sh: select ARCH_NO_SYSDEV_OPS.
[pandora-kernel.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include "compat.h"
43 #include "ctree.h"
44 #include "disk-io.h"
45 #include "transaction.h"
46 #include "btrfs_inode.h"
47 #include "ioctl.h"
48 #include "print-tree.h"
49 #include "xattr.h"
50 #include "volumes.h"
51 #include "version.h"
52 #include "export.h"
53 #include "compression.h"
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/btrfs.h>
57
58 static const struct super_operations btrfs_super_ops;
59
60 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
61                                       char nbuf[16])
62 {
63         char *errstr = NULL;
64
65         switch (errno) {
66         case -EIO:
67                 errstr = "IO failure";
68                 break;
69         case -ENOMEM:
70                 errstr = "Out of memory";
71                 break;
72         case -EROFS:
73                 errstr = "Readonly filesystem";
74                 break;
75         default:
76                 if (nbuf) {
77                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
78                                 errstr = nbuf;
79                 }
80                 break;
81         }
82
83         return errstr;
84 }
85
86 static void __save_error_info(struct btrfs_fs_info *fs_info)
87 {
88         /*
89          * today we only save the error info into ram.  Long term we'll
90          * also send it down to the disk
91          */
92         fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
93 }
94
95 /* NOTE:
96  *      We move write_super stuff at umount in order to avoid deadlock
97  *      for umount hold all lock.
98  */
99 static void save_error_info(struct btrfs_fs_info *fs_info)
100 {
101         __save_error_info(fs_info);
102 }
103
104 /* btrfs handle error by forcing the filesystem readonly */
105 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
106 {
107         struct super_block *sb = fs_info->sb;
108
109         if (sb->s_flags & MS_RDONLY)
110                 return;
111
112         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
113                 sb->s_flags |= MS_RDONLY;
114                 printk(KERN_INFO "btrfs is forced readonly\n");
115         }
116 }
117
118 /*
119  * __btrfs_std_error decodes expected errors from the caller and
120  * invokes the approciate error response.
121  */
122 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
123                      unsigned int line, int errno)
124 {
125         struct super_block *sb = fs_info->sb;
126         char nbuf[16];
127         const char *errstr;
128
129         /*
130          * Special case: if the error is EROFS, and we're already
131          * under MS_RDONLY, then it is safe here.
132          */
133         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
134                 return;
135
136         errstr = btrfs_decode_error(fs_info, errno, nbuf);
137         printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
138                 sb->s_id, function, line, errstr);
139         save_error_info(fs_info);
140
141         btrfs_handle_error(fs_info);
142 }
143
144 static void btrfs_put_super(struct super_block *sb)
145 {
146         struct btrfs_root *root = btrfs_sb(sb);
147         int ret;
148
149         ret = close_ctree(root);
150         sb->s_fs_info = NULL;
151
152         (void)ret; /* FIXME: need to fix VFS to return error? */
153 }
154
155 enum {
156         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
157         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
158         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
159         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
160         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
161         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
162         Opt_enospc_debug, Opt_err,
163 };
164
165 static match_table_t tokens = {
166         {Opt_degraded, "degraded"},
167         {Opt_subvol, "subvol=%s"},
168         {Opt_subvolid, "subvolid=%d"},
169         {Opt_device, "device=%s"},
170         {Opt_nodatasum, "nodatasum"},
171         {Opt_nodatacow, "nodatacow"},
172         {Opt_nobarrier, "nobarrier"},
173         {Opt_max_inline, "max_inline=%s"},
174         {Opt_alloc_start, "alloc_start=%s"},
175         {Opt_thread_pool, "thread_pool=%d"},
176         {Opt_compress, "compress"},
177         {Opt_compress_type, "compress=%s"},
178         {Opt_compress_force, "compress-force"},
179         {Opt_compress_force_type, "compress-force=%s"},
180         {Opt_ssd, "ssd"},
181         {Opt_ssd_spread, "ssd_spread"},
182         {Opt_nossd, "nossd"},
183         {Opt_noacl, "noacl"},
184         {Opt_notreelog, "notreelog"},
185         {Opt_flushoncommit, "flushoncommit"},
186         {Opt_ratio, "metadata_ratio=%d"},
187         {Opt_discard, "discard"},
188         {Opt_space_cache, "space_cache"},
189         {Opt_clear_cache, "clear_cache"},
190         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
191         {Opt_enospc_debug, "enospc_debug"},
192         {Opt_err, NULL},
193 };
194
195 /*
196  * Regular mount options parser.  Everything that is needed only when
197  * reading in a new superblock is parsed here.
198  */
199 int btrfs_parse_options(struct btrfs_root *root, char *options)
200 {
201         struct btrfs_fs_info *info = root->fs_info;
202         substring_t args[MAX_OPT_ARGS];
203         char *p, *num, *orig;
204         int intarg;
205         int ret = 0;
206         char *compress_type;
207         bool compress_force = false;
208
209         if (!options)
210                 return 0;
211
212         /*
213          * strsep changes the string, duplicate it because parse_options
214          * gets called twice
215          */
216         options = kstrdup(options, GFP_NOFS);
217         if (!options)
218                 return -ENOMEM;
219
220         orig = options;
221
222         while ((p = strsep(&options, ",")) != NULL) {
223                 int token;
224                 if (!*p)
225                         continue;
226
227                 token = match_token(p, tokens, args);
228                 switch (token) {
229                 case Opt_degraded:
230                         printk(KERN_INFO "btrfs: allowing degraded mounts\n");
231                         btrfs_set_opt(info->mount_opt, DEGRADED);
232                         break;
233                 case Opt_subvol:
234                 case Opt_subvolid:
235                 case Opt_device:
236                         /*
237                          * These are parsed by btrfs_parse_early_options
238                          * and can be happily ignored here.
239                          */
240                         break;
241                 case Opt_nodatasum:
242                         printk(KERN_INFO "btrfs: setting nodatasum\n");
243                         btrfs_set_opt(info->mount_opt, NODATASUM);
244                         break;
245                 case Opt_nodatacow:
246                         printk(KERN_INFO "btrfs: setting nodatacow\n");
247                         btrfs_set_opt(info->mount_opt, NODATACOW);
248                         btrfs_set_opt(info->mount_opt, NODATASUM);
249                         break;
250                 case Opt_compress_force:
251                 case Opt_compress_force_type:
252                         compress_force = true;
253                 case Opt_compress:
254                 case Opt_compress_type:
255                         if (token == Opt_compress ||
256                             token == Opt_compress_force ||
257                             strcmp(args[0].from, "zlib") == 0) {
258                                 compress_type = "zlib";
259                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
260                         } else if (strcmp(args[0].from, "lzo") == 0) {
261                                 compress_type = "lzo";
262                                 info->compress_type = BTRFS_COMPRESS_LZO;
263                         } else {
264                                 ret = -EINVAL;
265                                 goto out;
266                         }
267
268                         btrfs_set_opt(info->mount_opt, COMPRESS);
269                         if (compress_force) {
270                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
271                                 pr_info("btrfs: force %s compression\n",
272                                         compress_type);
273                         } else
274                                 pr_info("btrfs: use %s compression\n",
275                                         compress_type);
276                         break;
277                 case Opt_ssd:
278                         printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
279                         btrfs_set_opt(info->mount_opt, SSD);
280                         break;
281                 case Opt_ssd_spread:
282                         printk(KERN_INFO "btrfs: use spread ssd "
283                                "allocation scheme\n");
284                         btrfs_set_opt(info->mount_opt, SSD);
285                         btrfs_set_opt(info->mount_opt, SSD_SPREAD);
286                         break;
287                 case Opt_nossd:
288                         printk(KERN_INFO "btrfs: not using ssd allocation "
289                                "scheme\n");
290                         btrfs_set_opt(info->mount_opt, NOSSD);
291                         btrfs_clear_opt(info->mount_opt, SSD);
292                         btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
293                         break;
294                 case Opt_nobarrier:
295                         printk(KERN_INFO "btrfs: turning off barriers\n");
296                         btrfs_set_opt(info->mount_opt, NOBARRIER);
297                         break;
298                 case Opt_thread_pool:
299                         intarg = 0;
300                         match_int(&args[0], &intarg);
301                         if (intarg) {
302                                 info->thread_pool_size = intarg;
303                                 printk(KERN_INFO "btrfs: thread pool %d\n",
304                                        info->thread_pool_size);
305                         }
306                         break;
307                 case Opt_max_inline:
308                         num = match_strdup(&args[0]);
309                         if (num) {
310                                 info->max_inline = memparse(num, NULL);
311                                 kfree(num);
312
313                                 if (info->max_inline) {
314                                         info->max_inline = max_t(u64,
315                                                 info->max_inline,
316                                                 root->sectorsize);
317                                 }
318                                 printk(KERN_INFO "btrfs: max_inline at %llu\n",
319                                         (unsigned long long)info->max_inline);
320                         }
321                         break;
322                 case Opt_alloc_start:
323                         num = match_strdup(&args[0]);
324                         if (num) {
325                                 info->alloc_start = memparse(num, NULL);
326                                 kfree(num);
327                                 printk(KERN_INFO
328                                         "btrfs: allocations start at %llu\n",
329                                         (unsigned long long)info->alloc_start);
330                         }
331                         break;
332                 case Opt_noacl:
333                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
334                         break;
335                 case Opt_notreelog:
336                         printk(KERN_INFO "btrfs: disabling tree log\n");
337                         btrfs_set_opt(info->mount_opt, NOTREELOG);
338                         break;
339                 case Opt_flushoncommit:
340                         printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
341                         btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
342                         break;
343                 case Opt_ratio:
344                         intarg = 0;
345                         match_int(&args[0], &intarg);
346                         if (intarg) {
347                                 info->metadata_ratio = intarg;
348                                 printk(KERN_INFO "btrfs: metadata ratio %d\n",
349                                        info->metadata_ratio);
350                         }
351                         break;
352                 case Opt_discard:
353                         btrfs_set_opt(info->mount_opt, DISCARD);
354                         break;
355                 case Opt_space_cache:
356                         printk(KERN_INFO "btrfs: enabling disk space caching\n");
357                         btrfs_set_opt(info->mount_opt, SPACE_CACHE);
358                         break;
359                 case Opt_clear_cache:
360                         printk(KERN_INFO "btrfs: force clearing of disk cache\n");
361                         btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
362                         break;
363                 case Opt_user_subvol_rm_allowed:
364                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
365                         break;
366                 case Opt_enospc_debug:
367                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
368                         break;
369                 case Opt_err:
370                         printk(KERN_INFO "btrfs: unrecognized mount option "
371                                "'%s'\n", p);
372                         ret = -EINVAL;
373                         goto out;
374                 default:
375                         break;
376                 }
377         }
378 out:
379         kfree(orig);
380         return ret;
381 }
382
383 /*
384  * Parse mount options that are required early in the mount process.
385  *
386  * All other options will be parsed on much later in the mount process and
387  * only when we need to allocate a new super block.
388  */
389 static int btrfs_parse_early_options(const char *options, fmode_t flags,
390                 void *holder, char **subvol_name, u64 *subvol_objectid,
391                 struct btrfs_fs_devices **fs_devices)
392 {
393         substring_t args[MAX_OPT_ARGS];
394         char *opts, *orig, *p;
395         int error = 0;
396         int intarg;
397
398         if (!options)
399                 goto out;
400
401         /*
402          * strsep changes the string, duplicate it because parse_options
403          * gets called twice
404          */
405         opts = kstrdup(options, GFP_KERNEL);
406         if (!opts)
407                 return -ENOMEM;
408         orig = opts;
409
410         while ((p = strsep(&opts, ",")) != NULL) {
411                 int token;
412                 if (!*p)
413                         continue;
414
415                 token = match_token(p, tokens, args);
416                 switch (token) {
417                 case Opt_subvol:
418                         *subvol_name = match_strdup(&args[0]);
419                         break;
420                 case Opt_subvolid:
421                         intarg = 0;
422                         error = match_int(&args[0], &intarg);
423                         if (!error) {
424                                 /* we want the original fs_tree */
425                                 if (!intarg)
426                                         *subvol_objectid =
427                                                 BTRFS_FS_TREE_OBJECTID;
428                                 else
429                                         *subvol_objectid = intarg;
430                         }
431                         break;
432                 case Opt_device:
433                         error = btrfs_scan_one_device(match_strdup(&args[0]),
434                                         flags, holder, fs_devices);
435                         if (error)
436                                 goto out_free_opts;
437                         break;
438                 default:
439                         break;
440                 }
441         }
442
443  out_free_opts:
444         kfree(orig);
445  out:
446         /*
447          * If no subvolume name is specified we use the default one.  Allocate
448          * a copy of the string "." here so that code later in the
449          * mount path doesn't care if it's the default volume or another one.
450          */
451         if (!*subvol_name) {
452                 *subvol_name = kstrdup(".", GFP_KERNEL);
453                 if (!*subvol_name)
454                         return -ENOMEM;
455         }
456         return error;
457 }
458
459 static struct dentry *get_default_root(struct super_block *sb,
460                                        u64 subvol_objectid)
461 {
462         struct btrfs_root *root = sb->s_fs_info;
463         struct btrfs_root *new_root;
464         struct btrfs_dir_item *di;
465         struct btrfs_path *path;
466         struct btrfs_key location;
467         struct inode *inode;
468         struct dentry *dentry;
469         u64 dir_id;
470         int new = 0;
471
472         /*
473          * We have a specific subvol we want to mount, just setup location and
474          * go look up the root.
475          */
476         if (subvol_objectid) {
477                 location.objectid = subvol_objectid;
478                 location.type = BTRFS_ROOT_ITEM_KEY;
479                 location.offset = (u64)-1;
480                 goto find_root;
481         }
482
483         path = btrfs_alloc_path();
484         if (!path)
485                 return ERR_PTR(-ENOMEM);
486         path->leave_spinning = 1;
487
488         /*
489          * Find the "default" dir item which points to the root item that we
490          * will mount by default if we haven't been given a specific subvolume
491          * to mount.
492          */
493         dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
494         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
495         if (IS_ERR(di))
496                 return ERR_CAST(di);
497         if (!di) {
498                 /*
499                  * Ok the default dir item isn't there.  This is weird since
500                  * it's always been there, but don't freak out, just try and
501                  * mount to root most subvolume.
502                  */
503                 btrfs_free_path(path);
504                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
505                 new_root = root->fs_info->fs_root;
506                 goto setup_root;
507         }
508
509         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
510         btrfs_free_path(path);
511
512 find_root:
513         new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
514         if (IS_ERR(new_root))
515                 return ERR_CAST(new_root);
516
517         if (btrfs_root_refs(&new_root->root_item) == 0)
518                 return ERR_PTR(-ENOENT);
519
520         dir_id = btrfs_root_dirid(&new_root->root_item);
521 setup_root:
522         location.objectid = dir_id;
523         location.type = BTRFS_INODE_ITEM_KEY;
524         location.offset = 0;
525
526         inode = btrfs_iget(sb, &location, new_root, &new);
527         if (IS_ERR(inode))
528                 return ERR_CAST(inode);
529
530         /*
531          * If we're just mounting the root most subvol put the inode and return
532          * a reference to the dentry.  We will have already gotten a reference
533          * to the inode in btrfs_fill_super so we're good to go.
534          */
535         if (!new && sb->s_root->d_inode == inode) {
536                 iput(inode);
537                 return dget(sb->s_root);
538         }
539
540         if (new) {
541                 const struct qstr name = { .name = "/", .len = 1 };
542
543                 /*
544                  * New inode, we need to make the dentry a sibling of s_root so
545                  * everything gets cleaned up properly on unmount.
546                  */
547                 dentry = d_alloc(sb->s_root, &name);
548                 if (!dentry) {
549                         iput(inode);
550                         return ERR_PTR(-ENOMEM);
551                 }
552                 d_splice_alias(inode, dentry);
553         } else {
554                 /*
555                  * We found the inode in cache, just find a dentry for it and
556                  * put the reference to the inode we just got.
557                  */
558                 dentry = d_find_alias(inode);
559                 iput(inode);
560         }
561
562         return dentry;
563 }
564
565 static int btrfs_fill_super(struct super_block *sb,
566                             struct btrfs_fs_devices *fs_devices,
567                             void *data, int silent)
568 {
569         struct inode *inode;
570         struct dentry *root_dentry;
571         struct btrfs_root *tree_root;
572         struct btrfs_key key;
573         int err;
574
575         sb->s_maxbytes = MAX_LFS_FILESIZE;
576         sb->s_magic = BTRFS_SUPER_MAGIC;
577         sb->s_op = &btrfs_super_ops;
578         sb->s_d_op = &btrfs_dentry_operations;
579         sb->s_export_op = &btrfs_export_ops;
580         sb->s_xattr = btrfs_xattr_handlers;
581         sb->s_time_gran = 1;
582 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
583         sb->s_flags |= MS_POSIXACL;
584 #endif
585
586         tree_root = open_ctree(sb, fs_devices, (char *)data);
587
588         if (IS_ERR(tree_root)) {
589                 printk("btrfs: open_ctree failed\n");
590                 return PTR_ERR(tree_root);
591         }
592         sb->s_fs_info = tree_root;
593
594         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
595         key.type = BTRFS_INODE_ITEM_KEY;
596         key.offset = 0;
597         inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
598         if (IS_ERR(inode)) {
599                 err = PTR_ERR(inode);
600                 goto fail_close;
601         }
602
603         root_dentry = d_alloc_root(inode);
604         if (!root_dentry) {
605                 iput(inode);
606                 err = -ENOMEM;
607                 goto fail_close;
608         }
609
610         sb->s_root = root_dentry;
611
612         save_mount_options(sb, data);
613         return 0;
614
615 fail_close:
616         close_ctree(tree_root);
617         return err;
618 }
619
620 int btrfs_sync_fs(struct super_block *sb, int wait)
621 {
622         struct btrfs_trans_handle *trans;
623         struct btrfs_root *root = btrfs_sb(sb);
624         int ret;
625
626         trace_btrfs_sync_fs(wait);
627
628         if (!wait) {
629                 filemap_flush(root->fs_info->btree_inode->i_mapping);
630                 return 0;
631         }
632
633         btrfs_start_delalloc_inodes(root, 0);
634         btrfs_wait_ordered_extents(root, 0, 0);
635
636         trans = btrfs_start_transaction(root, 0);
637         if (IS_ERR(trans))
638                 return PTR_ERR(trans);
639         ret = btrfs_commit_transaction(trans, root);
640         return ret;
641 }
642
643 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
644 {
645         struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
646         struct btrfs_fs_info *info = root->fs_info;
647
648         if (btrfs_test_opt(root, DEGRADED))
649                 seq_puts(seq, ",degraded");
650         if (btrfs_test_opt(root, NODATASUM))
651                 seq_puts(seq, ",nodatasum");
652         if (btrfs_test_opt(root, NODATACOW))
653                 seq_puts(seq, ",nodatacow");
654         if (btrfs_test_opt(root, NOBARRIER))
655                 seq_puts(seq, ",nobarrier");
656         if (info->max_inline != 8192 * 1024)
657                 seq_printf(seq, ",max_inline=%llu",
658                            (unsigned long long)info->max_inline);
659         if (info->alloc_start != 0)
660                 seq_printf(seq, ",alloc_start=%llu",
661                            (unsigned long long)info->alloc_start);
662         if (info->thread_pool_size !=  min_t(unsigned long,
663                                              num_online_cpus() + 2, 8))
664                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
665         if (btrfs_test_opt(root, COMPRESS))
666                 seq_puts(seq, ",compress");
667         if (btrfs_test_opt(root, NOSSD))
668                 seq_puts(seq, ",nossd");
669         if (btrfs_test_opt(root, SSD_SPREAD))
670                 seq_puts(seq, ",ssd_spread");
671         else if (btrfs_test_opt(root, SSD))
672                 seq_puts(seq, ",ssd");
673         if (btrfs_test_opt(root, NOTREELOG))
674                 seq_puts(seq, ",notreelog");
675         if (btrfs_test_opt(root, FLUSHONCOMMIT))
676                 seq_puts(seq, ",flushoncommit");
677         if (btrfs_test_opt(root, DISCARD))
678                 seq_puts(seq, ",discard");
679         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
680                 seq_puts(seq, ",noacl");
681         return 0;
682 }
683
684 static int btrfs_test_super(struct super_block *s, void *data)
685 {
686         struct btrfs_root *test_root = data;
687         struct btrfs_root *root = btrfs_sb(s);
688
689         /*
690          * If this super block is going away, return false as it
691          * can't match as an existing super block.
692          */
693         if (!atomic_read(&s->s_active))
694                 return 0;
695         return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
696 }
697
698 static int btrfs_set_super(struct super_block *s, void *data)
699 {
700         s->s_fs_info = data;
701
702         return set_anon_super(s, data);
703 }
704
705
706 /*
707  * Find a superblock for the given device / mount point.
708  *
709  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
710  *        for multiple device setup.  Make sure to keep it in sync.
711  */
712 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
713                 const char *dev_name, void *data)
714 {
715         struct block_device *bdev = NULL;
716         struct super_block *s;
717         struct dentry *root;
718         struct btrfs_fs_devices *fs_devices = NULL;
719         struct btrfs_root *tree_root = NULL;
720         struct btrfs_fs_info *fs_info = NULL;
721         fmode_t mode = FMODE_READ;
722         char *subvol_name = NULL;
723         u64 subvol_objectid = 0;
724         int error = 0;
725
726         if (!(flags & MS_RDONLY))
727                 mode |= FMODE_WRITE;
728
729         error = btrfs_parse_early_options(data, mode, fs_type,
730                                           &subvol_name, &subvol_objectid,
731                                           &fs_devices);
732         if (error)
733                 return ERR_PTR(error);
734
735         error = btrfs_scan_one_device(dev_name, mode, fs_type, &fs_devices);
736         if (error)
737                 goto error_free_subvol_name;
738
739         error = btrfs_open_devices(fs_devices, mode, fs_type);
740         if (error)
741                 goto error_free_subvol_name;
742
743         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
744                 error = -EACCES;
745                 goto error_close_devices;
746         }
747
748         /*
749          * Setup a dummy root and fs_info for test/set super.  This is because
750          * we don't actually fill this stuff out until open_ctree, but we need
751          * it for searching for existing supers, so this lets us do that and
752          * then open_ctree will properly initialize everything later.
753          */
754         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
755         tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
756         if (!fs_info || !tree_root) {
757                 error = -ENOMEM;
758                 goto error_close_devices;
759         }
760         fs_info->tree_root = tree_root;
761         fs_info->fs_devices = fs_devices;
762         tree_root->fs_info = fs_info;
763
764         bdev = fs_devices->latest_bdev;
765         s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
766         if (IS_ERR(s))
767                 goto error_s;
768
769         if (s->s_root) {
770                 if ((flags ^ s->s_flags) & MS_RDONLY) {
771                         deactivate_locked_super(s);
772                         error = -EBUSY;
773                         goto error_close_devices;
774                 }
775
776                 btrfs_close_devices(fs_devices);
777                 kfree(fs_info);
778                 kfree(tree_root);
779         } else {
780                 char b[BDEVNAME_SIZE];
781
782                 s->s_flags = flags;
783                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
784                 error = btrfs_fill_super(s, fs_devices, data,
785                                          flags & MS_SILENT ? 1 : 0);
786                 if (error) {
787                         deactivate_locked_super(s);
788                         goto error_free_subvol_name;
789                 }
790
791                 btrfs_sb(s)->fs_info->bdev_holder = fs_type;
792                 s->s_flags |= MS_ACTIVE;
793         }
794
795         root = get_default_root(s, subvol_objectid);
796         if (IS_ERR(root)) {
797                 error = PTR_ERR(root);
798                 deactivate_locked_super(s);
799                 goto error_free_subvol_name;
800         }
801         /* if they gave us a subvolume name bind mount into that */
802         if (strcmp(subvol_name, ".")) {
803                 struct dentry *new_root;
804                 mutex_lock(&root->d_inode->i_mutex);
805                 new_root = lookup_one_len(subvol_name, root,
806                                       strlen(subvol_name));
807                 mutex_unlock(&root->d_inode->i_mutex);
808
809                 if (IS_ERR(new_root)) {
810                         dput(root);
811                         deactivate_locked_super(s);
812                         error = PTR_ERR(new_root);
813                         goto error_free_subvol_name;
814                 }
815                 if (!new_root->d_inode) {
816                         dput(root);
817                         dput(new_root);
818                         deactivate_locked_super(s);
819                         error = -ENXIO;
820                         goto error_free_subvol_name;
821                 }
822                 dput(root);
823                 root = new_root;
824         }
825
826         kfree(subvol_name);
827         return root;
828
829 error_s:
830         error = PTR_ERR(s);
831 error_close_devices:
832         btrfs_close_devices(fs_devices);
833         kfree(fs_info);
834         kfree(tree_root);
835 error_free_subvol_name:
836         kfree(subvol_name);
837         return ERR_PTR(error);
838 }
839
840 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
841 {
842         struct btrfs_root *root = btrfs_sb(sb);
843         int ret;
844
845         ret = btrfs_parse_options(root, data);
846         if (ret)
847                 return -EINVAL;
848
849         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
850                 return 0;
851
852         if (*flags & MS_RDONLY) {
853                 sb->s_flags |= MS_RDONLY;
854
855                 ret =  btrfs_commit_super(root);
856                 WARN_ON(ret);
857         } else {
858                 if (root->fs_info->fs_devices->rw_devices == 0)
859                         return -EACCES;
860
861                 if (btrfs_super_log_root(&root->fs_info->super_copy) != 0)
862                         return -EINVAL;
863
864                 ret = btrfs_cleanup_fs_roots(root->fs_info);
865                 WARN_ON(ret);
866
867                 /* recover relocation */
868                 ret = btrfs_recover_relocation(root);
869                 WARN_ON(ret);
870
871                 sb->s_flags &= ~MS_RDONLY;
872         }
873
874         return 0;
875 }
876
877 /*
878  * The helper to calc the free space on the devices that can be used to store
879  * file data.
880  */
881 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
882 {
883         struct btrfs_fs_info *fs_info = root->fs_info;
884         struct btrfs_device_info *devices_info;
885         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
886         struct btrfs_device *device;
887         u64 skip_space;
888         u64 type;
889         u64 avail_space;
890         u64 used_space;
891         u64 min_stripe_size;
892         int min_stripes = 1;
893         int i = 0, nr_devices;
894         int ret;
895
896         nr_devices = fs_info->fs_devices->rw_devices;
897         BUG_ON(!nr_devices);
898
899         devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
900                                GFP_NOFS);
901         if (!devices_info)
902                 return -ENOMEM;
903
904         /* calc min stripe number for data space alloction */
905         type = btrfs_get_alloc_profile(root, 1);
906         if (type & BTRFS_BLOCK_GROUP_RAID0)
907                 min_stripes = 2;
908         else if (type & BTRFS_BLOCK_GROUP_RAID1)
909                 min_stripes = 2;
910         else if (type & BTRFS_BLOCK_GROUP_RAID10)
911                 min_stripes = 4;
912
913         if (type & BTRFS_BLOCK_GROUP_DUP)
914                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
915         else
916                 min_stripe_size = BTRFS_STRIPE_LEN;
917
918         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
919                 if (!device->in_fs_metadata)
920                         continue;
921
922                 avail_space = device->total_bytes - device->bytes_used;
923
924                 /* align with stripe_len */
925                 do_div(avail_space, BTRFS_STRIPE_LEN);
926                 avail_space *= BTRFS_STRIPE_LEN;
927
928                 /*
929                  * In order to avoid overwritting the superblock on the drive,
930                  * btrfs starts at an offset of at least 1MB when doing chunk
931                  * allocation.
932                  */
933                 skip_space = 1024 * 1024;
934
935                 /* user can set the offset in fs_info->alloc_start. */
936                 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
937                     device->total_bytes)
938                         skip_space = max(fs_info->alloc_start, skip_space);
939
940                 /*
941                  * btrfs can not use the free space in [0, skip_space - 1],
942                  * we must subtract it from the total. In order to implement
943                  * it, we account the used space in this range first.
944                  */
945                 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
946                                                      &used_space);
947                 if (ret) {
948                         kfree(devices_info);
949                         return ret;
950                 }
951
952                 /* calc the free space in [0, skip_space - 1] */
953                 skip_space -= used_space;
954
955                 /*
956                  * we can use the free space in [0, skip_space - 1], subtract
957                  * it from the total.
958                  */
959                 if (avail_space && avail_space >= skip_space)
960                         avail_space -= skip_space;
961                 else
962                         avail_space = 0;
963
964                 if (avail_space < min_stripe_size)
965                         continue;
966
967                 devices_info[i].dev = device;
968                 devices_info[i].max_avail = avail_space;
969
970                 i++;
971         }
972
973         nr_devices = i;
974
975         btrfs_descending_sort_devices(devices_info, nr_devices);
976
977         i = nr_devices - 1;
978         avail_space = 0;
979         while (nr_devices >= min_stripes) {
980                 if (devices_info[i].max_avail >= min_stripe_size) {
981                         int j;
982                         u64 alloc_size;
983
984                         avail_space += devices_info[i].max_avail * min_stripes;
985                         alloc_size = devices_info[i].max_avail;
986                         for (j = i + 1 - min_stripes; j <= i; j++)
987                                 devices_info[j].max_avail -= alloc_size;
988                 }
989                 i--;
990                 nr_devices--;
991         }
992
993         kfree(devices_info);
994         *free_bytes = avail_space;
995         return 0;
996 }
997
998 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
999 {
1000         struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1001         struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1002         struct list_head *head = &root->fs_info->space_info;
1003         struct btrfs_space_info *found;
1004         u64 total_used = 0;
1005         u64 total_free_data = 0;
1006         int bits = dentry->d_sb->s_blocksize_bits;
1007         __be32 *fsid = (__be32 *)root->fs_info->fsid;
1008         int ret;
1009
1010         /* holding chunk_muext to avoid allocating new chunks */
1011         mutex_lock(&root->fs_info->chunk_mutex);
1012         rcu_read_lock();
1013         list_for_each_entry_rcu(found, head, list) {
1014                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1015                         total_free_data += found->disk_total - found->disk_used;
1016                         total_free_data -=
1017                                 btrfs_account_ro_block_groups_free_space(found);
1018                 }
1019
1020                 total_used += found->disk_used;
1021         }
1022         rcu_read_unlock();
1023
1024         buf->f_namelen = BTRFS_NAME_LEN;
1025         buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1026         buf->f_bfree = buf->f_blocks - (total_used >> bits);
1027         buf->f_bsize = dentry->d_sb->s_blocksize;
1028         buf->f_type = BTRFS_SUPER_MAGIC;
1029         buf->f_bavail = total_free_data;
1030         ret = btrfs_calc_avail_data_space(root, &total_free_data);
1031         if (ret) {
1032                 mutex_unlock(&root->fs_info->chunk_mutex);
1033                 return ret;
1034         }
1035         buf->f_bavail += total_free_data;
1036         buf->f_bavail = buf->f_bavail >> bits;
1037         mutex_unlock(&root->fs_info->chunk_mutex);
1038
1039         /* We treat it as constant endianness (it doesn't matter _which_)
1040            because we want the fsid to come out the same whether mounted
1041            on a big-endian or little-endian host */
1042         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1043         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1044         /* Mask in the root object ID too, to disambiguate subvols */
1045         buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1046         buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1047
1048         return 0;
1049 }
1050
1051 static struct file_system_type btrfs_fs_type = {
1052         .owner          = THIS_MODULE,
1053         .name           = "btrfs",
1054         .mount          = btrfs_mount,
1055         .kill_sb        = kill_anon_super,
1056         .fs_flags       = FS_REQUIRES_DEV,
1057 };
1058
1059 /*
1060  * used by btrfsctl to scan devices when no FS is mounted
1061  */
1062 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1063                                 unsigned long arg)
1064 {
1065         struct btrfs_ioctl_vol_args *vol;
1066         struct btrfs_fs_devices *fs_devices;
1067         int ret = -ENOTTY;
1068
1069         if (!capable(CAP_SYS_ADMIN))
1070                 return -EPERM;
1071
1072         vol = memdup_user((void __user *)arg, sizeof(*vol));
1073         if (IS_ERR(vol))
1074                 return PTR_ERR(vol);
1075
1076         switch (cmd) {
1077         case BTRFS_IOC_SCAN_DEV:
1078                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1079                                             &btrfs_fs_type, &fs_devices);
1080                 break;
1081         }
1082
1083         kfree(vol);
1084         return ret;
1085 }
1086
1087 static int btrfs_freeze(struct super_block *sb)
1088 {
1089         struct btrfs_root *root = btrfs_sb(sb);
1090         mutex_lock(&root->fs_info->transaction_kthread_mutex);
1091         mutex_lock(&root->fs_info->cleaner_mutex);
1092         return 0;
1093 }
1094
1095 static int btrfs_unfreeze(struct super_block *sb)
1096 {
1097         struct btrfs_root *root = btrfs_sb(sb);
1098         mutex_unlock(&root->fs_info->cleaner_mutex);
1099         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1100         return 0;
1101 }
1102
1103 static const struct super_operations btrfs_super_ops = {
1104         .drop_inode     = btrfs_drop_inode,
1105         .evict_inode    = btrfs_evict_inode,
1106         .put_super      = btrfs_put_super,
1107         .sync_fs        = btrfs_sync_fs,
1108         .show_options   = btrfs_show_options,
1109         .write_inode    = btrfs_write_inode,
1110         .dirty_inode    = btrfs_dirty_inode,
1111         .alloc_inode    = btrfs_alloc_inode,
1112         .destroy_inode  = btrfs_destroy_inode,
1113         .statfs         = btrfs_statfs,
1114         .remount_fs     = btrfs_remount,
1115         .freeze_fs      = btrfs_freeze,
1116         .unfreeze_fs    = btrfs_unfreeze,
1117 };
1118
1119 static const struct file_operations btrfs_ctl_fops = {
1120         .unlocked_ioctl  = btrfs_control_ioctl,
1121         .compat_ioctl = btrfs_control_ioctl,
1122         .owner   = THIS_MODULE,
1123         .llseek = noop_llseek,
1124 };
1125
1126 static struct miscdevice btrfs_misc = {
1127         .minor          = BTRFS_MINOR,
1128         .name           = "btrfs-control",
1129         .fops           = &btrfs_ctl_fops
1130 };
1131
1132 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1133 MODULE_ALIAS("devname:btrfs-control");
1134
1135 static int btrfs_interface_init(void)
1136 {
1137         return misc_register(&btrfs_misc);
1138 }
1139
1140 static void btrfs_interface_exit(void)
1141 {
1142         if (misc_deregister(&btrfs_misc) < 0)
1143                 printk(KERN_INFO "misc_deregister failed for control device");
1144 }
1145
1146 static int __init init_btrfs_fs(void)
1147 {
1148         int err;
1149
1150         err = btrfs_init_sysfs();
1151         if (err)
1152                 return err;
1153
1154         err = btrfs_init_compress();
1155         if (err)
1156                 goto free_sysfs;
1157
1158         err = btrfs_init_cachep();
1159         if (err)
1160                 goto free_compress;
1161
1162         err = extent_io_init();
1163         if (err)
1164                 goto free_cachep;
1165
1166         err = extent_map_init();
1167         if (err)
1168                 goto free_extent_io;
1169
1170         err = btrfs_interface_init();
1171         if (err)
1172                 goto free_extent_map;
1173
1174         err = register_filesystem(&btrfs_fs_type);
1175         if (err)
1176                 goto unregister_ioctl;
1177
1178         printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1179         return 0;
1180
1181 unregister_ioctl:
1182         btrfs_interface_exit();
1183 free_extent_map:
1184         extent_map_exit();
1185 free_extent_io:
1186         extent_io_exit();
1187 free_cachep:
1188         btrfs_destroy_cachep();
1189 free_compress:
1190         btrfs_exit_compress();
1191 free_sysfs:
1192         btrfs_exit_sysfs();
1193         return err;
1194 }
1195
1196 static void __exit exit_btrfs_fs(void)
1197 {
1198         btrfs_destroy_cachep();
1199         extent_map_exit();
1200         extent_io_exit();
1201         btrfs_interface_exit();
1202         unregister_filesystem(&btrfs_fs_type);
1203         btrfs_exit_sysfs();
1204         btrfs_cleanup_fs_uuids();
1205         btrfs_exit_compress();
1206 }
1207
1208 module_init(init_btrfs_fs)
1209 module_exit(exit_btrfs_fs)
1210
1211 MODULE_LICENSE("GPL");