Btrfs: add mount -o auto_defrag
[pandora-kernel.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include "compat.h"
43 #include "delayed-inode.h"
44 #include "ctree.h"
45 #include "disk-io.h"
46 #include "transaction.h"
47 #include "btrfs_inode.h"
48 #include "ioctl.h"
49 #include "print-tree.h"
50 #include "xattr.h"
51 #include "volumes.h"
52 #include "version.h"
53 #include "export.h"
54 #include "compression.h"
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/btrfs.h>
58
59 static const struct super_operations btrfs_super_ops;
60
61 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
62                                       char nbuf[16])
63 {
64         char *errstr = NULL;
65
66         switch (errno) {
67         case -EIO:
68                 errstr = "IO failure";
69                 break;
70         case -ENOMEM:
71                 errstr = "Out of memory";
72                 break;
73         case -EROFS:
74                 errstr = "Readonly filesystem";
75                 break;
76         default:
77                 if (nbuf) {
78                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
79                                 errstr = nbuf;
80                 }
81                 break;
82         }
83
84         return errstr;
85 }
86
87 static void __save_error_info(struct btrfs_fs_info *fs_info)
88 {
89         /*
90          * today we only save the error info into ram.  Long term we'll
91          * also send it down to the disk
92          */
93         fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
94 }
95
96 /* NOTE:
97  *      We move write_super stuff at umount in order to avoid deadlock
98  *      for umount hold all lock.
99  */
100 static void save_error_info(struct btrfs_fs_info *fs_info)
101 {
102         __save_error_info(fs_info);
103 }
104
105 /* btrfs handle error by forcing the filesystem readonly */
106 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
107 {
108         struct super_block *sb = fs_info->sb;
109
110         if (sb->s_flags & MS_RDONLY)
111                 return;
112
113         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
114                 sb->s_flags |= MS_RDONLY;
115                 printk(KERN_INFO "btrfs is forced readonly\n");
116         }
117 }
118
119 /*
120  * __btrfs_std_error decodes expected errors from the caller and
121  * invokes the approciate error response.
122  */
123 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
124                      unsigned int line, int errno)
125 {
126         struct super_block *sb = fs_info->sb;
127         char nbuf[16];
128         const char *errstr;
129
130         /*
131          * Special case: if the error is EROFS, and we're already
132          * under MS_RDONLY, then it is safe here.
133          */
134         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
135                 return;
136
137         errstr = btrfs_decode_error(fs_info, errno, nbuf);
138         printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
139                 sb->s_id, function, line, errstr);
140         save_error_info(fs_info);
141
142         btrfs_handle_error(fs_info);
143 }
144
145 static void btrfs_put_super(struct super_block *sb)
146 {
147         struct btrfs_root *root = btrfs_sb(sb);
148         int ret;
149
150         ret = close_ctree(root);
151         sb->s_fs_info = NULL;
152
153         (void)ret; /* FIXME: need to fix VFS to return error? */
154 }
155
156 enum {
157         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
158         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
159         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
160         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
161         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
162         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
163         Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_err,
164 };
165
166 static match_table_t tokens = {
167         {Opt_degraded, "degraded"},
168         {Opt_subvol, "subvol=%s"},
169         {Opt_subvolid, "subvolid=%d"},
170         {Opt_device, "device=%s"},
171         {Opt_nodatasum, "nodatasum"},
172         {Opt_nodatacow, "nodatacow"},
173         {Opt_nobarrier, "nobarrier"},
174         {Opt_max_inline, "max_inline=%s"},
175         {Opt_alloc_start, "alloc_start=%s"},
176         {Opt_thread_pool, "thread_pool=%d"},
177         {Opt_compress, "compress"},
178         {Opt_compress_type, "compress=%s"},
179         {Opt_compress_force, "compress-force"},
180         {Opt_compress_force_type, "compress-force=%s"},
181         {Opt_ssd, "ssd"},
182         {Opt_ssd_spread, "ssd_spread"},
183         {Opt_nossd, "nossd"},
184         {Opt_noacl, "noacl"},
185         {Opt_notreelog, "notreelog"},
186         {Opt_flushoncommit, "flushoncommit"},
187         {Opt_ratio, "metadata_ratio=%d"},
188         {Opt_discard, "discard"},
189         {Opt_space_cache, "space_cache"},
190         {Opt_clear_cache, "clear_cache"},
191         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
192         {Opt_enospc_debug, "enospc_debug"},
193         {Opt_subvolrootid, "subvolrootid=%d"},
194         {Opt_defrag, "autodefrag"},
195         {Opt_err, NULL},
196 };
197
198 /*
199  * Regular mount options parser.  Everything that is needed only when
200  * reading in a new superblock is parsed here.
201  */
202 int btrfs_parse_options(struct btrfs_root *root, char *options)
203 {
204         struct btrfs_fs_info *info = root->fs_info;
205         substring_t args[MAX_OPT_ARGS];
206         char *p, *num, *orig;
207         int intarg;
208         int ret = 0;
209         char *compress_type;
210         bool compress_force = false;
211
212         if (!options)
213                 return 0;
214
215         /*
216          * strsep changes the string, duplicate it because parse_options
217          * gets called twice
218          */
219         options = kstrdup(options, GFP_NOFS);
220         if (!options)
221                 return -ENOMEM;
222
223         orig = options;
224
225         while ((p = strsep(&options, ",")) != NULL) {
226                 int token;
227                 if (!*p)
228                         continue;
229
230                 token = match_token(p, tokens, args);
231                 switch (token) {
232                 case Opt_degraded:
233                         printk(KERN_INFO "btrfs: allowing degraded mounts\n");
234                         btrfs_set_opt(info->mount_opt, DEGRADED);
235                         break;
236                 case Opt_subvol:
237                 case Opt_subvolid:
238                 case Opt_subvolrootid:
239                 case Opt_device:
240                         /*
241                          * These are parsed by btrfs_parse_early_options
242                          * and can be happily ignored here.
243                          */
244                         break;
245                 case Opt_nodatasum:
246                         printk(KERN_INFO "btrfs: setting nodatasum\n");
247                         btrfs_set_opt(info->mount_opt, NODATASUM);
248                         break;
249                 case Opt_nodatacow:
250                         printk(KERN_INFO "btrfs: setting nodatacow\n");
251                         btrfs_set_opt(info->mount_opt, NODATACOW);
252                         btrfs_set_opt(info->mount_opt, NODATASUM);
253                         break;
254                 case Opt_compress_force:
255                 case Opt_compress_force_type:
256                         compress_force = true;
257                 case Opt_compress:
258                 case Opt_compress_type:
259                         if (token == Opt_compress ||
260                             token == Opt_compress_force ||
261                             strcmp(args[0].from, "zlib") == 0) {
262                                 compress_type = "zlib";
263                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
264                         } else if (strcmp(args[0].from, "lzo") == 0) {
265                                 compress_type = "lzo";
266                                 info->compress_type = BTRFS_COMPRESS_LZO;
267                         } else {
268                                 ret = -EINVAL;
269                                 goto out;
270                         }
271
272                         btrfs_set_opt(info->mount_opt, COMPRESS);
273                         if (compress_force) {
274                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
275                                 pr_info("btrfs: force %s compression\n",
276                                         compress_type);
277                         } else
278                                 pr_info("btrfs: use %s compression\n",
279                                         compress_type);
280                         break;
281                 case Opt_ssd:
282                         printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
283                         btrfs_set_opt(info->mount_opt, SSD);
284                         break;
285                 case Opt_ssd_spread:
286                         printk(KERN_INFO "btrfs: use spread ssd "
287                                "allocation scheme\n");
288                         btrfs_set_opt(info->mount_opt, SSD);
289                         btrfs_set_opt(info->mount_opt, SSD_SPREAD);
290                         break;
291                 case Opt_nossd:
292                         printk(KERN_INFO "btrfs: not using ssd allocation "
293                                "scheme\n");
294                         btrfs_set_opt(info->mount_opt, NOSSD);
295                         btrfs_clear_opt(info->mount_opt, SSD);
296                         btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
297                         break;
298                 case Opt_nobarrier:
299                         printk(KERN_INFO "btrfs: turning off barriers\n");
300                         btrfs_set_opt(info->mount_opt, NOBARRIER);
301                         break;
302                 case Opt_thread_pool:
303                         intarg = 0;
304                         match_int(&args[0], &intarg);
305                         if (intarg) {
306                                 info->thread_pool_size = intarg;
307                                 printk(KERN_INFO "btrfs: thread pool %d\n",
308                                        info->thread_pool_size);
309                         }
310                         break;
311                 case Opt_max_inline:
312                         num = match_strdup(&args[0]);
313                         if (num) {
314                                 info->max_inline = memparse(num, NULL);
315                                 kfree(num);
316
317                                 if (info->max_inline) {
318                                         info->max_inline = max_t(u64,
319                                                 info->max_inline,
320                                                 root->sectorsize);
321                                 }
322                                 printk(KERN_INFO "btrfs: max_inline at %llu\n",
323                                         (unsigned long long)info->max_inline);
324                         }
325                         break;
326                 case Opt_alloc_start:
327                         num = match_strdup(&args[0]);
328                         if (num) {
329                                 info->alloc_start = memparse(num, NULL);
330                                 kfree(num);
331                                 printk(KERN_INFO
332                                         "btrfs: allocations start at %llu\n",
333                                         (unsigned long long)info->alloc_start);
334                         }
335                         break;
336                 case Opt_noacl:
337                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
338                         break;
339                 case Opt_notreelog:
340                         printk(KERN_INFO "btrfs: disabling tree log\n");
341                         btrfs_set_opt(info->mount_opt, NOTREELOG);
342                         break;
343                 case Opt_flushoncommit:
344                         printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
345                         btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
346                         break;
347                 case Opt_ratio:
348                         intarg = 0;
349                         match_int(&args[0], &intarg);
350                         if (intarg) {
351                                 info->metadata_ratio = intarg;
352                                 printk(KERN_INFO "btrfs: metadata ratio %d\n",
353                                        info->metadata_ratio);
354                         }
355                         break;
356                 case Opt_discard:
357                         btrfs_set_opt(info->mount_opt, DISCARD);
358                         break;
359                 case Opt_space_cache:
360                         printk(KERN_INFO "btrfs: enabling disk space caching\n");
361                         btrfs_set_opt(info->mount_opt, SPACE_CACHE);
362                         break;
363                 case Opt_clear_cache:
364                         printk(KERN_INFO "btrfs: force clearing of disk cache\n");
365                         btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
366                         break;
367                 case Opt_user_subvol_rm_allowed:
368                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
369                         break;
370                 case Opt_enospc_debug:
371                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
372                         break;
373                 case Opt_defrag:
374                         printk(KERN_INFO "btrfs: enabling auto defrag");
375                         btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
376                         break;
377                 case Opt_err:
378                         printk(KERN_INFO "btrfs: unrecognized mount option "
379                                "'%s'\n", p);
380                         ret = -EINVAL;
381                         goto out;
382                 default:
383                         break;
384                 }
385         }
386 out:
387         kfree(orig);
388         return ret;
389 }
390
391 /*
392  * Parse mount options that are required early in the mount process.
393  *
394  * All other options will be parsed on much later in the mount process and
395  * only when we need to allocate a new super block.
396  */
397 static int btrfs_parse_early_options(const char *options, fmode_t flags,
398                 void *holder, char **subvol_name, u64 *subvol_objectid,
399                 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
400 {
401         substring_t args[MAX_OPT_ARGS];
402         char *opts, *orig, *p;
403         int error = 0;
404         int intarg;
405
406         if (!options)
407                 goto out;
408
409         /*
410          * strsep changes the string, duplicate it because parse_options
411          * gets called twice
412          */
413         opts = kstrdup(options, GFP_KERNEL);
414         if (!opts)
415                 return -ENOMEM;
416         orig = opts;
417
418         while ((p = strsep(&opts, ",")) != NULL) {
419                 int token;
420                 if (!*p)
421                         continue;
422
423                 token = match_token(p, tokens, args);
424                 switch (token) {
425                 case Opt_subvol:
426                         *subvol_name = match_strdup(&args[0]);
427                         break;
428                 case Opt_subvolid:
429                         intarg = 0;
430                         error = match_int(&args[0], &intarg);
431                         if (!error) {
432                                 /* we want the original fs_tree */
433                                 if (!intarg)
434                                         *subvol_objectid =
435                                                 BTRFS_FS_TREE_OBJECTID;
436                                 else
437                                         *subvol_objectid = intarg;
438                         }
439                         break;
440                 case Opt_subvolrootid:
441                         intarg = 0;
442                         error = match_int(&args[0], &intarg);
443                         if (!error) {
444                                 /* we want the original fs_tree */
445                                 if (!intarg)
446                                         *subvol_rootid =
447                                                 BTRFS_FS_TREE_OBJECTID;
448                                 else
449                                         *subvol_rootid = intarg;
450                         }
451                         break;
452                 case Opt_device:
453                         error = btrfs_scan_one_device(match_strdup(&args[0]),
454                                         flags, holder, fs_devices);
455                         if (error)
456                                 goto out_free_opts;
457                         break;
458                 default:
459                         break;
460                 }
461         }
462
463  out_free_opts:
464         kfree(orig);
465  out:
466         /*
467          * If no subvolume name is specified we use the default one.  Allocate
468          * a copy of the string "." here so that code later in the
469          * mount path doesn't care if it's the default volume or another one.
470          */
471         if (!*subvol_name) {
472                 *subvol_name = kstrdup(".", GFP_KERNEL);
473                 if (!*subvol_name)
474                         return -ENOMEM;
475         }
476         return error;
477 }
478
479 static struct dentry *get_default_root(struct super_block *sb,
480                                        u64 subvol_objectid)
481 {
482         struct btrfs_root *root = sb->s_fs_info;
483         struct btrfs_root *new_root;
484         struct btrfs_dir_item *di;
485         struct btrfs_path *path;
486         struct btrfs_key location;
487         struct inode *inode;
488         struct dentry *dentry;
489         u64 dir_id;
490         int new = 0;
491
492         /*
493          * We have a specific subvol we want to mount, just setup location and
494          * go look up the root.
495          */
496         if (subvol_objectid) {
497                 location.objectid = subvol_objectid;
498                 location.type = BTRFS_ROOT_ITEM_KEY;
499                 location.offset = (u64)-1;
500                 goto find_root;
501         }
502
503         path = btrfs_alloc_path();
504         if (!path)
505                 return ERR_PTR(-ENOMEM);
506         path->leave_spinning = 1;
507
508         /*
509          * Find the "default" dir item which points to the root item that we
510          * will mount by default if we haven't been given a specific subvolume
511          * to mount.
512          */
513         dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
514         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
515         if (IS_ERR(di)) {
516                 btrfs_free_path(path);
517                 return ERR_CAST(di);
518         }
519         if (!di) {
520                 /*
521                  * Ok the default dir item isn't there.  This is weird since
522                  * it's always been there, but don't freak out, just try and
523                  * mount to root most subvolume.
524                  */
525                 btrfs_free_path(path);
526                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
527                 new_root = root->fs_info->fs_root;
528                 goto setup_root;
529         }
530
531         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
532         btrfs_free_path(path);
533
534 find_root:
535         new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
536         if (IS_ERR(new_root))
537                 return ERR_CAST(new_root);
538
539         if (btrfs_root_refs(&new_root->root_item) == 0)
540                 return ERR_PTR(-ENOENT);
541
542         dir_id = btrfs_root_dirid(&new_root->root_item);
543 setup_root:
544         location.objectid = dir_id;
545         location.type = BTRFS_INODE_ITEM_KEY;
546         location.offset = 0;
547
548         inode = btrfs_iget(sb, &location, new_root, &new);
549         if (IS_ERR(inode))
550                 return ERR_CAST(inode);
551
552         /*
553          * If we're just mounting the root most subvol put the inode and return
554          * a reference to the dentry.  We will have already gotten a reference
555          * to the inode in btrfs_fill_super so we're good to go.
556          */
557         if (!new && sb->s_root->d_inode == inode) {
558                 iput(inode);
559                 return dget(sb->s_root);
560         }
561
562         if (new) {
563                 const struct qstr name = { .name = "/", .len = 1 };
564
565                 /*
566                  * New inode, we need to make the dentry a sibling of s_root so
567                  * everything gets cleaned up properly on unmount.
568                  */
569                 dentry = d_alloc(sb->s_root, &name);
570                 if (!dentry) {
571                         iput(inode);
572                         return ERR_PTR(-ENOMEM);
573                 }
574                 d_splice_alias(inode, dentry);
575         } else {
576                 /*
577                  * We found the inode in cache, just find a dentry for it and
578                  * put the reference to the inode we just got.
579                  */
580                 dentry = d_find_alias(inode);
581                 iput(inode);
582         }
583
584         return dentry;
585 }
586
587 static int btrfs_fill_super(struct super_block *sb,
588                             struct btrfs_fs_devices *fs_devices,
589                             void *data, int silent)
590 {
591         struct inode *inode;
592         struct dentry *root_dentry;
593         struct btrfs_root *tree_root;
594         struct btrfs_key key;
595         int err;
596
597         sb->s_maxbytes = MAX_LFS_FILESIZE;
598         sb->s_magic = BTRFS_SUPER_MAGIC;
599         sb->s_op = &btrfs_super_ops;
600         sb->s_d_op = &btrfs_dentry_operations;
601         sb->s_export_op = &btrfs_export_ops;
602         sb->s_xattr = btrfs_xattr_handlers;
603         sb->s_time_gran = 1;
604 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
605         sb->s_flags |= MS_POSIXACL;
606 #endif
607
608         tree_root = open_ctree(sb, fs_devices, (char *)data);
609
610         if (IS_ERR(tree_root)) {
611                 printk("btrfs: open_ctree failed\n");
612                 return PTR_ERR(tree_root);
613         }
614         sb->s_fs_info = tree_root;
615
616         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
617         key.type = BTRFS_INODE_ITEM_KEY;
618         key.offset = 0;
619         inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
620         if (IS_ERR(inode)) {
621                 err = PTR_ERR(inode);
622                 goto fail_close;
623         }
624
625         root_dentry = d_alloc_root(inode);
626         if (!root_dentry) {
627                 iput(inode);
628                 err = -ENOMEM;
629                 goto fail_close;
630         }
631
632         sb->s_root = root_dentry;
633
634         save_mount_options(sb, data);
635         return 0;
636
637 fail_close:
638         close_ctree(tree_root);
639         return err;
640 }
641
642 int btrfs_sync_fs(struct super_block *sb, int wait)
643 {
644         struct btrfs_trans_handle *trans;
645         struct btrfs_root *root = btrfs_sb(sb);
646         int ret;
647
648         trace_btrfs_sync_fs(wait);
649
650         if (!wait) {
651                 filemap_flush(root->fs_info->btree_inode->i_mapping);
652                 return 0;
653         }
654
655         btrfs_start_delalloc_inodes(root, 0);
656         btrfs_wait_ordered_extents(root, 0, 0);
657
658         trans = btrfs_start_transaction(root, 0);
659         if (IS_ERR(trans))
660                 return PTR_ERR(trans);
661         ret = btrfs_commit_transaction(trans, root);
662         return ret;
663 }
664
665 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
666 {
667         struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
668         struct btrfs_fs_info *info = root->fs_info;
669         char *compress_type;
670
671         if (btrfs_test_opt(root, DEGRADED))
672                 seq_puts(seq, ",degraded");
673         if (btrfs_test_opt(root, NODATASUM))
674                 seq_puts(seq, ",nodatasum");
675         if (btrfs_test_opt(root, NODATACOW))
676                 seq_puts(seq, ",nodatacow");
677         if (btrfs_test_opt(root, NOBARRIER))
678                 seq_puts(seq, ",nobarrier");
679         if (info->max_inline != 8192 * 1024)
680                 seq_printf(seq, ",max_inline=%llu",
681                            (unsigned long long)info->max_inline);
682         if (info->alloc_start != 0)
683                 seq_printf(seq, ",alloc_start=%llu",
684                            (unsigned long long)info->alloc_start);
685         if (info->thread_pool_size !=  min_t(unsigned long,
686                                              num_online_cpus() + 2, 8))
687                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
688         if (btrfs_test_opt(root, COMPRESS)) {
689                 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
690                         compress_type = "zlib";
691                 else
692                         compress_type = "lzo";
693                 if (btrfs_test_opt(root, FORCE_COMPRESS))
694                         seq_printf(seq, ",compress-force=%s", compress_type);
695                 else
696                         seq_printf(seq, ",compress=%s", compress_type);
697         }
698         if (btrfs_test_opt(root, NOSSD))
699                 seq_puts(seq, ",nossd");
700         if (btrfs_test_opt(root, SSD_SPREAD))
701                 seq_puts(seq, ",ssd_spread");
702         else if (btrfs_test_opt(root, SSD))
703                 seq_puts(seq, ",ssd");
704         if (btrfs_test_opt(root, NOTREELOG))
705                 seq_puts(seq, ",notreelog");
706         if (btrfs_test_opt(root, FLUSHONCOMMIT))
707                 seq_puts(seq, ",flushoncommit");
708         if (btrfs_test_opt(root, DISCARD))
709                 seq_puts(seq, ",discard");
710         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
711                 seq_puts(seq, ",noacl");
712         if (btrfs_test_opt(root, SPACE_CACHE))
713                 seq_puts(seq, ",space_cache");
714         if (btrfs_test_opt(root, CLEAR_CACHE))
715                 seq_puts(seq, ",clear_cache");
716         if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
717                 seq_puts(seq, ",user_subvol_rm_allowed");
718         return 0;
719 }
720
721 static int btrfs_test_super(struct super_block *s, void *data)
722 {
723         struct btrfs_root *test_root = data;
724         struct btrfs_root *root = btrfs_sb(s);
725
726         /*
727          * If this super block is going away, return false as it
728          * can't match as an existing super block.
729          */
730         if (!atomic_read(&s->s_active))
731                 return 0;
732         return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
733 }
734
735 static int btrfs_set_super(struct super_block *s, void *data)
736 {
737         s->s_fs_info = data;
738
739         return set_anon_super(s, data);
740 }
741
742
743 /*
744  * Find a superblock for the given device / mount point.
745  *
746  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
747  *        for multiple device setup.  Make sure to keep it in sync.
748  */
749 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
750                 const char *device_name, void *data)
751 {
752         struct block_device *bdev = NULL;
753         struct super_block *s;
754         struct dentry *root;
755         struct btrfs_fs_devices *fs_devices = NULL;
756         struct btrfs_root *tree_root = NULL;
757         struct btrfs_fs_info *fs_info = NULL;
758         fmode_t mode = FMODE_READ;
759         char *subvol_name = NULL;
760         u64 subvol_objectid = 0;
761         u64 subvol_rootid = 0;
762         int error = 0;
763
764         if (!(flags & MS_RDONLY))
765                 mode |= FMODE_WRITE;
766
767         error = btrfs_parse_early_options(data, mode, fs_type,
768                                           &subvol_name, &subvol_objectid,
769                                           &subvol_rootid, &fs_devices);
770         if (error)
771                 return ERR_PTR(error);
772
773         error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
774         if (error)
775                 goto error_free_subvol_name;
776
777         error = btrfs_open_devices(fs_devices, mode, fs_type);
778         if (error)
779                 goto error_free_subvol_name;
780
781         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
782                 error = -EACCES;
783                 goto error_close_devices;
784         }
785
786         /*
787          * Setup a dummy root and fs_info for test/set super.  This is because
788          * we don't actually fill this stuff out until open_ctree, but we need
789          * it for searching for existing supers, so this lets us do that and
790          * then open_ctree will properly initialize everything later.
791          */
792         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
793         tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
794         if (!fs_info || !tree_root) {
795                 error = -ENOMEM;
796                 goto error_close_devices;
797         }
798         fs_info->tree_root = tree_root;
799         fs_info->fs_devices = fs_devices;
800         tree_root->fs_info = fs_info;
801
802         bdev = fs_devices->latest_bdev;
803         s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
804         if (IS_ERR(s))
805                 goto error_s;
806
807         if (s->s_root) {
808                 if ((flags ^ s->s_flags) & MS_RDONLY) {
809                         deactivate_locked_super(s);
810                         error = -EBUSY;
811                         goto error_close_devices;
812                 }
813
814                 btrfs_close_devices(fs_devices);
815                 kfree(fs_info);
816                 kfree(tree_root);
817         } else {
818                 char b[BDEVNAME_SIZE];
819
820                 s->s_flags = flags;
821                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
822                 error = btrfs_fill_super(s, fs_devices, data,
823                                          flags & MS_SILENT ? 1 : 0);
824                 if (error) {
825                         deactivate_locked_super(s);
826                         goto error_free_subvol_name;
827                 }
828
829                 btrfs_sb(s)->fs_info->bdev_holder = fs_type;
830                 s->s_flags |= MS_ACTIVE;
831         }
832
833         /* if they gave us a subvolume name bind mount into that */
834         if (strcmp(subvol_name, ".")) {
835                 struct dentry *new_root;
836
837                 root = get_default_root(s, subvol_rootid);
838                 if (IS_ERR(root)) {
839                         error = PTR_ERR(root);
840                         deactivate_locked_super(s);
841                         goto error_free_subvol_name;
842                 }
843
844                 mutex_lock(&root->d_inode->i_mutex);
845                 new_root = lookup_one_len(subvol_name, root,
846                                       strlen(subvol_name));
847                 mutex_unlock(&root->d_inode->i_mutex);
848
849                 if (IS_ERR(new_root)) {
850                         dput(root);
851                         deactivate_locked_super(s);
852                         error = PTR_ERR(new_root);
853                         goto error_free_subvol_name;
854                 }
855                 if (!new_root->d_inode) {
856                         dput(root);
857                         dput(new_root);
858                         deactivate_locked_super(s);
859                         error = -ENXIO;
860                         goto error_free_subvol_name;
861                 }
862                 dput(root);
863                 root = new_root;
864         } else {
865                 root = get_default_root(s, subvol_objectid);
866                 if (IS_ERR(root)) {
867                         error = PTR_ERR(root);
868                         deactivate_locked_super(s);
869                         goto error_free_subvol_name;
870                 }
871         }
872
873         kfree(subvol_name);
874         return root;
875
876 error_s:
877         error = PTR_ERR(s);
878 error_close_devices:
879         btrfs_close_devices(fs_devices);
880         kfree(fs_info);
881         kfree(tree_root);
882 error_free_subvol_name:
883         kfree(subvol_name);
884         return ERR_PTR(error);
885 }
886
887 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
888 {
889         struct btrfs_root *root = btrfs_sb(sb);
890         int ret;
891
892         ret = btrfs_parse_options(root, data);
893         if (ret)
894                 return -EINVAL;
895
896         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
897                 return 0;
898
899         if (*flags & MS_RDONLY) {
900                 sb->s_flags |= MS_RDONLY;
901
902                 ret =  btrfs_commit_super(root);
903                 WARN_ON(ret);
904         } else {
905                 if (root->fs_info->fs_devices->rw_devices == 0)
906                         return -EACCES;
907
908                 if (btrfs_super_log_root(&root->fs_info->super_copy) != 0)
909                         return -EINVAL;
910
911                 ret = btrfs_cleanup_fs_roots(root->fs_info);
912                 WARN_ON(ret);
913
914                 /* recover relocation */
915                 ret = btrfs_recover_relocation(root);
916                 WARN_ON(ret);
917
918                 sb->s_flags &= ~MS_RDONLY;
919         }
920
921         return 0;
922 }
923
924 /* Used to sort the devices by max_avail(descending sort) */
925 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
926                                        const void *dev_info2)
927 {
928         if (((struct btrfs_device_info *)dev_info1)->max_avail >
929             ((struct btrfs_device_info *)dev_info2)->max_avail)
930                 return -1;
931         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
932                  ((struct btrfs_device_info *)dev_info2)->max_avail)
933                 return 1;
934         else
935         return 0;
936 }
937
938 /*
939  * sort the devices by max_avail, in which max free extent size of each device
940  * is stored.(Descending Sort)
941  */
942 static inline void btrfs_descending_sort_devices(
943                                         struct btrfs_device_info *devices,
944                                         size_t nr_devices)
945 {
946         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
947              btrfs_cmp_device_free_bytes, NULL);
948 }
949
950 /*
951  * The helper to calc the free space on the devices that can be used to store
952  * file data.
953  */
954 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
955 {
956         struct btrfs_fs_info *fs_info = root->fs_info;
957         struct btrfs_device_info *devices_info;
958         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
959         struct btrfs_device *device;
960         u64 skip_space;
961         u64 type;
962         u64 avail_space;
963         u64 used_space;
964         u64 min_stripe_size;
965         int min_stripes = 1;
966         int i = 0, nr_devices;
967         int ret;
968
969         nr_devices = fs_info->fs_devices->rw_devices;
970         BUG_ON(!nr_devices);
971
972         devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
973                                GFP_NOFS);
974         if (!devices_info)
975                 return -ENOMEM;
976
977         /* calc min stripe number for data space alloction */
978         type = btrfs_get_alloc_profile(root, 1);
979         if (type & BTRFS_BLOCK_GROUP_RAID0)
980                 min_stripes = 2;
981         else if (type & BTRFS_BLOCK_GROUP_RAID1)
982                 min_stripes = 2;
983         else if (type & BTRFS_BLOCK_GROUP_RAID10)
984                 min_stripes = 4;
985
986         if (type & BTRFS_BLOCK_GROUP_DUP)
987                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
988         else
989                 min_stripe_size = BTRFS_STRIPE_LEN;
990
991         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
992                 if (!device->in_fs_metadata)
993                         continue;
994
995                 avail_space = device->total_bytes - device->bytes_used;
996
997                 /* align with stripe_len */
998                 do_div(avail_space, BTRFS_STRIPE_LEN);
999                 avail_space *= BTRFS_STRIPE_LEN;
1000
1001                 /*
1002                  * In order to avoid overwritting the superblock on the drive,
1003                  * btrfs starts at an offset of at least 1MB when doing chunk
1004                  * allocation.
1005                  */
1006                 skip_space = 1024 * 1024;
1007
1008                 /* user can set the offset in fs_info->alloc_start. */
1009                 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1010                     device->total_bytes)
1011                         skip_space = max(fs_info->alloc_start, skip_space);
1012
1013                 /*
1014                  * btrfs can not use the free space in [0, skip_space - 1],
1015                  * we must subtract it from the total. In order to implement
1016                  * it, we account the used space in this range first.
1017                  */
1018                 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1019                                                      &used_space);
1020                 if (ret) {
1021                         kfree(devices_info);
1022                         return ret;
1023                 }
1024
1025                 /* calc the free space in [0, skip_space - 1] */
1026                 skip_space -= used_space;
1027
1028                 /*
1029                  * we can use the free space in [0, skip_space - 1], subtract
1030                  * it from the total.
1031                  */
1032                 if (avail_space && avail_space >= skip_space)
1033                         avail_space -= skip_space;
1034                 else
1035                         avail_space = 0;
1036
1037                 if (avail_space < min_stripe_size)
1038                         continue;
1039
1040                 devices_info[i].dev = device;
1041                 devices_info[i].max_avail = avail_space;
1042
1043                 i++;
1044         }
1045
1046         nr_devices = i;
1047
1048         btrfs_descending_sort_devices(devices_info, nr_devices);
1049
1050         i = nr_devices - 1;
1051         avail_space = 0;
1052         while (nr_devices >= min_stripes) {
1053                 if (devices_info[i].max_avail >= min_stripe_size) {
1054                         int j;
1055                         u64 alloc_size;
1056
1057                         avail_space += devices_info[i].max_avail * min_stripes;
1058                         alloc_size = devices_info[i].max_avail;
1059                         for (j = i + 1 - min_stripes; j <= i; j++)
1060                                 devices_info[j].max_avail -= alloc_size;
1061                 }
1062                 i--;
1063                 nr_devices--;
1064         }
1065
1066         kfree(devices_info);
1067         *free_bytes = avail_space;
1068         return 0;
1069 }
1070
1071 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1072 {
1073         struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1074         struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1075         struct list_head *head = &root->fs_info->space_info;
1076         struct btrfs_space_info *found;
1077         u64 total_used = 0;
1078         u64 total_free_data = 0;
1079         int bits = dentry->d_sb->s_blocksize_bits;
1080         __be32 *fsid = (__be32 *)root->fs_info->fsid;
1081         int ret;
1082
1083         /* holding chunk_muext to avoid allocating new chunks */
1084         mutex_lock(&root->fs_info->chunk_mutex);
1085         rcu_read_lock();
1086         list_for_each_entry_rcu(found, head, list) {
1087                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1088                         total_free_data += found->disk_total - found->disk_used;
1089                         total_free_data -=
1090                                 btrfs_account_ro_block_groups_free_space(found);
1091                 }
1092
1093                 total_used += found->disk_used;
1094         }
1095         rcu_read_unlock();
1096
1097         buf->f_namelen = BTRFS_NAME_LEN;
1098         buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1099         buf->f_bfree = buf->f_blocks - (total_used >> bits);
1100         buf->f_bsize = dentry->d_sb->s_blocksize;
1101         buf->f_type = BTRFS_SUPER_MAGIC;
1102         buf->f_bavail = total_free_data;
1103         ret = btrfs_calc_avail_data_space(root, &total_free_data);
1104         if (ret) {
1105                 mutex_unlock(&root->fs_info->chunk_mutex);
1106                 return ret;
1107         }
1108         buf->f_bavail += total_free_data;
1109         buf->f_bavail = buf->f_bavail >> bits;
1110         mutex_unlock(&root->fs_info->chunk_mutex);
1111
1112         /* We treat it as constant endianness (it doesn't matter _which_)
1113            because we want the fsid to come out the same whether mounted
1114            on a big-endian or little-endian host */
1115         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1116         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1117         /* Mask in the root object ID too, to disambiguate subvols */
1118         buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1119         buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1120
1121         return 0;
1122 }
1123
1124 static struct file_system_type btrfs_fs_type = {
1125         .owner          = THIS_MODULE,
1126         .name           = "btrfs",
1127         .mount          = btrfs_mount,
1128         .kill_sb        = kill_anon_super,
1129         .fs_flags       = FS_REQUIRES_DEV,
1130 };
1131
1132 /*
1133  * used by btrfsctl to scan devices when no FS is mounted
1134  */
1135 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1136                                 unsigned long arg)
1137 {
1138         struct btrfs_ioctl_vol_args *vol;
1139         struct btrfs_fs_devices *fs_devices;
1140         int ret = -ENOTTY;
1141
1142         if (!capable(CAP_SYS_ADMIN))
1143                 return -EPERM;
1144
1145         vol = memdup_user((void __user *)arg, sizeof(*vol));
1146         if (IS_ERR(vol))
1147                 return PTR_ERR(vol);
1148
1149         switch (cmd) {
1150         case BTRFS_IOC_SCAN_DEV:
1151                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1152                                             &btrfs_fs_type, &fs_devices);
1153                 break;
1154         }
1155
1156         kfree(vol);
1157         return ret;
1158 }
1159
1160 static int btrfs_freeze(struct super_block *sb)
1161 {
1162         struct btrfs_root *root = btrfs_sb(sb);
1163         mutex_lock(&root->fs_info->transaction_kthread_mutex);
1164         mutex_lock(&root->fs_info->cleaner_mutex);
1165         return 0;
1166 }
1167
1168 static int btrfs_unfreeze(struct super_block *sb)
1169 {
1170         struct btrfs_root *root = btrfs_sb(sb);
1171         mutex_unlock(&root->fs_info->cleaner_mutex);
1172         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1173         return 0;
1174 }
1175
1176 static const struct super_operations btrfs_super_ops = {
1177         .drop_inode     = btrfs_drop_inode,
1178         .evict_inode    = btrfs_evict_inode,
1179         .put_super      = btrfs_put_super,
1180         .sync_fs        = btrfs_sync_fs,
1181         .show_options   = btrfs_show_options,
1182         .write_inode    = btrfs_write_inode,
1183         .dirty_inode    = btrfs_dirty_inode,
1184         .alloc_inode    = btrfs_alloc_inode,
1185         .destroy_inode  = btrfs_destroy_inode,
1186         .statfs         = btrfs_statfs,
1187         .remount_fs     = btrfs_remount,
1188         .freeze_fs      = btrfs_freeze,
1189         .unfreeze_fs    = btrfs_unfreeze,
1190 };
1191
1192 static const struct file_operations btrfs_ctl_fops = {
1193         .unlocked_ioctl  = btrfs_control_ioctl,
1194         .compat_ioctl = btrfs_control_ioctl,
1195         .owner   = THIS_MODULE,
1196         .llseek = noop_llseek,
1197 };
1198
1199 static struct miscdevice btrfs_misc = {
1200         .minor          = BTRFS_MINOR,
1201         .name           = "btrfs-control",
1202         .fops           = &btrfs_ctl_fops
1203 };
1204
1205 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1206 MODULE_ALIAS("devname:btrfs-control");
1207
1208 static int btrfs_interface_init(void)
1209 {
1210         return misc_register(&btrfs_misc);
1211 }
1212
1213 static void btrfs_interface_exit(void)
1214 {
1215         if (misc_deregister(&btrfs_misc) < 0)
1216                 printk(KERN_INFO "misc_deregister failed for control device");
1217 }
1218
1219 static int __init init_btrfs_fs(void)
1220 {
1221         int err;
1222
1223         err = btrfs_init_sysfs();
1224         if (err)
1225                 return err;
1226
1227         err = btrfs_init_compress();
1228         if (err)
1229                 goto free_sysfs;
1230
1231         err = btrfs_init_cachep();
1232         if (err)
1233                 goto free_compress;
1234
1235         err = extent_io_init();
1236         if (err)
1237                 goto free_cachep;
1238
1239         err = extent_map_init();
1240         if (err)
1241                 goto free_extent_io;
1242
1243         err = btrfs_delayed_inode_init();
1244         if (err)
1245                 goto free_extent_map;
1246
1247         err = btrfs_interface_init();
1248         if (err)
1249                 goto free_delayed_inode;
1250
1251         err = register_filesystem(&btrfs_fs_type);
1252         if (err)
1253                 goto unregister_ioctl;
1254
1255         printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1256         return 0;
1257
1258 unregister_ioctl:
1259         btrfs_interface_exit();
1260 free_delayed_inode:
1261         btrfs_delayed_inode_exit();
1262 free_extent_map:
1263         extent_map_exit();
1264 free_extent_io:
1265         extent_io_exit();
1266 free_cachep:
1267         btrfs_destroy_cachep();
1268 free_compress:
1269         btrfs_exit_compress();
1270 free_sysfs:
1271         btrfs_exit_sysfs();
1272         return err;
1273 }
1274
1275 static void __exit exit_btrfs_fs(void)
1276 {
1277         btrfs_destroy_cachep();
1278         btrfs_delayed_inode_exit();
1279         extent_map_exit();
1280         extent_io_exit();
1281         btrfs_interface_exit();
1282         unregister_filesystem(&btrfs_fs_type);
1283         btrfs_exit_sysfs();
1284         btrfs_cleanup_fs_uuids();
1285         btrfs_exit_compress();
1286 }
1287
1288 module_init(init_btrfs_fs)
1289 module_exit(exit_btrfs_fs)
1290
1291 MODULE_LICENSE("GPL");