Merge tag 'sound-3.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[pandora-kernel.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/btrfs.h>
61
62 static const struct super_operations btrfs_super_ops;
63 static struct file_system_type btrfs_fs_type;
64
65 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
66                                       char nbuf[16])
67 {
68         char *errstr = NULL;
69
70         switch (errno) {
71         case -EIO:
72                 errstr = "IO failure";
73                 break;
74         case -ENOMEM:
75                 errstr = "Out of memory";
76                 break;
77         case -EROFS:
78                 errstr = "Readonly filesystem";
79                 break;
80         case -EEXIST:
81                 errstr = "Object already exists";
82                 break;
83         default:
84                 if (nbuf) {
85                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
86                                 errstr = nbuf;
87                 }
88                 break;
89         }
90
91         return errstr;
92 }
93
94 static void __save_error_info(struct btrfs_fs_info *fs_info)
95 {
96         /*
97          * today we only save the error info into ram.  Long term we'll
98          * also send it down to the disk
99          */
100         fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
101 }
102
103 /* NOTE:
104  *      We move write_super stuff at umount in order to avoid deadlock
105  *      for umount hold all lock.
106  */
107 static void save_error_info(struct btrfs_fs_info *fs_info)
108 {
109         __save_error_info(fs_info);
110 }
111
112 /* btrfs handle error by forcing the filesystem readonly */
113 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
114 {
115         struct super_block *sb = fs_info->sb;
116
117         if (sb->s_flags & MS_RDONLY)
118                 return;
119
120         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
121                 sb->s_flags |= MS_RDONLY;
122                 printk(KERN_INFO "btrfs is forced readonly\n");
123                 __btrfs_scrub_cancel(fs_info);
124 //              WARN_ON(1);
125         }
126 }
127
128 /*
129  * __btrfs_std_error decodes expected errors from the caller and
130  * invokes the approciate error response.
131  */
132 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
133                        unsigned int line, int errno, const char *fmt, ...)
134 {
135         struct super_block *sb = fs_info->sb;
136         char nbuf[16];
137         const char *errstr;
138         va_list args;
139         va_start(args, fmt);
140
141         /*
142          * Special case: if the error is EROFS, and we're already
143          * under MS_RDONLY, then it is safe here.
144          */
145         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
146                 return;
147
148         errstr = btrfs_decode_error(fs_info, errno, nbuf);
149         if (fmt) {
150                 struct va_format vaf = {
151                         .fmt = fmt,
152                         .va = &args,
153                 };
154
155                 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
156                         sb->s_id, function, line, errstr, &vaf);
157         } else {
158                 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
159                         sb->s_id, function, line, errstr);
160         }
161
162         /* Don't go through full error handling during mount */
163         if (sb->s_flags & MS_BORN) {
164                 save_error_info(fs_info);
165                 btrfs_handle_error(fs_info);
166         }
167         va_end(args);
168 }
169
170 const char *logtypes[] = {
171         "emergency",
172         "alert",
173         "critical",
174         "error",
175         "warning",
176         "notice",
177         "info",
178         "debug",
179 };
180
181 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
182 {
183         struct super_block *sb = fs_info->sb;
184         char lvl[4];
185         struct va_format vaf;
186         va_list args;
187         const char *type = logtypes[4];
188
189         va_start(args, fmt);
190
191         if (fmt[0] == '<' && isdigit(fmt[1]) && fmt[2] == '>') {
192                 memcpy(lvl, fmt, 3);
193                 lvl[3] = '\0';
194                 fmt += 3;
195                 type = logtypes[fmt[1] - '0'];
196         } else
197                 *lvl = '\0';
198
199         vaf.fmt = fmt;
200         vaf.va = &args;
201         printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
202 }
203
204 /*
205  * We only mark the transaction aborted and then set the file system read-only.
206  * This will prevent new transactions from starting or trying to join this
207  * one.
208  *
209  * This means that error recovery at the call site is limited to freeing
210  * any local memory allocations and passing the error code up without
211  * further cleanup. The transaction should complete as it normally would
212  * in the call path but will return -EIO.
213  *
214  * We'll complete the cleanup in btrfs_end_transaction and
215  * btrfs_commit_transaction.
216  */
217 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
218                                struct btrfs_root *root, const char *function,
219                                unsigned int line, int errno)
220 {
221         WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted");
222         trans->aborted = errno;
223         /* Nothing used. The other threads that have joined this
224          * transaction may be able to continue. */
225         if (!trans->blocks_used) {
226                 btrfs_printk(root->fs_info, "Aborting unused transaction.\n");
227                 return;
228         }
229         trans->transaction->aborted = errno;
230         __btrfs_std_error(root->fs_info, function, line, errno, NULL);
231 }
232 /*
233  * __btrfs_panic decodes unexpected, fatal errors from the caller,
234  * issues an alert, and either panics or BUGs, depending on mount options.
235  */
236 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
237                    unsigned int line, int errno, const char *fmt, ...)
238 {
239         char nbuf[16];
240         char *s_id = "<unknown>";
241         const char *errstr;
242         struct va_format vaf = { .fmt = fmt };
243         va_list args;
244
245         if (fs_info)
246                 s_id = fs_info->sb->s_id;
247
248         va_start(args, fmt);
249         vaf.va = &args;
250
251         errstr = btrfs_decode_error(fs_info, errno, nbuf);
252         if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
253                 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
254                         s_id, function, line, &vaf, errstr);
255
256         printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
257                s_id, function, line, &vaf, errstr);
258         va_end(args);
259         /* Caller calls BUG() */
260 }
261
262 static void btrfs_put_super(struct super_block *sb)
263 {
264         (void)close_ctree(btrfs_sb(sb)->tree_root);
265         /* FIXME: need to fix VFS to return error? */
266         /* AV: return it _where_?  ->put_super() can be triggered by any number
267          * of async events, up to and including delivery of SIGKILL to the
268          * last process that kept it busy.  Or segfault in the aforementioned
269          * process...  Whom would you report that to?
270          */
271 }
272
273 enum {
274         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
275         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
276         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
277         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
278         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
279         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
280         Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
281         Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
282         Opt_check_integrity, Opt_check_integrity_including_extent_data,
283         Opt_check_integrity_print_mask, Opt_fatal_errors,
284         Opt_err,
285 };
286
287 static match_table_t tokens = {
288         {Opt_degraded, "degraded"},
289         {Opt_subvol, "subvol=%s"},
290         {Opt_subvolid, "subvolid=%d"},
291         {Opt_device, "device=%s"},
292         {Opt_nodatasum, "nodatasum"},
293         {Opt_nodatacow, "nodatacow"},
294         {Opt_nobarrier, "nobarrier"},
295         {Opt_max_inline, "max_inline=%s"},
296         {Opt_alloc_start, "alloc_start=%s"},
297         {Opt_thread_pool, "thread_pool=%d"},
298         {Opt_compress, "compress"},
299         {Opt_compress_type, "compress=%s"},
300         {Opt_compress_force, "compress-force"},
301         {Opt_compress_force_type, "compress-force=%s"},
302         {Opt_ssd, "ssd"},
303         {Opt_ssd_spread, "ssd_spread"},
304         {Opt_nossd, "nossd"},
305         {Opt_noacl, "noacl"},
306         {Opt_notreelog, "notreelog"},
307         {Opt_flushoncommit, "flushoncommit"},
308         {Opt_ratio, "metadata_ratio=%d"},
309         {Opt_discard, "discard"},
310         {Opt_space_cache, "space_cache"},
311         {Opt_clear_cache, "clear_cache"},
312         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
313         {Opt_enospc_debug, "enospc_debug"},
314         {Opt_subvolrootid, "subvolrootid=%d"},
315         {Opt_defrag, "autodefrag"},
316         {Opt_inode_cache, "inode_cache"},
317         {Opt_no_space_cache, "nospace_cache"},
318         {Opt_recovery, "recovery"},
319         {Opt_skip_balance, "skip_balance"},
320         {Opt_check_integrity, "check_int"},
321         {Opt_check_integrity_including_extent_data, "check_int_data"},
322         {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
323         {Opt_fatal_errors, "fatal_errors=%s"},
324         {Opt_err, NULL},
325 };
326
327 /*
328  * Regular mount options parser.  Everything that is needed only when
329  * reading in a new superblock is parsed here.
330  * XXX JDM: This needs to be cleaned up for remount.
331  */
332 int btrfs_parse_options(struct btrfs_root *root, char *options)
333 {
334         struct btrfs_fs_info *info = root->fs_info;
335         substring_t args[MAX_OPT_ARGS];
336         char *p, *num, *orig = NULL;
337         u64 cache_gen;
338         int intarg;
339         int ret = 0;
340         char *compress_type;
341         bool compress_force = false;
342
343         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
344         if (cache_gen)
345                 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
346
347         if (!options)
348                 goto out;
349
350         /*
351          * strsep changes the string, duplicate it because parse_options
352          * gets called twice
353          */
354         options = kstrdup(options, GFP_NOFS);
355         if (!options)
356                 return -ENOMEM;
357
358         orig = options;
359
360         while ((p = strsep(&options, ",")) != NULL) {
361                 int token;
362                 if (!*p)
363                         continue;
364
365                 token = match_token(p, tokens, args);
366                 switch (token) {
367                 case Opt_degraded:
368                         printk(KERN_INFO "btrfs: allowing degraded mounts\n");
369                         btrfs_set_opt(info->mount_opt, DEGRADED);
370                         break;
371                 case Opt_subvol:
372                 case Opt_subvolid:
373                 case Opt_subvolrootid:
374                 case Opt_device:
375                         /*
376                          * These are parsed by btrfs_parse_early_options
377                          * and can be happily ignored here.
378                          */
379                         break;
380                 case Opt_nodatasum:
381                         printk(KERN_INFO "btrfs: setting nodatasum\n");
382                         btrfs_set_opt(info->mount_opt, NODATASUM);
383                         break;
384                 case Opt_nodatacow:
385                         printk(KERN_INFO "btrfs: setting nodatacow\n");
386                         btrfs_set_opt(info->mount_opt, NODATACOW);
387                         btrfs_set_opt(info->mount_opt, NODATASUM);
388                         break;
389                 case Opt_compress_force:
390                 case Opt_compress_force_type:
391                         compress_force = true;
392                 case Opt_compress:
393                 case Opt_compress_type:
394                         if (token == Opt_compress ||
395                             token == Opt_compress_force ||
396                             strcmp(args[0].from, "zlib") == 0) {
397                                 compress_type = "zlib";
398                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
399                         } else if (strcmp(args[0].from, "lzo") == 0) {
400                                 compress_type = "lzo";
401                                 info->compress_type = BTRFS_COMPRESS_LZO;
402                         } else {
403                                 ret = -EINVAL;
404                                 goto out;
405                         }
406
407                         btrfs_set_opt(info->mount_opt, COMPRESS);
408                         if (compress_force) {
409                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
410                                 pr_info("btrfs: force %s compression\n",
411                                         compress_type);
412                         } else
413                                 pr_info("btrfs: use %s compression\n",
414                                         compress_type);
415                         break;
416                 case Opt_ssd:
417                         printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
418                         btrfs_set_opt(info->mount_opt, SSD);
419                         break;
420                 case Opt_ssd_spread:
421                         printk(KERN_INFO "btrfs: use spread ssd "
422                                "allocation scheme\n");
423                         btrfs_set_opt(info->mount_opt, SSD);
424                         btrfs_set_opt(info->mount_opt, SSD_SPREAD);
425                         break;
426                 case Opt_nossd:
427                         printk(KERN_INFO "btrfs: not using ssd allocation "
428                                "scheme\n");
429                         btrfs_set_opt(info->mount_opt, NOSSD);
430                         btrfs_clear_opt(info->mount_opt, SSD);
431                         btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
432                         break;
433                 case Opt_nobarrier:
434                         printk(KERN_INFO "btrfs: turning off barriers\n");
435                         btrfs_set_opt(info->mount_opt, NOBARRIER);
436                         break;
437                 case Opt_thread_pool:
438                         intarg = 0;
439                         match_int(&args[0], &intarg);
440                         if (intarg)
441                                 info->thread_pool_size = intarg;
442                         break;
443                 case Opt_max_inline:
444                         num = match_strdup(&args[0]);
445                         if (num) {
446                                 info->max_inline = memparse(num, NULL);
447                                 kfree(num);
448
449                                 if (info->max_inline) {
450                                         info->max_inline = max_t(u64,
451                                                 info->max_inline,
452                                                 root->sectorsize);
453                                 }
454                                 printk(KERN_INFO "btrfs: max_inline at %llu\n",
455                                         (unsigned long long)info->max_inline);
456                         }
457                         break;
458                 case Opt_alloc_start:
459                         num = match_strdup(&args[0]);
460                         if (num) {
461                                 info->alloc_start = memparse(num, NULL);
462                                 kfree(num);
463                                 printk(KERN_INFO
464                                         "btrfs: allocations start at %llu\n",
465                                         (unsigned long long)info->alloc_start);
466                         }
467                         break;
468                 case Opt_noacl:
469                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
470                         break;
471                 case Opt_notreelog:
472                         printk(KERN_INFO "btrfs: disabling tree log\n");
473                         btrfs_set_opt(info->mount_opt, NOTREELOG);
474                         break;
475                 case Opt_flushoncommit:
476                         printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
477                         btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
478                         break;
479                 case Opt_ratio:
480                         intarg = 0;
481                         match_int(&args[0], &intarg);
482                         if (intarg) {
483                                 info->metadata_ratio = intarg;
484                                 printk(KERN_INFO "btrfs: metadata ratio %d\n",
485                                        info->metadata_ratio);
486                         }
487                         break;
488                 case Opt_discard:
489                         btrfs_set_opt(info->mount_opt, DISCARD);
490                         break;
491                 case Opt_space_cache:
492                         btrfs_set_opt(info->mount_opt, SPACE_CACHE);
493                         break;
494                 case Opt_no_space_cache:
495                         printk(KERN_INFO "btrfs: disabling disk space caching\n");
496                         btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
497                         break;
498                 case Opt_inode_cache:
499                         printk(KERN_INFO "btrfs: enabling inode map caching\n");
500                         btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
501                         break;
502                 case Opt_clear_cache:
503                         printk(KERN_INFO "btrfs: force clearing of disk cache\n");
504                         btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
505                         break;
506                 case Opt_user_subvol_rm_allowed:
507                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
508                         break;
509                 case Opt_enospc_debug:
510                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
511                         break;
512                 case Opt_defrag:
513                         printk(KERN_INFO "btrfs: enabling auto defrag");
514                         btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
515                         break;
516                 case Opt_recovery:
517                         printk(KERN_INFO "btrfs: enabling auto recovery");
518                         btrfs_set_opt(info->mount_opt, RECOVERY);
519                         break;
520                 case Opt_skip_balance:
521                         btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
522                         break;
523 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
524                 case Opt_check_integrity_including_extent_data:
525                         printk(KERN_INFO "btrfs: enabling check integrity"
526                                " including extent data\n");
527                         btrfs_set_opt(info->mount_opt,
528                                       CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
529                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
530                         break;
531                 case Opt_check_integrity:
532                         printk(KERN_INFO "btrfs: enabling check integrity\n");
533                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
534                         break;
535                 case Opt_check_integrity_print_mask:
536                         intarg = 0;
537                         match_int(&args[0], &intarg);
538                         if (intarg) {
539                                 info->check_integrity_print_mask = intarg;
540                                 printk(KERN_INFO "btrfs:"
541                                        " check_integrity_print_mask 0x%x\n",
542                                        info->check_integrity_print_mask);
543                         }
544                         break;
545 #else
546                 case Opt_check_integrity_including_extent_data:
547                 case Opt_check_integrity:
548                 case Opt_check_integrity_print_mask:
549                         printk(KERN_ERR "btrfs: support for check_integrity*"
550                                " not compiled in!\n");
551                         ret = -EINVAL;
552                         goto out;
553 #endif
554                 case Opt_fatal_errors:
555                         if (strcmp(args[0].from, "panic") == 0)
556                                 btrfs_set_opt(info->mount_opt,
557                                               PANIC_ON_FATAL_ERROR);
558                         else if (strcmp(args[0].from, "bug") == 0)
559                                 btrfs_clear_opt(info->mount_opt,
560                                               PANIC_ON_FATAL_ERROR);
561                         else {
562                                 ret = -EINVAL;
563                                 goto out;
564                         }
565                         break;
566                 case Opt_err:
567                         printk(KERN_INFO "btrfs: unrecognized mount option "
568                                "'%s'\n", p);
569                         ret = -EINVAL;
570                         goto out;
571                 default:
572                         break;
573                 }
574         }
575 out:
576         if (!ret && btrfs_test_opt(root, SPACE_CACHE))
577                 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
578         kfree(orig);
579         return ret;
580 }
581
582 /*
583  * Parse mount options that are required early in the mount process.
584  *
585  * All other options will be parsed on much later in the mount process and
586  * only when we need to allocate a new super block.
587  */
588 static int btrfs_parse_early_options(const char *options, fmode_t flags,
589                 void *holder, char **subvol_name, u64 *subvol_objectid,
590                 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
591 {
592         substring_t args[MAX_OPT_ARGS];
593         char *device_name, *opts, *orig, *p;
594         int error = 0;
595         int intarg;
596
597         if (!options)
598                 return 0;
599
600         /*
601          * strsep changes the string, duplicate it because parse_options
602          * gets called twice
603          */
604         opts = kstrdup(options, GFP_KERNEL);
605         if (!opts)
606                 return -ENOMEM;
607         orig = opts;
608
609         while ((p = strsep(&opts, ",")) != NULL) {
610                 int token;
611                 if (!*p)
612                         continue;
613
614                 token = match_token(p, tokens, args);
615                 switch (token) {
616                 case Opt_subvol:
617                         kfree(*subvol_name);
618                         *subvol_name = match_strdup(&args[0]);
619                         break;
620                 case Opt_subvolid:
621                         intarg = 0;
622                         error = match_int(&args[0], &intarg);
623                         if (!error) {
624                                 /* we want the original fs_tree */
625                                 if (!intarg)
626                                         *subvol_objectid =
627                                                 BTRFS_FS_TREE_OBJECTID;
628                                 else
629                                         *subvol_objectid = intarg;
630                         }
631                         break;
632                 case Opt_subvolrootid:
633                         intarg = 0;
634                         error = match_int(&args[0], &intarg);
635                         if (!error) {
636                                 /* we want the original fs_tree */
637                                 if (!intarg)
638                                         *subvol_rootid =
639                                                 BTRFS_FS_TREE_OBJECTID;
640                                 else
641                                         *subvol_rootid = intarg;
642                         }
643                         break;
644                 case Opt_device:
645                         device_name = match_strdup(&args[0]);
646                         if (!device_name) {
647                                 error = -ENOMEM;
648                                 goto out;
649                         }
650                         error = btrfs_scan_one_device(device_name,
651                                         flags, holder, fs_devices);
652                         kfree(device_name);
653                         if (error)
654                                 goto out;
655                         break;
656                 default:
657                         break;
658                 }
659         }
660
661 out:
662         kfree(orig);
663         return error;
664 }
665
666 static struct dentry *get_default_root(struct super_block *sb,
667                                        u64 subvol_objectid)
668 {
669         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
670         struct btrfs_root *root = fs_info->tree_root;
671         struct btrfs_root *new_root;
672         struct btrfs_dir_item *di;
673         struct btrfs_path *path;
674         struct btrfs_key location;
675         struct inode *inode;
676         u64 dir_id;
677         int new = 0;
678
679         /*
680          * We have a specific subvol we want to mount, just setup location and
681          * go look up the root.
682          */
683         if (subvol_objectid) {
684                 location.objectid = subvol_objectid;
685                 location.type = BTRFS_ROOT_ITEM_KEY;
686                 location.offset = (u64)-1;
687                 goto find_root;
688         }
689
690         path = btrfs_alloc_path();
691         if (!path)
692                 return ERR_PTR(-ENOMEM);
693         path->leave_spinning = 1;
694
695         /*
696          * Find the "default" dir item which points to the root item that we
697          * will mount by default if we haven't been given a specific subvolume
698          * to mount.
699          */
700         dir_id = btrfs_super_root_dir(fs_info->super_copy);
701         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
702         if (IS_ERR(di)) {
703                 btrfs_free_path(path);
704                 return ERR_CAST(di);
705         }
706         if (!di) {
707                 /*
708                  * Ok the default dir item isn't there.  This is weird since
709                  * it's always been there, but don't freak out, just try and
710                  * mount to root most subvolume.
711                  */
712                 btrfs_free_path(path);
713                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
714                 new_root = fs_info->fs_root;
715                 goto setup_root;
716         }
717
718         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
719         btrfs_free_path(path);
720
721 find_root:
722         new_root = btrfs_read_fs_root_no_name(fs_info, &location);
723         if (IS_ERR(new_root))
724                 return ERR_CAST(new_root);
725
726         if (btrfs_root_refs(&new_root->root_item) == 0)
727                 return ERR_PTR(-ENOENT);
728
729         dir_id = btrfs_root_dirid(&new_root->root_item);
730 setup_root:
731         location.objectid = dir_id;
732         location.type = BTRFS_INODE_ITEM_KEY;
733         location.offset = 0;
734
735         inode = btrfs_iget(sb, &location, new_root, &new);
736         if (IS_ERR(inode))
737                 return ERR_CAST(inode);
738
739         /*
740          * If we're just mounting the root most subvol put the inode and return
741          * a reference to the dentry.  We will have already gotten a reference
742          * to the inode in btrfs_fill_super so we're good to go.
743          */
744         if (!new && sb->s_root->d_inode == inode) {
745                 iput(inode);
746                 return dget(sb->s_root);
747         }
748
749         return d_obtain_alias(inode);
750 }
751
752 static int btrfs_fill_super(struct super_block *sb,
753                             struct btrfs_fs_devices *fs_devices,
754                             void *data, int silent)
755 {
756         struct inode *inode;
757         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
758         struct btrfs_key key;
759         int err;
760
761         sb->s_maxbytes = MAX_LFS_FILESIZE;
762         sb->s_magic = BTRFS_SUPER_MAGIC;
763         sb->s_op = &btrfs_super_ops;
764         sb->s_d_op = &btrfs_dentry_operations;
765         sb->s_export_op = &btrfs_export_ops;
766         sb->s_xattr = btrfs_xattr_handlers;
767         sb->s_time_gran = 1;
768 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
769         sb->s_flags |= MS_POSIXACL;
770 #endif
771         sb->s_flags |= MS_I_VERSION;
772         err = open_ctree(sb, fs_devices, (char *)data);
773         if (err) {
774                 printk("btrfs: open_ctree failed\n");
775                 return err;
776         }
777
778         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
779         key.type = BTRFS_INODE_ITEM_KEY;
780         key.offset = 0;
781         inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
782         if (IS_ERR(inode)) {
783                 err = PTR_ERR(inode);
784                 goto fail_close;
785         }
786
787         sb->s_root = d_make_root(inode);
788         if (!sb->s_root) {
789                 err = -ENOMEM;
790                 goto fail_close;
791         }
792
793         save_mount_options(sb, data);
794         cleancache_init_fs(sb);
795         sb->s_flags |= MS_ACTIVE;
796         return 0;
797
798 fail_close:
799         close_ctree(fs_info->tree_root);
800         return err;
801 }
802
803 int btrfs_sync_fs(struct super_block *sb, int wait)
804 {
805         struct btrfs_trans_handle *trans;
806         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
807         struct btrfs_root *root = fs_info->tree_root;
808         int ret;
809
810         trace_btrfs_sync_fs(wait);
811
812         if (!wait) {
813                 filemap_flush(fs_info->btree_inode->i_mapping);
814                 return 0;
815         }
816
817         btrfs_wait_ordered_extents(root, 0, 0);
818
819         trans = btrfs_start_transaction(root, 0);
820         if (IS_ERR(trans))
821                 return PTR_ERR(trans);
822         ret = btrfs_commit_transaction(trans, root);
823         return ret;
824 }
825
826 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
827 {
828         struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
829         struct btrfs_root *root = info->tree_root;
830         char *compress_type;
831
832         if (btrfs_test_opt(root, DEGRADED))
833                 seq_puts(seq, ",degraded");
834         if (btrfs_test_opt(root, NODATASUM))
835                 seq_puts(seq, ",nodatasum");
836         if (btrfs_test_opt(root, NODATACOW))
837                 seq_puts(seq, ",nodatacow");
838         if (btrfs_test_opt(root, NOBARRIER))
839                 seq_puts(seq, ",nobarrier");
840         if (info->max_inline != 8192 * 1024)
841                 seq_printf(seq, ",max_inline=%llu",
842                            (unsigned long long)info->max_inline);
843         if (info->alloc_start != 0)
844                 seq_printf(seq, ",alloc_start=%llu",
845                            (unsigned long long)info->alloc_start);
846         if (info->thread_pool_size !=  min_t(unsigned long,
847                                              num_online_cpus() + 2, 8))
848                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
849         if (btrfs_test_opt(root, COMPRESS)) {
850                 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
851                         compress_type = "zlib";
852                 else
853                         compress_type = "lzo";
854                 if (btrfs_test_opt(root, FORCE_COMPRESS))
855                         seq_printf(seq, ",compress-force=%s", compress_type);
856                 else
857                         seq_printf(seq, ",compress=%s", compress_type);
858         }
859         if (btrfs_test_opt(root, NOSSD))
860                 seq_puts(seq, ",nossd");
861         if (btrfs_test_opt(root, SSD_SPREAD))
862                 seq_puts(seq, ",ssd_spread");
863         else if (btrfs_test_opt(root, SSD))
864                 seq_puts(seq, ",ssd");
865         if (btrfs_test_opt(root, NOTREELOG))
866                 seq_puts(seq, ",notreelog");
867         if (btrfs_test_opt(root, FLUSHONCOMMIT))
868                 seq_puts(seq, ",flushoncommit");
869         if (btrfs_test_opt(root, DISCARD))
870                 seq_puts(seq, ",discard");
871         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
872                 seq_puts(seq, ",noacl");
873         if (btrfs_test_opt(root, SPACE_CACHE))
874                 seq_puts(seq, ",space_cache");
875         else
876                 seq_puts(seq, ",nospace_cache");
877         if (btrfs_test_opt(root, CLEAR_CACHE))
878                 seq_puts(seq, ",clear_cache");
879         if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
880                 seq_puts(seq, ",user_subvol_rm_allowed");
881         if (btrfs_test_opt(root, ENOSPC_DEBUG))
882                 seq_puts(seq, ",enospc_debug");
883         if (btrfs_test_opt(root, AUTO_DEFRAG))
884                 seq_puts(seq, ",autodefrag");
885         if (btrfs_test_opt(root, INODE_MAP_CACHE))
886                 seq_puts(seq, ",inode_cache");
887         if (btrfs_test_opt(root, SKIP_BALANCE))
888                 seq_puts(seq, ",skip_balance");
889         if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
890                 seq_puts(seq, ",fatal_errors=panic");
891         return 0;
892 }
893
894 static int btrfs_test_super(struct super_block *s, void *data)
895 {
896         struct btrfs_fs_info *p = data;
897         struct btrfs_fs_info *fs_info = btrfs_sb(s);
898
899         return fs_info->fs_devices == p->fs_devices;
900 }
901
902 static int btrfs_set_super(struct super_block *s, void *data)
903 {
904         int err = set_anon_super(s, data);
905         if (!err)
906                 s->s_fs_info = data;
907         return err;
908 }
909
910 /*
911  * subvolumes are identified by ino 256
912  */
913 static inline int is_subvolume_inode(struct inode *inode)
914 {
915         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
916                 return 1;
917         return 0;
918 }
919
920 /*
921  * This will strip out the subvol=%s argument for an argument string and add
922  * subvolid=0 to make sure we get the actual tree root for path walking to the
923  * subvol we want.
924  */
925 static char *setup_root_args(char *args)
926 {
927         unsigned len = strlen(args) + 2 + 1;
928         char *src, *dst, *buf;
929
930         /*
931          * We need the same args as before, but with this substitution:
932          * s!subvol=[^,]+!subvolid=0!
933          *
934          * Since the replacement string is up to 2 bytes longer than the
935          * original, allocate strlen(args) + 2 + 1 bytes.
936          */
937
938         src = strstr(args, "subvol=");
939         /* This shouldn't happen, but just in case.. */
940         if (!src)
941                 return NULL;
942
943         buf = dst = kmalloc(len, GFP_NOFS);
944         if (!buf)
945                 return NULL;
946
947         /*
948          * If the subvol= arg is not at the start of the string,
949          * copy whatever precedes it into buf.
950          */
951         if (src != args) {
952                 *src++ = '\0';
953                 strcpy(buf, args);
954                 dst += strlen(args);
955         }
956
957         strcpy(dst, "subvolid=0");
958         dst += strlen("subvolid=0");
959
960         /*
961          * If there is a "," after the original subvol=... string,
962          * copy that suffix into our buffer.  Otherwise, we're done.
963          */
964         src = strchr(src, ',');
965         if (src)
966                 strcpy(dst, src);
967
968         return buf;
969 }
970
971 static struct dentry *mount_subvol(const char *subvol_name, int flags,
972                                    const char *device_name, char *data)
973 {
974         struct dentry *root;
975         struct vfsmount *mnt;
976         char *newargs;
977
978         newargs = setup_root_args(data);
979         if (!newargs)
980                 return ERR_PTR(-ENOMEM);
981         mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
982                              newargs);
983         kfree(newargs);
984         if (IS_ERR(mnt))
985                 return ERR_CAST(mnt);
986
987         root = mount_subtree(mnt, subvol_name);
988
989         if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
990                 struct super_block *s = root->d_sb;
991                 dput(root);
992                 root = ERR_PTR(-EINVAL);
993                 deactivate_locked_super(s);
994                 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
995                                 subvol_name);
996         }
997
998         return root;
999 }
1000
1001 /*
1002  * Find a superblock for the given device / mount point.
1003  *
1004  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1005  *        for multiple device setup.  Make sure to keep it in sync.
1006  */
1007 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1008                 const char *device_name, void *data)
1009 {
1010         struct block_device *bdev = NULL;
1011         struct super_block *s;
1012         struct dentry *root;
1013         struct btrfs_fs_devices *fs_devices = NULL;
1014         struct btrfs_fs_info *fs_info = NULL;
1015         fmode_t mode = FMODE_READ;
1016         char *subvol_name = NULL;
1017         u64 subvol_objectid = 0;
1018         u64 subvol_rootid = 0;
1019         int error = 0;
1020
1021         if (!(flags & MS_RDONLY))
1022                 mode |= FMODE_WRITE;
1023
1024         error = btrfs_parse_early_options(data, mode, fs_type,
1025                                           &subvol_name, &subvol_objectid,
1026                                           &subvol_rootid, &fs_devices);
1027         if (error) {
1028                 kfree(subvol_name);
1029                 return ERR_PTR(error);
1030         }
1031
1032         if (subvol_name) {
1033                 root = mount_subvol(subvol_name, flags, device_name, data);
1034                 kfree(subvol_name);
1035                 return root;
1036         }
1037
1038         error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1039         if (error)
1040                 return ERR_PTR(error);
1041
1042         /*
1043          * Setup a dummy root and fs_info for test/set super.  This is because
1044          * we don't actually fill this stuff out until open_ctree, but we need
1045          * it for searching for existing supers, so this lets us do that and
1046          * then open_ctree will properly initialize everything later.
1047          */
1048         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1049         if (!fs_info)
1050                 return ERR_PTR(-ENOMEM);
1051
1052         fs_info->fs_devices = fs_devices;
1053
1054         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1055         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1056         if (!fs_info->super_copy || !fs_info->super_for_commit) {
1057                 error = -ENOMEM;
1058                 goto error_fs_info;
1059         }
1060
1061         error = btrfs_open_devices(fs_devices, mode, fs_type);
1062         if (error)
1063                 goto error_fs_info;
1064
1065         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1066                 error = -EACCES;
1067                 goto error_close_devices;
1068         }
1069
1070         bdev = fs_devices->latest_bdev;
1071         s = sget(fs_type, btrfs_test_super, btrfs_set_super, fs_info);
1072         if (IS_ERR(s)) {
1073                 error = PTR_ERR(s);
1074                 goto error_close_devices;
1075         }
1076
1077         if (s->s_root) {
1078                 btrfs_close_devices(fs_devices);
1079                 free_fs_info(fs_info);
1080                 if ((flags ^ s->s_flags) & MS_RDONLY)
1081                         error = -EBUSY;
1082         } else {
1083                 char b[BDEVNAME_SIZE];
1084
1085                 s->s_flags = flags | MS_NOSEC;
1086                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1087                 btrfs_sb(s)->bdev_holder = fs_type;
1088                 error = btrfs_fill_super(s, fs_devices, data,
1089                                          flags & MS_SILENT ? 1 : 0);
1090         }
1091
1092         root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1093         if (IS_ERR(root))
1094                 deactivate_locked_super(s);
1095
1096         return root;
1097
1098 error_close_devices:
1099         btrfs_close_devices(fs_devices);
1100 error_fs_info:
1101         free_fs_info(fs_info);
1102         return ERR_PTR(error);
1103 }
1104
1105 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1106 {
1107         spin_lock_irq(&workers->lock);
1108         workers->max_workers = new_limit;
1109         spin_unlock_irq(&workers->lock);
1110 }
1111
1112 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1113                                      int new_pool_size, int old_pool_size)
1114 {
1115         if (new_pool_size == old_pool_size)
1116                 return;
1117
1118         fs_info->thread_pool_size = new_pool_size;
1119
1120         printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1121                old_pool_size, new_pool_size);
1122
1123         btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1124         btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1125         btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1126         btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1127         btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1128         btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1129         btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1130         btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1131         btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1132         btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1133         btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1134         btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1135         btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1136         btrfs_set_max_workers(&fs_info->scrub_workers, new_pool_size);
1137 }
1138
1139 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1140 {
1141         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1142         struct btrfs_root *root = fs_info->tree_root;
1143         unsigned old_flags = sb->s_flags;
1144         unsigned long old_opts = fs_info->mount_opt;
1145         unsigned long old_compress_type = fs_info->compress_type;
1146         u64 old_max_inline = fs_info->max_inline;
1147         u64 old_alloc_start = fs_info->alloc_start;
1148         int old_thread_pool_size = fs_info->thread_pool_size;
1149         unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1150         int ret;
1151
1152         ret = btrfs_parse_options(root, data);
1153         if (ret) {
1154                 ret = -EINVAL;
1155                 goto restore;
1156         }
1157
1158         btrfs_resize_thread_pool(fs_info,
1159                 fs_info->thread_pool_size, old_thread_pool_size);
1160
1161         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1162                 return 0;
1163
1164         if (*flags & MS_RDONLY) {
1165                 sb->s_flags |= MS_RDONLY;
1166
1167                 ret = btrfs_commit_super(root);
1168                 if (ret)
1169                         goto restore;
1170         } else {
1171                 if (fs_info->fs_devices->rw_devices == 0) {
1172                         ret = -EACCES;
1173                         goto restore;
1174                 }
1175
1176                 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1177                         ret = -EINVAL;
1178                         goto restore;
1179                 }
1180
1181                 ret = btrfs_cleanup_fs_roots(fs_info);
1182                 if (ret)
1183                         goto restore;
1184
1185                 /* recover relocation */
1186                 ret = btrfs_recover_relocation(root);
1187                 if (ret)
1188                         goto restore;
1189
1190                 sb->s_flags &= ~MS_RDONLY;
1191         }
1192
1193         return 0;
1194
1195 restore:
1196         /* We've hit an error - don't reset MS_RDONLY */
1197         if (sb->s_flags & MS_RDONLY)
1198                 old_flags |= MS_RDONLY;
1199         sb->s_flags = old_flags;
1200         fs_info->mount_opt = old_opts;
1201         fs_info->compress_type = old_compress_type;
1202         fs_info->max_inline = old_max_inline;
1203         fs_info->alloc_start = old_alloc_start;
1204         btrfs_resize_thread_pool(fs_info,
1205                 old_thread_pool_size, fs_info->thread_pool_size);
1206         fs_info->metadata_ratio = old_metadata_ratio;
1207         return ret;
1208 }
1209
1210 /* Used to sort the devices by max_avail(descending sort) */
1211 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1212                                        const void *dev_info2)
1213 {
1214         if (((struct btrfs_device_info *)dev_info1)->max_avail >
1215             ((struct btrfs_device_info *)dev_info2)->max_avail)
1216                 return -1;
1217         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1218                  ((struct btrfs_device_info *)dev_info2)->max_avail)
1219                 return 1;
1220         else
1221         return 0;
1222 }
1223
1224 /*
1225  * sort the devices by max_avail, in which max free extent size of each device
1226  * is stored.(Descending Sort)
1227  */
1228 static inline void btrfs_descending_sort_devices(
1229                                         struct btrfs_device_info *devices,
1230                                         size_t nr_devices)
1231 {
1232         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1233              btrfs_cmp_device_free_bytes, NULL);
1234 }
1235
1236 /*
1237  * The helper to calc the free space on the devices that can be used to store
1238  * file data.
1239  */
1240 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1241 {
1242         struct btrfs_fs_info *fs_info = root->fs_info;
1243         struct btrfs_device_info *devices_info;
1244         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1245         struct btrfs_device *device;
1246         u64 skip_space;
1247         u64 type;
1248         u64 avail_space;
1249         u64 used_space;
1250         u64 min_stripe_size;
1251         int min_stripes = 1, num_stripes = 1;
1252         int i = 0, nr_devices;
1253         int ret;
1254
1255         nr_devices = fs_info->fs_devices->open_devices;
1256         BUG_ON(!nr_devices);
1257
1258         devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1259                                GFP_NOFS);
1260         if (!devices_info)
1261                 return -ENOMEM;
1262
1263         /* calc min stripe number for data space alloction */
1264         type = btrfs_get_alloc_profile(root, 1);
1265         if (type & BTRFS_BLOCK_GROUP_RAID0) {
1266                 min_stripes = 2;
1267                 num_stripes = nr_devices;
1268         } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1269                 min_stripes = 2;
1270                 num_stripes = 2;
1271         } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1272                 min_stripes = 4;
1273                 num_stripes = 4;
1274         }
1275
1276         if (type & BTRFS_BLOCK_GROUP_DUP)
1277                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1278         else
1279                 min_stripe_size = BTRFS_STRIPE_LEN;
1280
1281         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1282                 if (!device->in_fs_metadata || !device->bdev)
1283                         continue;
1284
1285                 avail_space = device->total_bytes - device->bytes_used;
1286
1287                 /* align with stripe_len */
1288                 do_div(avail_space, BTRFS_STRIPE_LEN);
1289                 avail_space *= BTRFS_STRIPE_LEN;
1290
1291                 /*
1292                  * In order to avoid overwritting the superblock on the drive,
1293                  * btrfs starts at an offset of at least 1MB when doing chunk
1294                  * allocation.
1295                  */
1296                 skip_space = 1024 * 1024;
1297
1298                 /* user can set the offset in fs_info->alloc_start. */
1299                 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1300                     device->total_bytes)
1301                         skip_space = max(fs_info->alloc_start, skip_space);
1302
1303                 /*
1304                  * btrfs can not use the free space in [0, skip_space - 1],
1305                  * we must subtract it from the total. In order to implement
1306                  * it, we account the used space in this range first.
1307                  */
1308                 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1309                                                      &used_space);
1310                 if (ret) {
1311                         kfree(devices_info);
1312                         return ret;
1313                 }
1314
1315                 /* calc the free space in [0, skip_space - 1] */
1316                 skip_space -= used_space;
1317
1318                 /*
1319                  * we can use the free space in [0, skip_space - 1], subtract
1320                  * it from the total.
1321                  */
1322                 if (avail_space && avail_space >= skip_space)
1323                         avail_space -= skip_space;
1324                 else
1325                         avail_space = 0;
1326
1327                 if (avail_space < min_stripe_size)
1328                         continue;
1329
1330                 devices_info[i].dev = device;
1331                 devices_info[i].max_avail = avail_space;
1332
1333                 i++;
1334         }
1335
1336         nr_devices = i;
1337
1338         btrfs_descending_sort_devices(devices_info, nr_devices);
1339
1340         i = nr_devices - 1;
1341         avail_space = 0;
1342         while (nr_devices >= min_stripes) {
1343                 if (num_stripes > nr_devices)
1344                         num_stripes = nr_devices;
1345
1346                 if (devices_info[i].max_avail >= min_stripe_size) {
1347                         int j;
1348                         u64 alloc_size;
1349
1350                         avail_space += devices_info[i].max_avail * num_stripes;
1351                         alloc_size = devices_info[i].max_avail;
1352                         for (j = i + 1 - num_stripes; j <= i; j++)
1353                                 devices_info[j].max_avail -= alloc_size;
1354                 }
1355                 i--;
1356                 nr_devices--;
1357         }
1358
1359         kfree(devices_info);
1360         *free_bytes = avail_space;
1361         return 0;
1362 }
1363
1364 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1365 {
1366         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1367         struct btrfs_super_block *disk_super = fs_info->super_copy;
1368         struct list_head *head = &fs_info->space_info;
1369         struct btrfs_space_info *found;
1370         u64 total_used = 0;
1371         u64 total_free_data = 0;
1372         int bits = dentry->d_sb->s_blocksize_bits;
1373         __be32 *fsid = (__be32 *)fs_info->fsid;
1374         int ret;
1375
1376         /* holding chunk_muext to avoid allocating new chunks */
1377         mutex_lock(&fs_info->chunk_mutex);
1378         rcu_read_lock();
1379         list_for_each_entry_rcu(found, head, list) {
1380                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1381                         total_free_data += found->disk_total - found->disk_used;
1382                         total_free_data -=
1383                                 btrfs_account_ro_block_groups_free_space(found);
1384                 }
1385
1386                 total_used += found->disk_used;
1387         }
1388         rcu_read_unlock();
1389
1390         buf->f_namelen = BTRFS_NAME_LEN;
1391         buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1392         buf->f_bfree = buf->f_blocks - (total_used >> bits);
1393         buf->f_bsize = dentry->d_sb->s_blocksize;
1394         buf->f_type = BTRFS_SUPER_MAGIC;
1395         buf->f_bavail = total_free_data;
1396         ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1397         if (ret) {
1398                 mutex_unlock(&fs_info->chunk_mutex);
1399                 return ret;
1400         }
1401         buf->f_bavail += total_free_data;
1402         buf->f_bavail = buf->f_bavail >> bits;
1403         mutex_unlock(&fs_info->chunk_mutex);
1404
1405         /* We treat it as constant endianness (it doesn't matter _which_)
1406            because we want the fsid to come out the same whether mounted
1407            on a big-endian or little-endian host */
1408         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1409         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1410         /* Mask in the root object ID too, to disambiguate subvols */
1411         buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1412         buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1413
1414         return 0;
1415 }
1416
1417 static void btrfs_kill_super(struct super_block *sb)
1418 {
1419         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1420         kill_anon_super(sb);
1421         free_fs_info(fs_info);
1422 }
1423
1424 static struct file_system_type btrfs_fs_type = {
1425         .owner          = THIS_MODULE,
1426         .name           = "btrfs",
1427         .mount          = btrfs_mount,
1428         .kill_sb        = btrfs_kill_super,
1429         .fs_flags       = FS_REQUIRES_DEV,
1430 };
1431
1432 /*
1433  * used by btrfsctl to scan devices when no FS is mounted
1434  */
1435 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1436                                 unsigned long arg)
1437 {
1438         struct btrfs_ioctl_vol_args *vol;
1439         struct btrfs_fs_devices *fs_devices;
1440         int ret = -ENOTTY;
1441
1442         if (!capable(CAP_SYS_ADMIN))
1443                 return -EPERM;
1444
1445         vol = memdup_user((void __user *)arg, sizeof(*vol));
1446         if (IS_ERR(vol))
1447                 return PTR_ERR(vol);
1448
1449         switch (cmd) {
1450         case BTRFS_IOC_SCAN_DEV:
1451                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1452                                             &btrfs_fs_type, &fs_devices);
1453                 break;
1454         }
1455
1456         kfree(vol);
1457         return ret;
1458 }
1459
1460 static int btrfs_freeze(struct super_block *sb)
1461 {
1462         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1463         mutex_lock(&fs_info->transaction_kthread_mutex);
1464         mutex_lock(&fs_info->cleaner_mutex);
1465         return 0;
1466 }
1467
1468 static int btrfs_unfreeze(struct super_block *sb)
1469 {
1470         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1471         mutex_unlock(&fs_info->cleaner_mutex);
1472         mutex_unlock(&fs_info->transaction_kthread_mutex);
1473         return 0;
1474 }
1475
1476 static void btrfs_fs_dirty_inode(struct inode *inode, int flags)
1477 {
1478         int ret;
1479
1480         ret = btrfs_dirty_inode(inode);
1481         if (ret)
1482                 printk_ratelimited(KERN_ERR "btrfs: fail to dirty inode %Lu "
1483                                    "error %d\n", btrfs_ino(inode), ret);
1484 }
1485
1486 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1487 {
1488         struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1489         struct btrfs_fs_devices *cur_devices;
1490         struct btrfs_device *dev, *first_dev = NULL;
1491         struct list_head *head;
1492         struct rcu_string *name;
1493
1494         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1495         cur_devices = fs_info->fs_devices;
1496         while (cur_devices) {
1497                 head = &cur_devices->devices;
1498                 list_for_each_entry(dev, head, dev_list) {
1499                         if (!first_dev || dev->devid < first_dev->devid)
1500                                 first_dev = dev;
1501                 }
1502                 cur_devices = cur_devices->seed;
1503         }
1504
1505         if (first_dev) {
1506                 rcu_read_lock();
1507                 name = rcu_dereference(first_dev->name);
1508                 seq_escape(m, name->str, " \t\n\\");
1509                 rcu_read_unlock();
1510         } else {
1511                 WARN_ON(1);
1512         }
1513         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1514         return 0;
1515 }
1516
1517 static const struct super_operations btrfs_super_ops = {
1518         .drop_inode     = btrfs_drop_inode,
1519         .evict_inode    = btrfs_evict_inode,
1520         .put_super      = btrfs_put_super,
1521         .sync_fs        = btrfs_sync_fs,
1522         .show_options   = btrfs_show_options,
1523         .show_devname   = btrfs_show_devname,
1524         .write_inode    = btrfs_write_inode,
1525         .dirty_inode    = btrfs_fs_dirty_inode,
1526         .alloc_inode    = btrfs_alloc_inode,
1527         .destroy_inode  = btrfs_destroy_inode,
1528         .statfs         = btrfs_statfs,
1529         .remount_fs     = btrfs_remount,
1530         .freeze_fs      = btrfs_freeze,
1531         .unfreeze_fs    = btrfs_unfreeze,
1532 };
1533
1534 static const struct file_operations btrfs_ctl_fops = {
1535         .unlocked_ioctl  = btrfs_control_ioctl,
1536         .compat_ioctl = btrfs_control_ioctl,
1537         .owner   = THIS_MODULE,
1538         .llseek = noop_llseek,
1539 };
1540
1541 static struct miscdevice btrfs_misc = {
1542         .minor          = BTRFS_MINOR,
1543         .name           = "btrfs-control",
1544         .fops           = &btrfs_ctl_fops
1545 };
1546
1547 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1548 MODULE_ALIAS("devname:btrfs-control");
1549
1550 static int btrfs_interface_init(void)
1551 {
1552         return misc_register(&btrfs_misc);
1553 }
1554
1555 static void btrfs_interface_exit(void)
1556 {
1557         if (misc_deregister(&btrfs_misc) < 0)
1558                 printk(KERN_INFO "misc_deregister failed for control device");
1559 }
1560
1561 static int __init init_btrfs_fs(void)
1562 {
1563         int err;
1564
1565         err = btrfs_init_sysfs();
1566         if (err)
1567                 return err;
1568
1569         btrfs_init_compress();
1570
1571         err = btrfs_init_cachep();
1572         if (err)
1573                 goto free_compress;
1574
1575         err = extent_io_init();
1576         if (err)
1577                 goto free_cachep;
1578
1579         err = extent_map_init();
1580         if (err)
1581                 goto free_extent_io;
1582
1583         err = btrfs_delayed_inode_init();
1584         if (err)
1585                 goto free_extent_map;
1586
1587         err = btrfs_interface_init();
1588         if (err)
1589                 goto free_delayed_inode;
1590
1591         err = register_filesystem(&btrfs_fs_type);
1592         if (err)
1593                 goto unregister_ioctl;
1594
1595         btrfs_init_lockdep();
1596
1597         printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1598         return 0;
1599
1600 unregister_ioctl:
1601         btrfs_interface_exit();
1602 free_delayed_inode:
1603         btrfs_delayed_inode_exit();
1604 free_extent_map:
1605         extent_map_exit();
1606 free_extent_io:
1607         extent_io_exit();
1608 free_cachep:
1609         btrfs_destroy_cachep();
1610 free_compress:
1611         btrfs_exit_compress();
1612         btrfs_exit_sysfs();
1613         return err;
1614 }
1615
1616 static void __exit exit_btrfs_fs(void)
1617 {
1618         btrfs_destroy_cachep();
1619         btrfs_delayed_inode_exit();
1620         extent_map_exit();
1621         extent_io_exit();
1622         btrfs_interface_exit();
1623         unregister_filesystem(&btrfs_fs_type);
1624         btrfs_exit_sysfs();
1625         btrfs_cleanup_fs_uuids();
1626         btrfs_exit_compress();
1627 }
1628
1629 module_init(init_btrfs_fs)
1630 module_exit(exit_btrfs_fs)
1631
1632 MODULE_LICENSE("GPL");