Btrfs: fix wrong mtime and ctime when creating snapshots
[pandora-kernel.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33
34 #define BTRFS_ROOT_TRANS_TAG 0
35
36 void put_transaction(struct btrfs_transaction *transaction)
37 {
38         WARN_ON(atomic_read(&transaction->use_count) == 0);
39         if (atomic_dec_and_test(&transaction->use_count)) {
40                 BUG_ON(!list_empty(&transaction->list));
41                 WARN_ON(transaction->delayed_refs.root.rb_node);
42                 memset(transaction, 0, sizeof(*transaction));
43                 kmem_cache_free(btrfs_transaction_cachep, transaction);
44         }
45 }
46
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49         free_extent_buffer(root->commit_root);
50         root->commit_root = btrfs_root_node(root);
51 }
52
53 /*
54  * either allocate a new transaction or hop into the existing one
55  */
56 static noinline int join_transaction(struct btrfs_root *root, int nofail)
57 {
58         struct btrfs_transaction *cur_trans;
59         struct btrfs_fs_info *fs_info = root->fs_info;
60
61         spin_lock(&fs_info->trans_lock);
62 loop:
63         /* The file system has been taken offline. No new transactions. */
64         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
65                 spin_unlock(&fs_info->trans_lock);
66                 return -EROFS;
67         }
68
69         if (fs_info->trans_no_join) {
70                 if (!nofail) {
71                         spin_unlock(&fs_info->trans_lock);
72                         return -EBUSY;
73                 }
74         }
75
76         cur_trans = fs_info->running_transaction;
77         if (cur_trans) {
78                 if (cur_trans->aborted) {
79                         spin_unlock(&fs_info->trans_lock);
80                         return cur_trans->aborted;
81                 }
82                 atomic_inc(&cur_trans->use_count);
83                 atomic_inc(&cur_trans->num_writers);
84                 cur_trans->num_joined++;
85                 spin_unlock(&fs_info->trans_lock);
86                 return 0;
87         }
88         spin_unlock(&fs_info->trans_lock);
89
90         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
91         if (!cur_trans)
92                 return -ENOMEM;
93
94         spin_lock(&fs_info->trans_lock);
95         if (fs_info->running_transaction) {
96                 /*
97                  * someone started a transaction after we unlocked.  Make sure
98                  * to redo the trans_no_join checks above
99                  */
100                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
101                 cur_trans = fs_info->running_transaction;
102                 goto loop;
103         } else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
104                 spin_unlock(&fs_info->trans_lock);
105                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
106                 return -EROFS;
107         }
108
109         atomic_set(&cur_trans->num_writers, 1);
110         cur_trans->num_joined = 0;
111         init_waitqueue_head(&cur_trans->writer_wait);
112         init_waitqueue_head(&cur_trans->commit_wait);
113         cur_trans->in_commit = 0;
114         cur_trans->blocked = 0;
115         /*
116          * One for this trans handle, one so it will live on until we
117          * commit the transaction.
118          */
119         atomic_set(&cur_trans->use_count, 2);
120         cur_trans->commit_done = 0;
121         cur_trans->start_time = get_seconds();
122
123         cur_trans->delayed_refs.root = RB_ROOT;
124         cur_trans->delayed_refs.num_entries = 0;
125         cur_trans->delayed_refs.num_heads_ready = 0;
126         cur_trans->delayed_refs.num_heads = 0;
127         cur_trans->delayed_refs.flushing = 0;
128         cur_trans->delayed_refs.run_delayed_start = 0;
129
130         /*
131          * although the tree mod log is per file system and not per transaction,
132          * the log must never go across transaction boundaries.
133          */
134         smp_mb();
135         if (!list_empty(&fs_info->tree_mod_seq_list)) {
136                 printk(KERN_ERR "btrfs: tree_mod_seq_list not empty when "
137                         "creating a fresh transaction\n");
138                 WARN_ON(1);
139         }
140         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) {
141                 printk(KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
142                         "creating a fresh transaction\n");
143                 WARN_ON(1);
144         }
145         atomic_set(&fs_info->tree_mod_seq, 0);
146
147         spin_lock_init(&cur_trans->commit_lock);
148         spin_lock_init(&cur_trans->delayed_refs.lock);
149
150         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
151         list_add_tail(&cur_trans->list, &fs_info->trans_list);
152         extent_io_tree_init(&cur_trans->dirty_pages,
153                              fs_info->btree_inode->i_mapping);
154         fs_info->generation++;
155         cur_trans->transid = fs_info->generation;
156         fs_info->running_transaction = cur_trans;
157         cur_trans->aborted = 0;
158         spin_unlock(&fs_info->trans_lock);
159
160         return 0;
161 }
162
163 /*
164  * this does all the record keeping required to make sure that a reference
165  * counted root is properly recorded in a given transaction.  This is required
166  * to make sure the old root from before we joined the transaction is deleted
167  * when the transaction commits
168  */
169 static int record_root_in_trans(struct btrfs_trans_handle *trans,
170                                struct btrfs_root *root)
171 {
172         if (root->ref_cows && root->last_trans < trans->transid) {
173                 WARN_ON(root == root->fs_info->extent_root);
174                 WARN_ON(root->commit_root != root->node);
175
176                 /*
177                  * see below for in_trans_setup usage rules
178                  * we have the reloc mutex held now, so there
179                  * is only one writer in this function
180                  */
181                 root->in_trans_setup = 1;
182
183                 /* make sure readers find in_trans_setup before
184                  * they find our root->last_trans update
185                  */
186                 smp_wmb();
187
188                 spin_lock(&root->fs_info->fs_roots_radix_lock);
189                 if (root->last_trans == trans->transid) {
190                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
191                         return 0;
192                 }
193                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
194                            (unsigned long)root->root_key.objectid,
195                            BTRFS_ROOT_TRANS_TAG);
196                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
197                 root->last_trans = trans->transid;
198
199                 /* this is pretty tricky.  We don't want to
200                  * take the relocation lock in btrfs_record_root_in_trans
201                  * unless we're really doing the first setup for this root in
202                  * this transaction.
203                  *
204                  * Normally we'd use root->last_trans as a flag to decide
205                  * if we want to take the expensive mutex.
206                  *
207                  * But, we have to set root->last_trans before we
208                  * init the relocation root, otherwise, we trip over warnings
209                  * in ctree.c.  The solution used here is to flag ourselves
210                  * with root->in_trans_setup.  When this is 1, we're still
211                  * fixing up the reloc trees and everyone must wait.
212                  *
213                  * When this is zero, they can trust root->last_trans and fly
214                  * through btrfs_record_root_in_trans without having to take the
215                  * lock.  smp_wmb() makes sure that all the writes above are
216                  * done before we pop in the zero below
217                  */
218                 btrfs_init_reloc_root(trans, root);
219                 smp_wmb();
220                 root->in_trans_setup = 0;
221         }
222         return 0;
223 }
224
225
226 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
227                                struct btrfs_root *root)
228 {
229         if (!root->ref_cows)
230                 return 0;
231
232         /*
233          * see record_root_in_trans for comments about in_trans_setup usage
234          * and barriers
235          */
236         smp_rmb();
237         if (root->last_trans == trans->transid &&
238             !root->in_trans_setup)
239                 return 0;
240
241         mutex_lock(&root->fs_info->reloc_mutex);
242         record_root_in_trans(trans, root);
243         mutex_unlock(&root->fs_info->reloc_mutex);
244
245         return 0;
246 }
247
248 /* wait for commit against the current transaction to become unblocked
249  * when this is done, it is safe to start a new transaction, but the current
250  * transaction might not be fully on disk.
251  */
252 static void wait_current_trans(struct btrfs_root *root)
253 {
254         struct btrfs_transaction *cur_trans;
255
256         spin_lock(&root->fs_info->trans_lock);
257         cur_trans = root->fs_info->running_transaction;
258         if (cur_trans && cur_trans->blocked) {
259                 atomic_inc(&cur_trans->use_count);
260                 spin_unlock(&root->fs_info->trans_lock);
261
262                 wait_event(root->fs_info->transaction_wait,
263                            !cur_trans->blocked);
264                 put_transaction(cur_trans);
265         } else {
266                 spin_unlock(&root->fs_info->trans_lock);
267         }
268 }
269
270 enum btrfs_trans_type {
271         TRANS_START,
272         TRANS_JOIN,
273         TRANS_USERSPACE,
274         TRANS_JOIN_NOLOCK,
275 };
276
277 static int may_wait_transaction(struct btrfs_root *root, int type)
278 {
279         if (root->fs_info->log_root_recovering)
280                 return 0;
281
282         if (type == TRANS_USERSPACE)
283                 return 1;
284
285         if (type == TRANS_START &&
286             !atomic_read(&root->fs_info->open_ioctl_trans))
287                 return 1;
288
289         return 0;
290 }
291
292 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
293                                                     u64 num_items, int type)
294 {
295         struct btrfs_trans_handle *h;
296         struct btrfs_transaction *cur_trans;
297         u64 num_bytes = 0;
298         int ret;
299         u64 qgroup_reserved = 0;
300
301         if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
302                 return ERR_PTR(-EROFS);
303
304         if (current->journal_info) {
305                 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
306                 h = current->journal_info;
307                 h->use_count++;
308                 h->orig_rsv = h->block_rsv;
309                 h->block_rsv = NULL;
310                 goto got_it;
311         }
312
313         /*
314          * Do the reservation before we join the transaction so we can do all
315          * the appropriate flushing if need be.
316          */
317         if (num_items > 0 && root != root->fs_info->chunk_root) {
318                 if (root->fs_info->quota_enabled &&
319                     is_fstree(root->root_key.objectid)) {
320                         qgroup_reserved = num_items * root->leafsize;
321                         ret = btrfs_qgroup_reserve(root, qgroup_reserved);
322                         if (ret)
323                                 return ERR_PTR(ret);
324                 }
325
326                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
327                 ret = btrfs_block_rsv_add(root,
328                                           &root->fs_info->trans_block_rsv,
329                                           num_bytes);
330                 if (ret)
331                         return ERR_PTR(ret);
332         }
333 again:
334         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
335         if (!h)
336                 return ERR_PTR(-ENOMEM);
337
338         if (may_wait_transaction(root, type))
339                 wait_current_trans(root);
340
341         do {
342                 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
343                 if (ret == -EBUSY)
344                         wait_current_trans(root);
345         } while (ret == -EBUSY);
346
347         if (ret < 0) {
348                 kmem_cache_free(btrfs_trans_handle_cachep, h);
349                 return ERR_PTR(ret);
350         }
351
352         cur_trans = root->fs_info->running_transaction;
353
354         h->transid = cur_trans->transid;
355         h->transaction = cur_trans;
356         h->blocks_used = 0;
357         h->bytes_reserved = 0;
358         h->root = root;
359         h->delayed_ref_updates = 0;
360         h->use_count = 1;
361         h->adding_csums = 0;
362         h->block_rsv = NULL;
363         h->orig_rsv = NULL;
364         h->aborted = 0;
365         h->qgroup_reserved = qgroup_reserved;
366         h->delayed_ref_elem.seq = 0;
367         INIT_LIST_HEAD(&h->qgroup_ref_list);
368
369         smp_mb();
370         if (cur_trans->blocked && may_wait_transaction(root, type)) {
371                 btrfs_commit_transaction(h, root);
372                 goto again;
373         }
374
375         if (num_bytes) {
376                 trace_btrfs_space_reservation(root->fs_info, "transaction",
377                                               h->transid, num_bytes, 1);
378                 h->block_rsv = &root->fs_info->trans_block_rsv;
379                 h->bytes_reserved = num_bytes;
380         }
381
382 got_it:
383         btrfs_record_root_in_trans(h, root);
384
385         if (!current->journal_info && type != TRANS_USERSPACE)
386                 current->journal_info = h;
387         return h;
388 }
389
390 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
391                                                    int num_items)
392 {
393         return start_transaction(root, num_items, TRANS_START);
394 }
395 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
396 {
397         return start_transaction(root, 0, TRANS_JOIN);
398 }
399
400 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
401 {
402         return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
403 }
404
405 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
406 {
407         return start_transaction(root, 0, TRANS_USERSPACE);
408 }
409
410 /* wait for a transaction commit to be fully complete */
411 static noinline void wait_for_commit(struct btrfs_root *root,
412                                     struct btrfs_transaction *commit)
413 {
414         wait_event(commit->commit_wait, commit->commit_done);
415 }
416
417 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
418 {
419         struct btrfs_transaction *cur_trans = NULL, *t;
420         int ret;
421
422         ret = 0;
423         if (transid) {
424                 if (transid <= root->fs_info->last_trans_committed)
425                         goto out;
426
427                 /* find specified transaction */
428                 spin_lock(&root->fs_info->trans_lock);
429                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
430                         if (t->transid == transid) {
431                                 cur_trans = t;
432                                 atomic_inc(&cur_trans->use_count);
433                                 break;
434                         }
435                         if (t->transid > transid)
436                                 break;
437                 }
438                 spin_unlock(&root->fs_info->trans_lock);
439                 ret = -EINVAL;
440                 if (!cur_trans)
441                         goto out;  /* bad transid */
442         } else {
443                 /* find newest transaction that is committing | committed */
444                 spin_lock(&root->fs_info->trans_lock);
445                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
446                                             list) {
447                         if (t->in_commit) {
448                                 if (t->commit_done)
449                                         break;
450                                 cur_trans = t;
451                                 atomic_inc(&cur_trans->use_count);
452                                 break;
453                         }
454                 }
455                 spin_unlock(&root->fs_info->trans_lock);
456                 if (!cur_trans)
457                         goto out;  /* nothing committing|committed */
458         }
459
460         wait_for_commit(root, cur_trans);
461
462         put_transaction(cur_trans);
463         ret = 0;
464 out:
465         return ret;
466 }
467
468 void btrfs_throttle(struct btrfs_root *root)
469 {
470         if (!atomic_read(&root->fs_info->open_ioctl_trans))
471                 wait_current_trans(root);
472 }
473
474 static int should_end_transaction(struct btrfs_trans_handle *trans,
475                                   struct btrfs_root *root)
476 {
477         int ret;
478
479         ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
480         return ret ? 1 : 0;
481 }
482
483 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
484                                  struct btrfs_root *root)
485 {
486         struct btrfs_transaction *cur_trans = trans->transaction;
487         int updates;
488         int err;
489
490         smp_mb();
491         if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
492                 return 1;
493
494         updates = trans->delayed_ref_updates;
495         trans->delayed_ref_updates = 0;
496         if (updates) {
497                 err = btrfs_run_delayed_refs(trans, root, updates);
498                 if (err) /* Error code will also eval true */
499                         return err;
500         }
501
502         return should_end_transaction(trans, root);
503 }
504
505 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
506                           struct btrfs_root *root, int throttle, int lock)
507 {
508         struct btrfs_transaction *cur_trans = trans->transaction;
509         struct btrfs_fs_info *info = root->fs_info;
510         int count = 0;
511         int err = 0;
512
513         if (--trans->use_count) {
514                 trans->block_rsv = trans->orig_rsv;
515                 return 0;
516         }
517
518         /*
519          * do the qgroup accounting as early as possible
520          */
521         err = btrfs_delayed_refs_qgroup_accounting(trans, info);
522
523         btrfs_trans_release_metadata(trans, root);
524         trans->block_rsv = NULL;
525         /*
526          * the same root has to be passed to start_transaction and
527          * end_transaction. Subvolume quota depends on this.
528          */
529         WARN_ON(trans->root != root);
530
531         if (trans->qgroup_reserved) {
532                 btrfs_qgroup_free(root, trans->qgroup_reserved);
533                 trans->qgroup_reserved = 0;
534         }
535
536         while (count < 2) {
537                 unsigned long cur = trans->delayed_ref_updates;
538                 trans->delayed_ref_updates = 0;
539                 if (cur &&
540                     trans->transaction->delayed_refs.num_heads_ready > 64) {
541                         trans->delayed_ref_updates = 0;
542                         btrfs_run_delayed_refs(trans, root, cur);
543                 } else {
544                         break;
545                 }
546                 count++;
547         }
548         btrfs_trans_release_metadata(trans, root);
549         trans->block_rsv = NULL;
550
551         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
552             should_end_transaction(trans, root)) {
553                 trans->transaction->blocked = 1;
554                 smp_wmb();
555         }
556
557         if (lock && cur_trans->blocked && !cur_trans->in_commit) {
558                 if (throttle) {
559                         /*
560                          * We may race with somebody else here so end up having
561                          * to call end_transaction on ourselves again, so inc
562                          * our use_count.
563                          */
564                         trans->use_count++;
565                         return btrfs_commit_transaction(trans, root);
566                 } else {
567                         wake_up_process(info->transaction_kthread);
568                 }
569         }
570
571         WARN_ON(cur_trans != info->running_transaction);
572         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
573         atomic_dec(&cur_trans->num_writers);
574
575         smp_mb();
576         if (waitqueue_active(&cur_trans->writer_wait))
577                 wake_up(&cur_trans->writer_wait);
578         put_transaction(cur_trans);
579
580         if (current->journal_info == trans)
581                 current->journal_info = NULL;
582
583         if (throttle)
584                 btrfs_run_delayed_iputs(root);
585
586         if (trans->aborted ||
587             root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
588                 err = -EIO;
589         }
590         assert_qgroups_uptodate(trans);
591
592         memset(trans, 0, sizeof(*trans));
593         kmem_cache_free(btrfs_trans_handle_cachep, trans);
594         return err;
595 }
596
597 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
598                           struct btrfs_root *root)
599 {
600         int ret;
601
602         ret = __btrfs_end_transaction(trans, root, 0, 1);
603         if (ret)
604                 return ret;
605         return 0;
606 }
607
608 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
609                                    struct btrfs_root *root)
610 {
611         int ret;
612
613         ret = __btrfs_end_transaction(trans, root, 1, 1);
614         if (ret)
615                 return ret;
616         return 0;
617 }
618
619 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
620                                  struct btrfs_root *root)
621 {
622         int ret;
623
624         ret = __btrfs_end_transaction(trans, root, 0, 0);
625         if (ret)
626                 return ret;
627         return 0;
628 }
629
630 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
631                                 struct btrfs_root *root)
632 {
633         return __btrfs_end_transaction(trans, root, 1, 1);
634 }
635
636 /*
637  * when btree blocks are allocated, they have some corresponding bits set for
638  * them in one of two extent_io trees.  This is used to make sure all of
639  * those extents are sent to disk but does not wait on them
640  */
641 int btrfs_write_marked_extents(struct btrfs_root *root,
642                                struct extent_io_tree *dirty_pages, int mark)
643 {
644         int err = 0;
645         int werr = 0;
646         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
647         u64 start = 0;
648         u64 end;
649
650         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
651                                       mark)) {
652                 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
653                                    GFP_NOFS);
654                 err = filemap_fdatawrite_range(mapping, start, end);
655                 if (err)
656                         werr = err;
657                 cond_resched();
658                 start = end + 1;
659         }
660         if (err)
661                 werr = err;
662         return werr;
663 }
664
665 /*
666  * when btree blocks are allocated, they have some corresponding bits set for
667  * them in one of two extent_io trees.  This is used to make sure all of
668  * those extents are on disk for transaction or log commit.  We wait
669  * on all the pages and clear them from the dirty pages state tree
670  */
671 int btrfs_wait_marked_extents(struct btrfs_root *root,
672                               struct extent_io_tree *dirty_pages, int mark)
673 {
674         int err = 0;
675         int werr = 0;
676         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
677         u64 start = 0;
678         u64 end;
679
680         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
681                                       EXTENT_NEED_WAIT)) {
682                 clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
683                 err = filemap_fdatawait_range(mapping, start, end);
684                 if (err)
685                         werr = err;
686                 cond_resched();
687                 start = end + 1;
688         }
689         if (err)
690                 werr = err;
691         return werr;
692 }
693
694 /*
695  * when btree blocks are allocated, they have some corresponding bits set for
696  * them in one of two extent_io trees.  This is used to make sure all of
697  * those extents are on disk for transaction or log commit
698  */
699 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
700                                 struct extent_io_tree *dirty_pages, int mark)
701 {
702         int ret;
703         int ret2;
704
705         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
706         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
707
708         if (ret)
709                 return ret;
710         if (ret2)
711                 return ret2;
712         return 0;
713 }
714
715 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
716                                      struct btrfs_root *root)
717 {
718         if (!trans || !trans->transaction) {
719                 struct inode *btree_inode;
720                 btree_inode = root->fs_info->btree_inode;
721                 return filemap_write_and_wait(btree_inode->i_mapping);
722         }
723         return btrfs_write_and_wait_marked_extents(root,
724                                            &trans->transaction->dirty_pages,
725                                            EXTENT_DIRTY);
726 }
727
728 /*
729  * this is used to update the root pointer in the tree of tree roots.
730  *
731  * But, in the case of the extent allocation tree, updating the root
732  * pointer may allocate blocks which may change the root of the extent
733  * allocation tree.
734  *
735  * So, this loops and repeats and makes sure the cowonly root didn't
736  * change while the root pointer was being updated in the metadata.
737  */
738 static int update_cowonly_root(struct btrfs_trans_handle *trans,
739                                struct btrfs_root *root)
740 {
741         int ret;
742         u64 old_root_bytenr;
743         u64 old_root_used;
744         struct btrfs_root *tree_root = root->fs_info->tree_root;
745
746         old_root_used = btrfs_root_used(&root->root_item);
747         btrfs_write_dirty_block_groups(trans, root);
748
749         while (1) {
750                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
751                 if (old_root_bytenr == root->node->start &&
752                     old_root_used == btrfs_root_used(&root->root_item))
753                         break;
754
755                 btrfs_set_root_node(&root->root_item, root->node);
756                 ret = btrfs_update_root(trans, tree_root,
757                                         &root->root_key,
758                                         &root->root_item);
759                 if (ret)
760                         return ret;
761
762                 old_root_used = btrfs_root_used(&root->root_item);
763                 ret = btrfs_write_dirty_block_groups(trans, root);
764                 if (ret)
765                         return ret;
766         }
767
768         if (root != root->fs_info->extent_root)
769                 switch_commit_root(root);
770
771         return 0;
772 }
773
774 /*
775  * update all the cowonly tree roots on disk
776  *
777  * The error handling in this function may not be obvious. Any of the
778  * failures will cause the file system to go offline. We still need
779  * to clean up the delayed refs.
780  */
781 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
782                                          struct btrfs_root *root)
783 {
784         struct btrfs_fs_info *fs_info = root->fs_info;
785         struct list_head *next;
786         struct extent_buffer *eb;
787         int ret;
788
789         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
790         if (ret)
791                 return ret;
792
793         eb = btrfs_lock_root_node(fs_info->tree_root);
794         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
795                               0, &eb);
796         btrfs_tree_unlock(eb);
797         free_extent_buffer(eb);
798
799         if (ret)
800                 return ret;
801
802         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
803         if (ret)
804                 return ret;
805
806         ret = btrfs_run_dev_stats(trans, root->fs_info);
807         BUG_ON(ret);
808
809         ret = btrfs_run_qgroups(trans, root->fs_info);
810         BUG_ON(ret);
811
812         /* run_qgroups might have added some more refs */
813         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
814         BUG_ON(ret);
815
816         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
817                 next = fs_info->dirty_cowonly_roots.next;
818                 list_del_init(next);
819                 root = list_entry(next, struct btrfs_root, dirty_list);
820
821                 ret = update_cowonly_root(trans, root);
822                 if (ret)
823                         return ret;
824         }
825
826         down_write(&fs_info->extent_commit_sem);
827         switch_commit_root(fs_info->extent_root);
828         up_write(&fs_info->extent_commit_sem);
829
830         return 0;
831 }
832
833 /*
834  * dead roots are old snapshots that need to be deleted.  This allocates
835  * a dirty root struct and adds it into the list of dead roots that need to
836  * be deleted
837  */
838 int btrfs_add_dead_root(struct btrfs_root *root)
839 {
840         spin_lock(&root->fs_info->trans_lock);
841         list_add(&root->root_list, &root->fs_info->dead_roots);
842         spin_unlock(&root->fs_info->trans_lock);
843         return 0;
844 }
845
846 /*
847  * update all the cowonly tree roots on disk
848  */
849 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
850                                     struct btrfs_root *root)
851 {
852         struct btrfs_root *gang[8];
853         struct btrfs_fs_info *fs_info = root->fs_info;
854         int i;
855         int ret;
856         int err = 0;
857
858         spin_lock(&fs_info->fs_roots_radix_lock);
859         while (1) {
860                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
861                                                  (void **)gang, 0,
862                                                  ARRAY_SIZE(gang),
863                                                  BTRFS_ROOT_TRANS_TAG);
864                 if (ret == 0)
865                         break;
866                 for (i = 0; i < ret; i++) {
867                         root = gang[i];
868                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
869                                         (unsigned long)root->root_key.objectid,
870                                         BTRFS_ROOT_TRANS_TAG);
871                         spin_unlock(&fs_info->fs_roots_radix_lock);
872
873                         btrfs_free_log(trans, root);
874                         btrfs_update_reloc_root(trans, root);
875                         btrfs_orphan_commit_root(trans, root);
876
877                         btrfs_save_ino_cache(root, trans);
878
879                         /* see comments in should_cow_block() */
880                         root->force_cow = 0;
881                         smp_wmb();
882
883                         if (root->commit_root != root->node) {
884                                 mutex_lock(&root->fs_commit_mutex);
885                                 switch_commit_root(root);
886                                 btrfs_unpin_free_ino(root);
887                                 mutex_unlock(&root->fs_commit_mutex);
888
889                                 btrfs_set_root_node(&root->root_item,
890                                                     root->node);
891                         }
892
893                         err = btrfs_update_root(trans, fs_info->tree_root,
894                                                 &root->root_key,
895                                                 &root->root_item);
896                         spin_lock(&fs_info->fs_roots_radix_lock);
897                         if (err)
898                                 break;
899                 }
900         }
901         spin_unlock(&fs_info->fs_roots_radix_lock);
902         return err;
903 }
904
905 /*
906  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
907  * otherwise every leaf in the btree is read and defragged.
908  */
909 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
910 {
911         struct btrfs_fs_info *info = root->fs_info;
912         struct btrfs_trans_handle *trans;
913         int ret;
914         unsigned long nr;
915
916         if (xchg(&root->defrag_running, 1))
917                 return 0;
918
919         while (1) {
920                 trans = btrfs_start_transaction(root, 0);
921                 if (IS_ERR(trans))
922                         return PTR_ERR(trans);
923
924                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
925
926                 nr = trans->blocks_used;
927                 btrfs_end_transaction(trans, root);
928                 btrfs_btree_balance_dirty(info->tree_root, nr);
929                 cond_resched();
930
931                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
932                         break;
933         }
934         root->defrag_running = 0;
935         return ret;
936 }
937
938 /*
939  * new snapshots need to be created at a very specific time in the
940  * transaction commit.  This does the actual creation
941  */
942 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
943                                    struct btrfs_fs_info *fs_info,
944                                    struct btrfs_pending_snapshot *pending)
945 {
946         struct btrfs_key key;
947         struct btrfs_root_item *new_root_item;
948         struct btrfs_root *tree_root = fs_info->tree_root;
949         struct btrfs_root *root = pending->root;
950         struct btrfs_root *parent_root;
951         struct btrfs_block_rsv *rsv;
952         struct inode *parent_inode;
953         struct dentry *parent;
954         struct dentry *dentry;
955         struct extent_buffer *tmp;
956         struct extent_buffer *old;
957         struct timespec cur_time = CURRENT_TIME;
958         int ret;
959         u64 to_reserve = 0;
960         u64 index = 0;
961         u64 objectid;
962         u64 root_flags;
963         uuid_le new_uuid;
964
965         rsv = trans->block_rsv;
966
967         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
968         if (!new_root_item) {
969                 ret = pending->error = -ENOMEM;
970                 goto fail;
971         }
972
973         ret = btrfs_find_free_objectid(tree_root, &objectid);
974         if (ret) {
975                 pending->error = ret;
976                 goto fail;
977         }
978
979         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
980
981         if (to_reserve > 0) {
982                 ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
983                                                   to_reserve);
984                 if (ret) {
985                         pending->error = ret;
986                         goto fail;
987                 }
988         }
989
990         ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
991                                    objectid, pending->inherit);
992         kfree(pending->inherit);
993         if (ret) {
994                 pending->error = ret;
995                 goto fail;
996         }
997
998         key.objectid = objectid;
999         key.offset = (u64)-1;
1000         key.type = BTRFS_ROOT_ITEM_KEY;
1001
1002         trans->block_rsv = &pending->block_rsv;
1003
1004         dentry = pending->dentry;
1005         parent = dget_parent(dentry);
1006         parent_inode = parent->d_inode;
1007         parent_root = BTRFS_I(parent_inode)->root;
1008         record_root_in_trans(trans, parent_root);
1009
1010         /*
1011          * insert the directory item
1012          */
1013         ret = btrfs_set_inode_index(parent_inode, &index);
1014         BUG_ON(ret); /* -ENOMEM */
1015         ret = btrfs_insert_dir_item(trans, parent_root,
1016                                 dentry->d_name.name, dentry->d_name.len,
1017                                 parent_inode, &key,
1018                                 BTRFS_FT_DIR, index);
1019         if (ret == -EEXIST) {
1020                 pending->error = -EEXIST;
1021                 dput(parent);
1022                 goto fail;
1023         } else if (ret) {
1024                 goto abort_trans_dput;
1025         }
1026
1027         btrfs_i_size_write(parent_inode, parent_inode->i_size +
1028                                          dentry->d_name.len * 2);
1029         parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1030         ret = btrfs_update_inode(trans, parent_root, parent_inode);
1031         if (ret)
1032                 goto abort_trans_dput;
1033
1034         /*
1035          * pull in the delayed directory update
1036          * and the delayed inode item
1037          * otherwise we corrupt the FS during
1038          * snapshot
1039          */
1040         ret = btrfs_run_delayed_items(trans, root);
1041         if (ret) { /* Transaction aborted */
1042                 dput(parent);
1043                 goto fail;
1044         }
1045
1046         record_root_in_trans(trans, root);
1047         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1048         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1049         btrfs_check_and_init_root_item(new_root_item);
1050
1051         root_flags = btrfs_root_flags(new_root_item);
1052         if (pending->readonly)
1053                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1054         else
1055                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1056         btrfs_set_root_flags(new_root_item, root_flags);
1057
1058         btrfs_set_root_generation_v2(new_root_item,
1059                         trans->transid);
1060         uuid_le_gen(&new_uuid);
1061         memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1062         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1063                         BTRFS_UUID_SIZE);
1064         new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1065         new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1066         btrfs_set_root_otransid(new_root_item, trans->transid);
1067         memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1068         memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1069         btrfs_set_root_stransid(new_root_item, 0);
1070         btrfs_set_root_rtransid(new_root_item, 0);
1071
1072         old = btrfs_lock_root_node(root);
1073         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1074         if (ret) {
1075                 btrfs_tree_unlock(old);
1076                 free_extent_buffer(old);
1077                 goto abort_trans_dput;
1078         }
1079
1080         btrfs_set_lock_blocking(old);
1081
1082         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1083         /* clean up in any case */
1084         btrfs_tree_unlock(old);
1085         free_extent_buffer(old);
1086         if (ret)
1087                 goto abort_trans_dput;
1088
1089         /* see comments in should_cow_block() */
1090         root->force_cow = 1;
1091         smp_wmb();
1092
1093         btrfs_set_root_node(new_root_item, tmp);
1094         /* record when the snapshot was created in key.offset */
1095         key.offset = trans->transid;
1096         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1097         btrfs_tree_unlock(tmp);
1098         free_extent_buffer(tmp);
1099         if (ret)
1100                 goto abort_trans_dput;
1101
1102         /*
1103          * insert root back/forward references
1104          */
1105         ret = btrfs_add_root_ref(trans, tree_root, objectid,
1106                                  parent_root->root_key.objectid,
1107                                  btrfs_ino(parent_inode), index,
1108                                  dentry->d_name.name, dentry->d_name.len);
1109         dput(parent);
1110         if (ret)
1111                 goto fail;
1112
1113         key.offset = (u64)-1;
1114         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1115         if (IS_ERR(pending->snap)) {
1116                 ret = PTR_ERR(pending->snap);
1117                 goto abort_trans;
1118         }
1119
1120         ret = btrfs_reloc_post_snapshot(trans, pending);
1121         if (ret)
1122                 goto abort_trans;
1123         ret = 0;
1124 fail:
1125         kfree(new_root_item);
1126         trans->block_rsv = rsv;
1127         btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1128         return ret;
1129
1130 abort_trans_dput:
1131         dput(parent);
1132 abort_trans:
1133         btrfs_abort_transaction(trans, root, ret);
1134         goto fail;
1135 }
1136
1137 /*
1138  * create all the snapshots we've scheduled for creation
1139  */
1140 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1141                                              struct btrfs_fs_info *fs_info)
1142 {
1143         struct btrfs_pending_snapshot *pending;
1144         struct list_head *head = &trans->transaction->pending_snapshots;
1145
1146         list_for_each_entry(pending, head, list)
1147                 create_pending_snapshot(trans, fs_info, pending);
1148         return 0;
1149 }
1150
1151 static void update_super_roots(struct btrfs_root *root)
1152 {
1153         struct btrfs_root_item *root_item;
1154         struct btrfs_super_block *super;
1155
1156         super = root->fs_info->super_copy;
1157
1158         root_item = &root->fs_info->chunk_root->root_item;
1159         super->chunk_root = root_item->bytenr;
1160         super->chunk_root_generation = root_item->generation;
1161         super->chunk_root_level = root_item->level;
1162
1163         root_item = &root->fs_info->tree_root->root_item;
1164         super->root = root_item->bytenr;
1165         super->generation = root_item->generation;
1166         super->root_level = root_item->level;
1167         if (btrfs_test_opt(root, SPACE_CACHE))
1168                 super->cache_generation = root_item->generation;
1169 }
1170
1171 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1172 {
1173         int ret = 0;
1174         spin_lock(&info->trans_lock);
1175         if (info->running_transaction)
1176                 ret = info->running_transaction->in_commit;
1177         spin_unlock(&info->trans_lock);
1178         return ret;
1179 }
1180
1181 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1182 {
1183         int ret = 0;
1184         spin_lock(&info->trans_lock);
1185         if (info->running_transaction)
1186                 ret = info->running_transaction->blocked;
1187         spin_unlock(&info->trans_lock);
1188         return ret;
1189 }
1190
1191 /*
1192  * wait for the current transaction commit to start and block subsequent
1193  * transaction joins
1194  */
1195 static void wait_current_trans_commit_start(struct btrfs_root *root,
1196                                             struct btrfs_transaction *trans)
1197 {
1198         wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1199 }
1200
1201 /*
1202  * wait for the current transaction to start and then become unblocked.
1203  * caller holds ref.
1204  */
1205 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1206                                          struct btrfs_transaction *trans)
1207 {
1208         wait_event(root->fs_info->transaction_wait,
1209                    trans->commit_done || (trans->in_commit && !trans->blocked));
1210 }
1211
1212 /*
1213  * commit transactions asynchronously. once btrfs_commit_transaction_async
1214  * returns, any subsequent transaction will not be allowed to join.
1215  */
1216 struct btrfs_async_commit {
1217         struct btrfs_trans_handle *newtrans;
1218         struct btrfs_root *root;
1219         struct delayed_work work;
1220 };
1221
1222 static void do_async_commit(struct work_struct *work)
1223 {
1224         struct btrfs_async_commit *ac =
1225                 container_of(work, struct btrfs_async_commit, work.work);
1226
1227         btrfs_commit_transaction(ac->newtrans, ac->root);
1228         kfree(ac);
1229 }
1230
1231 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1232                                    struct btrfs_root *root,
1233                                    int wait_for_unblock)
1234 {
1235         struct btrfs_async_commit *ac;
1236         struct btrfs_transaction *cur_trans;
1237
1238         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1239         if (!ac)
1240                 return -ENOMEM;
1241
1242         INIT_DELAYED_WORK(&ac->work, do_async_commit);
1243         ac->root = root;
1244         ac->newtrans = btrfs_join_transaction(root);
1245         if (IS_ERR(ac->newtrans)) {
1246                 int err = PTR_ERR(ac->newtrans);
1247                 kfree(ac);
1248                 return err;
1249         }
1250
1251         /* take transaction reference */
1252         cur_trans = trans->transaction;
1253         atomic_inc(&cur_trans->use_count);
1254
1255         btrfs_end_transaction(trans, root);
1256         schedule_delayed_work(&ac->work, 0);
1257
1258         /* wait for transaction to start and unblock */
1259         if (wait_for_unblock)
1260                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1261         else
1262                 wait_current_trans_commit_start(root, cur_trans);
1263
1264         if (current->journal_info == trans)
1265                 current->journal_info = NULL;
1266
1267         put_transaction(cur_trans);
1268         return 0;
1269 }
1270
1271
1272 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1273                                 struct btrfs_root *root, int err)
1274 {
1275         struct btrfs_transaction *cur_trans = trans->transaction;
1276
1277         WARN_ON(trans->use_count > 1);
1278
1279         btrfs_abort_transaction(trans, root, err);
1280
1281         spin_lock(&root->fs_info->trans_lock);
1282         list_del_init(&cur_trans->list);
1283         if (cur_trans == root->fs_info->running_transaction) {
1284                 root->fs_info->running_transaction = NULL;
1285                 root->fs_info->trans_no_join = 0;
1286         }
1287         spin_unlock(&root->fs_info->trans_lock);
1288
1289         btrfs_cleanup_one_transaction(trans->transaction, root);
1290
1291         put_transaction(cur_trans);
1292         put_transaction(cur_trans);
1293
1294         trace_btrfs_transaction_commit(root);
1295
1296         btrfs_scrub_continue(root);
1297
1298         if (current->journal_info == trans)
1299                 current->journal_info = NULL;
1300
1301         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1302 }
1303
1304 /*
1305  * btrfs_transaction state sequence:
1306  *    in_commit = 0, blocked = 0  (initial)
1307  *    in_commit = 1, blocked = 1
1308  *    blocked = 0
1309  *    commit_done = 1
1310  */
1311 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1312                              struct btrfs_root *root)
1313 {
1314         unsigned long joined = 0;
1315         struct btrfs_transaction *cur_trans = trans->transaction;
1316         struct btrfs_transaction *prev_trans = NULL;
1317         DEFINE_WAIT(wait);
1318         int ret = -EIO;
1319         int should_grow = 0;
1320         unsigned long now = get_seconds();
1321         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1322
1323         btrfs_run_ordered_operations(root, 0);
1324
1325         if (cur_trans->aborted)
1326                 goto cleanup_transaction;
1327
1328         /* make a pass through all the delayed refs we have so far
1329          * any runnings procs may add more while we are here
1330          */
1331         ret = btrfs_run_delayed_refs(trans, root, 0);
1332         if (ret)
1333                 goto cleanup_transaction;
1334
1335         btrfs_trans_release_metadata(trans, root);
1336         trans->block_rsv = NULL;
1337
1338         cur_trans = trans->transaction;
1339
1340         /*
1341          * set the flushing flag so procs in this transaction have to
1342          * start sending their work down.
1343          */
1344         cur_trans->delayed_refs.flushing = 1;
1345
1346         ret = btrfs_run_delayed_refs(trans, root, 0);
1347         if (ret)
1348                 goto cleanup_transaction;
1349
1350         spin_lock(&cur_trans->commit_lock);
1351         if (cur_trans->in_commit) {
1352                 spin_unlock(&cur_trans->commit_lock);
1353                 atomic_inc(&cur_trans->use_count);
1354                 ret = btrfs_end_transaction(trans, root);
1355
1356                 wait_for_commit(root, cur_trans);
1357
1358                 put_transaction(cur_trans);
1359
1360                 return ret;
1361         }
1362
1363         trans->transaction->in_commit = 1;
1364         trans->transaction->blocked = 1;
1365         spin_unlock(&cur_trans->commit_lock);
1366         wake_up(&root->fs_info->transaction_blocked_wait);
1367
1368         spin_lock(&root->fs_info->trans_lock);
1369         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1370                 prev_trans = list_entry(cur_trans->list.prev,
1371                                         struct btrfs_transaction, list);
1372                 if (!prev_trans->commit_done) {
1373                         atomic_inc(&prev_trans->use_count);
1374                         spin_unlock(&root->fs_info->trans_lock);
1375
1376                         wait_for_commit(root, prev_trans);
1377
1378                         put_transaction(prev_trans);
1379                 } else {
1380                         spin_unlock(&root->fs_info->trans_lock);
1381                 }
1382         } else {
1383                 spin_unlock(&root->fs_info->trans_lock);
1384         }
1385
1386         if (!btrfs_test_opt(root, SSD) &&
1387             (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1388                 should_grow = 1;
1389
1390         do {
1391                 int snap_pending = 0;
1392
1393                 joined = cur_trans->num_joined;
1394                 if (!list_empty(&trans->transaction->pending_snapshots))
1395                         snap_pending = 1;
1396
1397                 WARN_ON(cur_trans != trans->transaction);
1398
1399                 if (flush_on_commit || snap_pending) {
1400                         btrfs_start_delalloc_inodes(root, 1);
1401                         btrfs_wait_ordered_extents(root, 0, 1);
1402                 }
1403
1404                 ret = btrfs_run_delayed_items(trans, root);
1405                 if (ret)
1406                         goto cleanup_transaction;
1407
1408                 /*
1409                  * running the delayed items may have added new refs. account
1410                  * them now so that they hinder processing of more delayed refs
1411                  * as little as possible.
1412                  */
1413                 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1414
1415                 /*
1416                  * rename don't use btrfs_join_transaction, so, once we
1417                  * set the transaction to blocked above, we aren't going
1418                  * to get any new ordered operations.  We can safely run
1419                  * it here and no for sure that nothing new will be added
1420                  * to the list
1421                  */
1422                 btrfs_run_ordered_operations(root, 1);
1423
1424                 prepare_to_wait(&cur_trans->writer_wait, &wait,
1425                                 TASK_UNINTERRUPTIBLE);
1426
1427                 if (atomic_read(&cur_trans->num_writers) > 1)
1428                         schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1429                 else if (should_grow)
1430                         schedule_timeout(1);
1431
1432                 finish_wait(&cur_trans->writer_wait, &wait);
1433         } while (atomic_read(&cur_trans->num_writers) > 1 ||
1434                  (should_grow && cur_trans->num_joined != joined));
1435
1436         /*
1437          * Ok now we need to make sure to block out any other joins while we
1438          * commit the transaction.  We could have started a join before setting
1439          * no_join so make sure to wait for num_writers to == 1 again.
1440          */
1441         spin_lock(&root->fs_info->trans_lock);
1442         root->fs_info->trans_no_join = 1;
1443         spin_unlock(&root->fs_info->trans_lock);
1444         wait_event(cur_trans->writer_wait,
1445                    atomic_read(&cur_trans->num_writers) == 1);
1446
1447         /*
1448          * the reloc mutex makes sure that we stop
1449          * the balancing code from coming in and moving
1450          * extents around in the middle of the commit
1451          */
1452         mutex_lock(&root->fs_info->reloc_mutex);
1453
1454         ret = btrfs_run_delayed_items(trans, root);
1455         if (ret) {
1456                 mutex_unlock(&root->fs_info->reloc_mutex);
1457                 goto cleanup_transaction;
1458         }
1459
1460         ret = create_pending_snapshots(trans, root->fs_info);
1461         if (ret) {
1462                 mutex_unlock(&root->fs_info->reloc_mutex);
1463                 goto cleanup_transaction;
1464         }
1465
1466         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1467         if (ret) {
1468                 mutex_unlock(&root->fs_info->reloc_mutex);
1469                 goto cleanup_transaction;
1470         }
1471
1472         /*
1473          * make sure none of the code above managed to slip in a
1474          * delayed item
1475          */
1476         btrfs_assert_delayed_root_empty(root);
1477
1478         WARN_ON(cur_trans != trans->transaction);
1479
1480         btrfs_scrub_pause(root);
1481         /* btrfs_commit_tree_roots is responsible for getting the
1482          * various roots consistent with each other.  Every pointer
1483          * in the tree of tree roots has to point to the most up to date
1484          * root for every subvolume and other tree.  So, we have to keep
1485          * the tree logging code from jumping in and changing any
1486          * of the trees.
1487          *
1488          * At this point in the commit, there can't be any tree-log
1489          * writers, but a little lower down we drop the trans mutex
1490          * and let new people in.  By holding the tree_log_mutex
1491          * from now until after the super is written, we avoid races
1492          * with the tree-log code.
1493          */
1494         mutex_lock(&root->fs_info->tree_log_mutex);
1495
1496         ret = commit_fs_roots(trans, root);
1497         if (ret) {
1498                 mutex_unlock(&root->fs_info->tree_log_mutex);
1499                 mutex_unlock(&root->fs_info->reloc_mutex);
1500                 goto cleanup_transaction;
1501         }
1502
1503         /* commit_fs_roots gets rid of all the tree log roots, it is now
1504          * safe to free the root of tree log roots
1505          */
1506         btrfs_free_log_root_tree(trans, root->fs_info);
1507
1508         ret = commit_cowonly_roots(trans, root);
1509         if (ret) {
1510                 mutex_unlock(&root->fs_info->tree_log_mutex);
1511                 mutex_unlock(&root->fs_info->reloc_mutex);
1512                 goto cleanup_transaction;
1513         }
1514
1515         btrfs_prepare_extent_commit(trans, root);
1516
1517         cur_trans = root->fs_info->running_transaction;
1518
1519         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1520                             root->fs_info->tree_root->node);
1521         switch_commit_root(root->fs_info->tree_root);
1522
1523         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1524                             root->fs_info->chunk_root->node);
1525         switch_commit_root(root->fs_info->chunk_root);
1526
1527         assert_qgroups_uptodate(trans);
1528         update_super_roots(root);
1529
1530         if (!root->fs_info->log_root_recovering) {
1531                 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1532                 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1533         }
1534
1535         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1536                sizeof(*root->fs_info->super_copy));
1537
1538         trans->transaction->blocked = 0;
1539         spin_lock(&root->fs_info->trans_lock);
1540         root->fs_info->running_transaction = NULL;
1541         root->fs_info->trans_no_join = 0;
1542         spin_unlock(&root->fs_info->trans_lock);
1543         mutex_unlock(&root->fs_info->reloc_mutex);
1544
1545         wake_up(&root->fs_info->transaction_wait);
1546
1547         ret = btrfs_write_and_wait_transaction(trans, root);
1548         if (ret) {
1549                 btrfs_error(root->fs_info, ret,
1550                             "Error while writing out transaction.");
1551                 mutex_unlock(&root->fs_info->tree_log_mutex);
1552                 goto cleanup_transaction;
1553         }
1554
1555         ret = write_ctree_super(trans, root, 0);
1556         if (ret) {
1557                 mutex_unlock(&root->fs_info->tree_log_mutex);
1558                 goto cleanup_transaction;
1559         }
1560
1561         /*
1562          * the super is written, we can safely allow the tree-loggers
1563          * to go about their business
1564          */
1565         mutex_unlock(&root->fs_info->tree_log_mutex);
1566
1567         btrfs_finish_extent_commit(trans, root);
1568
1569         cur_trans->commit_done = 1;
1570
1571         root->fs_info->last_trans_committed = cur_trans->transid;
1572
1573         wake_up(&cur_trans->commit_wait);
1574
1575         spin_lock(&root->fs_info->trans_lock);
1576         list_del_init(&cur_trans->list);
1577         spin_unlock(&root->fs_info->trans_lock);
1578
1579         put_transaction(cur_trans);
1580         put_transaction(cur_trans);
1581
1582         trace_btrfs_transaction_commit(root);
1583
1584         btrfs_scrub_continue(root);
1585
1586         if (current->journal_info == trans)
1587                 current->journal_info = NULL;
1588
1589         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1590
1591         if (current != root->fs_info->transaction_kthread)
1592                 btrfs_run_delayed_iputs(root);
1593
1594         return ret;
1595
1596 cleanup_transaction:
1597         btrfs_trans_release_metadata(trans, root);
1598         trans->block_rsv = NULL;
1599         btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1600 //      WARN_ON(1);
1601         if (current->journal_info == trans)
1602                 current->journal_info = NULL;
1603         cleanup_transaction(trans, root, ret);
1604
1605         return ret;
1606 }
1607
1608 /*
1609  * interface function to delete all the snapshots we have scheduled for deletion
1610  */
1611 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1612 {
1613         LIST_HEAD(list);
1614         struct btrfs_fs_info *fs_info = root->fs_info;
1615
1616         spin_lock(&fs_info->trans_lock);
1617         list_splice_init(&fs_info->dead_roots, &list);
1618         spin_unlock(&fs_info->trans_lock);
1619
1620         while (!list_empty(&list)) {
1621                 int ret;
1622
1623                 root = list_entry(list.next, struct btrfs_root, root_list);
1624                 list_del(&root->root_list);
1625
1626                 btrfs_kill_all_delayed_nodes(root);
1627
1628                 if (btrfs_header_backref_rev(root->node) <
1629                     BTRFS_MIXED_BACKREF_REV)
1630                         ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1631                 else
1632                         ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1633                 BUG_ON(ret < 0);
1634         }
1635         return 0;
1636 }