
496         struct btrfs_dirty_root *dirty;
497
498         dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
499         if (!dirty)
500                 return -ENOMEM;
501         dirty->root = root;
502         dirty->latest_root = latest;
503
504         mutex_lock(&root->fs_info->trans_mutex);
505         list_add(&dirty->list, &latest->fs_info->dead_roots);
506         mutex_unlock(&root->fs_info->trans_mutex);
507         return 0;
508 }
509
510 /*
511  * at transaction commit time we need to schedule the old roots for
512  * deletion via btrfs_drop_snapshot.  This runs through all the
513  * reference counted roots that were modified in the current
514  * transaction and puts them into the drop list
515  */
516 static noinline int add_dirty_roots(struct btrfs_trans_handle *trans,
517                                     struct radix_tree_root *radix,
518                                     struct list_head *list)
519 {
520         struct btrfs_dirty_root *dirty;
521         struct btrfs_root *gang[8];
522         struct btrfs_root *root;
523         int i;
524         int ret;
525         int err = 0;
526         u32 refs;
527
528         while(1) {
529                 ret = radix_tree_gang_lookup_tag(radix, (void **)gang, 0,
530                                                  ARRAY_SIZE(gang),
531                                                  BTRFS_ROOT_TRANS_TAG);
532                 if (ret == 0)
533                         break;
534                 for (i = 0; i < ret; i++) {
535                         root = gang[i];
536                         radix_tree_tag_clear(radix,
537                                      (unsigned long)root->root_key.objectid,
538                                      BTRFS_ROOT_TRANS_TAG);
539
540                         BUG_ON(!root->ref_tree);
541                         dirty = root->dirty_root;
542
543                         btrfs_free_log(trans, root);
544                         btrfs_free_reloc_root(trans, root);
545
546                         if (root->commit_root == root->node) {
547                                 WARN_ON(root->node->start !=
548                                         btrfs_root_bytenr(&root->root_item));
549
550                                 free_extent_buffer(root->commit_root);
551                                 root->commit_root = NULL;
552                                 root->dirty_root = NULL;
553
554                                 spin_lock(&root->list_lock);
555                                 list_del_init(&dirty->root->dead_list);
556                                 spin_unlock(&root->list_lock);
557
558                                 kfree(dirty->root);
559                                 kfree(dirty);
560
561                                 /* make sure to update the root on disk
562                                  * so we get any updates to the block used
563                                  * counts
564                                  */
565                                 err = btrfs_update_root(trans,
566                                                 root->fs_info->tree_root,
567                                                 &root->root_key,
568                                                 &root->root_item);
569                                 continue;
570                         }
571
572                         memset(&root->root_item.drop_progress, 0,
573                                sizeof(struct btrfs_disk_key));
574                         root->root_item.drop_level = 0;
575                         root->commit_root = NULL;
576                         root->dirty_root = NULL;
577                         root->root_key.offset = root->fs_info->generation;
578                         btrfs_set_root_bytenr(&root->root_item,
579                                               root->node->start);
580                         btrfs_set_root_level(&root->root_item,
581                                              btrfs_header_level(root->node));
582                         btrfs_set_root_generation(&root->root_item,
583                                                   root->root_key.offset);
584
585                         err = btrfs_insert_root(trans, root->fs_info->tree_root,
586                                                 &root->root_key,
587                                                 &root->root_item);
588                         if (err)
589                                 break;
590
591                         refs = btrfs_root_refs(&dirty->root->root_item);
592                         btrfs_set_root_refs(&dirty->root->root_item, refs - 1);
593                         err = btrfs_update_root(trans, root->fs_info->tree_root,
594                                                 &dirty->root->root_key,
595                                                 &dirty->root->root_item);
596
597                         BUG_ON(err);
598                         if (refs == 1) {
599                                 list_add(&dirty->list, list);
600                         } else {
601                                 WARN_ON(1);
602                                 free_extent_buffer(dirty->root->node);
603                                 kfree(dirty->root);
604                                 kfree(dirty);
605                         }
606                 }
607         }
608         return err;
609 }
610
611 /*
612  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
613  * otherwise every leaf in the btree is read and defragged.
614  */
615 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
616 {
617         struct btrfs_fs_info *info = root->fs_info;
618         int ret;
619         struct btrfs_trans_handle *trans;
620         unsigned long nr;
621
622         smp_mb();
623         if (root->defrag_running)
624                 return 0;
625         trans = btrfs_start_transaction(root, 1);
626         while (1) {
627                 root->defrag_running = 1;
628                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
629                 nr = trans->blocks_used;
630                 btrfs_end_transaction(trans, root);
631                 btrfs_btree_balance_dirty(info->tree_root, nr);
632                 cond_resched();
633
634                 trans = btrfs_start_transaction(root, 1);
635                 if (root->fs_info->closing || ret != -EAGAIN)
636                         break;
637         }
638         root->defrag_running = 0;
639         smp_mb();
640         btrfs_end_transaction(trans, root);
641         return 0;
642 }
643
644 /*
645  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
646  * all of them
647  */
648 static noinline int drop_dirty_roots(struct btrfs_root *tree_root,
649                                      struct list_head *list)
650 {
651         struct btrfs_dirty_root *dirty;
652         struct btrfs_trans_handle *trans;
653         unsigned long nr;
654         u64 num_bytes;
655         u64 bytes_used;
656         u64 max_useless;
657         int ret = 0;
658         int err;
659
660         while(!list_empty(list)) {
661                 struct btrfs_root *root;
662
663                 dirty = list_entry(list->prev, struct btrfs_dirty_root, list);
664                 list_del_init(&dirty->list);
665
666                 num_bytes = btrfs_root_used(&dirty->root->root_item);
667                 root = dirty->latest_root;
668                 atomic_inc(&root->fs_info->throttles);
669
670                 while(1) {
671                         trans = btrfs_start_transaction(tree_root, 1);
672                         mutex_lock(&root->fs_info->drop_mutex);
673                         ret = btrfs_drop_snapshot(trans, dirty->root);
674                         if (ret != -EAGAIN) {
675                                 break;
676                         }
677                         mutex_unlock(&root->fs_info->drop_mutex);
678
679                         err = btrfs_update_root(trans,
680                                         tree_root,
681                                         &dirty->root->root_key,
682                                         &dirty->root->root_item);
683                         if (err)
684                                 ret = err;
685                         nr = trans->blocks_used;
686                         ret = btrfs_end_transaction(trans, tree_root);
687                         BUG_ON(ret);
688
689                         btrfs_btree_balance_dirty(tree_root, nr);
690                         cond_resched();
691                 }
692                 BUG_ON(ret);
693                 atomic_dec(&root->fs_info->throttles);
694                 wake_up(&root->fs_info->transaction_throttle);
695
696                 num_bytes -= btrfs_root_used(&dirty->root->root_item);
697                 bytes_used = btrfs_root_used(&root->root_item);
698                 if (num_bytes) {
699                         btrfs_record_root_in_trans(root);
700                         btrfs_set_root_used(&root->root_item,
701                                             bytes_used - num_bytes);
702                 }
703
704                 ret = btrfs_del_root(trans, tree_root, &dirty->root->root_key);
705                 if (ret) {
706                         BUG();
707                         break;
708                 }
709                 mutex_unlock(&root->fs_info->drop_mutex);
710
711                 spin_lock(&root->list_lock);
712                 list_del_init(&dirty->root->dead_list);
713                 if (!list_empty(&root->dead_list)) {
714                         struct btrfs_root *oldest;
715                         oldest = list_entry(root->dead_list.prev,
716                                             struct btrfs_root, dead_list);
717                         max_useless = oldest->root_key.offset - 1;
718                 } else {
719                         max_useless = root->root_key.offset - 1;
720                 }
721                 spin_unlock(&root->list_lock);
722
723                 nr = trans->blocks_used;
724                 ret = btrfs_end_transaction(trans, tree_root);
725                 BUG_ON(ret);
726
727                 ret = btrfs_remove_leaf_refs(root, max_useless, 0);
728                 BUG_ON(ret);
729
730                 free_extent_buffer(dirty->root->node);
731                 kfree(dirty->root);
732                 kfree(dirty);
733
734                 btrfs_btree_balance_dirty(tree_root, nr);
735                 cond_resched();
736         }
737         return ret;
738 }
739
740 /*
741  * new snapshots need to be created at a very specific time in the
742  * transaction commit.  This does the actual creation
743  */
744 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
745                                    struct btrfs_fs_info *fs_info,
746                                    struct btrfs_pending_snapshot *pending)
747 {
748         struct btrfs_key key;
749         struct btrfs_root_item *new_root_item;
750         struct btrfs_root *tree_root = fs_info->tree_root;
751         struct btrfs_root *root = pending->root;
752         struct extent_buffer *tmp;
753         struct extent_buffer *old;
754         int ret;
755         u64 objectid;
756
757         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
758         if (!new_root_item) {
759                 ret = -ENOMEM;
760                 goto fail;
761         }
762         ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
763         if (ret)
764                 goto fail;
765
766         btrfs_record_root_in_trans(root);
767         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
768         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
769
770         key.objectid = objectid;
771         key.offset = trans->transid;
772         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
773
774         old = btrfs_lock_root_node(root);
775         btrfs_cow_block(trans, root, old, NULL, 0, &old, 0);
776
777         btrfs_copy_root(trans, root, old, &tmp, objectid);
778         btrfs_tree_unlock(old);
779         free_extent_buffer(old);
780
781         btrfs_set_root_bytenr(new_root_item, tmp->start);
782         btrfs_set_root_level(new_root_item, btrfs_header_level(tmp));
783         btrfs_set_root_generation(new_root_item, trans->transid);
784         ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
785                                 new_root_item);
786         btrfs_tree_unlock(tmp);
787         free_extent_buffer(tmp);
788         if (ret)
789                 goto fail;
790
791         key.offset = (u64)-1;
792         memcpy(&pending->root_key, &key, sizeof(key));
793 fail:
794         kfree(new_root_item);
795         return ret;
796 }
797
798 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
799                                    struct btrfs_pending_snapshot *pending)
800 {
801         int ret;
802         int namelen;
803         u64 index = 0;
804         struct btrfs_trans_handle *trans;
805         struct inode *parent_inode;
806         struct inode *inode;
807         struct btrfs_root *parent_root;
808
809         parent_inode = pending->dentry->d_parent->d_inode;
810         parent_root = BTRFS_I(parent_inode)->root;
811         trans = btrfs_start_transaction(parent_root, 1);
812
813         /*
814          * insert the directory item
815          */
816         namelen = strlen(pending->name);
817         ret = btrfs_set_inode_index(parent_inode, &index);
818         ret = btrfs_insert_dir_item(trans, parent_root,
819                             pending->name, namelen,
820                             parent_inode->i_ino,
821                             &pending->root_key, BTRFS_FT_DIR, index);
822
823         if (ret)
824                 goto fail;
825
826         /* add the backref first */
827         ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
828                                  pending->root_key.objectid,
829                                  BTRFS_ROOT_BACKREF_KEY,
830                                  parent_root->root_key.objectid,
831                                  parent_inode->i_ino, index, pending->name,
832                                  namelen);
833
834         BUG_ON(ret);
835
836         /* now add the forward ref */
837         ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
838                                  parent_root->root_key.objectid,
839                                  BTRFS_ROOT_REF_KEY,
840                                  pending->root_key.objectid,
841                                  parent_inode->i_ino, index, pending->name,
842                                  namelen);
843
844         inode = btrfs_lookup_dentry(parent_inode, pending->dentry);
845         d_instantiate(pending->dentry, inode);
846 fail:
847         btrfs_end_transaction(trans, fs_info->fs_root);
848         return ret;
849 }
850
851 /*
852  * create all the snapshots we've scheduled for creation
853  */
854 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
855                                              struct btrfs_fs_info *fs_info)
856 {
857         struct btrfs_pending_snapshot *pending;
858         struct list_head *head = &trans->transaction->pending_snapshots;
859         struct list_head *cur;
860         int ret;
861
862         list_for_each(cur, head) {
863                 pending = list_entry(cur, struct btrfs_pending_snapshot, list);
864                 ret = create_pending_snapshot(trans, fs_info, pending);
865                 BUG_ON(ret);
866         }
867         return 0;
868 }
869
870 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
871                                              struct btrfs_fs_info *fs_info)
872 {
873         struct btrfs_pending_snapshot *pending;
874         struct list_head *head = &trans->transaction->pending_snapshots;
875         int ret;
876
877         while(!list_empty(head)) {
878                 pending = list_entry(head->next,
879                                      struct btrfs_pending_snapshot, list);
880                 ret = finish_pending_snapshot(fs_info, pending);
881                 BUG_ON(ret);
882                 list_del(&pending->list);
883                 kfree(pending->name);
884                 kfree(pending);
885         }
886         return 0;
887 }
888
889 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
890                              struct btrfs_root *root)
891 {
892         unsigned long joined = 0;
893         unsigned long timeout = 1;
894         struct btrfs_transaction *cur_trans;
895         struct btrfs_transaction *prev_trans = NULL;
896         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
897         struct list_head dirty_fs_roots;
898         struct extent_io_tree *pinned_copy;
899         DEFINE_WAIT(wait);
900         int ret;
901
902         INIT_LIST_HEAD(&dirty_fs_roots);
903         mutex_lock(&root->fs_info->trans_mutex);
904         if (trans->transaction->in_commit) {
905                 cur_trans = trans->transaction;
906                 trans->transaction->use_count++;
907                 mutex_unlock(&root->fs_info->trans_mutex);
908                 btrfs_end_transaction(trans, root);
909
910                 ret = wait_for_commit(root, cur_trans);
911                 BUG_ON(ret);
912
913                 mutex_lock(&root->fs_info->trans_mutex);
914                 put_transaction(cur_trans);
915                 mutex_unlock(&root->fs_info->trans_mutex);
916
917                 return 0;
918         }
919
920         pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS);
921         if (!pinned_copy)
922                 return -ENOMEM;
923
924         extent_io_tree_init(pinned_copy,
925                              root->fs_info->btree_inode->i_mapping, GFP_NOFS);
926
927         trans->transaction->in_commit = 1;
928         trans->transaction->blocked = 1;
929         cur_trans = trans->transaction;
930         if (cur_trans->list.prev != &root->fs_info->trans_list) {
931                 prev_trans = list_entry(cur_trans->list.prev,
932                                         struct btrfs_transaction, list);
933                 if (!prev_trans->commit_done) {
934                         prev_trans->use_count++;
935                         mutex_unlock(&root->fs_info->trans_mutex);
936
937                         wait_for_commit(root, prev_trans);
938
939                         mutex_lock(&root->fs_info->trans_mutex);
940                         put_transaction(prev_trans);
941                 }
942         }
943
944         do {
945                 int snap_pending = 0;
946                 joined = cur_trans->num_joined;
947                 if (!list_empty(&trans->transaction->pending_snapshots))
948                         snap_pending = 1;
949
950                 WARN_ON(cur_trans != trans->transaction);
951                 prepare_to_wait(&cur_trans->writer_wait, &wait,
952                                 TASK_UNINTERRUPTIBLE);
953
954                 if (cur_trans->num_writers > 1)
955                         timeout = MAX_SCHEDULE_TIMEOUT;
956                 else
957                         timeout = 1;
958
959                 mutex_unlock(&root->fs_info->trans_mutex);
960
961                 if (snap_pending) {
962                         ret = btrfs_wait_ordered_extents(root, 1);
963                         BUG_ON(ret);
964                 }
965
966                 schedule_timeout(timeout);
967
968                 mutex_lock(&root->fs_info->trans_mutex);
969                 finish_wait(&cur_trans->writer_wait, &wait);
970         } while (cur_trans->num_writers > 1 ||
971                  (cur_trans->num_joined != joined));
972
973         ret = create_pending_snapshots(trans, root->fs_info);
974         BUG_ON(ret);
975
976         WARN_ON(cur_trans != trans->transaction);
977
978         /* btrfs_commit_tree_roots is responsible for getting the
979          * various roots consistent with each other.  Every pointer
980          * in the tree of tree roots has to point to the most up to date
981          * root for every subvolume and other tree.  So, we have to keep
982          * the tree logging code from jumping in and changing any
983          * of the trees.
984          *
985          * At this point in the commit, there can't be any tree-log
986          * writers, but a little lower down we drop the trans mutex
987          * and let new people in.  By holding the tree_log_mutex
988          * from now until after the super is written, we avoid races
989          * with the tree-log code.
990          */
991         mutex_lock(&root->fs_info->tree_log_mutex);
992         /*
993          * keep tree reloc code from adding new reloc trees
994          */
995         mutex_lock(&root->fs_info->tree_reloc_mutex);
996
997
998         ret = add_dirty_roots(trans, &root->fs_info->fs_roots_radix,
999                               &dirty_fs_roots);
1000         BUG_ON(ret);
1001
1002         /* add_dirty_roots gets rid of all the tree log roots, it is now
1003          * safe to free the root of tree log roots
1004          */
1005         btrfs_free_log_root_tree(trans, root->fs_info);
1006
1007         ret = btrfs_commit_tree_roots(trans, root);
1008         BUG_ON(ret);
1009
1010         cur_trans = root->fs_info->running_transaction;
1011         spin_lock(&root->fs_info->new_trans_lock);
1012         root->fs_info->running_transaction = NULL;
1013         spin_unlock(&root->fs_info->new_trans_lock);
1014         btrfs_set_super_generation(&root->fs_info->super_copy,
1015                                    cur_trans->transid);
1016         btrfs_set_super_root(&root->fs_info->super_copy,
1017                              root->fs_info->tree_root->node->start);
1018         btrfs_set_super_root_level(&root->fs_info->super_copy,
1019                            btrfs_header_level(root->fs_info->tree_root->node));
1020
1021         btrfs_set_super_chunk_root(&root->fs_info->super_copy,
1022                                    chunk_root->node->start);
1023         btrfs_set_super_chunk_root_level(&root->fs_info->super_copy,
1024                                          btrfs_header_level(chunk_root->node));
1025         btrfs_set_super_chunk_root_generation(&root->fs_info->super_copy,
1026                                 btrfs_header_generation(chunk_root->node));
1027
1028         if (!root->fs_info->log_root_recovering) {
1029                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1030                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1031         }
1032
1033         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1034                sizeof(root->fs_info->super_copy));
1035
1036         btrfs_copy_pinned(root, pinned_copy);
1037
1038         trans->transaction->blocked = 0;
1039         wake_up(&root->fs_info->transaction_throttle);
1040         wake_up(&root->fs_info->transaction_wait);
1041
1042         mutex_unlock(&root->fs_info->trans_mutex);
1043         ret = btrfs_write_and_wait_transaction(trans, root);
1044         BUG_ON(ret);
1045         write_ctree_super(trans, root);
1046
1047         /*
1048          * the super is written, we can safely allow the tree-loggers
1049          * to go about their business
1050          */
1051         mutex_unlock(&root->fs_info->tree_log_mutex);
1052
1053         btrfs_finish_extent_commit(trans, root, pinned_copy);
1054         kfree(pinned_copy);
1055
1056         btrfs_drop_dead_reloc_roots(root);
1057         mutex_unlock(&root->fs_info->tree_reloc_mutex);
1058
1059         /* do the directory inserts of any pending snapshot creations */
1060         finish_pending_snapshots(trans, root->fs_info);
1061
1062         mutex_lock(&root->fs_info->trans_mutex);
1063
1064         cur_trans->commit_done = 1;
1065         root->fs_info->last_trans_committed = cur_trans->transid;
1066         wake_up(&cur_trans->commit_wait);
1067
1068         put_transaction(cur_trans);
1069         put_transaction(cur_trans);
1070
1071         list_splice_init(&dirty_fs_roots, &root->fs_info->dead_roots);
1072         if (root->fs_info->closing)
1073                 list_splice_init(&root->fs_info->dead_roots, &dirty_fs_roots);
1074
1075         mutex_unlock(&root->fs_info->trans_mutex);
1076
1077         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1078
1079         if (root->fs_info->closing) {
1080                 drop_dirty_roots(root->fs_info->tree_root, &dirty_fs_roots);
1081         }
1082         return ret;
1083 }
1084
1085 /*
1086  * interface function to delete all the snapshots we have scheduled for deletion
1087  */
1088 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1089 {
1090         struct list_head dirty_roots;
1091         INIT_LIST_HEAD(&dirty_roots);
1092 again:
1093         mutex_lock(&root->fs_info->trans_mutex);
1094         list_splice_init(&root->fs_info->dead_roots, &dirty_roots);
1095         mutex_unlock(&root->fs_info->trans_mutex);
1096
1097         if (!list_empty(&dirty_roots)) {
1098                 drop_dirty_roots(root, &dirty_roots);
1099                 goto again;
1100         }
1101         return 0;
1102 }