Btrfs: fix check_path_shared so it returns the right value
[pandora-kernel.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53
54 struct btrfs_iget_args {
55         u64 ino;
56         struct btrfs_root *root;
57 };
58
59 static const struct inode_operations btrfs_dir_inode_operations;
60 static const struct inode_operations btrfs_symlink_inode_operations;
61 static const struct inode_operations btrfs_dir_ro_inode_operations;
62 static const struct inode_operations btrfs_special_inode_operations;
63 static const struct inode_operations btrfs_file_inode_operations;
64 static const struct address_space_operations btrfs_aops;
65 static const struct address_space_operations btrfs_symlink_aops;
66 static const struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
77         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
78         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
79         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
80         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
81         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
82         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
83 };
84
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88                                    struct page *locked_page,
89                                    u64 start, u64 end, int *page_started,
90                                    unsigned long *nr_written, int unlock);
91
92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93                                      struct inode *inode,  struct inode *dir)
94 {
95         int err;
96
97         err = btrfs_init_acl(trans, inode, dir);
98         if (!err)
99                 err = btrfs_xattr_security_init(trans, inode, dir);
100         return err;
101 }
102
103 /*
104  * this does all the hard work for inserting an inline extent into
105  * the btree.  The caller should have done a btrfs_drop_extents so that
106  * no overlapping inline items exist in the btree
107  */
108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
109                                 struct btrfs_root *root, struct inode *inode,
110                                 u64 start, size_t size, size_t compressed_size,
111                                 struct page **compressed_pages)
112 {
113         struct btrfs_key key;
114         struct btrfs_path *path;
115         struct extent_buffer *leaf;
116         struct page *page = NULL;
117         char *kaddr;
118         unsigned long ptr;
119         struct btrfs_file_extent_item *ei;
120         int err = 0;
121         int ret;
122         size_t cur_size = size;
123         size_t datasize;
124         unsigned long offset;
125         int compress_type = BTRFS_COMPRESS_NONE;
126
127         if (compressed_size && compressed_pages) {
128                 compress_type = root->fs_info->compress_type;
129                 cur_size = compressed_size;
130         }
131
132         path = btrfs_alloc_path();
133         if (!path)
134                 return -ENOMEM;
135
136         path->leave_spinning = 1;
137         btrfs_set_trans_block_group(trans, inode);
138
139         key.objectid = inode->i_ino;
140         key.offset = start;
141         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142         datasize = btrfs_file_extent_calc_inline_size(cur_size);
143
144         inode_add_bytes(inode, size);
145         ret = btrfs_insert_empty_item(trans, root, path, &key,
146                                       datasize);
147         BUG_ON(ret);
148         if (ret) {
149                 err = ret;
150                 goto fail;
151         }
152         leaf = path->nodes[0];
153         ei = btrfs_item_ptr(leaf, path->slots[0],
154                             struct btrfs_file_extent_item);
155         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157         btrfs_set_file_extent_encryption(leaf, ei, 0);
158         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160         ptr = btrfs_file_extent_inline_start(ei);
161
162         if (compress_type != BTRFS_COMPRESS_NONE) {
163                 struct page *cpage;
164                 int i = 0;
165                 while (compressed_size > 0) {
166                         cpage = compressed_pages[i];
167                         cur_size = min_t(unsigned long, compressed_size,
168                                        PAGE_CACHE_SIZE);
169
170                         kaddr = kmap_atomic(cpage, KM_USER0);
171                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
172                         kunmap_atomic(kaddr, KM_USER0);
173
174                         i++;
175                         ptr += cur_size;
176                         compressed_size -= cur_size;
177                 }
178                 btrfs_set_file_extent_compression(leaf, ei,
179                                                   compress_type);
180         } else {
181                 page = find_get_page(inode->i_mapping,
182                                      start >> PAGE_CACHE_SHIFT);
183                 btrfs_set_file_extent_compression(leaf, ei, 0);
184                 kaddr = kmap_atomic(page, KM_USER0);
185                 offset = start & (PAGE_CACHE_SIZE - 1);
186                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
187                 kunmap_atomic(kaddr, KM_USER0);
188                 page_cache_release(page);
189         }
190         btrfs_mark_buffer_dirty(leaf);
191         btrfs_free_path(path);
192
193         /*
194          * we're an inline extent, so nobody can
195          * extend the file past i_size without locking
196          * a page we already have locked.
197          *
198          * We must do any isize and inode updates
199          * before we unlock the pages.  Otherwise we
200          * could end up racing with unlink.
201          */
202         BTRFS_I(inode)->disk_i_size = inode->i_size;
203         btrfs_update_inode(trans, root, inode);
204
205         return 0;
206 fail:
207         btrfs_free_path(path);
208         return err;
209 }
210
211
212 /*
213  * conditionally insert an inline extent into the file.  This
214  * does the checks required to make sure the data is small enough
215  * to fit as an inline extent.
216  */
217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
218                                  struct btrfs_root *root,
219                                  struct inode *inode, u64 start, u64 end,
220                                  size_t compressed_size,
221                                  struct page **compressed_pages)
222 {
223         u64 isize = i_size_read(inode);
224         u64 actual_end = min(end + 1, isize);
225         u64 inline_len = actual_end - start;
226         u64 aligned_end = (end + root->sectorsize - 1) &
227                         ~((u64)root->sectorsize - 1);
228         u64 hint_byte;
229         u64 data_len = inline_len;
230         int ret;
231
232         if (compressed_size)
233                 data_len = compressed_size;
234
235         if (start > 0 ||
236             actual_end >= PAGE_CACHE_SIZE ||
237             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238             (!compressed_size &&
239             (actual_end & (root->sectorsize - 1)) == 0) ||
240             end + 1 < isize ||
241             data_len > root->fs_info->max_inline) {
242                 return 1;
243         }
244
245         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
246                                  &hint_byte, 1);
247         BUG_ON(ret);
248
249         if (isize > actual_end)
250                 inline_len = min_t(u64, isize, actual_end);
251         ret = insert_inline_extent(trans, root, inode, start,
252                                    inline_len, compressed_size,
253                                    compressed_pages);
254         BUG_ON(ret);
255         btrfs_delalloc_release_metadata(inode, end + 1 - start);
256         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
257         return 0;
258 }
259
260 struct async_extent {
261         u64 start;
262         u64 ram_size;
263         u64 compressed_size;
264         struct page **pages;
265         unsigned long nr_pages;
266         int compress_type;
267         struct list_head list;
268 };
269
270 struct async_cow {
271         struct inode *inode;
272         struct btrfs_root *root;
273         struct page *locked_page;
274         u64 start;
275         u64 end;
276         struct list_head extents;
277         struct btrfs_work work;
278 };
279
280 static noinline int add_async_extent(struct async_cow *cow,
281                                      u64 start, u64 ram_size,
282                                      u64 compressed_size,
283                                      struct page **pages,
284                                      unsigned long nr_pages,
285                                      int compress_type)
286 {
287         struct async_extent *async_extent;
288
289         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
290         async_extent->start = start;
291         async_extent->ram_size = ram_size;
292         async_extent->compressed_size = compressed_size;
293         async_extent->pages = pages;
294         async_extent->nr_pages = nr_pages;
295         async_extent->compress_type = compress_type;
296         list_add_tail(&async_extent->list, &cow->extents);
297         return 0;
298 }
299
300 /*
301  * we create compressed extents in two phases.  The first
302  * phase compresses a range of pages that have already been
303  * locked (both pages and state bits are locked).
304  *
305  * This is done inside an ordered work queue, and the compression
306  * is spread across many cpus.  The actual IO submission is step
307  * two, and the ordered work queue takes care of making sure that
308  * happens in the same order things were put onto the queue by
309  * writepages and friends.
310  *
311  * If this code finds it can't get good compression, it puts an
312  * entry onto the work queue to write the uncompressed bytes.  This
313  * makes sure that both compressed inodes and uncompressed inodes
314  * are written in the same order that pdflush sent them down.
315  */
316 static noinline int compress_file_range(struct inode *inode,
317                                         struct page *locked_page,
318                                         u64 start, u64 end,
319                                         struct async_cow *async_cow,
320                                         int *num_added)
321 {
322         struct btrfs_root *root = BTRFS_I(inode)->root;
323         struct btrfs_trans_handle *trans;
324         u64 num_bytes;
325         u64 blocksize = root->sectorsize;
326         u64 actual_end;
327         u64 isize = i_size_read(inode);
328         int ret = 0;
329         struct page **pages = NULL;
330         unsigned long nr_pages;
331         unsigned long nr_pages_ret = 0;
332         unsigned long total_compressed = 0;
333         unsigned long total_in = 0;
334         unsigned long max_compressed = 128 * 1024;
335         unsigned long max_uncompressed = 128 * 1024;
336         int i;
337         int will_compress;
338         int compress_type = root->fs_info->compress_type;
339
340         actual_end = min_t(u64, isize, end + 1);
341 again:
342         will_compress = 0;
343         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
344         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
345
346         /*
347          * we don't want to send crud past the end of i_size through
348          * compression, that's just a waste of CPU time.  So, if the
349          * end of the file is before the start of our current
350          * requested range of bytes, we bail out to the uncompressed
351          * cleanup code that can deal with all of this.
352          *
353          * It isn't really the fastest way to fix things, but this is a
354          * very uncommon corner.
355          */
356         if (actual_end <= start)
357                 goto cleanup_and_bail_uncompressed;
358
359         total_compressed = actual_end - start;
360
361         /* we want to make sure that amount of ram required to uncompress
362          * an extent is reasonable, so we limit the total size in ram
363          * of a compressed extent to 128k.  This is a crucial number
364          * because it also controls how easily we can spread reads across
365          * cpus for decompression.
366          *
367          * We also want to make sure the amount of IO required to do
368          * a random read is reasonably small, so we limit the size of
369          * a compressed extent to 128k.
370          */
371         total_compressed = min(total_compressed, max_uncompressed);
372         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
373         num_bytes = max(blocksize,  num_bytes);
374         total_in = 0;
375         ret = 0;
376
377         /*
378          * we do compression for mount -o compress and when the
379          * inode has not been flagged as nocompress.  This flag can
380          * change at any time if we discover bad compression ratios.
381          */
382         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
383             (btrfs_test_opt(root, COMPRESS) ||
384              (BTRFS_I(inode)->force_compress))) {
385                 WARN_ON(pages);
386                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
387
388                 if (BTRFS_I(inode)->force_compress)
389                         compress_type = BTRFS_I(inode)->force_compress;
390
391                 ret = btrfs_compress_pages(compress_type,
392                                            inode->i_mapping, start,
393                                            total_compressed, pages,
394                                            nr_pages, &nr_pages_ret,
395                                            &total_in,
396                                            &total_compressed,
397                                            max_compressed);
398
399                 if (!ret) {
400                         unsigned long offset = total_compressed &
401                                 (PAGE_CACHE_SIZE - 1);
402                         struct page *page = pages[nr_pages_ret - 1];
403                         char *kaddr;
404
405                         /* zero the tail end of the last page, we might be
406                          * sending it down to disk
407                          */
408                         if (offset) {
409                                 kaddr = kmap_atomic(page, KM_USER0);
410                                 memset(kaddr + offset, 0,
411                                        PAGE_CACHE_SIZE - offset);
412                                 kunmap_atomic(kaddr, KM_USER0);
413                         }
414                         will_compress = 1;
415                 }
416         }
417         if (start == 0) {
418                 trans = btrfs_join_transaction(root, 1);
419                 BUG_ON(IS_ERR(trans));
420                 btrfs_set_trans_block_group(trans, inode);
421                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
422
423                 /* lets try to make an inline extent */
424                 if (ret || total_in < (actual_end - start)) {
425                         /* we didn't compress the entire range, try
426                          * to make an uncompressed inline extent.
427                          */
428                         ret = cow_file_range_inline(trans, root, inode,
429                                                     start, end, 0, NULL);
430                 } else {
431                         /* try making a compressed inline extent */
432                         ret = cow_file_range_inline(trans, root, inode,
433                                                     start, end,
434                                                     total_compressed, pages);
435                 }
436                 if (ret == 0) {
437                         /*
438                          * inline extent creation worked, we don't need
439                          * to create any more async work items.  Unlock
440                          * and free up our temp pages.
441                          */
442                         extent_clear_unlock_delalloc(inode,
443                              &BTRFS_I(inode)->io_tree,
444                              start, end, NULL,
445                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
446                              EXTENT_CLEAR_DELALLOC |
447                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
448
449                         btrfs_end_transaction(trans, root);
450                         goto free_pages_out;
451                 }
452                 btrfs_end_transaction(trans, root);
453         }
454
455         if (will_compress) {
456                 /*
457                  * we aren't doing an inline extent round the compressed size
458                  * up to a block size boundary so the allocator does sane
459                  * things
460                  */
461                 total_compressed = (total_compressed + blocksize - 1) &
462                         ~(blocksize - 1);
463
464                 /*
465                  * one last check to make sure the compression is really a
466                  * win, compare the page count read with the blocks on disk
467                  */
468                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
469                         ~(PAGE_CACHE_SIZE - 1);
470                 if (total_compressed >= total_in) {
471                         will_compress = 0;
472                 } else {
473                         num_bytes = total_in;
474                 }
475         }
476         if (!will_compress && pages) {
477                 /*
478                  * the compression code ran but failed to make things smaller,
479                  * free any pages it allocated and our page pointer array
480                  */
481                 for (i = 0; i < nr_pages_ret; i++) {
482                         WARN_ON(pages[i]->mapping);
483                         page_cache_release(pages[i]);
484                 }
485                 kfree(pages);
486                 pages = NULL;
487                 total_compressed = 0;
488                 nr_pages_ret = 0;
489
490                 /* flag the file so we don't compress in the future */
491                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
492                     !(BTRFS_I(inode)->force_compress)) {
493                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
494                 }
495         }
496         if (will_compress) {
497                 *num_added += 1;
498
499                 /* the async work queues will take care of doing actual
500                  * allocation on disk for these compressed pages,
501                  * and will submit them to the elevator.
502                  */
503                 add_async_extent(async_cow, start, num_bytes,
504                                  total_compressed, pages, nr_pages_ret,
505                                  compress_type);
506
507                 if (start + num_bytes < end) {
508                         start += num_bytes;
509                         pages = NULL;
510                         cond_resched();
511                         goto again;
512                 }
513         } else {
514 cleanup_and_bail_uncompressed:
515                 /*
516                  * No compression, but we still need to write the pages in
517                  * the file we've been given so far.  redirty the locked
518                  * page if it corresponds to our extent and set things up
519                  * for the async work queue to run cow_file_range to do
520                  * the normal delalloc dance
521                  */
522                 if (page_offset(locked_page) >= start &&
523                     page_offset(locked_page) <= end) {
524                         __set_page_dirty_nobuffers(locked_page);
525                         /* unlocked later on in the async handlers */
526                 }
527                 add_async_extent(async_cow, start, end - start + 1,
528                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
529                 *num_added += 1;
530         }
531
532 out:
533         return 0;
534
535 free_pages_out:
536         for (i = 0; i < nr_pages_ret; i++) {
537                 WARN_ON(pages[i]->mapping);
538                 page_cache_release(pages[i]);
539         }
540         kfree(pages);
541
542         goto out;
543 }
544
545 /*
546  * phase two of compressed writeback.  This is the ordered portion
547  * of the code, which only gets called in the order the work was
548  * queued.  We walk all the async extents created by compress_file_range
549  * and send them down to the disk.
550  */
551 static noinline int submit_compressed_extents(struct inode *inode,
552                                               struct async_cow *async_cow)
553 {
554         struct async_extent *async_extent;
555         u64 alloc_hint = 0;
556         struct btrfs_trans_handle *trans;
557         struct btrfs_key ins;
558         struct extent_map *em;
559         struct btrfs_root *root = BTRFS_I(inode)->root;
560         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
561         struct extent_io_tree *io_tree;
562         int ret = 0;
563
564         if (list_empty(&async_cow->extents))
565                 return 0;
566
567
568         while (!list_empty(&async_cow->extents)) {
569                 async_extent = list_entry(async_cow->extents.next,
570                                           struct async_extent, list);
571                 list_del(&async_extent->list);
572
573                 io_tree = &BTRFS_I(inode)->io_tree;
574
575 retry:
576                 /* did the compression code fall back to uncompressed IO? */
577                 if (!async_extent->pages) {
578                         int page_started = 0;
579                         unsigned long nr_written = 0;
580
581                         lock_extent(io_tree, async_extent->start,
582                                          async_extent->start +
583                                          async_extent->ram_size - 1, GFP_NOFS);
584
585                         /* allocate blocks */
586                         ret = cow_file_range(inode, async_cow->locked_page,
587                                              async_extent->start,
588                                              async_extent->start +
589                                              async_extent->ram_size - 1,
590                                              &page_started, &nr_written, 0);
591
592                         /*
593                          * if page_started, cow_file_range inserted an
594                          * inline extent and took care of all the unlocking
595                          * and IO for us.  Otherwise, we need to submit
596                          * all those pages down to the drive.
597                          */
598                         if (!page_started && !ret)
599                                 extent_write_locked_range(io_tree,
600                                                   inode, async_extent->start,
601                                                   async_extent->start +
602                                                   async_extent->ram_size - 1,
603                                                   btrfs_get_extent,
604                                                   WB_SYNC_ALL);
605                         kfree(async_extent);
606                         cond_resched();
607                         continue;
608                 }
609
610                 lock_extent(io_tree, async_extent->start,
611                             async_extent->start + async_extent->ram_size - 1,
612                             GFP_NOFS);
613
614                 trans = btrfs_join_transaction(root, 1);
615                 BUG_ON(IS_ERR(trans));
616                 ret = btrfs_reserve_extent(trans, root,
617                                            async_extent->compressed_size,
618                                            async_extent->compressed_size,
619                                            0, alloc_hint,
620                                            (u64)-1, &ins, 1);
621                 btrfs_end_transaction(trans, root);
622
623                 if (ret) {
624                         int i;
625                         for (i = 0; i < async_extent->nr_pages; i++) {
626                                 WARN_ON(async_extent->pages[i]->mapping);
627                                 page_cache_release(async_extent->pages[i]);
628                         }
629                         kfree(async_extent->pages);
630                         async_extent->nr_pages = 0;
631                         async_extent->pages = NULL;
632                         unlock_extent(io_tree, async_extent->start,
633                                       async_extent->start +
634                                       async_extent->ram_size - 1, GFP_NOFS);
635                         goto retry;
636                 }
637
638                 /*
639                  * here we're doing allocation and writeback of the
640                  * compressed pages
641                  */
642                 btrfs_drop_extent_cache(inode, async_extent->start,
643                                         async_extent->start +
644                                         async_extent->ram_size - 1, 0);
645
646                 em = alloc_extent_map(GFP_NOFS);
647                 em->start = async_extent->start;
648                 em->len = async_extent->ram_size;
649                 em->orig_start = em->start;
650
651                 em->block_start = ins.objectid;
652                 em->block_len = ins.offset;
653                 em->bdev = root->fs_info->fs_devices->latest_bdev;
654                 em->compress_type = async_extent->compress_type;
655                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
656                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
657
658                 while (1) {
659                         write_lock(&em_tree->lock);
660                         ret = add_extent_mapping(em_tree, em);
661                         write_unlock(&em_tree->lock);
662                         if (ret != -EEXIST) {
663                                 free_extent_map(em);
664                                 break;
665                         }
666                         btrfs_drop_extent_cache(inode, async_extent->start,
667                                                 async_extent->start +
668                                                 async_extent->ram_size - 1, 0);
669                 }
670
671                 ret = btrfs_add_ordered_extent_compress(inode,
672                                                 async_extent->start,
673                                                 ins.objectid,
674                                                 async_extent->ram_size,
675                                                 ins.offset,
676                                                 BTRFS_ORDERED_COMPRESSED,
677                                                 async_extent->compress_type);
678                 BUG_ON(ret);
679
680                 /*
681                  * clear dirty, set writeback and unlock the pages.
682                  */
683                 extent_clear_unlock_delalloc(inode,
684                                 &BTRFS_I(inode)->io_tree,
685                                 async_extent->start,
686                                 async_extent->start +
687                                 async_extent->ram_size - 1,
688                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
689                                 EXTENT_CLEAR_UNLOCK |
690                                 EXTENT_CLEAR_DELALLOC |
691                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
692
693                 ret = btrfs_submit_compressed_write(inode,
694                                     async_extent->start,
695                                     async_extent->ram_size,
696                                     ins.objectid,
697                                     ins.offset, async_extent->pages,
698                                     async_extent->nr_pages);
699
700                 BUG_ON(ret);
701                 alloc_hint = ins.objectid + ins.offset;
702                 kfree(async_extent);
703                 cond_resched();
704         }
705
706         return 0;
707 }
708
709 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
710                                       u64 num_bytes)
711 {
712         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
713         struct extent_map *em;
714         u64 alloc_hint = 0;
715
716         read_lock(&em_tree->lock);
717         em = search_extent_mapping(em_tree, start, num_bytes);
718         if (em) {
719                 /*
720                  * if block start isn't an actual block number then find the
721                  * first block in this inode and use that as a hint.  If that
722                  * block is also bogus then just don't worry about it.
723                  */
724                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
725                         free_extent_map(em);
726                         em = search_extent_mapping(em_tree, 0, 0);
727                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
728                                 alloc_hint = em->block_start;
729                         if (em)
730                                 free_extent_map(em);
731                 } else {
732                         alloc_hint = em->block_start;
733                         free_extent_map(em);
734                 }
735         }
736         read_unlock(&em_tree->lock);
737
738         return alloc_hint;
739 }
740
741 /*
742  * when extent_io.c finds a delayed allocation range in the file,
743  * the call backs end up in this code.  The basic idea is to
744  * allocate extents on disk for the range, and create ordered data structs
745  * in ram to track those extents.
746  *
747  * locked_page is the page that writepage had locked already.  We use
748  * it to make sure we don't do extra locks or unlocks.
749  *
750  * *page_started is set to one if we unlock locked_page and do everything
751  * required to start IO on it.  It may be clean and already done with
752  * IO when we return.
753  */
754 static noinline int cow_file_range(struct inode *inode,
755                                    struct page *locked_page,
756                                    u64 start, u64 end, int *page_started,
757                                    unsigned long *nr_written,
758                                    int unlock)
759 {
760         struct btrfs_root *root = BTRFS_I(inode)->root;
761         struct btrfs_trans_handle *trans;
762         u64 alloc_hint = 0;
763         u64 num_bytes;
764         unsigned long ram_size;
765         u64 disk_num_bytes;
766         u64 cur_alloc_size;
767         u64 blocksize = root->sectorsize;
768         struct btrfs_key ins;
769         struct extent_map *em;
770         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
771         int ret = 0;
772
773         BUG_ON(root == root->fs_info->tree_root);
774         trans = btrfs_join_transaction(root, 1);
775         BUG_ON(IS_ERR(trans));
776         btrfs_set_trans_block_group(trans, inode);
777         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
778
779         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
780         num_bytes = max(blocksize,  num_bytes);
781         disk_num_bytes = num_bytes;
782         ret = 0;
783
784         if (start == 0) {
785                 /* lets try to make an inline extent */
786                 ret = cow_file_range_inline(trans, root, inode,
787                                             start, end, 0, NULL);
788                 if (ret == 0) {
789                         extent_clear_unlock_delalloc(inode,
790                                      &BTRFS_I(inode)->io_tree,
791                                      start, end, NULL,
792                                      EXTENT_CLEAR_UNLOCK_PAGE |
793                                      EXTENT_CLEAR_UNLOCK |
794                                      EXTENT_CLEAR_DELALLOC |
795                                      EXTENT_CLEAR_DIRTY |
796                                      EXTENT_SET_WRITEBACK |
797                                      EXTENT_END_WRITEBACK);
798
799                         *nr_written = *nr_written +
800                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
801                         *page_started = 1;
802                         ret = 0;
803                         goto out;
804                 }
805         }
806
807         BUG_ON(disk_num_bytes >
808                btrfs_super_total_bytes(&root->fs_info->super_copy));
809
810         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
811         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
812
813         while (disk_num_bytes > 0) {
814                 unsigned long op;
815
816                 cur_alloc_size = disk_num_bytes;
817                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
818                                            root->sectorsize, 0, alloc_hint,
819                                            (u64)-1, &ins, 1);
820                 BUG_ON(ret);
821
822                 em = alloc_extent_map(GFP_NOFS);
823                 em->start = start;
824                 em->orig_start = em->start;
825                 ram_size = ins.offset;
826                 em->len = ins.offset;
827
828                 em->block_start = ins.objectid;
829                 em->block_len = ins.offset;
830                 em->bdev = root->fs_info->fs_devices->latest_bdev;
831                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
832
833                 while (1) {
834                         write_lock(&em_tree->lock);
835                         ret = add_extent_mapping(em_tree, em);
836                         write_unlock(&em_tree->lock);
837                         if (ret != -EEXIST) {
838                                 free_extent_map(em);
839                                 break;
840                         }
841                         btrfs_drop_extent_cache(inode, start,
842                                                 start + ram_size - 1, 0);
843                 }
844
845                 cur_alloc_size = ins.offset;
846                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
847                                                ram_size, cur_alloc_size, 0);
848                 BUG_ON(ret);
849
850                 if (root->root_key.objectid ==
851                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
852                         ret = btrfs_reloc_clone_csums(inode, start,
853                                                       cur_alloc_size);
854                         BUG_ON(ret);
855                 }
856
857                 if (disk_num_bytes < cur_alloc_size)
858                         break;
859
860                 /* we're not doing compressed IO, don't unlock the first
861                  * page (which the caller expects to stay locked), don't
862                  * clear any dirty bits and don't set any writeback bits
863                  *
864                  * Do set the Private2 bit so we know this page was properly
865                  * setup for writepage
866                  */
867                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
868                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
869                         EXTENT_SET_PRIVATE2;
870
871                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
872                                              start, start + ram_size - 1,
873                                              locked_page, op);
874                 disk_num_bytes -= cur_alloc_size;
875                 num_bytes -= cur_alloc_size;
876                 alloc_hint = ins.objectid + ins.offset;
877                 start += cur_alloc_size;
878         }
879 out:
880         ret = 0;
881         btrfs_end_transaction(trans, root);
882
883         return ret;
884 }
885
886 /*
887  * work queue call back to started compression on a file and pages
888  */
889 static noinline void async_cow_start(struct btrfs_work *work)
890 {
891         struct async_cow *async_cow;
892         int num_added = 0;
893         async_cow = container_of(work, struct async_cow, work);
894
895         compress_file_range(async_cow->inode, async_cow->locked_page,
896                             async_cow->start, async_cow->end, async_cow,
897                             &num_added);
898         if (num_added == 0)
899                 async_cow->inode = NULL;
900 }
901
902 /*
903  * work queue call back to submit previously compressed pages
904  */
905 static noinline void async_cow_submit(struct btrfs_work *work)
906 {
907         struct async_cow *async_cow;
908         struct btrfs_root *root;
909         unsigned long nr_pages;
910
911         async_cow = container_of(work, struct async_cow, work);
912
913         root = async_cow->root;
914         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
915                 PAGE_CACHE_SHIFT;
916
917         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
918
919         if (atomic_read(&root->fs_info->async_delalloc_pages) <
920             5 * 1042 * 1024 &&
921             waitqueue_active(&root->fs_info->async_submit_wait))
922                 wake_up(&root->fs_info->async_submit_wait);
923
924         if (async_cow->inode)
925                 submit_compressed_extents(async_cow->inode, async_cow);
926 }
927
928 static noinline void async_cow_free(struct btrfs_work *work)
929 {
930         struct async_cow *async_cow;
931         async_cow = container_of(work, struct async_cow, work);
932         kfree(async_cow);
933 }
934
935 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
936                                 u64 start, u64 end, int *page_started,
937                                 unsigned long *nr_written)
938 {
939         struct async_cow *async_cow;
940         struct btrfs_root *root = BTRFS_I(inode)->root;
941         unsigned long nr_pages;
942         u64 cur_end;
943         int limit = 10 * 1024 * 1042;
944
945         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
946                          1, 0, NULL, GFP_NOFS);
947         while (start < end) {
948                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
949                 async_cow->inode = inode;
950                 async_cow->root = root;
951                 async_cow->locked_page = locked_page;
952                 async_cow->start = start;
953
954                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
955                         cur_end = end;
956                 else
957                         cur_end = min(end, start + 512 * 1024 - 1);
958
959                 async_cow->end = cur_end;
960                 INIT_LIST_HEAD(&async_cow->extents);
961
962                 async_cow->work.func = async_cow_start;
963                 async_cow->work.ordered_func = async_cow_submit;
964                 async_cow->work.ordered_free = async_cow_free;
965                 async_cow->work.flags = 0;
966
967                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
968                         PAGE_CACHE_SHIFT;
969                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
970
971                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
972                                    &async_cow->work);
973
974                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
975                         wait_event(root->fs_info->async_submit_wait,
976                            (atomic_read(&root->fs_info->async_delalloc_pages) <
977                             limit));
978                 }
979
980                 while (atomic_read(&root->fs_info->async_submit_draining) &&
981                       atomic_read(&root->fs_info->async_delalloc_pages)) {
982                         wait_event(root->fs_info->async_submit_wait,
983                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
984                            0));
985                 }
986
987                 *nr_written += nr_pages;
988                 start = cur_end + 1;
989         }
990         *page_started = 1;
991         return 0;
992 }
993
994 static noinline int csum_exist_in_range(struct btrfs_root *root,
995                                         u64 bytenr, u64 num_bytes)
996 {
997         int ret;
998         struct btrfs_ordered_sum *sums;
999         LIST_HEAD(list);
1000
1001         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1002                                        bytenr + num_bytes - 1, &list);
1003         if (ret == 0 && list_empty(&list))
1004                 return 0;
1005
1006         while (!list_empty(&list)) {
1007                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1008                 list_del(&sums->list);
1009                 kfree(sums);
1010         }
1011         return 1;
1012 }
1013
1014 /*
1015  * when nowcow writeback call back.  This checks for snapshots or COW copies
1016  * of the extents that exist in the file, and COWs the file as required.
1017  *
1018  * If no cow copies or snapshots exist, we write directly to the existing
1019  * blocks on disk
1020  */
1021 static noinline int run_delalloc_nocow(struct inode *inode,
1022                                        struct page *locked_page,
1023                               u64 start, u64 end, int *page_started, int force,
1024                               unsigned long *nr_written)
1025 {
1026         struct btrfs_root *root = BTRFS_I(inode)->root;
1027         struct btrfs_trans_handle *trans;
1028         struct extent_buffer *leaf;
1029         struct btrfs_path *path;
1030         struct btrfs_file_extent_item *fi;
1031         struct btrfs_key found_key;
1032         u64 cow_start;
1033         u64 cur_offset;
1034         u64 extent_end;
1035         u64 extent_offset;
1036         u64 disk_bytenr;
1037         u64 num_bytes;
1038         int extent_type;
1039         int ret;
1040         int type;
1041         int nocow;
1042         int check_prev = 1;
1043         bool nolock = false;
1044
1045         path = btrfs_alloc_path();
1046         BUG_ON(!path);
1047         if (root == root->fs_info->tree_root) {
1048                 nolock = true;
1049                 trans = btrfs_join_transaction_nolock(root, 1);
1050         } else {
1051                 trans = btrfs_join_transaction(root, 1);
1052         }
1053         BUG_ON(IS_ERR(trans));
1054
1055         cow_start = (u64)-1;
1056         cur_offset = start;
1057         while (1) {
1058                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1059                                                cur_offset, 0);
1060                 BUG_ON(ret < 0);
1061                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1062                         leaf = path->nodes[0];
1063                         btrfs_item_key_to_cpu(leaf, &found_key,
1064                                               path->slots[0] - 1);
1065                         if (found_key.objectid == inode->i_ino &&
1066                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1067                                 path->slots[0]--;
1068                 }
1069                 check_prev = 0;
1070 next_slot:
1071                 leaf = path->nodes[0];
1072                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1073                         ret = btrfs_next_leaf(root, path);
1074                         if (ret < 0)
1075                                 BUG_ON(1);
1076                         if (ret > 0)
1077                                 break;
1078                         leaf = path->nodes[0];
1079                 }
1080
1081                 nocow = 0;
1082                 disk_bytenr = 0;
1083                 num_bytes = 0;
1084                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1085
1086                 if (found_key.objectid > inode->i_ino ||
1087                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1088                     found_key.offset > end)
1089                         break;
1090
1091                 if (found_key.offset > cur_offset) {
1092                         extent_end = found_key.offset;
1093                         extent_type = 0;
1094                         goto out_check;
1095                 }
1096
1097                 fi = btrfs_item_ptr(leaf, path->slots[0],
1098                                     struct btrfs_file_extent_item);
1099                 extent_type = btrfs_file_extent_type(leaf, fi);
1100
1101                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1102                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1103                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1104                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1105                         extent_end = found_key.offset +
1106                                 btrfs_file_extent_num_bytes(leaf, fi);
1107                         if (extent_end <= start) {
1108                                 path->slots[0]++;
1109                                 goto next_slot;
1110                         }
1111                         if (disk_bytenr == 0)
1112                                 goto out_check;
1113                         if (btrfs_file_extent_compression(leaf, fi) ||
1114                             btrfs_file_extent_encryption(leaf, fi) ||
1115                             btrfs_file_extent_other_encoding(leaf, fi))
1116                                 goto out_check;
1117                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1118                                 goto out_check;
1119                         if (btrfs_extent_readonly(root, disk_bytenr))
1120                                 goto out_check;
1121                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1122                                                   found_key.offset -
1123                                                   extent_offset, disk_bytenr))
1124                                 goto out_check;
1125                         disk_bytenr += extent_offset;
1126                         disk_bytenr += cur_offset - found_key.offset;
1127                         num_bytes = min(end + 1, extent_end) - cur_offset;
1128                         /*
1129                          * force cow if csum exists in the range.
1130                          * this ensure that csum for a given extent are
1131                          * either valid or do not exist.
1132                          */
1133                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1134                                 goto out_check;
1135                         nocow = 1;
1136                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1137                         extent_end = found_key.offset +
1138                                 btrfs_file_extent_inline_len(leaf, fi);
1139                         extent_end = ALIGN(extent_end, root->sectorsize);
1140                 } else {
1141                         BUG_ON(1);
1142                 }
1143 out_check:
1144                 if (extent_end <= start) {
1145                         path->slots[0]++;
1146                         goto next_slot;
1147                 }
1148                 if (!nocow) {
1149                         if (cow_start == (u64)-1)
1150                                 cow_start = cur_offset;
1151                         cur_offset = extent_end;
1152                         if (cur_offset > end)
1153                                 break;
1154                         path->slots[0]++;
1155                         goto next_slot;
1156                 }
1157
1158                 btrfs_release_path(root, path);
1159                 if (cow_start != (u64)-1) {
1160                         ret = cow_file_range(inode, locked_page, cow_start,
1161                                         found_key.offset - 1, page_started,
1162                                         nr_written, 1);
1163                         BUG_ON(ret);
1164                         cow_start = (u64)-1;
1165                 }
1166
1167                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1168                         struct extent_map *em;
1169                         struct extent_map_tree *em_tree;
1170                         em_tree = &BTRFS_I(inode)->extent_tree;
1171                         em = alloc_extent_map(GFP_NOFS);
1172                         em->start = cur_offset;
1173                         em->orig_start = em->start;
1174                         em->len = num_bytes;
1175                         em->block_len = num_bytes;
1176                         em->block_start = disk_bytenr;
1177                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1178                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1179                         while (1) {
1180                                 write_lock(&em_tree->lock);
1181                                 ret = add_extent_mapping(em_tree, em);
1182                                 write_unlock(&em_tree->lock);
1183                                 if (ret != -EEXIST) {
1184                                         free_extent_map(em);
1185                                         break;
1186                                 }
1187                                 btrfs_drop_extent_cache(inode, em->start,
1188                                                 em->start + em->len - 1, 0);
1189                         }
1190                         type = BTRFS_ORDERED_PREALLOC;
1191                 } else {
1192                         type = BTRFS_ORDERED_NOCOW;
1193                 }
1194
1195                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1196                                                num_bytes, num_bytes, type);
1197                 BUG_ON(ret);
1198
1199                 if (root->root_key.objectid ==
1200                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1201                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1202                                                       num_bytes);
1203                         BUG_ON(ret);
1204                 }
1205
1206                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1207                                 cur_offset, cur_offset + num_bytes - 1,
1208                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1209                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1210                                 EXTENT_SET_PRIVATE2);
1211                 cur_offset = extent_end;
1212                 if (cur_offset > end)
1213                         break;
1214         }
1215         btrfs_release_path(root, path);
1216
1217         if (cur_offset <= end && cow_start == (u64)-1)
1218                 cow_start = cur_offset;
1219         if (cow_start != (u64)-1) {
1220                 ret = cow_file_range(inode, locked_page, cow_start, end,
1221                                      page_started, nr_written, 1);
1222                 BUG_ON(ret);
1223         }
1224
1225         if (nolock) {
1226                 ret = btrfs_end_transaction_nolock(trans, root);
1227                 BUG_ON(ret);
1228         } else {
1229                 ret = btrfs_end_transaction(trans, root);
1230                 BUG_ON(ret);
1231         }
1232         btrfs_free_path(path);
1233         return 0;
1234 }
1235
1236 /*
1237  * extent_io.c call back to do delayed allocation processing
1238  */
1239 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1240                               u64 start, u64 end, int *page_started,
1241                               unsigned long *nr_written)
1242 {
1243         int ret;
1244         struct btrfs_root *root = BTRFS_I(inode)->root;
1245
1246         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1247                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1248                                          page_started, 1, nr_written);
1249         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1250                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1251                                          page_started, 0, nr_written);
1252         else if (!btrfs_test_opt(root, COMPRESS) &&
1253                  !(BTRFS_I(inode)->force_compress))
1254                 ret = cow_file_range(inode, locked_page, start, end,
1255                                       page_started, nr_written, 1);
1256         else
1257                 ret = cow_file_range_async(inode, locked_page, start, end,
1258                                            page_started, nr_written);
1259         return ret;
1260 }
1261
1262 static int btrfs_split_extent_hook(struct inode *inode,
1263                                    struct extent_state *orig, u64 split)
1264 {
1265         /* not delalloc, ignore it */
1266         if (!(orig->state & EXTENT_DELALLOC))
1267                 return 0;
1268
1269         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1270         return 0;
1271 }
1272
1273 /*
1274  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1275  * extents so we can keep track of new extents that are just merged onto old
1276  * extents, such as when we are doing sequential writes, so we can properly
1277  * account for the metadata space we'll need.
1278  */
1279 static int btrfs_merge_extent_hook(struct inode *inode,
1280                                    struct extent_state *new,
1281                                    struct extent_state *other)
1282 {
1283         /* not delalloc, ignore it */
1284         if (!(other->state & EXTENT_DELALLOC))
1285                 return 0;
1286
1287         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1288         return 0;
1289 }
1290
1291 /*
1292  * extent_io.c set_bit_hook, used to track delayed allocation
1293  * bytes in this file, and to maintain the list of inodes that
1294  * have pending delalloc work to be done.
1295  */
1296 static int btrfs_set_bit_hook(struct inode *inode,
1297                               struct extent_state *state, int *bits)
1298 {
1299
1300         /*
1301          * set_bit and clear bit hooks normally require _irqsave/restore
1302          * but in this case, we are only testeing for the DELALLOC
1303          * bit, which is only set or cleared with irqs on
1304          */
1305         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1306                 struct btrfs_root *root = BTRFS_I(inode)->root;
1307                 u64 len = state->end + 1 - state->start;
1308                 int do_list = (root->root_key.objectid !=
1309                                BTRFS_ROOT_TREE_OBJECTID);
1310
1311                 if (*bits & EXTENT_FIRST_DELALLOC)
1312                         *bits &= ~EXTENT_FIRST_DELALLOC;
1313                 else
1314                         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1315
1316                 spin_lock(&root->fs_info->delalloc_lock);
1317                 BTRFS_I(inode)->delalloc_bytes += len;
1318                 root->fs_info->delalloc_bytes += len;
1319                 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1320                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1321                                       &root->fs_info->delalloc_inodes);
1322                 }
1323                 spin_unlock(&root->fs_info->delalloc_lock);
1324         }
1325         return 0;
1326 }
1327
1328 /*
1329  * extent_io.c clear_bit_hook, see set_bit_hook for why
1330  */
1331 static int btrfs_clear_bit_hook(struct inode *inode,
1332                                 struct extent_state *state, int *bits)
1333 {
1334         /*
1335          * set_bit and clear bit hooks normally require _irqsave/restore
1336          * but in this case, we are only testeing for the DELALLOC
1337          * bit, which is only set or cleared with irqs on
1338          */
1339         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1340                 struct btrfs_root *root = BTRFS_I(inode)->root;
1341                 u64 len = state->end + 1 - state->start;
1342                 int do_list = (root->root_key.objectid !=
1343                                BTRFS_ROOT_TREE_OBJECTID);
1344
1345                 if (*bits & EXTENT_FIRST_DELALLOC)
1346                         *bits &= ~EXTENT_FIRST_DELALLOC;
1347                 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1348                         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1349
1350                 if (*bits & EXTENT_DO_ACCOUNTING)
1351                         btrfs_delalloc_release_metadata(inode, len);
1352
1353                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1354                     && do_list)
1355                         btrfs_free_reserved_data_space(inode, len);
1356
1357                 spin_lock(&root->fs_info->delalloc_lock);
1358                 root->fs_info->delalloc_bytes -= len;
1359                 BTRFS_I(inode)->delalloc_bytes -= len;
1360
1361                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1362                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1363                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1364                 }
1365                 spin_unlock(&root->fs_info->delalloc_lock);
1366         }
1367         return 0;
1368 }
1369
1370 /*
1371  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1372  * we don't create bios that span stripes or chunks
1373  */
1374 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1375                          size_t size, struct bio *bio,
1376                          unsigned long bio_flags)
1377 {
1378         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1379         struct btrfs_mapping_tree *map_tree;
1380         u64 logical = (u64)bio->bi_sector << 9;
1381         u64 length = 0;
1382         u64 map_length;
1383         int ret;
1384
1385         if (bio_flags & EXTENT_BIO_COMPRESSED)
1386                 return 0;
1387
1388         length = bio->bi_size;
1389         map_tree = &root->fs_info->mapping_tree;
1390         map_length = length;
1391         ret = btrfs_map_block(map_tree, READ, logical,
1392                               &map_length, NULL, 0);
1393
1394         if (map_length < length + size)
1395                 return 1;
1396         return ret;
1397 }
1398
1399 /*
1400  * in order to insert checksums into the metadata in large chunks,
1401  * we wait until bio submission time.   All the pages in the bio are
1402  * checksummed and sums are attached onto the ordered extent record.
1403  *
1404  * At IO completion time the cums attached on the ordered extent record
1405  * are inserted into the btree
1406  */
1407 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1408                                     struct bio *bio, int mirror_num,
1409                                     unsigned long bio_flags,
1410                                     u64 bio_offset)
1411 {
1412         struct btrfs_root *root = BTRFS_I(inode)->root;
1413         int ret = 0;
1414
1415         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1416         BUG_ON(ret);
1417         return 0;
1418 }
1419
1420 /*
1421  * in order to insert checksums into the metadata in large chunks,
1422  * we wait until bio submission time.   All the pages in the bio are
1423  * checksummed and sums are attached onto the ordered extent record.
1424  *
1425  * At IO completion time the cums attached on the ordered extent record
1426  * are inserted into the btree
1427  */
1428 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1429                           int mirror_num, unsigned long bio_flags,
1430                           u64 bio_offset)
1431 {
1432         struct btrfs_root *root = BTRFS_I(inode)->root;
1433         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1434 }
1435
1436 /*
1437  * extent_io.c submission hook. This does the right thing for csum calculation
1438  * on write, or reading the csums from the tree before a read
1439  */
1440 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1441                           int mirror_num, unsigned long bio_flags,
1442                           u64 bio_offset)
1443 {
1444         struct btrfs_root *root = BTRFS_I(inode)->root;
1445         int ret = 0;
1446         int skip_sum;
1447
1448         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1449
1450         if (root == root->fs_info->tree_root)
1451                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1452         else
1453                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1454         BUG_ON(ret);
1455
1456         if (!(rw & REQ_WRITE)) {
1457                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1458                         return btrfs_submit_compressed_read(inode, bio,
1459                                                     mirror_num, bio_flags);
1460                 } else if (!skip_sum)
1461                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1462                 goto mapit;
1463         } else if (!skip_sum) {
1464                 /* csum items have already been cloned */
1465                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1466                         goto mapit;
1467                 /* we're doing a write, do the async checksumming */
1468                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1469                                    inode, rw, bio, mirror_num,
1470                                    bio_flags, bio_offset,
1471                                    __btrfs_submit_bio_start,
1472                                    __btrfs_submit_bio_done);
1473         }
1474
1475 mapit:
1476         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1477 }
1478
1479 /*
1480  * given a list of ordered sums record them in the inode.  This happens
1481  * at IO completion time based on sums calculated at bio submission time.
1482  */
1483 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1484                              struct inode *inode, u64 file_offset,
1485                              struct list_head *list)
1486 {
1487         struct btrfs_ordered_sum *sum;
1488
1489         btrfs_set_trans_block_group(trans, inode);
1490
1491         list_for_each_entry(sum, list, list) {
1492                 btrfs_csum_file_blocks(trans,
1493                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1494         }
1495         return 0;
1496 }
1497
1498 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1499                               struct extent_state **cached_state)
1500 {
1501         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1502                 WARN_ON(1);
1503         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1504                                    cached_state, GFP_NOFS);
1505 }
1506
1507 /* see btrfs_writepage_start_hook for details on why this is required */
1508 struct btrfs_writepage_fixup {
1509         struct page *page;
1510         struct btrfs_work work;
1511 };
1512
1513 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1514 {
1515         struct btrfs_writepage_fixup *fixup;
1516         struct btrfs_ordered_extent *ordered;
1517         struct extent_state *cached_state = NULL;
1518         struct page *page;
1519         struct inode *inode;
1520         u64 page_start;
1521         u64 page_end;
1522
1523         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1524         page = fixup->page;
1525 again:
1526         lock_page(page);
1527         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1528                 ClearPageChecked(page);
1529                 goto out_page;
1530         }
1531
1532         inode = page->mapping->host;
1533         page_start = page_offset(page);
1534         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1535
1536         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1537                          &cached_state, GFP_NOFS);
1538
1539         /* already ordered? We're done */
1540         if (PagePrivate2(page))
1541                 goto out;
1542
1543         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1544         if (ordered) {
1545                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1546                                      page_end, &cached_state, GFP_NOFS);
1547                 unlock_page(page);
1548                 btrfs_start_ordered_extent(inode, ordered, 1);
1549                 goto again;
1550         }
1551
1552         BUG();
1553         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1554         ClearPageChecked(page);
1555 out:
1556         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1557                              &cached_state, GFP_NOFS);
1558 out_page:
1559         unlock_page(page);
1560         page_cache_release(page);
1561         kfree(fixup);
1562 }
1563
1564 /*
1565  * There are a few paths in the higher layers of the kernel that directly
1566  * set the page dirty bit without asking the filesystem if it is a
1567  * good idea.  This causes problems because we want to make sure COW
1568  * properly happens and the data=ordered rules are followed.
1569  *
1570  * In our case any range that doesn't have the ORDERED bit set
1571  * hasn't been properly setup for IO.  We kick off an async process
1572  * to fix it up.  The async helper will wait for ordered extents, set
1573  * the delalloc bit and make it safe to write the page.
1574  */
1575 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1576 {
1577         struct inode *inode = page->mapping->host;
1578         struct btrfs_writepage_fixup *fixup;
1579         struct btrfs_root *root = BTRFS_I(inode)->root;
1580
1581         /* this page is properly in the ordered list */
1582         if (TestClearPagePrivate2(page))
1583                 return 0;
1584
1585         if (PageChecked(page))
1586                 return -EAGAIN;
1587
1588         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1589         if (!fixup)
1590                 return -EAGAIN;
1591
1592         SetPageChecked(page);
1593         page_cache_get(page);
1594         fixup->work.func = btrfs_writepage_fixup_worker;
1595         fixup->page = page;
1596         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1597         return -EAGAIN;
1598 }
1599
1600 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1601                                        struct inode *inode, u64 file_pos,
1602                                        u64 disk_bytenr, u64 disk_num_bytes,
1603                                        u64 num_bytes, u64 ram_bytes,
1604                                        u8 compression, u8 encryption,
1605                                        u16 other_encoding, int extent_type)
1606 {
1607         struct btrfs_root *root = BTRFS_I(inode)->root;
1608         struct btrfs_file_extent_item *fi;
1609         struct btrfs_path *path;
1610         struct extent_buffer *leaf;
1611         struct btrfs_key ins;
1612         u64 hint;
1613         int ret;
1614
1615         path = btrfs_alloc_path();
1616         BUG_ON(!path);
1617
1618         path->leave_spinning = 1;
1619
1620         /*
1621          * we may be replacing one extent in the tree with another.
1622          * The new extent is pinned in the extent map, and we don't want
1623          * to drop it from the cache until it is completely in the btree.
1624          *
1625          * So, tell btrfs_drop_extents to leave this extent in the cache.
1626          * the caller is expected to unpin it and allow it to be merged
1627          * with the others.
1628          */
1629         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1630                                  &hint, 0);
1631         BUG_ON(ret);
1632
1633         ins.objectid = inode->i_ino;
1634         ins.offset = file_pos;
1635         ins.type = BTRFS_EXTENT_DATA_KEY;
1636         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1637         BUG_ON(ret);
1638         leaf = path->nodes[0];
1639         fi = btrfs_item_ptr(leaf, path->slots[0],
1640                             struct btrfs_file_extent_item);
1641         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1642         btrfs_set_file_extent_type(leaf, fi, extent_type);
1643         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1644         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1645         btrfs_set_file_extent_offset(leaf, fi, 0);
1646         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1647         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1648         btrfs_set_file_extent_compression(leaf, fi, compression);
1649         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1650         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1651
1652         btrfs_unlock_up_safe(path, 1);
1653         btrfs_set_lock_blocking(leaf);
1654
1655         btrfs_mark_buffer_dirty(leaf);
1656
1657         inode_add_bytes(inode, num_bytes);
1658
1659         ins.objectid = disk_bytenr;
1660         ins.offset = disk_num_bytes;
1661         ins.type = BTRFS_EXTENT_ITEM_KEY;
1662         ret = btrfs_alloc_reserved_file_extent(trans, root,
1663                                         root->root_key.objectid,
1664                                         inode->i_ino, file_pos, &ins);
1665         BUG_ON(ret);
1666         btrfs_free_path(path);
1667
1668         return 0;
1669 }
1670
1671 /*
1672  * helper function for btrfs_finish_ordered_io, this
1673  * just reads in some of the csum leaves to prime them into ram
1674  * before we start the transaction.  It limits the amount of btree
1675  * reads required while inside the transaction.
1676  */
1677 /* as ordered data IO finishes, this gets called so we can finish
1678  * an ordered extent if the range of bytes in the file it covers are
1679  * fully written.
1680  */
1681 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1682 {
1683         struct btrfs_root *root = BTRFS_I(inode)->root;
1684         struct btrfs_trans_handle *trans = NULL;
1685         struct btrfs_ordered_extent *ordered_extent = NULL;
1686         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1687         struct extent_state *cached_state = NULL;
1688         int compress_type = 0;
1689         int ret;
1690         bool nolock = false;
1691
1692         ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1693                                              end - start + 1);
1694         if (!ret)
1695                 return 0;
1696         BUG_ON(!ordered_extent);
1697
1698         nolock = (root == root->fs_info->tree_root);
1699
1700         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1701                 BUG_ON(!list_empty(&ordered_extent->list));
1702                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1703                 if (!ret) {
1704                         if (nolock)
1705                                 trans = btrfs_join_transaction_nolock(root, 1);
1706                         else
1707                                 trans = btrfs_join_transaction(root, 1);
1708                         BUG_ON(IS_ERR(trans));
1709                         btrfs_set_trans_block_group(trans, inode);
1710                         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1711                         ret = btrfs_update_inode(trans, root, inode);
1712                         BUG_ON(ret);
1713                 }
1714                 goto out;
1715         }
1716
1717         lock_extent_bits(io_tree, ordered_extent->file_offset,
1718                          ordered_extent->file_offset + ordered_extent->len - 1,
1719                          0, &cached_state, GFP_NOFS);
1720
1721         if (nolock)
1722                 trans = btrfs_join_transaction_nolock(root, 1);
1723         else
1724                 trans = btrfs_join_transaction(root, 1);
1725         BUG_ON(IS_ERR(trans));
1726         btrfs_set_trans_block_group(trans, inode);
1727         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1728
1729         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1730                 compress_type = ordered_extent->compress_type;
1731         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1732                 BUG_ON(compress_type);
1733                 ret = btrfs_mark_extent_written(trans, inode,
1734                                                 ordered_extent->file_offset,
1735                                                 ordered_extent->file_offset +
1736                                                 ordered_extent->len);
1737                 BUG_ON(ret);
1738         } else {
1739                 BUG_ON(root == root->fs_info->tree_root);
1740                 ret = insert_reserved_file_extent(trans, inode,
1741                                                 ordered_extent->file_offset,
1742                                                 ordered_extent->start,
1743                                                 ordered_extent->disk_len,
1744                                                 ordered_extent->len,
1745                                                 ordered_extent->len,
1746                                                 compress_type, 0, 0,
1747                                                 BTRFS_FILE_EXTENT_REG);
1748                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1749                                    ordered_extent->file_offset,
1750                                    ordered_extent->len);
1751                 BUG_ON(ret);
1752         }
1753         unlock_extent_cached(io_tree, ordered_extent->file_offset,
1754                              ordered_extent->file_offset +
1755                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
1756
1757         add_pending_csums(trans, inode, ordered_extent->file_offset,
1758                           &ordered_extent->list);
1759
1760         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1761         ret = btrfs_update_inode(trans, root, inode);
1762         BUG_ON(ret);
1763 out:
1764         if (nolock) {
1765                 if (trans)
1766                         btrfs_end_transaction_nolock(trans, root);
1767         } else {
1768                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1769                 if (trans)
1770                         btrfs_end_transaction(trans, root);
1771         }
1772
1773         /* once for us */
1774         btrfs_put_ordered_extent(ordered_extent);
1775         /* once for the tree */
1776         btrfs_put_ordered_extent(ordered_extent);
1777
1778         return 0;
1779 }
1780
1781 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1782                                 struct extent_state *state, int uptodate)
1783 {
1784         ClearPagePrivate2(page);
1785         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1786 }
1787
1788 /*
1789  * When IO fails, either with EIO or csum verification fails, we
1790  * try other mirrors that might have a good copy of the data.  This
1791  * io_failure_record is used to record state as we go through all the
1792  * mirrors.  If another mirror has good data, the page is set up to date
1793  * and things continue.  If a good mirror can't be found, the original
1794  * bio end_io callback is called to indicate things have failed.
1795  */
1796 struct io_failure_record {
1797         struct page *page;
1798         u64 start;
1799         u64 len;
1800         u64 logical;
1801         unsigned long bio_flags;
1802         int last_mirror;
1803 };
1804
1805 static int btrfs_io_failed_hook(struct bio *failed_bio,
1806                          struct page *page, u64 start, u64 end,
1807                          struct extent_state *state)
1808 {
1809         struct io_failure_record *failrec = NULL;
1810         u64 private;
1811         struct extent_map *em;
1812         struct inode *inode = page->mapping->host;
1813         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1814         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1815         struct bio *bio;
1816         int num_copies;
1817         int ret;
1818         int rw;
1819         u64 logical;
1820
1821         ret = get_state_private(failure_tree, start, &private);
1822         if (ret) {
1823                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1824                 if (!failrec)
1825                         return -ENOMEM;
1826                 failrec->start = start;
1827                 failrec->len = end - start + 1;
1828                 failrec->last_mirror = 0;
1829                 failrec->bio_flags = 0;
1830
1831                 read_lock(&em_tree->lock);
1832                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1833                 if (em->start > start || em->start + em->len < start) {
1834                         free_extent_map(em);
1835                         em = NULL;
1836                 }
1837                 read_unlock(&em_tree->lock);
1838
1839                 if (!em || IS_ERR(em)) {
1840                         kfree(failrec);
1841                         return -EIO;
1842                 }
1843                 logical = start - em->start;
1844                 logical = em->block_start + logical;
1845                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1846                         logical = em->block_start;
1847                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1848                         extent_set_compress_type(&failrec->bio_flags,
1849                                                  em->compress_type);
1850                 }
1851                 failrec->logical = logical;
1852                 free_extent_map(em);
1853                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1854                                 EXTENT_DIRTY, GFP_NOFS);
1855                 set_state_private(failure_tree, start,
1856                                  (u64)(unsigned long)failrec);
1857         } else {
1858                 failrec = (struct io_failure_record *)(unsigned long)private;
1859         }
1860         num_copies = btrfs_num_copies(
1861                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1862                               failrec->logical, failrec->len);
1863         failrec->last_mirror++;
1864         if (!state) {
1865                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1866                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1867                                                     failrec->start,
1868                                                     EXTENT_LOCKED);
1869                 if (state && state->start != failrec->start)
1870                         state = NULL;
1871                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1872         }
1873         if (!state || failrec->last_mirror > num_copies) {
1874                 set_state_private(failure_tree, failrec->start, 0);
1875                 clear_extent_bits(failure_tree, failrec->start,
1876                                   failrec->start + failrec->len - 1,
1877                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1878                 kfree(failrec);
1879                 return -EIO;
1880         }
1881         bio = bio_alloc(GFP_NOFS, 1);
1882         bio->bi_private = state;
1883         bio->bi_end_io = failed_bio->bi_end_io;
1884         bio->bi_sector = failrec->logical >> 9;
1885         bio->bi_bdev = failed_bio->bi_bdev;
1886         bio->bi_size = 0;
1887
1888         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1889         if (failed_bio->bi_rw & REQ_WRITE)
1890                 rw = WRITE;
1891         else
1892                 rw = READ;
1893
1894         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1895                                                       failrec->last_mirror,
1896                                                       failrec->bio_flags, 0);
1897         return 0;
1898 }
1899
1900 /*
1901  * each time an IO finishes, we do a fast check in the IO failure tree
1902  * to see if we need to process or clean up an io_failure_record
1903  */
1904 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1905 {
1906         u64 private;
1907         u64 private_failure;
1908         struct io_failure_record *failure;
1909         int ret;
1910
1911         private = 0;
1912         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1913                              (u64)-1, 1, EXTENT_DIRTY)) {
1914                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1915                                         start, &private_failure);
1916                 if (ret == 0) {
1917                         failure = (struct io_failure_record *)(unsigned long)
1918                                    private_failure;
1919                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1920                                           failure->start, 0);
1921                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1922                                           failure->start,
1923                                           failure->start + failure->len - 1,
1924                                           EXTENT_DIRTY | EXTENT_LOCKED,
1925                                           GFP_NOFS);
1926                         kfree(failure);
1927                 }
1928         }
1929         return 0;
1930 }
1931
1932 /*
1933  * when reads are done, we need to check csums to verify the data is correct
1934  * if there's a match, we allow the bio to finish.  If not, we go through
1935  * the io_failure_record routines to find good copies
1936  */
1937 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1938                                struct extent_state *state)
1939 {
1940         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1941         struct inode *inode = page->mapping->host;
1942         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1943         char *kaddr;
1944         u64 private = ~(u32)0;
1945         int ret;
1946         struct btrfs_root *root = BTRFS_I(inode)->root;
1947         u32 csum = ~(u32)0;
1948
1949         if (PageChecked(page)) {
1950                 ClearPageChecked(page);
1951                 goto good;
1952         }
1953
1954         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1955                 return 0;
1956
1957         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1958             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1959                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1960                                   GFP_NOFS);
1961                 return 0;
1962         }
1963
1964         if (state && state->start == start) {
1965                 private = state->private;
1966                 ret = 0;
1967         } else {
1968                 ret = get_state_private(io_tree, start, &private);
1969         }
1970         kaddr = kmap_atomic(page, KM_USER0);
1971         if (ret)
1972                 goto zeroit;
1973
1974         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1975         btrfs_csum_final(csum, (char *)&csum);
1976         if (csum != private)
1977                 goto zeroit;
1978
1979         kunmap_atomic(kaddr, KM_USER0);
1980 good:
1981         /* if the io failure tree for this inode is non-empty,
1982          * check to see if we've recovered from a failed IO
1983          */
1984         btrfs_clean_io_failures(inode, start);
1985         return 0;
1986
1987 zeroit:
1988         if (printk_ratelimit()) {
1989                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1990                        "private %llu\n", page->mapping->host->i_ino,
1991                        (unsigned long long)start, csum,
1992                        (unsigned long long)private);
1993         }
1994         memset(kaddr + offset, 1, end - start + 1);
1995         flush_dcache_page(page);
1996         kunmap_atomic(kaddr, KM_USER0);
1997         if (private == 0)
1998                 return 0;
1999         return -EIO;
2000 }
2001
2002 struct delayed_iput {
2003         struct list_head list;
2004         struct inode *inode;
2005 };
2006
2007 void btrfs_add_delayed_iput(struct inode *inode)
2008 {
2009         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2010         struct delayed_iput *delayed;
2011
2012         if (atomic_add_unless(&inode->i_count, -1, 1))
2013                 return;
2014
2015         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2016         delayed->inode = inode;
2017
2018         spin_lock(&fs_info->delayed_iput_lock);
2019         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2020         spin_unlock(&fs_info->delayed_iput_lock);
2021 }
2022
2023 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2024 {
2025         LIST_HEAD(list);
2026         struct btrfs_fs_info *fs_info = root->fs_info;
2027         struct delayed_iput *delayed;
2028         int empty;
2029
2030         spin_lock(&fs_info->delayed_iput_lock);
2031         empty = list_empty(&fs_info->delayed_iputs);
2032         spin_unlock(&fs_info->delayed_iput_lock);
2033         if (empty)
2034                 return;
2035
2036         down_read(&root->fs_info->cleanup_work_sem);
2037         spin_lock(&fs_info->delayed_iput_lock);
2038         list_splice_init(&fs_info->delayed_iputs, &list);
2039         spin_unlock(&fs_info->delayed_iput_lock);
2040
2041         while (!list_empty(&list)) {
2042                 delayed = list_entry(list.next, struct delayed_iput, list);
2043                 list_del(&delayed->list);
2044                 iput(delayed->inode);
2045                 kfree(delayed);
2046         }
2047         up_read(&root->fs_info->cleanup_work_sem);
2048 }
2049
2050 /*
2051  * calculate extra metadata reservation when snapshotting a subvolume
2052  * contains orphan files.
2053  */
2054 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2055                                 struct btrfs_pending_snapshot *pending,
2056                                 u64 *bytes_to_reserve)
2057 {
2058         struct btrfs_root *root;
2059         struct btrfs_block_rsv *block_rsv;
2060         u64 num_bytes;
2061         int index;
2062
2063         root = pending->root;
2064         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2065                 return;
2066
2067         block_rsv = root->orphan_block_rsv;
2068
2069         /* orphan block reservation for the snapshot */
2070         num_bytes = block_rsv->size;
2071
2072         /*
2073          * after the snapshot is created, COWing tree blocks may use more
2074          * space than it frees. So we should make sure there is enough
2075          * reserved space.
2076          */
2077         index = trans->transid & 0x1;
2078         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2079                 num_bytes += block_rsv->size -
2080                              (block_rsv->reserved + block_rsv->freed[index]);
2081         }
2082
2083         *bytes_to_reserve += num_bytes;
2084 }
2085
2086 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2087                                 struct btrfs_pending_snapshot *pending)
2088 {
2089         struct btrfs_root *root = pending->root;
2090         struct btrfs_root *snap = pending->snap;
2091         struct btrfs_block_rsv *block_rsv;
2092         u64 num_bytes;
2093         int index;
2094         int ret;
2095
2096         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2097                 return;
2098
2099         /* refill source subvolume's orphan block reservation */
2100         block_rsv = root->orphan_block_rsv;
2101         index = trans->transid & 0x1;
2102         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2103                 num_bytes = block_rsv->size -
2104                             (block_rsv->reserved + block_rsv->freed[index]);
2105                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2106                                               root->orphan_block_rsv,
2107                                               num_bytes);
2108                 BUG_ON(ret);
2109         }
2110
2111         /* setup orphan block reservation for the snapshot */
2112         block_rsv = btrfs_alloc_block_rsv(snap);
2113         BUG_ON(!block_rsv);
2114
2115         btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2116         snap->orphan_block_rsv = block_rsv;
2117
2118         num_bytes = root->orphan_block_rsv->size;
2119         ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2120                                       block_rsv, num_bytes);
2121         BUG_ON(ret);
2122
2123 #if 0
2124         /* insert orphan item for the snapshot */
2125         WARN_ON(!root->orphan_item_inserted);
2126         ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2127                                        snap->root_key.objectid);
2128         BUG_ON(ret);
2129         snap->orphan_item_inserted = 1;
2130 #endif
2131 }
2132
2133 enum btrfs_orphan_cleanup_state {
2134         ORPHAN_CLEANUP_STARTED  = 1,
2135         ORPHAN_CLEANUP_DONE     = 2,
2136 };
2137
2138 /*
2139  * This is called in transaction commmit time. If there are no orphan
2140  * files in the subvolume, it removes orphan item and frees block_rsv
2141  * structure.
2142  */
2143 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2144                               struct btrfs_root *root)
2145 {
2146         int ret;
2147
2148         if (!list_empty(&root->orphan_list) ||
2149             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2150                 return;
2151
2152         if (root->orphan_item_inserted &&
2153             btrfs_root_refs(&root->root_item) > 0) {
2154                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2155                                             root->root_key.objectid);
2156                 BUG_ON(ret);
2157                 root->orphan_item_inserted = 0;
2158         }
2159
2160         if (root->orphan_block_rsv) {
2161                 WARN_ON(root->orphan_block_rsv->size > 0);
2162                 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2163                 root->orphan_block_rsv = NULL;
2164         }
2165 }
2166
2167 /*
2168  * This creates an orphan entry for the given inode in case something goes
2169  * wrong in the middle of an unlink/truncate.
2170  *
2171  * NOTE: caller of this function should reserve 5 units of metadata for
2172  *       this function.
2173  */
2174 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2175 {
2176         struct btrfs_root *root = BTRFS_I(inode)->root;
2177         struct btrfs_block_rsv *block_rsv = NULL;
2178         int reserve = 0;
2179         int insert = 0;
2180         int ret;
2181
2182         if (!root->orphan_block_rsv) {
2183                 block_rsv = btrfs_alloc_block_rsv(root);
2184                 BUG_ON(!block_rsv);
2185         }
2186
2187         spin_lock(&root->orphan_lock);
2188         if (!root->orphan_block_rsv) {
2189                 root->orphan_block_rsv = block_rsv;
2190         } else if (block_rsv) {
2191                 btrfs_free_block_rsv(root, block_rsv);
2192                 block_rsv = NULL;
2193         }
2194
2195         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2196                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2197 #if 0
2198                 /*
2199                  * For proper ENOSPC handling, we should do orphan
2200                  * cleanup when mounting. But this introduces backward
2201                  * compatibility issue.
2202                  */
2203                 if (!xchg(&root->orphan_item_inserted, 1))
2204                         insert = 2;
2205                 else
2206                         insert = 1;
2207 #endif
2208                 insert = 1;
2209         } else {
2210                 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2211         }
2212
2213         if (!BTRFS_I(inode)->orphan_meta_reserved) {
2214                 BTRFS_I(inode)->orphan_meta_reserved = 1;
2215                 reserve = 1;
2216         }
2217         spin_unlock(&root->orphan_lock);
2218
2219         if (block_rsv)
2220                 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2221
2222         /* grab metadata reservation from transaction handle */
2223         if (reserve) {
2224                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2225                 BUG_ON(ret);
2226         }
2227
2228         /* insert an orphan item to track this unlinked/truncated file */
2229         if (insert >= 1) {
2230                 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2231                 BUG_ON(ret);
2232         }
2233
2234         /* insert an orphan item to track subvolume contains orphan files */
2235         if (insert >= 2) {
2236                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2237                                                root->root_key.objectid);
2238                 BUG_ON(ret);
2239         }
2240         return 0;
2241 }
2242
2243 /*
2244  * We have done the truncate/delete so we can go ahead and remove the orphan
2245  * item for this particular inode.
2246  */
2247 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2248 {
2249         struct btrfs_root *root = BTRFS_I(inode)->root;
2250         int delete_item = 0;
2251         int release_rsv = 0;
2252         int ret = 0;
2253
2254         spin_lock(&root->orphan_lock);
2255         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2256                 list_del_init(&BTRFS_I(inode)->i_orphan);
2257                 delete_item = 1;
2258         }
2259
2260         if (BTRFS_I(inode)->orphan_meta_reserved) {
2261                 BTRFS_I(inode)->orphan_meta_reserved = 0;
2262                 release_rsv = 1;
2263         }
2264         spin_unlock(&root->orphan_lock);
2265
2266         if (trans && delete_item) {
2267                 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2268                 BUG_ON(ret);
2269         }
2270
2271         if (release_rsv)
2272                 btrfs_orphan_release_metadata(inode);
2273
2274         return 0;
2275 }
2276
2277 /*
2278  * this cleans up any orphans that may be left on the list from the last use
2279  * of this root.
2280  */
2281 void btrfs_orphan_cleanup(struct btrfs_root *root)
2282 {
2283         struct btrfs_path *path;
2284         struct extent_buffer *leaf;
2285         struct btrfs_key key, found_key;
2286         struct btrfs_trans_handle *trans;
2287         struct inode *inode;
2288         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2289
2290         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2291                 return;
2292
2293         path = btrfs_alloc_path();
2294         BUG_ON(!path);
2295         path->reada = -1;
2296
2297         key.objectid = BTRFS_ORPHAN_OBJECTID;
2298         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2299         key.offset = (u64)-1;
2300
2301         while (1) {
2302                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2303                 if (ret < 0) {
2304                         printk(KERN_ERR "Error searching slot for orphan: %d"
2305                                "\n", ret);
2306                         break;
2307                 }
2308
2309                 /*
2310                  * if ret == 0 means we found what we were searching for, which
2311                  * is weird, but possible, so only screw with path if we didnt
2312                  * find the key and see if we have stuff that matches
2313                  */
2314                 if (ret > 0) {
2315                         if (path->slots[0] == 0)
2316                                 break;
2317                         path->slots[0]--;
2318                 }
2319
2320                 /* pull out the item */
2321                 leaf = path->nodes[0];
2322                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2323
2324                 /* make sure the item matches what we want */
2325                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2326                         break;
2327                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2328                         break;
2329
2330                 /* release the path since we're done with it */
2331                 btrfs_release_path(root, path);
2332
2333                 /*
2334                  * this is where we are basically btrfs_lookup, without the
2335                  * crossing root thing.  we store the inode number in the
2336                  * offset of the orphan item.
2337                  */
2338                 found_key.objectid = found_key.offset;
2339                 found_key.type = BTRFS_INODE_ITEM_KEY;
2340                 found_key.offset = 0;
2341                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2342                 BUG_ON(IS_ERR(inode));
2343
2344                 /*
2345                  * add this inode to the orphan list so btrfs_orphan_del does
2346                  * the proper thing when we hit it
2347                  */
2348                 spin_lock(&root->orphan_lock);
2349                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2350                 spin_unlock(&root->orphan_lock);
2351
2352                 /*
2353                  * if this is a bad inode, means we actually succeeded in
2354                  * removing the inode, but not the orphan record, which means
2355                  * we need to manually delete the orphan since iput will just
2356                  * do a destroy_inode
2357                  */
2358                 if (is_bad_inode(inode)) {
2359                         trans = btrfs_start_transaction(root, 0);
2360                         btrfs_orphan_del(trans, inode);
2361                         btrfs_end_transaction(trans, root);
2362                         iput(inode);
2363                         continue;
2364                 }
2365
2366                 /* if we have links, this was a truncate, lets do that */
2367                 if (inode->i_nlink) {
2368                         nr_truncate++;
2369                         btrfs_truncate(inode);
2370                 } else {
2371                         nr_unlink++;
2372                 }
2373
2374                 /* this will do delete_inode and everything for us */
2375                 iput(inode);
2376         }
2377         btrfs_free_path(path);
2378
2379         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2380
2381         if (root->orphan_block_rsv)
2382                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2383                                         (u64)-1);
2384
2385         if (root->orphan_block_rsv || root->orphan_item_inserted) {
2386                 trans = btrfs_join_transaction(root, 1);
2387                 BUG_ON(IS_ERR(trans));
2388                 btrfs_end_transaction(trans, root);
2389         }
2390
2391         if (nr_unlink)
2392                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2393         if (nr_truncate)
2394                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2395 }
2396
2397 /*
2398  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2399  * don't find any xattrs, we know there can't be any acls.
2400  *
2401  * slot is the slot the inode is in, objectid is the objectid of the inode
2402  */
2403 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2404                                           int slot, u64 objectid)
2405 {
2406         u32 nritems = btrfs_header_nritems(leaf);
2407         struct btrfs_key found_key;
2408         int scanned = 0;
2409
2410         slot++;
2411         while (slot < nritems) {
2412                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2413
2414                 /* we found a different objectid, there must not be acls */
2415                 if (found_key.objectid != objectid)
2416                         return 0;
2417
2418                 /* we found an xattr, assume we've got an acl */
2419                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2420                         return 1;
2421
2422                 /*
2423                  * we found a key greater than an xattr key, there can't
2424                  * be any acls later on
2425                  */
2426                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2427                         return 0;
2428
2429                 slot++;
2430                 scanned++;
2431
2432                 /*
2433                  * it goes inode, inode backrefs, xattrs, extents,
2434                  * so if there are a ton of hard links to an inode there can
2435                  * be a lot of backrefs.  Don't waste time searching too hard,
2436                  * this is just an optimization
2437                  */
2438                 if (scanned >= 8)
2439                         break;
2440         }
2441         /* we hit the end of the leaf before we found an xattr or
2442          * something larger than an xattr.  We have to assume the inode
2443          * has acls
2444          */
2445         return 1;
2446 }
2447
2448 /*
2449  * read an inode from the btree into the in-memory inode
2450  */
2451 static void btrfs_read_locked_inode(struct inode *inode)
2452 {
2453         struct btrfs_path *path;
2454         struct extent_buffer *leaf;
2455         struct btrfs_inode_item *inode_item;
2456         struct btrfs_timespec *tspec;
2457         struct btrfs_root *root = BTRFS_I(inode)->root;
2458         struct btrfs_key location;
2459         int maybe_acls;
2460         u64 alloc_group_block;
2461         u32 rdev;
2462         int ret;
2463
2464         path = btrfs_alloc_path();
2465         BUG_ON(!path);
2466         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2467
2468         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2469         if (ret)
2470                 goto make_bad;
2471
2472         leaf = path->nodes[0];
2473         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2474                                     struct btrfs_inode_item);
2475
2476         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2477         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2478         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2479         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2480         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2481
2482         tspec = btrfs_inode_atime(inode_item);
2483         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2484         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2485
2486         tspec = btrfs_inode_mtime(inode_item);
2487         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2488         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2489
2490         tspec = btrfs_inode_ctime(inode_item);
2491         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2492         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2493
2494         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2495         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2496         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2497         inode->i_generation = BTRFS_I(inode)->generation;
2498         inode->i_rdev = 0;
2499         rdev = btrfs_inode_rdev(leaf, inode_item);
2500
2501         BTRFS_I(inode)->index_cnt = (u64)-1;
2502         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2503
2504         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2505
2506         /*
2507          * try to precache a NULL acl entry for files that don't have
2508          * any xattrs or acls
2509          */
2510         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2511         if (!maybe_acls)
2512                 cache_no_acl(inode);
2513
2514         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2515                                                 alloc_group_block, 0);
2516         btrfs_free_path(path);
2517         inode_item = NULL;
2518
2519         switch (inode->i_mode & S_IFMT) {
2520         case S_IFREG:
2521                 inode->i_mapping->a_ops = &btrfs_aops;
2522                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2523                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2524                 inode->i_fop = &btrfs_file_operations;
2525                 inode->i_op = &btrfs_file_inode_operations;
2526                 break;
2527         case S_IFDIR:
2528                 inode->i_fop = &btrfs_dir_file_operations;
2529                 if (root == root->fs_info->tree_root)
2530                         inode->i_op = &btrfs_dir_ro_inode_operations;
2531                 else
2532                         inode->i_op = &btrfs_dir_inode_operations;
2533                 break;
2534         case S_IFLNK:
2535                 inode->i_op = &btrfs_symlink_inode_operations;
2536                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2537                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2538                 break;
2539         default:
2540                 inode->i_op = &btrfs_special_inode_operations;
2541                 init_special_inode(inode, inode->i_mode, rdev);
2542                 break;
2543         }
2544
2545         btrfs_update_iflags(inode);
2546         return;
2547
2548 make_bad:
2549         btrfs_free_path(path);
2550         make_bad_inode(inode);
2551 }
2552
2553 /*
2554  * given a leaf and an inode, copy the inode fields into the leaf
2555  */
2556 static void fill_inode_item(struct btrfs_trans_handle *trans,
2557                             struct extent_buffer *leaf,
2558                             struct btrfs_inode_item *item,
2559                             struct inode *inode)
2560 {
2561         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2562         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2563         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2564         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2565         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2566
2567         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2568                                inode->i_atime.tv_sec);
2569         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2570                                 inode->i_atime.tv_nsec);
2571
2572         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2573                                inode->i_mtime.tv_sec);
2574         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2575                                 inode->i_mtime.tv_nsec);
2576
2577         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2578                                inode->i_ctime.tv_sec);
2579         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2580                                 inode->i_ctime.tv_nsec);
2581
2582         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2583         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2584         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2585         btrfs_set_inode_transid(leaf, item, trans->transid);
2586         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2587         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2588         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2589 }
2590
2591 /*
2592  * copy everything in the in-memory inode into the btree.
2593  */
2594 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2595                                 struct btrfs_root *root, struct inode *inode)
2596 {
2597         struct btrfs_inode_item *inode_item;
2598         struct btrfs_path *path;
2599         struct extent_buffer *leaf;
2600         int ret;
2601
2602         path = btrfs_alloc_path();
2603         BUG_ON(!path);
2604         path->leave_spinning = 1;
2605         ret = btrfs_lookup_inode(trans, root, path,
2606                                  &BTRFS_I(inode)->location, 1);
2607         if (ret) {
2608                 if (ret > 0)
2609                         ret = -ENOENT;
2610                 goto failed;
2611         }
2612
2613         btrfs_unlock_up_safe(path, 1);
2614         leaf = path->nodes[0];
2615         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2616                                   struct btrfs_inode_item);
2617
2618         fill_inode_item(trans, leaf, inode_item, inode);
2619         btrfs_mark_buffer_dirty(leaf);
2620         btrfs_set_inode_last_trans(trans, inode);
2621         ret = 0;
2622 failed:
2623         btrfs_free_path(path);
2624         return ret;
2625 }
2626
2627
2628 /*
2629  * unlink helper that gets used here in inode.c and in the tree logging
2630  * recovery code.  It remove a link in a directory with a given name, and
2631  * also drops the back refs in the inode to the directory
2632  */
2633 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2634                        struct btrfs_root *root,
2635                        struct inode *dir, struct inode *inode,
2636                        const char *name, int name_len)
2637 {
2638         struct btrfs_path *path;
2639         int ret = 0;
2640         struct extent_buffer *leaf;
2641         struct btrfs_dir_item *di;
2642         struct btrfs_key key;
2643         u64 index;
2644
2645         path = btrfs_alloc_path();
2646         if (!path) {
2647                 ret = -ENOMEM;
2648                 goto err;
2649         }
2650
2651         path->leave_spinning = 1;
2652         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2653                                     name, name_len, -1);
2654         if (IS_ERR(di)) {
2655                 ret = PTR_ERR(di);
2656                 goto err;
2657         }
2658         if (!di) {
2659                 ret = -ENOENT;
2660                 goto err;
2661         }
2662         leaf = path->nodes[0];
2663         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2664         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2665         if (ret)
2666                 goto err;
2667         btrfs_release_path(root, path);
2668
2669         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2670                                   inode->i_ino,
2671                                   dir->i_ino, &index);
2672         if (ret) {
2673                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2674                        "inode %lu parent %lu\n", name_len, name,
2675                        inode->i_ino, dir->i_ino);
2676                 goto err;
2677         }
2678
2679         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2680                                          index, name, name_len, -1);
2681         if (IS_ERR(di)) {
2682                 ret = PTR_ERR(di);
2683                 goto err;
2684         }
2685         if (!di) {
2686                 ret = -ENOENT;
2687                 goto err;
2688         }
2689         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2690         btrfs_release_path(root, path);
2691
2692         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2693                                          inode, dir->i_ino);
2694         BUG_ON(ret != 0 && ret != -ENOENT);
2695
2696         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2697                                            dir, index);
2698         if (ret == -ENOENT)
2699                 ret = 0;
2700 err:
2701         btrfs_free_path(path);
2702         if (ret)
2703                 goto out;
2704
2705         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2706         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2707         btrfs_update_inode(trans, root, dir);
2708         btrfs_drop_nlink(inode);
2709         ret = btrfs_update_inode(trans, root, inode);
2710 out:
2711         return ret;
2712 }
2713
2714 /* helper to check if there is any shared block in the path */
2715 static int check_path_shared(struct btrfs_root *root,
2716                              struct btrfs_path *path)
2717 {
2718         struct extent_buffer *eb;
2719         int level;
2720         u64 refs = 1;
2721
2722         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2723                 int ret;
2724
2725                 if (!path->nodes[level])
2726                         break;
2727                 eb = path->nodes[level];
2728                 if (!btrfs_block_can_be_shared(root, eb))
2729                         continue;
2730                 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2731                                                &refs, NULL);
2732                 if (refs > 1)
2733                         return 1;
2734         }
2735         return 0;
2736 }
2737
2738 /*
2739  * helper to start transaction for unlink and rmdir.
2740  *
2741  * unlink and rmdir are special in btrfs, they do not always free space.
2742  * so in enospc case, we should make sure they will free space before
2743  * allowing them to use the global metadata reservation.
2744  */
2745 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2746                                                        struct dentry *dentry)
2747 {
2748         struct btrfs_trans_handle *trans;
2749         struct btrfs_root *root = BTRFS_I(dir)->root;
2750         struct btrfs_path *path;
2751         struct btrfs_inode_ref *ref;
2752         struct btrfs_dir_item *di;
2753         struct inode *inode = dentry->d_inode;
2754         u64 index;
2755         int check_link = 1;
2756         int err = -ENOSPC;
2757         int ret;
2758
2759         trans = btrfs_start_transaction(root, 10);
2760         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2761                 return trans;
2762
2763         if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2764                 return ERR_PTR(-ENOSPC);
2765
2766         /* check if there is someone else holds reference */
2767         if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2768                 return ERR_PTR(-ENOSPC);
2769
2770         if (atomic_read(&inode->i_count) > 2)
2771                 return ERR_PTR(-ENOSPC);
2772
2773         if (xchg(&root->fs_info->enospc_unlink, 1))
2774                 return ERR_PTR(-ENOSPC);
2775
2776         path = btrfs_alloc_path();
2777         if (!path) {
2778                 root->fs_info->enospc_unlink = 0;
2779                 return ERR_PTR(-ENOMEM);
2780         }
2781
2782         trans = btrfs_start_transaction(root, 0);
2783         if (IS_ERR(trans)) {
2784                 btrfs_free_path(path);
2785                 root->fs_info->enospc_unlink = 0;
2786                 return trans;
2787         }
2788
2789         path->skip_locking = 1;
2790         path->search_commit_root = 1;
2791
2792         ret = btrfs_lookup_inode(trans, root, path,
2793                                 &BTRFS_I(dir)->location, 0);
2794         if (ret < 0) {
2795                 err = ret;
2796                 goto out;
2797         }
2798         if (ret == 0) {
2799                 if (check_path_shared(root, path))
2800                         goto out;
2801         } else {
2802                 check_link = 0;
2803         }
2804         btrfs_release_path(root, path);
2805
2806         ret = btrfs_lookup_inode(trans, root, path,
2807                                 &BTRFS_I(inode)->location, 0);
2808         if (ret < 0) {
2809                 err = ret;
2810                 goto out;
2811         }
2812         if (ret == 0) {
2813                 if (check_path_shared(root, path))
2814                         goto out;
2815         } else {
2816                 check_link = 0;
2817         }
2818         btrfs_release_path(root, path);
2819
2820         if (ret == 0 && S_ISREG(inode->i_mode)) {
2821                 ret = btrfs_lookup_file_extent(trans, root, path,
2822                                                inode->i_ino, (u64)-1, 0);
2823                 if (ret < 0) {
2824                         err = ret;
2825                         goto out;
2826                 }
2827                 BUG_ON(ret == 0);
2828                 if (check_path_shared(root, path))
2829                         goto out;
2830                 btrfs_release_path(root, path);
2831         }
2832
2833         if (!check_link) {
2834                 err = 0;
2835                 goto out;
2836         }
2837
2838         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2839                                 dentry->d_name.name, dentry->d_name.len, 0);
2840         if (IS_ERR(di)) {
2841                 err = PTR_ERR(di);
2842                 goto out;
2843         }
2844         if (di) {
2845                 if (check_path_shared(root, path))
2846                         goto out;
2847         } else {
2848                 err = 0;
2849                 goto out;
2850         }
2851         btrfs_release_path(root, path);
2852
2853         ref = btrfs_lookup_inode_ref(trans, root, path,
2854                                 dentry->d_name.name, dentry->d_name.len,
2855                                 inode->i_ino, dir->i_ino, 0);
2856         if (IS_ERR(ref)) {
2857                 err = PTR_ERR(ref);
2858                 goto out;
2859         }
2860         BUG_ON(!ref);
2861         if (check_path_shared(root, path))
2862                 goto out;
2863         index = btrfs_inode_ref_index(path->nodes[0], ref);
2864         btrfs_release_path(root, path);
2865
2866         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2867                                 dentry->d_name.name, dentry->d_name.len, 0);
2868         if (IS_ERR(di)) {
2869                 err = PTR_ERR(di);
2870                 goto out;
2871         }
2872         BUG_ON(ret == -ENOENT);
2873         if (check_path_shared(root, path))
2874                 goto out;
2875
2876         err = 0;
2877 out:
2878         btrfs_free_path(path);
2879         if (err) {
2880                 btrfs_end_transaction(trans, root);
2881                 root->fs_info->enospc_unlink = 0;
2882                 return ERR_PTR(err);
2883         }
2884
2885         trans->block_rsv = &root->fs_info->global_block_rsv;
2886         return trans;
2887 }
2888
2889 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2890                                struct btrfs_root *root)
2891 {
2892         if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2893                 BUG_ON(!root->fs_info->enospc_unlink);
2894                 root->fs_info->enospc_unlink = 0;
2895         }
2896         btrfs_end_transaction_throttle(trans, root);
2897 }
2898
2899 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2900 {
2901         struct btrfs_root *root = BTRFS_I(dir)->root;
2902         struct btrfs_trans_handle *trans;
2903         struct inode *inode = dentry->d_inode;
2904         int ret;
2905         unsigned long nr = 0;
2906
2907         trans = __unlink_start_trans(dir, dentry);
2908         if (IS_ERR(trans))
2909                 return PTR_ERR(trans);
2910
2911         btrfs_set_trans_block_group(trans, dir);
2912
2913         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2914
2915         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2916                                  dentry->d_name.name, dentry->d_name.len);
2917         BUG_ON(ret);
2918
2919         if (inode->i_nlink == 0) {
2920                 ret = btrfs_orphan_add(trans, inode);
2921                 BUG_ON(ret);
2922         }
2923
2924         nr = trans->blocks_used;
2925         __unlink_end_trans(trans, root);
2926         btrfs_btree_balance_dirty(root, nr);
2927         return ret;
2928 }
2929
2930 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2931                         struct btrfs_root *root,
2932                         struct inode *dir, u64 objectid,
2933                         const char *name, int name_len)
2934 {
2935         struct btrfs_path *path;
2936         struct extent_buffer *leaf;
2937         struct btrfs_dir_item *di;
2938         struct btrfs_key key;
2939         u64 index;
2940         int ret;
2941
2942         path = btrfs_alloc_path();
2943         if (!path)
2944                 return -ENOMEM;
2945
2946         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2947                                    name, name_len, -1);
2948         BUG_ON(!di || IS_ERR(di));
2949
2950         leaf = path->nodes[0];
2951         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2952         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2953         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2954         BUG_ON(ret);
2955         btrfs_release_path(root, path);
2956
2957         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2958                                  objectid, root->root_key.objectid,
2959                                  dir->i_ino, &index, name, name_len);
2960         if (ret < 0) {
2961                 BUG_ON(ret != -ENOENT);
2962                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2963                                                  name, name_len);
2964                 BUG_ON(!di || IS_ERR(di));
2965
2966                 leaf = path->nodes[0];
2967                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2968                 btrfs_release_path(root, path);
2969                 index = key.offset;
2970         }
2971
2972         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2973                                          index, name, name_len, -1);
2974         BUG_ON(!di || IS_ERR(di));
2975
2976         leaf = path->nodes[0];
2977         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2978         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2979         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2980         BUG_ON(ret);
2981         btrfs_release_path(root, path);
2982
2983         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2984         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2985         ret = btrfs_update_inode(trans, root, dir);
2986         BUG_ON(ret);
2987
2988         btrfs_free_path(path);
2989         return 0;
2990 }
2991
2992 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2993 {
2994         struct inode *inode = dentry->d_inode;
2995         int err = 0;
2996         struct btrfs_root *root = BTRFS_I(dir)->root;
2997         struct btrfs_trans_handle *trans;
2998         unsigned long nr = 0;
2999
3000         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3001             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3002                 return -ENOTEMPTY;
3003
3004         trans = __unlink_start_trans(dir, dentry);
3005         if (IS_ERR(trans))
3006                 return PTR_ERR(trans);
3007
3008         btrfs_set_trans_block_group(trans, dir);
3009
3010         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3011                 err = btrfs_unlink_subvol(trans, root, dir,
3012                                           BTRFS_I(inode)->location.objectid,
3013                                           dentry->d_name.name,
3014                                           dentry->d_name.len);
3015                 goto out;
3016         }
3017
3018         err = btrfs_orphan_add(trans, inode);
3019         if (err)
3020                 goto out;
3021
3022         /* now the directory is empty */
3023         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3024                                  dentry->d_name.name, dentry->d_name.len);
3025         if (!err)
3026                 btrfs_i_size_write(inode, 0);
3027 out:
3028         nr = trans->blocks_used;
3029         __unlink_end_trans(trans, root);
3030         btrfs_btree_balance_dirty(root, nr);
3031
3032         return err;
3033 }
3034
3035 #if 0
3036 /*
3037  * when truncating bytes in a file, it is possible to avoid reading
3038  * the leaves that contain only checksum items.  This can be the
3039  * majority of the IO required to delete a large file, but it must
3040  * be done carefully.
3041  *
3042  * The keys in the level just above the leaves are checked to make sure
3043  * the lowest key in a given leaf is a csum key, and starts at an offset
3044  * after the new  size.
3045  *
3046  * Then the key for the next leaf is checked to make sure it also has
3047  * a checksum item for the same file.  If it does, we know our target leaf
3048  * contains only checksum items, and it can be safely freed without reading
3049  * it.
3050  *
3051  * This is just an optimization targeted at large files.  It may do
3052  * nothing.  It will return 0 unless things went badly.
3053  */
3054 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3055                                      struct btrfs_root *root,
3056                                      struct btrfs_path *path,
3057                                      struct inode *inode, u64 new_size)
3058 {
3059         struct btrfs_key key;
3060         int ret;
3061         int nritems;
3062         struct btrfs_key found_key;
3063         struct btrfs_key other_key;
3064         struct btrfs_leaf_ref *ref;
3065         u64 leaf_gen;
3066         u64 leaf_start;
3067
3068         path->lowest_level = 1;
3069         key.objectid = inode->i_ino;
3070         key.type = BTRFS_CSUM_ITEM_KEY;
3071         key.offset = new_size;
3072 again:
3073         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3074         if (ret < 0)
3075                 goto out;
3076
3077         if (path->nodes[1] == NULL) {
3078                 ret = 0;
3079                 goto out;
3080         }
3081         ret = 0;
3082         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3083         nritems = btrfs_header_nritems(path->nodes[1]);
3084
3085         if (!nritems)
3086                 goto out;
3087
3088         if (path->slots[1] >= nritems)
3089                 goto next_node;
3090
3091         /* did we find a key greater than anything we want to delete? */
3092         if (found_key.objectid > inode->i_ino ||
3093            (found_key.objectid == inode->i_ino && found_key.type > key.type))
3094                 goto out;
3095
3096         /* we check the next key in the node to make sure the leave contains
3097          * only checksum items.  This comparison doesn't work if our
3098          * leaf is the last one in the node
3099          */
3100         if (path->slots[1] + 1 >= nritems) {
3101 next_node:
3102                 /* search forward from the last key in the node, this
3103                  * will bring us into the next node in the tree
3104                  */
3105                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3106
3107                 /* unlikely, but we inc below, so check to be safe */
3108                 if (found_key.offset == (u64)-1)
3109                         goto out;
3110
3111                 /* search_forward needs a path with locks held, do the
3112                  * search again for the original key.  It is possible
3113                  * this will race with a balance and return a path that
3114                  * we could modify, but this drop is just an optimization
3115                  * and is allowed to miss some leaves.
3116                  */
3117                 btrfs_release_path(root, path);
3118                 found_key.offset++;
3119
3120                 /* setup a max key for search_forward */
3121                 other_key.offset = (u64)-1;
3122                 other_key.type = key.type;
3123                 other_key.objectid = key.objectid;
3124
3125                 path->keep_locks = 1;
3126                 ret = btrfs_search_forward(root, &found_key, &other_key,
3127                                            path, 0, 0);
3128                 path->keep_locks = 0;
3129                 if (ret || found_key.objectid != key.objectid ||
3130                     found_key.type != key.type) {
3131                         ret = 0;
3132                         goto out;
3133                 }
3134
3135                 key.offset = found_key.offset;
3136                 btrfs_release_path(root, path);
3137                 cond_resched();
3138                 goto again;
3139         }
3140
3141         /* we know there's one more slot after us in the tree,
3142          * read that key so we can verify it is also a checksum item
3143          */
3144         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3145
3146         if (found_key.objectid < inode->i_ino)
3147                 goto next_key;
3148
3149         if (found_key.type != key.type || found_key.offset < new_size)
3150                 goto next_key;
3151
3152         /*
3153          * if the key for the next leaf isn't a csum key from this objectid,
3154          * we can't be sure there aren't good items inside this leaf.
3155          * Bail out
3156          */
3157         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3158                 goto out;
3159
3160         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3161         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3162         /*
3163          * it is safe to delete this leaf, it contains only
3164          * csum items from this inode at an offset >= new_size
3165          */
3166         ret = btrfs_del_leaf(trans, root, path, leaf_start);
3167         BUG_ON(ret);
3168
3169         if (root->ref_cows && leaf_gen < trans->transid) {
3170                 ref = btrfs_alloc_leaf_ref(root, 0);
3171                 if (ref) {
3172                         ref->root_gen = root->root_key.offset;
3173                         ref->bytenr = leaf_start;
3174                         ref->owner = 0;
3175                         ref->generation = leaf_gen;
3176                         ref->nritems = 0;
3177
3178                         btrfs_sort_leaf_ref(ref);
3179
3180                         ret = btrfs_add_leaf_ref(root, ref, 0);
3181                         WARN_ON(ret);
3182                         btrfs_free_leaf_ref(root, ref);
3183                 } else {
3184                         WARN_ON(1);
3185                 }
3186         }
3187 next_key:
3188         btrfs_release_path(root, path);
3189
3190         if (other_key.objectid == inode->i_ino &&
3191             other_key.type == key.type && other_key.offset > key.offset) {
3192                 key.offset = other_key.offset;
3193                 cond_resched();
3194                 goto again;
3195         }
3196         ret = 0;
3197 out:
3198         /* fixup any changes we've made to the path */
3199         path->lowest_level = 0;
3200         path->keep_locks = 0;
3201         btrfs_release_path(root, path);
3202         return ret;
3203 }
3204
3205 #endif
3206
3207 /*
3208  * this can truncate away extent items, csum items and directory items.
3209  * It starts at a high offset and removes keys until it can't find
3210  * any higher than new_size
3211  *
3212  * csum items that cross the new i_size are truncated to the new size
3213  * as well.
3214  *
3215  * min_type is the minimum key type to truncate down to.  If set to 0, this
3216  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3217  */
3218 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3219                                struct btrfs_root *root,
3220                                struct inode *inode,
3221                                u64 new_size, u32 min_type)
3222 {
3223         struct btrfs_path *path;
3224         struct extent_buffer *leaf;
3225         struct btrfs_file_extent_item *fi;
3226         struct btrfs_key key;
3227         struct btrfs_key found_key;
3228         u64 extent_start = 0;
3229         u64 extent_num_bytes = 0;
3230         u64 extent_offset = 0;
3231         u64 item_end = 0;
3232         u64 mask = root->sectorsize - 1;
3233         u32 found_type = (u8)-1;
3234         int found_extent;
3235         int del_item;
3236         int pending_del_nr = 0;
3237         int pending_del_slot = 0;
3238         int extent_type = -1;
3239         int encoding;
3240         int ret;
3241         int err = 0;
3242
3243         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3244
3245         if (root->ref_cows || root == root->fs_info->tree_root)
3246                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3247
3248         path = btrfs_alloc_path();
3249         BUG_ON(!path);
3250         path->reada = -1;
3251
3252         key.objectid = inode->i_ino;
3253         key.offset = (u64)-1;
3254         key.type = (u8)-1;
3255
3256 search_again:
3257         path->leave_spinning = 1;
3258         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3259         if (ret < 0) {
3260                 err = ret;
3261                 goto out;
3262         }
3263
3264         if (ret > 0) {
3265                 /* there are no items in the tree for us to truncate, we're
3266                  * done
3267                  */
3268                 if (path->slots[0] == 0)
3269                         goto out;
3270                 path->slots[0]--;
3271         }
3272
3273         while (1) {
3274                 fi = NULL;
3275                 leaf = path->nodes[0];
3276                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3277                 found_type = btrfs_key_type(&found_key);
3278                 encoding = 0;
3279
3280                 if (found_key.objectid != inode->i_ino)
3281                         break;
3282
3283                 if (found_type < min_type)
3284                         break;
3285
3286                 item_end = found_key.offset;
3287                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3288                         fi = btrfs_item_ptr(leaf, path->slots[0],
3289                                             struct btrfs_file_extent_item);
3290                         extent_type = btrfs_file_extent_type(leaf, fi);
3291                         encoding = btrfs_file_extent_compression(leaf, fi);
3292                         encoding |= btrfs_file_extent_encryption(leaf, fi);
3293                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3294
3295                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3296                                 item_end +=
3297                                     btrfs_file_extent_num_bytes(leaf, fi);
3298                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3299                                 item_end += btrfs_file_extent_inline_len(leaf,
3300                                                                          fi);
3301                         }
3302                         item_end--;
3303                 }
3304                 if (found_type > min_type) {
3305                         del_item = 1;
3306                 } else {
3307                         if (item_end < new_size)
3308                                 break;
3309                         if (found_key.offset >= new_size)
3310                                 del_item = 1;
3311                         else
3312                                 del_item = 0;
3313                 }
3314                 found_extent = 0;
3315                 /* FIXME, shrink the extent if the ref count is only 1 */
3316                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3317                         goto delete;
3318
3319                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3320                         u64 num_dec;
3321                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3322                         if (!del_item && !encoding) {
3323                                 u64 orig_num_bytes =
3324                                         btrfs_file_extent_num_bytes(leaf, fi);
3325                                 extent_num_bytes = new_size -
3326                                         found_key.offset + root->sectorsize - 1;
3327                                 extent_num_bytes = extent_num_bytes &
3328                                         ~((u64)root->sectorsize - 1);
3329                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3330                                                          extent_num_bytes);
3331                                 num_dec = (orig_num_bytes -
3332                                            extent_num_bytes);
3333                                 if (root->ref_cows && extent_start != 0)
3334                                         inode_sub_bytes(inode, num_dec);
3335                                 btrfs_mark_buffer_dirty(leaf);
3336                         } else {
3337                                 extent_num_bytes =
3338                                         btrfs_file_extent_disk_num_bytes(leaf,
3339                                                                          fi);
3340                                 extent_offset = found_key.offset -
3341                                         btrfs_file_extent_offset(leaf, fi);
3342
3343                                 /* FIXME blocksize != 4096 */
3344                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3345                                 if (extent_start != 0) {
3346                                         found_extent = 1;
3347                                         if (root->ref_cows)
3348                                                 inode_sub_bytes(inode, num_dec);
3349                                 }
3350                         }
3351                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3352                         /*
3353                          * we can't truncate inline items that have had
3354                          * special encodings
3355                          */
3356                         if (!del_item &&
3357                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3358                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3359                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3360                                 u32 size = new_size - found_key.offset;
3361
3362                                 if (root->ref_cows) {
3363                                         inode_sub_bytes(inode, item_end + 1 -
3364                                                         new_size);
3365                                 }
3366                                 size =
3367                                     btrfs_file_extent_calc_inline_size(size);
3368                                 ret = btrfs_truncate_item(trans, root, path,
3369                                                           size, 1);
3370                                 BUG_ON(ret);
3371                         } else if (root->ref_cows) {
3372                                 inode_sub_bytes(inode, item_end + 1 -
3373                                                 found_key.offset);
3374                         }
3375                 }
3376 delete:
3377                 if (del_item) {
3378                         if (!pending_del_nr) {
3379                                 /* no pending yet, add ourselves */
3380                                 pending_del_slot = path->slots[0];
3381                                 pending_del_nr = 1;
3382                         } else if (pending_del_nr &&
3383                                    path->slots[0] + 1 == pending_del_slot) {
3384                                 /* hop on the pending chunk */
3385                                 pending_del_nr++;
3386                                 pending_del_slot = path->slots[0];
3387                         } else {
3388                                 BUG();
3389                         }
3390                 } else {
3391                         break;
3392                 }
3393                 if (found_extent && (root->ref_cows ||
3394                                      root == root->fs_info->tree_root)) {
3395                         btrfs_set_path_blocking(path);
3396                         ret = btrfs_free_extent(trans, root, extent_start,
3397                                                 extent_num_bytes, 0,
3398                                                 btrfs_header_owner(leaf),
3399                                                 inode->i_ino, extent_offset);
3400                         BUG_ON(ret);
3401                 }
3402
3403                 if (found_type == BTRFS_INODE_ITEM_KEY)
3404                         break;
3405
3406                 if (path->slots[0] == 0 ||
3407                     path->slots[0] != pending_del_slot) {
3408                         if (root->ref_cows) {
3409                                 err = -EAGAIN;
3410                                 goto out;
3411                         }
3412                         if (pending_del_nr) {
3413                                 ret = btrfs_del_items(trans, root, path,
3414                                                 pending_del_slot,
3415                                                 pending_del_nr);
3416                                 BUG_ON(ret);
3417                                 pending_del_nr = 0;
3418                         }
3419                         btrfs_release_path(root, path);
3420                         goto search_again;
3421                 } else {
3422                         path->slots[0]--;
3423                 }
3424         }
3425 out:
3426         if (pending_del_nr) {
3427                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3428                                       pending_del_nr);
3429                 BUG_ON(ret);
3430         }
3431         btrfs_free_path(path);
3432         return err;
3433 }
3434
3435 /*
3436  * taken from block_truncate_page, but does cow as it zeros out
3437  * any bytes left in the last page in the file.
3438  */
3439 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3440 {
3441         struct inode *inode = mapping->host;
3442         struct btrfs_root *root = BTRFS_I(inode)->root;
3443         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3444         struct btrfs_ordered_extent *ordered;
3445         struct extent_state *cached_state = NULL;
3446         char *kaddr;
3447         u32 blocksize = root->sectorsize;
3448         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3449         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3450         struct page *page;
3451         int ret = 0;
3452         u64 page_start;
3453         u64 page_end;
3454
3455         if ((offset & (blocksize - 1)) == 0)
3456                 goto out;
3457         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3458         if (ret)
3459                 goto out;
3460
3461         ret = -ENOMEM;
3462 again:
3463         page = grab_cache_page(mapping, index);
3464         if (!page) {
3465                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3466                 goto out;
3467         }
3468
3469         page_start = page_offset(page);
3470         page_end = page_start + PAGE_CACHE_SIZE - 1;
3471
3472         if (!PageUptodate(page)) {
3473                 ret = btrfs_readpage(NULL, page);
3474                 lock_page(page);
3475                 if (page->mapping != mapping) {
3476                         unlock_page(page);
3477                         page_cache_release(page);
3478                         goto again;
3479                 }
3480                 if (!PageUptodate(page)) {
3481                         ret = -EIO;
3482                         goto out_unlock;
3483                 }
3484         }
3485         wait_on_page_writeback(page);
3486
3487         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3488                          GFP_NOFS);
3489         set_page_extent_mapped(page);
3490
3491         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3492         if (ordered) {
3493                 unlock_extent_cached(io_tree, page_start, page_end,
3494                                      &cached_state, GFP_NOFS);
3495                 unlock_page(page);
3496                 page_cache_release(page);
3497                 btrfs_start_ordered_extent(inode, ordered, 1);
3498                 btrfs_put_ordered_extent(ordered);
3499                 goto again;
3500         }
3501
3502         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3503                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3504                           0, 0, &cached_state, GFP_NOFS);
3505
3506         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3507                                         &cached_state);
3508         if (ret) {
3509                 unlock_extent_cached(io_tree, page_start, page_end,
3510                                      &cached_state, GFP_NOFS);
3511                 goto out_unlock;
3512         }
3513
3514         ret = 0;
3515         if (offset != PAGE_CACHE_SIZE) {
3516                 kaddr = kmap(page);
3517                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3518                 flush_dcache_page(page);
3519                 kunmap(page);
3520         }
3521         ClearPageChecked(page);
3522         set_page_dirty(page);
3523         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3524                              GFP_NOFS);
3525
3526 out_unlock:
3527         if (ret)
3528                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3529         unlock_page(page);
3530         page_cache_release(page);
3531 out:
3532         return ret;
3533 }
3534
3535 int btrfs_cont_expand(struct inode *inode, loff_t size)
3536 {
3537         struct btrfs_trans_handle *trans;
3538         struct btrfs_root *root = BTRFS_I(inode)->root;
3539         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3540         struct extent_map *em = NULL;
3541         struct extent_state *cached_state = NULL;
3542         u64 mask = root->sectorsize - 1;
3543         u64 hole_start = (inode->i_size + mask) & ~mask;
3544         u64 block_end = (size + mask) & ~mask;
3545         u64 last_byte;
3546         u64 cur_offset;
3547         u64 hole_size;
3548         int err = 0;
3549
3550         if (size <= hole_start)
3551                 return 0;
3552
3553         while (1) {
3554                 struct btrfs_ordered_extent *ordered;
3555                 btrfs_wait_ordered_range(inode, hole_start,
3556                                          block_end - hole_start);
3557                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3558                                  &cached_state, GFP_NOFS);
3559                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3560                 if (!ordered)
3561                         break;
3562                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3563                                      &cached_state, GFP_NOFS);
3564                 btrfs_put_ordered_extent(ordered);
3565         }
3566
3567         cur_offset = hole_start;
3568         while (1) {
3569                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3570                                 block_end - cur_offset, 0);
3571                 BUG_ON(IS_ERR(em) || !em);
3572                 last_byte = min(extent_map_end(em), block_end);
3573                 last_byte = (last_byte + mask) & ~mask;
3574                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3575                         u64 hint_byte = 0;
3576                         hole_size = last_byte - cur_offset;
3577
3578                         trans = btrfs_start_transaction(root, 2);
3579                         if (IS_ERR(trans)) {
3580                                 err = PTR_ERR(trans);
3581                                 break;
3582                         }
3583                         btrfs_set_trans_block_group(trans, inode);
3584
3585                         err = btrfs_drop_extents(trans, inode, cur_offset,
3586                                                  cur_offset + hole_size,
3587                                                  &hint_byte, 1);
3588                         BUG_ON(err);
3589
3590                         err = btrfs_insert_file_extent(trans, root,
3591                                         inode->i_ino, cur_offset, 0,
3592                                         0, hole_size, 0, hole_size,
3593                                         0, 0, 0);
3594                         BUG_ON(err);
3595
3596                         btrfs_drop_extent_cache(inode, hole_start,
3597                                         last_byte - 1, 0);
3598
3599                         btrfs_end_transaction(trans, root);
3600                 }
3601                 free_extent_map(em);
3602                 em = NULL;
3603                 cur_offset = last_byte;
3604                 if (cur_offset >= block_end)
3605                         break;
3606         }
3607
3608         free_extent_map(em);
3609         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3610                              GFP_NOFS);
3611         return err;
3612 }
3613
3614 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3615 {
3616         struct btrfs_root *root = BTRFS_I(inode)->root;
3617         struct btrfs_trans_handle *trans;
3618         unsigned long nr;
3619         int ret;
3620
3621         if (attr->ia_size == inode->i_size)
3622                 return 0;
3623
3624         if (attr->ia_size > inode->i_size) {
3625                 unsigned long limit;
3626                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3627                 if (attr->ia_size > inode->i_sb->s_maxbytes)
3628                         return -EFBIG;
3629                 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3630                         send_sig(SIGXFSZ, current, 0);
3631                         return -EFBIG;
3632                 }
3633         }
3634
3635         trans = btrfs_start_transaction(root, 5);
3636         if (IS_ERR(trans))
3637                 return PTR_ERR(trans);
3638
3639         btrfs_set_trans_block_group(trans, inode);
3640
3641         ret = btrfs_orphan_add(trans, inode);
3642         BUG_ON(ret);
3643
3644         nr = trans->blocks_used;
3645         btrfs_end_transaction(trans, root);
3646         btrfs_btree_balance_dirty(root, nr);
3647
3648         if (attr->ia_size > inode->i_size) {
3649                 ret = btrfs_cont_expand(inode, attr->ia_size);
3650                 if (ret) {
3651                         btrfs_truncate(inode);
3652                         return ret;
3653                 }
3654
3655                 i_size_write(inode, attr->ia_size);
3656                 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3657
3658                 trans = btrfs_start_transaction(root, 0);
3659                 BUG_ON(IS_ERR(trans));
3660                 btrfs_set_trans_block_group(trans, inode);
3661                 trans->block_rsv = root->orphan_block_rsv;
3662                 BUG_ON(!trans->block_rsv);
3663
3664                 ret = btrfs_update_inode(trans, root, inode);
3665                 BUG_ON(ret);
3666                 if (inode->i_nlink > 0) {
3667                         ret = btrfs_orphan_del(trans, inode);
3668                         BUG_ON(ret);
3669                 }
3670                 nr = trans->blocks_used;
3671                 btrfs_end_transaction(trans, root);
3672                 btrfs_btree_balance_dirty(root, nr);
3673                 return 0;
3674         }
3675
3676         /*
3677          * We're truncating a file that used to have good data down to
3678          * zero. Make sure it gets into the ordered flush list so that
3679          * any new writes get down to disk quickly.
3680          */
3681         if (attr->ia_size == 0)
3682                 BTRFS_I(inode)->ordered_data_close = 1;
3683
3684         /* we don't support swapfiles, so vmtruncate shouldn't fail */
3685         ret = vmtruncate(inode, attr->ia_size);
3686         BUG_ON(ret);
3687
3688         return 0;
3689 }
3690
3691 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3692 {
3693         struct inode *inode = dentry->d_inode;
3694         struct btrfs_root *root = BTRFS_I(inode)->root;
3695         int err;
3696
3697         if (btrfs_root_readonly(root))
3698                 return -EROFS;
3699
3700         err = inode_change_ok(inode, attr);
3701         if (err)
3702                 return err;
3703
3704         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3705                 err = btrfs_setattr_size(inode, attr);
3706                 if (err)
3707                         return err;
3708         }
3709
3710         if (attr->ia_valid) {
3711                 setattr_copy(inode, attr);
3712                 mark_inode_dirty(inode);
3713
3714                 if (attr->ia_valid & ATTR_MODE)
3715                         err = btrfs_acl_chmod(inode);
3716         }
3717
3718         return err;
3719 }
3720
3721 void btrfs_evict_inode(struct inode *inode)
3722 {
3723         struct btrfs_trans_handle *trans;
3724         struct btrfs_root *root = BTRFS_I(inode)->root;
3725         unsigned long nr;
3726         int ret;
3727
3728         truncate_inode_pages(&inode->i_data, 0);
3729         if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3730                                root == root->fs_info->tree_root))
3731                 goto no_delete;
3732
3733         if (is_bad_inode(inode)) {
3734                 btrfs_orphan_del(NULL, inode);
3735                 goto no_delete;
3736         }
3737         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3738         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3739
3740         if (root->fs_info->log_root_recovering) {
3741                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3742                 goto no_delete;
3743         }
3744
3745         if (inode->i_nlink > 0) {
3746                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3747                 goto no_delete;
3748         }
3749
3750         btrfs_i_size_write(inode, 0);
3751
3752         while (1) {
3753                 trans = btrfs_start_transaction(root, 0);
3754                 BUG_ON(IS_ERR(trans));
3755                 btrfs_set_trans_block_group(trans, inode);
3756                 trans->block_rsv = root->orphan_block_rsv;
3757
3758                 ret = btrfs_block_rsv_check(trans, root,
3759                                             root->orphan_block_rsv, 0, 5);
3760                 if (ret) {
3761                         BUG_ON(ret != -EAGAIN);
3762                         ret = btrfs_commit_transaction(trans, root);
3763                         BUG_ON(ret);
3764                         continue;
3765                 }
3766
3767                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3768                 if (ret != -EAGAIN)
3769                         break;
3770
3771                 nr = trans->blocks_used;
3772                 btrfs_end_transaction(trans, root);
3773                 trans = NULL;
3774                 btrfs_btree_balance_dirty(root, nr);
3775
3776         }
3777
3778         if (ret == 0) {
3779                 ret = btrfs_orphan_del(trans, inode);
3780                 BUG_ON(ret);
3781         }
3782
3783         nr = trans->blocks_used;
3784         btrfs_end_transaction(trans, root);
3785         btrfs_btree_balance_dirty(root, nr);
3786 no_delete:
3787         end_writeback(inode);
3788         return;
3789 }
3790
3791 /*
3792  * this returns the key found in the dir entry in the location pointer.
3793  * If no dir entries were found, location->objectid is 0.
3794  */
3795 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3796                                struct btrfs_key *location)
3797 {
3798         const char *name = dentry->d_name.name;
3799         int namelen = dentry->d_name.len;
3800         struct btrfs_dir_item *di;
3801         struct btrfs_path *path;
3802         struct btrfs_root *root = BTRFS_I(dir)->root;
3803         int ret = 0;
3804
3805         path = btrfs_alloc_path();
3806         BUG_ON(!path);
3807
3808         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3809                                     namelen, 0);
3810         if (IS_ERR(di))
3811                 ret = PTR_ERR(di);
3812
3813         if (!di || IS_ERR(di))
3814                 goto out_err;
3815
3816         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3817 out:
3818         btrfs_free_path(path);
3819         return ret;
3820 out_err:
3821         location->objectid = 0;
3822         goto out;
3823 }
3824
3825 /*
3826  * when we hit a tree root in a directory, the btrfs part of the inode
3827  * needs to be changed to reflect the root directory of the tree root.  This
3828  * is kind of like crossing a mount point.
3829  */
3830 static int fixup_tree_root_location(struct btrfs_root *root,
3831                                     struct inode *dir,
3832                                     struct dentry *dentry,
3833                                     struct btrfs_key *location,
3834                                     struct btrfs_root **sub_root)
3835 {
3836         struct btrfs_path *path;
3837         struct btrfs_root *new_root;
3838         struct btrfs_root_ref *ref;
3839         struct extent_buffer *leaf;
3840         int ret;
3841         int err = 0;
3842
3843         path = btrfs_alloc_path();
3844         if (!path) {
3845                 err = -ENOMEM;
3846                 goto out;
3847         }
3848
3849         err = -ENOENT;
3850         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3851                                   BTRFS_I(dir)->root->root_key.objectid,
3852                                   location->objectid);
3853         if (ret) {
3854                 if (ret < 0)
3855                         err = ret;
3856                 goto out;
3857         }
3858
3859         leaf = path->nodes[0];
3860         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3861         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3862             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3863                 goto out;
3864
3865         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3866                                    (unsigned long)(ref + 1),
3867                                    dentry->d_name.len);
3868         if (ret)
3869                 goto out;
3870
3871         btrfs_release_path(root->fs_info->tree_root, path);
3872
3873         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3874         if (IS_ERR(new_root)) {
3875                 err = PTR_ERR(new_root);
3876                 goto out;
3877         }
3878
3879         if (btrfs_root_refs(&new_root->root_item) == 0) {
3880                 err = -ENOENT;
3881                 goto out;
3882         }
3883
3884         *sub_root = new_root;
3885         location->objectid = btrfs_root_dirid(&new_root->root_item);
3886         location->type = BTRFS_INODE_ITEM_KEY;
3887         location->offset = 0;
3888         err = 0;
3889 out:
3890         btrfs_free_path(path);
3891         return err;
3892 }
3893
3894 static void inode_tree_add(struct inode *inode)
3895 {
3896         struct btrfs_root *root = BTRFS_I(inode)->root;
3897         struct btrfs_inode *entry;
3898         struct rb_node **p;
3899         struct rb_node *parent;
3900 again:
3901         p = &root->inode_tree.rb_node;
3902         parent = NULL;
3903
3904         if (hlist_unhashed(&inode->i_hash))
3905                 return;
3906
3907         spin_lock(&root->inode_lock);
3908         while (*p) {
3909                 parent = *p;
3910                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3911
3912                 if (inode->i_ino < entry->vfs_inode.i_ino)
3913                         p = &parent->rb_left;
3914                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3915                         p = &parent->rb_right;
3916                 else {
3917                         WARN_ON(!(entry->vfs_inode.i_state &
3918                                   (I_WILL_FREE | I_FREEING)));
3919                         rb_erase(parent, &root->inode_tree);
3920                         RB_CLEAR_NODE(parent);
3921                         spin_unlock(&root->inode_lock);
3922                         goto again;
3923                 }
3924         }
3925         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3926         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3927         spin_unlock(&root->inode_lock);
3928 }
3929
3930 static void inode_tree_del(struct inode *inode)
3931 {
3932         struct btrfs_root *root = BTRFS_I(inode)->root;
3933         int empty = 0;
3934
3935         spin_lock(&root->inode_lock);
3936         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3937                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3938                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3939                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3940         }
3941         spin_unlock(&root->inode_lock);
3942
3943         /*
3944          * Free space cache has inodes in the tree root, but the tree root has a
3945          * root_refs of 0, so this could end up dropping the tree root as a
3946          * snapshot, so we need the extra !root->fs_info->tree_root check to
3947          * make sure we don't drop it.
3948          */
3949         if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3950             root != root->fs_info->tree_root) {
3951                 synchronize_srcu(&root->fs_info->subvol_srcu);
3952                 spin_lock(&root->inode_lock);
3953                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3954                 spin_unlock(&root->inode_lock);
3955                 if (empty)
3956                         btrfs_add_dead_root(root);
3957         }
3958 }
3959
3960 int btrfs_invalidate_inodes(struct btrfs_root *root)
3961 {
3962         struct rb_node *node;
3963         struct rb_node *prev;
3964         struct btrfs_inode *entry;
3965         struct inode *inode;
3966         u64 objectid = 0;
3967
3968         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3969
3970         spin_lock(&root->inode_lock);
3971 again:
3972         node = root->inode_tree.rb_node;
3973         prev = NULL;
3974         while (node) {
3975                 prev = node;
3976                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3977
3978                 if (objectid < entry->vfs_inode.i_ino)
3979                         node = node->rb_left;
3980                 else if (objectid > entry->vfs_inode.i_ino)
3981                         node = node->rb_right;
3982                 else
3983                         break;
3984         }
3985         if (!node) {
3986                 while (prev) {
3987                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3988                         if (objectid <= entry->vfs_inode.i_ino) {
3989                                 node = prev;
3990                                 break;
3991                         }
3992                         prev = rb_next(prev);
3993                 }
3994         }
3995         while (node) {
3996                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3997                 objectid = entry->vfs_inode.i_ino + 1;
3998                 inode = igrab(&entry->vfs_inode);
3999                 if (inode) {
4000                         spin_unlock(&root->inode_lock);
4001                         if (atomic_read(&inode->i_count) > 1)
4002                                 d_prune_aliases(inode);
4003                         /*
4004                          * btrfs_drop_inode will have it removed from
4005                          * the inode cache when its usage count
4006                          * hits zero.
4007                          */
4008                         iput(inode);
4009                         cond_resched();
4010                         spin_lock(&root->inode_lock);
4011                         goto again;
4012                 }
4013
4014                 if (cond_resched_lock(&root->inode_lock))
4015                         goto again;
4016
4017                 node = rb_next(node);
4018         }
4019         spin_unlock(&root->inode_lock);
4020         return 0;
4021 }
4022
4023 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4024 {
4025         struct btrfs_iget_args *args = p;
4026         inode->i_ino = args->ino;
4027         BTRFS_I(inode)->root = args->root;
4028         btrfs_set_inode_space_info(args->root, inode);
4029         return 0;
4030 }
4031
4032 static int btrfs_find_actor(struct inode *inode, void *opaque)
4033 {
4034         struct btrfs_iget_args *args = opaque;
4035         return args->ino == inode->i_ino &&
4036                 args->root == BTRFS_I(inode)->root;
4037 }
4038
4039 static struct inode *btrfs_iget_locked(struct super_block *s,
4040                                        u64 objectid,
4041                                        struct btrfs_root *root)
4042 {
4043         struct inode *inode;
4044         struct btrfs_iget_args args;
4045         args.ino = objectid;
4046         args.root = root;
4047
4048         inode = iget5_locked(s, objectid, btrfs_find_actor,
4049                              btrfs_init_locked_inode,
4050                              (void *)&args);
4051         return inode;
4052 }
4053
4054 /* Get an inode object given its location and corresponding root.
4055  * Returns in *is_new if the inode was read from disk
4056  */
4057 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4058                          struct btrfs_root *root, int *new)
4059 {
4060         struct inode *inode;
4061
4062         inode = btrfs_iget_locked(s, location->objectid, root);
4063         if (!inode)
4064                 return ERR_PTR(-ENOMEM);
4065
4066         if (inode->i_state & I_NEW) {
4067                 BTRFS_I(inode)->root = root;
4068                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4069                 btrfs_read_locked_inode(inode);
4070
4071                 inode_tree_add(inode);
4072                 unlock_new_inode(inode);
4073                 if (new)
4074                         *new = 1;
4075         }
4076
4077         return inode;
4078 }
4079
4080 static struct inode *new_simple_dir(struct super_block *s,
4081                                     struct btrfs_key *key,
4082                                     struct btrfs_root *root)
4083 {
4084         struct inode *inode = new_inode(s);
4085
4086         if (!inode)
4087                 return ERR_PTR(-ENOMEM);
4088
4089         BTRFS_I(inode)->root = root;
4090         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4091         BTRFS_I(inode)->dummy_inode = 1;
4092
4093         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4094         inode->i_op = &simple_dir_inode_operations;
4095         inode->i_fop = &simple_dir_operations;
4096         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4097         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4098
4099         return inode;
4100 }
4101
4102 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4103 {
4104         struct inode *inode;
4105         struct btrfs_root *root = BTRFS_I(dir)->root;
4106         struct btrfs_root *sub_root = root;
4107         struct btrfs_key location;
4108         int index;
4109         int ret;
4110
4111         dentry->d_op = &btrfs_dentry_operations;
4112
4113         if (dentry->d_name.len > BTRFS_NAME_LEN)
4114                 return ERR_PTR(-ENAMETOOLONG);
4115
4116         ret = btrfs_inode_by_name(dir, dentry, &location);
4117
4118         if (ret < 0)
4119                 return ERR_PTR(ret);
4120
4121         if (location.objectid == 0)
4122                 return NULL;
4123
4124         if (location.type == BTRFS_INODE_ITEM_KEY) {
4125                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4126                 return inode;
4127         }
4128
4129         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4130
4131         index = srcu_read_lock(&root->fs_info->subvol_srcu);
4132         ret = fixup_tree_root_location(root, dir, dentry,
4133                                        &location, &sub_root);
4134         if (ret < 0) {
4135                 if (ret != -ENOENT)
4136                         inode = ERR_PTR(ret);
4137                 else
4138                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
4139         } else {
4140                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4141         }
4142         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4143
4144         if (!IS_ERR(inode) && root != sub_root) {
4145                 down_read(&root->fs_info->cleanup_work_sem);
4146                 if (!(inode->i_sb->s_flags & MS_RDONLY))
4147                         btrfs_orphan_cleanup(sub_root);
4148                 up_read(&root->fs_info->cleanup_work_sem);
4149         }
4150
4151         return inode;
4152 }
4153
4154 static int btrfs_dentry_delete(struct dentry *dentry)
4155 {
4156         struct btrfs_root *root;
4157
4158         if (!dentry->d_inode && !IS_ROOT(dentry))
4159                 dentry = dentry->d_parent;
4160
4161         if (dentry->d_inode) {
4162                 root = BTRFS_I(dentry->d_inode)->root;
4163                 if (btrfs_root_refs(&root->root_item) == 0)
4164                         return 1;
4165         }
4166         return 0;
4167 }
4168
4169 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4170                                    struct nameidata *nd)
4171 {
4172         struct inode *inode;
4173
4174         inode = btrfs_lookup_dentry(dir, dentry);
4175         if (IS_ERR(inode))
4176                 return ERR_CAST(inode);
4177
4178         return d_splice_alias(inode, dentry);
4179 }
4180
4181 static unsigned char btrfs_filetype_table[] = {
4182         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4183 };
4184
4185 static int btrfs_real_readdir(struct file *filp, void *dirent,
4186                               filldir_t filldir)
4187 {
4188         struct inode *inode = filp->f_dentry->d_inode;
4189         struct btrfs_root *root = BTRFS_I(inode)->root;
4190         struct btrfs_item *item;
4191         struct btrfs_dir_item *di;
4192         struct btrfs_key key;
4193         struct btrfs_key found_key;
4194         struct btrfs_path *path;
4195         int ret;
4196         u32 nritems;
4197         struct extent_buffer *leaf;
4198         int slot;
4199         int advance;
4200         unsigned char d_type;
4201         int over = 0;
4202         u32 di_cur;
4203         u32 di_total;
4204         u32 di_len;
4205         int key_type = BTRFS_DIR_INDEX_KEY;
4206         char tmp_name[32];
4207         char *name_ptr;
4208         int name_len;
4209
4210         /* FIXME, use a real flag for deciding about the key type */
4211         if (root->fs_info->tree_root == root)
4212                 key_type = BTRFS_DIR_ITEM_KEY;
4213
4214         /* special case for "." */
4215         if (filp->f_pos == 0) {
4216                 over = filldir(dirent, ".", 1,
4217                                1, inode->i_ino,
4218                                DT_DIR);
4219                 if (over)
4220                         return 0;
4221                 filp->f_pos = 1;
4222         }
4223         /* special case for .., just use the back ref */
4224         if (filp->f_pos == 1) {
4225                 u64 pino = parent_ino(filp->f_path.dentry);
4226                 over = filldir(dirent, "..", 2,
4227                                2, pino, DT_DIR);
4228                 if (over)
4229                         return 0;
4230                 filp->f_pos = 2;
4231         }
4232         path = btrfs_alloc_path();
4233         path->reada = 2;
4234
4235         btrfs_set_key_type(&key, key_type);
4236         key.offset = filp->f_pos;
4237         key.objectid = inode->i_ino;
4238
4239         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4240         if (ret < 0)
4241                 goto err;
4242         advance = 0;
4243
4244         while (1) {
4245                 leaf = path->nodes[0];
4246                 nritems = btrfs_header_nritems(leaf);
4247                 slot = path->slots[0];
4248                 if (advance || slot >= nritems) {
4249                         if (slot >= nritems - 1) {
4250                                 ret = btrfs_next_leaf(root, path);
4251                                 if (ret)
4252                                         break;
4253                                 leaf = path->nodes[0];
4254                                 nritems = btrfs_header_nritems(leaf);
4255                                 slot = path->slots[0];
4256                         } else {
4257                                 slot++;
4258                                 path->slots[0]++;
4259                         }
4260                 }
4261
4262                 advance = 1;
4263                 item = btrfs_item_nr(leaf, slot);
4264                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4265
4266                 if (found_key.objectid != key.objectid)
4267                         break;
4268                 if (btrfs_key_type(&found_key) != key_type)
4269                         break;
4270                 if (found_key.offset < filp->f_pos)
4271                         continue;
4272
4273                 filp->f_pos = found_key.offset;
4274
4275                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4276                 di_cur = 0;
4277                 di_total = btrfs_item_size(leaf, item);
4278
4279                 while (di_cur < di_total) {
4280                         struct btrfs_key location;
4281
4282                         name_len = btrfs_dir_name_len(leaf, di);
4283                         if (name_len <= sizeof(tmp_name)) {
4284                                 name_ptr = tmp_name;
4285                         } else {
4286                                 name_ptr = kmalloc(name_len, GFP_NOFS);
4287                                 if (!name_ptr) {
4288                                         ret = -ENOMEM;
4289                                         goto err;
4290                                 }
4291                         }
4292                         read_extent_buffer(leaf, name_ptr,
4293                                            (unsigned long)(di + 1), name_len);
4294
4295                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4296                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
4297
4298                         /* is this a reference to our own snapshot? If so
4299                          * skip it
4300                          */
4301                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
4302                             location.objectid == root->root_key.objectid) {
4303                                 over = 0;
4304                                 goto skip;
4305                         }
4306                         over = filldir(dirent, name_ptr, name_len,
4307                                        found_key.offset, location.objectid,
4308                                        d_type);
4309
4310 skip:
4311                         if (name_ptr != tmp_name)
4312                                 kfree(name_ptr);
4313
4314                         if (over)
4315                                 goto nopos;
4316                         di_len = btrfs_dir_name_len(leaf, di) +
4317                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
4318                         di_cur += di_len;
4319                         di = (struct btrfs_dir_item *)((char *)di + di_len);
4320                 }
4321         }
4322
4323         /* Reached end of directory/root. Bump pos past the last item. */
4324         if (key_type == BTRFS_DIR_INDEX_KEY)
4325                 /*
4326                  * 32-bit glibc will use getdents64, but then strtol -
4327                  * so the last number we can serve is this.
4328                  */
4329                 filp->f_pos = 0x7fffffff;
4330         else
4331                 filp->f_pos++;
4332 nopos:
4333         ret = 0;
4334 err:
4335         btrfs_free_path(path);
4336         return ret;
4337 }
4338
4339 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4340 {
4341         struct btrfs_root *root = BTRFS_I(inode)->root;
4342         struct btrfs_trans_handle *trans;
4343         int ret = 0;
4344         bool nolock = false;
4345
4346         if (BTRFS_I(inode)->dummy_inode)
4347                 return 0;
4348
4349         smp_mb();
4350         nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4351
4352         if (wbc->sync_mode == WB_SYNC_ALL) {
4353                 if (nolock)
4354                         trans = btrfs_join_transaction_nolock(root, 1);
4355                 else
4356                         trans = btrfs_join_transaction(root, 1);
4357                 if (IS_ERR(trans))
4358                         return PTR_ERR(trans);
4359                 btrfs_set_trans_block_group(trans, inode);
4360                 if (nolock)
4361                         ret = btrfs_end_transaction_nolock(trans, root);
4362                 else
4363                         ret = btrfs_commit_transaction(trans, root);
4364         }
4365         return ret;
4366 }
4367
4368 /*
4369  * This is somewhat expensive, updating the tree every time the
4370  * inode changes.  But, it is most likely to find the inode in cache.
4371  * FIXME, needs more benchmarking...there are no reasons other than performance
4372  * to keep or drop this code.
4373  */
4374 void btrfs_dirty_inode(struct inode *inode)
4375 {
4376         struct btrfs_root *root = BTRFS_I(inode)->root;
4377         struct btrfs_trans_handle *trans;
4378         int ret;
4379
4380         if (BTRFS_I(inode)->dummy_inode)
4381                 return;
4382
4383         trans = btrfs_join_transaction(root, 1);
4384         BUG_ON(IS_ERR(trans));
4385         btrfs_set_trans_block_group(trans, inode);
4386
4387         ret = btrfs_update_inode(trans, root, inode);
4388         if (ret && ret == -ENOSPC) {
4389                 /* whoops, lets try again with the full transaction */
4390                 btrfs_end_transaction(trans, root);
4391                 trans = btrfs_start_transaction(root, 1);
4392                 if (IS_ERR(trans)) {
4393                         if (printk_ratelimit()) {
4394                                 printk(KERN_ERR "btrfs: fail to "
4395                                        "dirty  inode %lu error %ld\n",
4396                                        inode->i_ino, PTR_ERR(trans));
4397                         }
4398                         return;
4399                 }
4400                 btrfs_set_trans_block_group(trans, inode);
4401
4402                 ret = btrfs_update_inode(trans, root, inode);
4403                 if (ret) {
4404                         if (printk_ratelimit()) {
4405                                 printk(KERN_ERR "btrfs: fail to "
4406                                        "dirty  inode %lu error %d\n",
4407                                        inode->i_ino, ret);
4408                         }
4409                 }
4410         }
4411         btrfs_end_transaction(trans, root);
4412 }
4413
4414 /*
4415  * find the highest existing sequence number in a directory
4416  * and then set the in-memory index_cnt variable to reflect
4417  * free sequence numbers
4418  */
4419 static int btrfs_set_inode_index_count(struct inode *inode)
4420 {
4421         struct btrfs_root *root = BTRFS_I(inode)->root;
4422         struct btrfs_key key, found_key;
4423         struct btrfs_path *path;
4424         struct extent_buffer *leaf;
4425         int ret;
4426
4427         key.objectid = inode->i_ino;
4428         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4429         key.offset = (u64)-1;
4430
4431         path = btrfs_alloc_path();
4432         if (!path)
4433                 return -ENOMEM;
4434
4435         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4436         if (ret < 0)
4437                 goto out;
4438         /* FIXME: we should be able to handle this */
4439         if (ret == 0)
4440                 goto out;
4441         ret = 0;
4442
4443         /*
4444          * MAGIC NUMBER EXPLANATION:
4445          * since we search a directory based on f_pos we have to start at 2
4446          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4447          * else has to start at 2
4448          */
4449         if (path->slots[0] == 0) {
4450                 BTRFS_I(inode)->index_cnt = 2;
4451                 goto out;
4452         }
4453
4454         path->slots[0]--;
4455
4456         leaf = path->nodes[0];
4457         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4458
4459         if (found_key.objectid != inode->i_ino ||
4460             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4461                 BTRFS_I(inode)->index_cnt = 2;
4462                 goto out;
4463         }
4464
4465         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4466 out:
4467         btrfs_free_path(path);
4468         return ret;
4469 }
4470
4471 /*
4472  * helper to find a free sequence number in a given directory.  This current
4473  * code is very simple, later versions will do smarter things in the btree
4474  */
4475 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4476 {
4477         int ret = 0;
4478
4479         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4480                 ret = btrfs_set_inode_index_count(dir);
4481                 if (ret)
4482                         return ret;
4483         }
4484
4485         *index = BTRFS_I(dir)->index_cnt;
4486         BTRFS_I(dir)->index_cnt++;
4487
4488         return ret;
4489 }
4490
4491 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4492                                      struct btrfs_root *root,
4493                                      struct inode *dir,
4494                                      const char *name, int name_len,
4495                                      u64 ref_objectid, u64 objectid,
4496                                      u64 alloc_hint, int mode, u64 *index)
4497 {
4498         struct inode *inode;
4499         struct btrfs_inode_item *inode_item;
4500         struct btrfs_key *location;
4501         struct btrfs_path *path;
4502         struct btrfs_inode_ref *ref;
4503         struct btrfs_key key[2];
4504         u32 sizes[2];
4505         unsigned long ptr;
4506         int ret;
4507         int owner;
4508
4509         path = btrfs_alloc_path();
4510         BUG_ON(!path);
4511
4512         inode = new_inode(root->fs_info->sb);
4513         if (!inode)
4514                 return ERR_PTR(-ENOMEM);
4515
4516         if (dir) {
4517                 ret = btrfs_set_inode_index(dir, index);
4518                 if (ret) {
4519                         iput(inode);
4520                         return ERR_PTR(ret);
4521                 }
4522         }
4523         /*
4524          * index_cnt is ignored for everything but a dir,
4525          * btrfs_get_inode_index_count has an explanation for the magic
4526          * number
4527          */
4528         BTRFS_I(inode)->index_cnt = 2;
4529         BTRFS_I(inode)->root = root;
4530         BTRFS_I(inode)->generation = trans->transid;
4531         inode->i_generation = BTRFS_I(inode)->generation;
4532         btrfs_set_inode_space_info(root, inode);
4533
4534         if (mode & S_IFDIR)
4535                 owner = 0;
4536         else
4537                 owner = 1;
4538         BTRFS_I(inode)->block_group =
4539                         btrfs_find_block_group(root, 0, alloc_hint, owner);
4540
4541         key[0].objectid = objectid;
4542         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4543         key[0].offset = 0;
4544
4545         key[1].objectid = objectid;
4546         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4547         key[1].offset = ref_objectid;
4548
4549         sizes[0] = sizeof(struct btrfs_inode_item);
4550         sizes[1] = name_len + sizeof(*ref);
4551
4552         path->leave_spinning = 1;
4553         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4554         if (ret != 0)
4555                 goto fail;
4556
4557         inode_init_owner(inode, dir, mode);
4558         inode->i_ino = objectid;
4559         inode_set_bytes(inode, 0);
4560         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4561         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4562                                   struct btrfs_inode_item);
4563         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4564
4565         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4566                              struct btrfs_inode_ref);
4567         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4568         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4569         ptr = (unsigned long)(ref + 1);
4570         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4571
4572         btrfs_mark_buffer_dirty(path->nodes[0]);
4573         btrfs_free_path(path);
4574
4575         location = &BTRFS_I(inode)->location;
4576         location->objectid = objectid;
4577         location->offset = 0;
4578         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4579
4580         btrfs_inherit_iflags(inode, dir);
4581
4582         if ((mode & S_IFREG)) {
4583                 if (btrfs_test_opt(root, NODATASUM))
4584                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4585                 if (btrfs_test_opt(root, NODATACOW))
4586                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4587         }
4588
4589         insert_inode_hash(inode);
4590         inode_tree_add(inode);
4591         return inode;
4592 fail:
4593         if (dir)
4594                 BTRFS_I(dir)->index_cnt--;
4595         btrfs_free_path(path);
4596         iput(inode);
4597         return ERR_PTR(ret);
4598 }
4599
4600 static inline u8 btrfs_inode_type(struct inode *inode)
4601 {
4602         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4603 }
4604
4605 /*
4606  * utility function to add 'inode' into 'parent_inode' with
4607  * a give name and a given sequence number.
4608  * if 'add_backref' is true, also insert a backref from the
4609  * inode to the parent directory.
4610  */
4611 int btrfs_add_link(struct btrfs_trans_handle *trans,
4612                    struct inode *parent_inode, struct inode *inode,
4613                    const char *name, int name_len, int add_backref, u64 index)
4614 {
4615         int ret = 0;
4616         struct btrfs_key key;
4617         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4618
4619         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4620                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4621         } else {
4622                 key.objectid = inode->i_ino;
4623                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4624                 key.offset = 0;
4625         }
4626
4627         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4628                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4629                                          key.objectid, root->root_key.objectid,
4630                                          parent_inode->i_ino,
4631                                          index, name, name_len);
4632         } else if (add_backref) {
4633                 ret = btrfs_insert_inode_ref(trans, root,
4634                                              name, name_len, inode->i_ino,
4635                                              parent_inode->i_ino, index);
4636         }
4637
4638         if (ret == 0) {
4639                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4640                                             parent_inode->i_ino, &key,
4641                                             btrfs_inode_type(inode), index);
4642                 BUG_ON(ret);
4643
4644                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4645                                    name_len * 2);
4646                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4647                 ret = btrfs_update_inode(trans, root, parent_inode);
4648         }
4649         return ret;
4650 }
4651
4652 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4653                             struct inode *dir, struct dentry *dentry,
4654                             struct inode *inode, int backref, u64 index)
4655 {
4656         int err = btrfs_add_link(trans, dir, inode,
4657                                  dentry->d_name.name, dentry->d_name.len,
4658                                  backref, index);
4659         if (!err) {
4660                 d_instantiate(dentry, inode);
4661                 return 0;
4662         }
4663         if (err > 0)
4664                 err = -EEXIST;
4665         return err;
4666 }
4667
4668 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4669                         int mode, dev_t rdev)
4670 {
4671         struct btrfs_trans_handle *trans;
4672         struct btrfs_root *root = BTRFS_I(dir)->root;
4673         struct inode *inode = NULL;
4674         int err;
4675         int drop_inode = 0;
4676         u64 objectid;
4677         unsigned long nr = 0;
4678         u64 index = 0;
4679
4680         if (!new_valid_dev(rdev))
4681                 return -EINVAL;
4682
4683         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4684         if (err)
4685                 return err;
4686
4687         /*
4688          * 2 for inode item and ref
4689          * 2 for dir items
4690          * 1 for xattr if selinux is on
4691          */
4692         trans = btrfs_start_transaction(root, 5);
4693         if (IS_ERR(trans))
4694                 return PTR_ERR(trans);
4695
4696         btrfs_set_trans_block_group(trans, dir);
4697
4698         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4699                                 dentry->d_name.len, dir->i_ino, objectid,
4700                                 BTRFS_I(dir)->block_group, mode, &index);
4701         err = PTR_ERR(inode);
4702         if (IS_ERR(inode))
4703                 goto out_unlock;
4704
4705         err = btrfs_init_inode_security(trans, inode, dir);
4706         if (err) {
4707                 drop_inode = 1;
4708                 goto out_unlock;
4709         }
4710
4711         btrfs_set_trans_block_group(trans, inode);
4712         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4713         if (err)
4714                 drop_inode = 1;
4715         else {
4716                 inode->i_op = &btrfs_special_inode_operations;
4717                 init_special_inode(inode, inode->i_mode, rdev);
4718                 btrfs_update_inode(trans, root, inode);
4719         }
4720         btrfs_update_inode_block_group(trans, inode);
4721         btrfs_update_inode_block_group(trans, dir);
4722 out_unlock:
4723         nr = trans->blocks_used;
4724         btrfs_end_transaction_throttle(trans, root);
4725         btrfs_btree_balance_dirty(root, nr);
4726         if (drop_inode) {
4727                 inode_dec_link_count(inode);
4728                 iput(inode);
4729         }
4730         return err;
4731 }
4732
4733 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4734                         int mode, struct nameidata *nd)
4735 {
4736         struct btrfs_trans_handle *trans;
4737         struct btrfs_root *root = BTRFS_I(dir)->root;
4738         struct inode *inode = NULL;
4739         int drop_inode = 0;
4740         int err;
4741         unsigned long nr = 0;
4742         u64 objectid;
4743         u64 index = 0;
4744
4745         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4746         if (err)
4747                 return err;
4748         /*
4749          * 2 for inode item and ref
4750          * 2 for dir items
4751          * 1 for xattr if selinux is on
4752          */
4753         trans = btrfs_start_transaction(root, 5);
4754         if (IS_ERR(trans))
4755                 return PTR_ERR(trans);
4756
4757         btrfs_set_trans_block_group(trans, dir);
4758
4759         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4760                                 dentry->d_name.len, dir->i_ino, objectid,
4761                                 BTRFS_I(dir)->block_group, mode, &index);
4762         err = PTR_ERR(inode);
4763         if (IS_ERR(inode))
4764                 goto out_unlock;
4765
4766         err = btrfs_init_inode_security(trans, inode, dir);
4767         if (err) {
4768                 drop_inode = 1;
4769                 goto out_unlock;
4770         }
4771
4772         btrfs_set_trans_block_group(trans, inode);
4773         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4774         if (err)
4775                 drop_inode = 1;
4776         else {
4777                 inode->i_mapping->a_ops = &btrfs_aops;
4778                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4779                 inode->i_fop = &btrfs_file_operations;
4780                 inode->i_op = &btrfs_file_inode_operations;
4781                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4782         }
4783         btrfs_update_inode_block_group(trans, inode);
4784         btrfs_update_inode_block_group(trans, dir);
4785 out_unlock:
4786         nr = trans->blocks_used;
4787         btrfs_end_transaction_throttle(trans, root);
4788         if (drop_inode) {
4789                 inode_dec_link_count(inode);
4790                 iput(inode);
4791         }
4792         btrfs_btree_balance_dirty(root, nr);
4793         return err;
4794 }
4795
4796 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4797                       struct dentry *dentry)
4798 {
4799         struct btrfs_trans_handle *trans;
4800         struct btrfs_root *root = BTRFS_I(dir)->root;
4801         struct inode *inode = old_dentry->d_inode;
4802         u64 index;
4803         unsigned long nr = 0;
4804         int err;
4805         int drop_inode = 0;
4806
4807         if (inode->i_nlink == 0)
4808                 return -ENOENT;
4809
4810         /* do not allow sys_link's with other subvols of the same device */
4811         if (root->objectid != BTRFS_I(inode)->root->objectid)
4812                 return -EPERM;
4813
4814         btrfs_inc_nlink(inode);
4815         inode->i_ctime = CURRENT_TIME;
4816
4817         err = btrfs_set_inode_index(dir, &index);
4818         if (err)
4819                 goto fail;
4820
4821         /*
4822          * 1 item for inode ref
4823          * 2 items for dir items
4824          */
4825         trans = btrfs_start_transaction(root, 3);
4826         if (IS_ERR(trans)) {
4827                 err = PTR_ERR(trans);
4828                 goto fail;
4829         }
4830
4831         btrfs_set_trans_block_group(trans, dir);
4832         atomic_inc(&inode->i_count);
4833
4834         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4835
4836         if (err) {
4837                 drop_inode = 1;
4838         } else {
4839                 struct dentry *parent = dget_parent(dentry);
4840                 btrfs_update_inode_block_group(trans, dir);
4841                 err = btrfs_update_inode(trans, root, inode);
4842                 BUG_ON(err);
4843                 btrfs_log_new_name(trans, inode, NULL, parent);
4844                 dput(parent);
4845         }
4846
4847         nr = trans->blocks_used;
4848         btrfs_end_transaction_throttle(trans, root);
4849 fail:
4850         if (drop_inode) {
4851                 inode_dec_link_count(inode);
4852                 iput(inode);
4853         }
4854         btrfs_btree_balance_dirty(root, nr);
4855         return err;
4856 }
4857
4858 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4859 {
4860         struct inode *inode = NULL;
4861         struct btrfs_trans_handle *trans;
4862         struct btrfs_root *root = BTRFS_I(dir)->root;
4863         int err = 0;
4864         int drop_on_err = 0;
4865         u64 objectid = 0;
4866         u64 index = 0;
4867         unsigned long nr = 1;
4868
4869         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4870         if (err)
4871                 return err;
4872
4873         /*
4874          * 2 items for inode and ref
4875          * 2 items for dir items
4876          * 1 for xattr if selinux is on
4877          */
4878         trans = btrfs_start_transaction(root, 5);
4879         if (IS_ERR(trans))
4880                 return PTR_ERR(trans);
4881         btrfs_set_trans_block_group(trans, dir);
4882
4883         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4884                                 dentry->d_name.len, dir->i_ino, objectid,
4885                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4886                                 &index);
4887         if (IS_ERR(inode)) {
4888                 err = PTR_ERR(inode);
4889                 goto out_fail;
4890         }
4891
4892         drop_on_err = 1;
4893
4894         err = btrfs_init_inode_security(trans, inode, dir);
4895         if (err)
4896                 goto out_fail;
4897
4898         inode->i_op = &btrfs_dir_inode_operations;
4899         inode->i_fop = &btrfs_dir_file_operations;
4900         btrfs_set_trans_block_group(trans, inode);
4901
4902         btrfs_i_size_write(inode, 0);
4903         err = btrfs_update_inode(trans, root, inode);
4904         if (err)
4905                 goto out_fail;
4906
4907         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4908                              dentry->d_name.len, 0, index);
4909         if (err)
4910                 goto out_fail;
4911
4912         d_instantiate(dentry, inode);
4913         drop_on_err = 0;
4914         btrfs_update_inode_block_group(trans, inode);
4915         btrfs_update_inode_block_group(trans, dir);
4916
4917 out_fail:
4918         nr = trans->blocks_used;
4919         btrfs_end_transaction_throttle(trans, root);
4920         if (drop_on_err)
4921                 iput(inode);
4922         btrfs_btree_balance_dirty(root, nr);
4923         return err;
4924 }
4925
4926 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4927  * and an extent that you want to insert, deal with overlap and insert
4928  * the new extent into the tree.
4929  */
4930 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4931                                 struct extent_map *existing,
4932                                 struct extent_map *em,
4933                                 u64 map_start, u64 map_len)
4934 {
4935         u64 start_diff;
4936
4937         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4938         start_diff = map_start - em->start;
4939         em->start = map_start;
4940         em->len = map_len;
4941         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4942             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4943                 em->block_start += start_diff;
4944                 em->block_len -= start_diff;
4945         }
4946         return add_extent_mapping(em_tree, em);
4947 }
4948
4949 static noinline int uncompress_inline(struct btrfs_path *path,
4950                                       struct inode *inode, struct page *page,
4951                                       size_t pg_offset, u64 extent_offset,
4952                                       struct btrfs_file_extent_item *item)
4953 {
4954         int ret;
4955         struct extent_buffer *leaf = path->nodes[0];
4956         char *tmp;
4957         size_t max_size;
4958         unsigned long inline_size;
4959         unsigned long ptr;
4960         int compress_type;
4961
4962         WARN_ON(pg_offset != 0);
4963         compress_type = btrfs_file_extent_compression(leaf, item);
4964         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4965         inline_size = btrfs_file_extent_inline_item_len(leaf,
4966                                         btrfs_item_nr(leaf, path->slots[0]));
4967         tmp = kmalloc(inline_size, GFP_NOFS);
4968         ptr = btrfs_file_extent_inline_start(item);
4969
4970         read_extent_buffer(leaf, tmp, ptr, inline_size);
4971
4972         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4973         ret = btrfs_decompress(compress_type, tmp, page,
4974                                extent_offset, inline_size, max_size);
4975         if (ret) {
4976                 char *kaddr = kmap_atomic(page, KM_USER0);
4977                 unsigned long copy_size = min_t(u64,
4978                                   PAGE_CACHE_SIZE - pg_offset,
4979                                   max_size - extent_offset);
4980                 memset(kaddr + pg_offset, 0, copy_size);
4981                 kunmap_atomic(kaddr, KM_USER0);
4982         }
4983         kfree(tmp);
4984         return 0;
4985 }
4986
4987 /*
4988  * a bit scary, this does extent mapping from logical file offset to the disk.
4989  * the ugly parts come from merging extents from the disk with the in-ram
4990  * representation.  This gets more complex because of the data=ordered code,
4991  * where the in-ram extents might be locked pending data=ordered completion.
4992  *
4993  * This also copies inline extents directly into the page.
4994  */
4995
4996 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4997                                     size_t pg_offset, u64 start, u64 len,
4998                                     int create)
4999 {
5000         int ret;
5001         int err = 0;
5002         u64 bytenr;
5003         u64 extent_start = 0;
5004         u64 extent_end = 0;
5005         u64 objectid = inode->i_ino;
5006         u32 found_type;
5007         struct btrfs_path *path = NULL;
5008         struct btrfs_root *root = BTRFS_I(inode)->root;
5009         struct btrfs_file_extent_item *item;
5010         struct extent_buffer *leaf;
5011         struct btrfs_key found_key;
5012         struct extent_map *em = NULL;
5013         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5014         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5015         struct btrfs_trans_handle *trans = NULL;
5016         int compress_type;
5017
5018 again:
5019         read_lock(&em_tree->lock);
5020         em = lookup_extent_mapping(em_tree, start, len);
5021         if (em)
5022                 em->bdev = root->fs_info->fs_devices->latest_bdev;
5023         read_unlock(&em_tree->lock);
5024
5025         if (em) {
5026                 if (em->start > start || em->start + em->len <= start)
5027                         free_extent_map(em);
5028                 else if (em->block_start == EXTENT_MAP_INLINE && page)
5029                         free_extent_map(em);
5030                 else
5031                         goto out;
5032         }
5033         em = alloc_extent_map(GFP_NOFS);
5034         if (!em) {
5035                 err = -ENOMEM;
5036                 goto out;
5037         }
5038         em->bdev = root->fs_info->fs_devices->latest_bdev;
5039         em->start = EXTENT_MAP_HOLE;
5040         em->orig_start = EXTENT_MAP_HOLE;
5041         em->len = (u64)-1;
5042         em->block_len = (u64)-1;
5043
5044         if (!path) {
5045                 path = btrfs_alloc_path();
5046                 BUG_ON(!path);
5047         }
5048
5049         ret = btrfs_lookup_file_extent(trans, root, path,
5050                                        objectid, start, trans != NULL);
5051         if (ret < 0) {
5052                 err = ret;
5053                 goto out;
5054         }
5055
5056         if (ret != 0) {
5057                 if (path->slots[0] == 0)
5058                         goto not_found;
5059                 path->slots[0]--;
5060         }
5061
5062         leaf = path->nodes[0];
5063         item = btrfs_item_ptr(leaf, path->slots[0],
5064                               struct btrfs_file_extent_item);
5065         /* are we inside the extent that was found? */
5066         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5067         found_type = btrfs_key_type(&found_key);
5068         if (found_key.objectid != objectid ||
5069             found_type != BTRFS_EXTENT_DATA_KEY) {
5070                 goto not_found;
5071         }
5072
5073         found_type = btrfs_file_extent_type(leaf, item);
5074         extent_start = found_key.offset;
5075         compress_type = btrfs_file_extent_compression(leaf, item);
5076         if (found_type == BTRFS_FILE_EXTENT_REG ||
5077             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5078                 extent_end = extent_start +
5079                        btrfs_file_extent_num_bytes(leaf, item);
5080         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5081                 size_t size;
5082                 size = btrfs_file_extent_inline_len(leaf, item);
5083                 extent_end = (extent_start + size + root->sectorsize - 1) &
5084                         ~((u64)root->sectorsize - 1);
5085         }
5086
5087         if (start >= extent_end) {
5088                 path->slots[0]++;
5089                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5090                         ret = btrfs_next_leaf(root, path);
5091                         if (ret < 0) {
5092                                 err = ret;
5093                                 goto out;
5094                         }
5095                         if (ret > 0)
5096                                 goto not_found;
5097                         leaf = path->nodes[0];
5098                 }
5099                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5100                 if (found_key.objectid != objectid ||
5101                     found_key.type != BTRFS_EXTENT_DATA_KEY)
5102                         goto not_found;
5103                 if (start + len <= found_key.offset)
5104                         goto not_found;
5105                 em->start = start;
5106                 em->len = found_key.offset - start;
5107                 goto not_found_em;
5108         }
5109
5110         if (found_type == BTRFS_FILE_EXTENT_REG ||
5111             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5112                 em->start = extent_start;
5113                 em->len = extent_end - extent_start;
5114                 em->orig_start = extent_start -
5115                                  btrfs_file_extent_offset(leaf, item);
5116                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5117                 if (bytenr == 0) {
5118                         em->block_start = EXTENT_MAP_HOLE;
5119                         goto insert;
5120                 }
5121                 if (compress_type != BTRFS_COMPRESS_NONE) {
5122                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5123                         em->compress_type = compress_type;
5124                         em->block_start = bytenr;
5125                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5126                                                                          item);
5127                 } else {
5128                         bytenr += btrfs_file_extent_offset(leaf, item);
5129                         em->block_start = bytenr;
5130                         em->block_len = em->len;
5131                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5132                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5133                 }
5134                 goto insert;
5135         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5136                 unsigned long ptr;
5137                 char *map;
5138                 size_t size;
5139                 size_t extent_offset;
5140                 size_t copy_size;
5141
5142                 em->block_start = EXTENT_MAP_INLINE;
5143                 if (!page || create) {
5144                         em->start = extent_start;
5145                         em->len = extent_end - extent_start;
5146                         goto out;
5147                 }
5148
5149                 size = btrfs_file_extent_inline_len(leaf, item);
5150                 extent_offset = page_offset(page) + pg_offset - extent_start;
5151                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5152                                 size - extent_offset);
5153                 em->start = extent_start + extent_offset;
5154                 em->len = (copy_size + root->sectorsize - 1) &
5155                         ~((u64)root->sectorsize - 1);
5156                 em->orig_start = EXTENT_MAP_INLINE;
5157                 if (compress_type) {
5158                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5159                         em->compress_type = compress_type;
5160                 }
5161                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5162                 if (create == 0 && !PageUptodate(page)) {
5163                         if (btrfs_file_extent_compression(leaf, item) !=
5164                             BTRFS_COMPRESS_NONE) {
5165                                 ret = uncompress_inline(path, inode, page,
5166                                                         pg_offset,
5167                                                         extent_offset, item);
5168                                 BUG_ON(ret);
5169                         } else {
5170                                 map = kmap(page);
5171                                 read_extent_buffer(leaf, map + pg_offset, ptr,
5172                                                    copy_size);
5173                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5174                                         memset(map + pg_offset + copy_size, 0,
5175                                                PAGE_CACHE_SIZE - pg_offset -
5176                                                copy_size);
5177                                 }
5178                                 kunmap(page);
5179                         }
5180                         flush_dcache_page(page);
5181                 } else if (create && PageUptodate(page)) {
5182                         WARN_ON(1);
5183                         if (!trans) {
5184                                 kunmap(page);
5185                                 free_extent_map(em);
5186                                 em = NULL;
5187                                 btrfs_release_path(root, path);
5188                                 trans = btrfs_join_transaction(root, 1);
5189                                 if (IS_ERR(trans))
5190                                         return ERR_CAST(trans);
5191                                 goto again;
5192                         }
5193                         map = kmap(page);
5194                         write_extent_buffer(leaf, map + pg_offset, ptr,
5195                                             copy_size);
5196                         kunmap(page);
5197                         btrfs_mark_buffer_dirty(leaf);
5198                 }
5199                 set_extent_uptodate(io_tree, em->start,
5200                                     extent_map_end(em) - 1, GFP_NOFS);
5201                 goto insert;
5202         } else {
5203                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5204                 WARN_ON(1);
5205         }
5206 not_found:
5207         em->start = start;
5208         em->len = len;
5209 not_found_em:
5210         em->block_start = EXTENT_MAP_HOLE;
5211         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5212 insert:
5213         btrfs_release_path(root, path);
5214         if (em->start > start || extent_map_end(em) <= start) {
5215                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5216                        "[%llu %llu]\n", (unsigned long long)em->start,
5217                        (unsigned long long)em->len,
5218                        (unsigned long long)start,
5219                        (unsigned long long)len);
5220                 err = -EIO;
5221                 goto out;
5222         }
5223
5224         err = 0;
5225         write_lock(&em_tree->lock);
5226         ret = add_extent_mapping(em_tree, em);
5227         /* it is possible that someone inserted the extent into the tree
5228          * while we had the lock dropped.  It is also possible that
5229          * an overlapping map exists in the tree
5230          */
5231         if (ret == -EEXIST) {
5232                 struct extent_map *existing;
5233
5234                 ret = 0;
5235
5236                 existing = lookup_extent_mapping(em_tree, start, len);
5237                 if (existing && (existing->start > start ||
5238                     existing->start + existing->len <= start)) {
5239                         free_extent_map(existing);
5240                         existing = NULL;
5241                 }
5242                 if (!existing) {
5243                         existing = lookup_extent_mapping(em_tree, em->start,
5244                                                          em->len);
5245                         if (existing) {
5246                                 err = merge_extent_mapping(em_tree, existing,
5247                                                            em, start,
5248                                                            root->sectorsize);
5249                                 free_extent_map(existing);
5250                                 if (err) {
5251                                         free_extent_map(em);
5252                                         em = NULL;
5253                                 }
5254                         } else {
5255                                 err = -EIO;
5256                                 free_extent_map(em);
5257                                 em = NULL;
5258                         }
5259                 } else {
5260                         free_extent_map(em);
5261                         em = existing;
5262                         err = 0;
5263                 }
5264         }
5265         write_unlock(&em_tree->lock);
5266 out:
5267         if (path)
5268                 btrfs_free_path(path);
5269         if (trans) {
5270                 ret = btrfs_end_transaction(trans, root);
5271                 if (!err)
5272                         err = ret;
5273         }
5274         if (err) {
5275                 free_extent_map(em);
5276                 return ERR_PTR(err);
5277         }
5278         return em;
5279 }
5280
5281 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5282                                                   u64 start, u64 len)
5283 {
5284         struct btrfs_root *root = BTRFS_I(inode)->root;
5285         struct btrfs_trans_handle *trans;
5286         struct extent_map *em;
5287         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5288         struct btrfs_key ins;
5289         u64 alloc_hint;
5290         int ret;
5291
5292         btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5293
5294         trans = btrfs_join_transaction(root, 0);
5295         if (IS_ERR(trans))
5296                 return ERR_CAST(trans);
5297
5298         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5299
5300         alloc_hint = get_extent_allocation_hint(inode, start, len);
5301         ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5302                                    alloc_hint, (u64)-1, &ins, 1);
5303         if (ret) {
5304                 em = ERR_PTR(ret);
5305                 goto out;
5306         }
5307
5308         em = alloc_extent_map(GFP_NOFS);
5309         if (!em) {
5310                 em = ERR_PTR(-ENOMEM);
5311                 goto out;
5312         }
5313
5314         em->start = start;
5315         em->orig_start = em->start;
5316         em->len = ins.offset;
5317
5318         em->block_start = ins.objectid;
5319         em->block_len = ins.offset;
5320         em->bdev = root->fs_info->fs_devices->latest_bdev;
5321         set_bit(EXTENT_FLAG_PINNED, &em->flags);
5322
5323         while (1) {
5324                 write_lock(&em_tree->lock);
5325                 ret = add_extent_mapping(em_tree, em);
5326                 write_unlock(&em_tree->lock);
5327                 if (ret != -EEXIST)
5328                         break;
5329                 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5330         }
5331
5332         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5333                                            ins.offset, ins.offset, 0);
5334         if (ret) {
5335                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5336                 em = ERR_PTR(ret);
5337         }
5338 out:
5339         btrfs_end_transaction(trans, root);
5340         return em;
5341 }
5342
5343 /*
5344  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5345  * block must be cow'd
5346  */
5347 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5348                                       struct inode *inode, u64 offset, u64 len)
5349 {
5350         struct btrfs_path *path;
5351         int ret;
5352         struct extent_buffer *leaf;
5353         struct btrfs_root *root = BTRFS_I(inode)->root;
5354         struct btrfs_file_extent_item *fi;
5355         struct btrfs_key key;
5356         u64 disk_bytenr;
5357         u64 backref_offset;
5358         u64 extent_end;
5359         u64 num_bytes;
5360         int slot;
5361         int found_type;
5362
5363         path = btrfs_alloc_path();
5364         if (!path)
5365                 return -ENOMEM;
5366
5367         ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5368                                        offset, 0);
5369         if (ret < 0)
5370                 goto out;
5371
5372         slot = path->slots[0];
5373         if (ret == 1) {
5374                 if (slot == 0) {
5375                         /* can't find the item, must cow */
5376                         ret = 0;
5377                         goto out;
5378                 }
5379                 slot--;
5380         }
5381         ret = 0;
5382         leaf = path->nodes[0];
5383         btrfs_item_key_to_cpu(leaf, &key, slot);
5384         if (key.objectid != inode->i_ino ||
5385             key.type != BTRFS_EXTENT_DATA_KEY) {
5386                 /* not our file or wrong item type, must cow */
5387                 goto out;
5388         }
5389
5390         if (key.offset > offset) {
5391                 /* Wrong offset, must cow */
5392                 goto out;
5393         }
5394
5395         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5396         found_type = btrfs_file_extent_type(leaf, fi);
5397         if (found_type != BTRFS_FILE_EXTENT_REG &&
5398             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5399                 /* not a regular extent, must cow */
5400                 goto out;
5401         }
5402         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5403         backref_offset = btrfs_file_extent_offset(leaf, fi);
5404
5405         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5406         if (extent_end < offset + len) {
5407                 /* extent doesn't include our full range, must cow */
5408                 goto out;
5409         }
5410
5411         if (btrfs_extent_readonly(root, disk_bytenr))
5412                 goto out;
5413
5414         /*
5415          * look for other files referencing this extent, if we
5416          * find any we must cow
5417          */
5418         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5419                                   key.offset - backref_offset, disk_bytenr))
5420                 goto out;
5421
5422         /*
5423          * adjust disk_bytenr and num_bytes to cover just the bytes
5424          * in this extent we are about to write.  If there
5425          * are any csums in that range we have to cow in order
5426          * to keep the csums correct
5427          */
5428         disk_bytenr += backref_offset;
5429         disk_bytenr += offset - key.offset;
5430         num_bytes = min(offset + len, extent_end) - offset;
5431         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5432                                 goto out;
5433         /*
5434          * all of the above have passed, it is safe to overwrite this extent
5435          * without cow
5436          */
5437         ret = 1;
5438 out:
5439         btrfs_free_path(path);
5440         return ret;
5441 }
5442
5443 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5444                                    struct buffer_head *bh_result, int create)
5445 {
5446         struct extent_map *em;
5447         struct btrfs_root *root = BTRFS_I(inode)->root;
5448         u64 start = iblock << inode->i_blkbits;
5449         u64 len = bh_result->b_size;
5450         struct btrfs_trans_handle *trans;
5451
5452         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5453         if (IS_ERR(em))
5454                 return PTR_ERR(em);
5455
5456         /*
5457          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5458          * io.  INLINE is special, and we could probably kludge it in here, but
5459          * it's still buffered so for safety lets just fall back to the generic
5460          * buffered path.
5461          *
5462          * For COMPRESSED we _have_ to read the entire extent in so we can
5463          * decompress it, so there will be buffering required no matter what we
5464          * do, so go ahead and fallback to buffered.
5465          *
5466          * We return -ENOTBLK because thats what makes DIO go ahead and go back
5467          * to buffered IO.  Don't blame me, this is the price we pay for using
5468          * the generic code.
5469          */
5470         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5471             em->block_start == EXTENT_MAP_INLINE) {
5472                 free_extent_map(em);
5473                 return -ENOTBLK;
5474         }
5475
5476         /* Just a good old fashioned hole, return */
5477         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5478                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5479                 free_extent_map(em);
5480                 /* DIO will do one hole at a time, so just unlock a sector */
5481                 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5482                               start + root->sectorsize - 1, GFP_NOFS);
5483                 return 0;
5484         }
5485
5486         /*
5487          * We don't allocate a new extent in the following cases
5488          *
5489          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5490          * existing extent.
5491          * 2) The extent is marked as PREALLOC.  We're good to go here and can
5492          * just use the extent.
5493          *
5494          */
5495         if (!create) {
5496                 len = em->len - (start - em->start);
5497                 goto map;
5498         }
5499
5500         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5501             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5502              em->block_start != EXTENT_MAP_HOLE)) {
5503                 int type;
5504                 int ret;
5505                 u64 block_start;
5506
5507                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5508                         type = BTRFS_ORDERED_PREALLOC;
5509                 else
5510                         type = BTRFS_ORDERED_NOCOW;
5511                 len = min(len, em->len - (start - em->start));
5512                 block_start = em->block_start + (start - em->start);
5513
5514                 /*
5515                  * we're not going to log anything, but we do need
5516                  * to make sure the current transaction stays open
5517                  * while we look for nocow cross refs
5518                  */
5519                 trans = btrfs_join_transaction(root, 0);
5520                 if (IS_ERR(trans))
5521                         goto must_cow;
5522
5523                 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5524                         ret = btrfs_add_ordered_extent_dio(inode, start,
5525                                            block_start, len, len, type);
5526                         btrfs_end_transaction(trans, root);
5527                         if (ret) {
5528                                 free_extent_map(em);
5529                                 return ret;
5530                         }
5531                         goto unlock;
5532                 }
5533                 btrfs_end_transaction(trans, root);
5534         }
5535 must_cow:
5536         /*
5537          * this will cow the extent, reset the len in case we changed
5538          * it above
5539          */
5540         len = bh_result->b_size;
5541         free_extent_map(em);
5542         em = btrfs_new_extent_direct(inode, start, len);
5543         if (IS_ERR(em))
5544                 return PTR_ERR(em);
5545         len = min(len, em->len - (start - em->start));
5546 unlock:
5547         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5548                           EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5549                           0, NULL, GFP_NOFS);
5550 map:
5551         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5552                 inode->i_blkbits;
5553         bh_result->b_size = len;
5554         bh_result->b_bdev = em->bdev;
5555         set_buffer_mapped(bh_result);
5556         if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5557                 set_buffer_new(bh_result);
5558
5559         free_extent_map(em);
5560
5561         return 0;
5562 }
5563
5564 struct btrfs_dio_private {
5565         struct inode *inode;
5566         u64 logical_offset;
5567         u64 disk_bytenr;
5568         u64 bytes;
5569         u32 *csums;
5570         void *private;
5571
5572         /* number of bios pending for this dio */
5573         atomic_t pending_bios;
5574
5575         /* IO errors */
5576         int errors;
5577
5578         struct bio *orig_bio;
5579 };
5580
5581 static void btrfs_endio_direct_read(struct bio *bio, int err)
5582 {
5583         struct btrfs_dio_private *dip = bio->bi_private;
5584         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5585         struct bio_vec *bvec = bio->bi_io_vec;
5586         struct inode *inode = dip->inode;
5587         struct btrfs_root *root = BTRFS_I(inode)->root;
5588         u64 start;
5589         u32 *private = dip->csums;
5590
5591         start = dip->logical_offset;
5592         do {
5593                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5594                         struct page *page = bvec->bv_page;
5595                         char *kaddr;
5596                         u32 csum = ~(u32)0;
5597                         unsigned long flags;
5598
5599                         local_irq_save(flags);
5600                         kaddr = kmap_atomic(page, KM_IRQ0);
5601                         csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5602                                                csum, bvec->bv_len);
5603                         btrfs_csum_final(csum, (char *)&csum);
5604                         kunmap_atomic(kaddr, KM_IRQ0);
5605                         local_irq_restore(flags);
5606
5607                         flush_dcache_page(bvec->bv_page);
5608                         if (csum != *private) {
5609                                 printk(KERN_ERR "btrfs csum failed ino %lu off"
5610                                       " %llu csum %u private %u\n",
5611                                       inode->i_ino, (unsigned long long)start,
5612                                       csum, *private);
5613                                 err = -EIO;
5614                         }
5615                 }
5616
5617                 start += bvec->bv_len;
5618                 private++;
5619                 bvec++;
5620         } while (bvec <= bvec_end);
5621
5622         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5623                       dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5624         bio->bi_private = dip->private;
5625
5626         kfree(dip->csums);
5627         kfree(dip);
5628         dio_end_io(bio, err);
5629 }
5630
5631 static void btrfs_endio_direct_write(struct bio *bio, int err)
5632 {
5633         struct btrfs_dio_private *dip = bio->bi_private;
5634         struct inode *inode = dip->inode;
5635         struct btrfs_root *root = BTRFS_I(inode)->root;
5636         struct btrfs_trans_handle *trans;
5637         struct btrfs_ordered_extent *ordered = NULL;
5638         struct extent_state *cached_state = NULL;
5639         u64 ordered_offset = dip->logical_offset;
5640         u64 ordered_bytes = dip->bytes;
5641         int ret;
5642
5643         if (err)
5644                 goto out_done;
5645 again:
5646         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5647                                                    &ordered_offset,
5648                                                    ordered_bytes);
5649         if (!ret)
5650                 goto out_test;
5651
5652         BUG_ON(!ordered);
5653
5654         trans = btrfs_join_transaction(root, 1);
5655         if (IS_ERR(trans)) {
5656                 err = -ENOMEM;
5657                 goto out;
5658         }
5659         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5660
5661         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5662                 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5663                 if (!ret)
5664                         ret = btrfs_update_inode(trans, root, inode);
5665                 err = ret;
5666                 goto out;
5667         }
5668
5669         lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5670                          ordered->file_offset + ordered->len - 1, 0,
5671                          &cached_state, GFP_NOFS);
5672
5673         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5674                 ret = btrfs_mark_extent_written(trans, inode,
5675                                                 ordered->file_offset,
5676                                                 ordered->file_offset +
5677                                                 ordered->len);
5678                 if (ret) {
5679                         err = ret;
5680                         goto out_unlock;
5681                 }
5682         } else {
5683                 ret = insert_reserved_file_extent(trans, inode,
5684                                                   ordered->file_offset,
5685                                                   ordered->start,
5686                                                   ordered->disk_len,
5687                                                   ordered->len,
5688                                                   ordered->len,
5689                                                   0, 0, 0,
5690                                                   BTRFS_FILE_EXTENT_REG);
5691                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5692                                    ordered->file_offset, ordered->len);
5693                 if (ret) {
5694                         err = ret;
5695                         WARN_ON(1);
5696                         goto out_unlock;
5697                 }
5698         }
5699
5700         add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5701         btrfs_ordered_update_i_size(inode, 0, ordered);
5702         btrfs_update_inode(trans, root, inode);
5703 out_unlock:
5704         unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5705                              ordered->file_offset + ordered->len - 1,
5706                              &cached_state, GFP_NOFS);
5707 out:
5708         btrfs_delalloc_release_metadata(inode, ordered->len);
5709         btrfs_end_transaction(trans, root);
5710         ordered_offset = ordered->file_offset + ordered->len;
5711         btrfs_put_ordered_extent(ordered);
5712         btrfs_put_ordered_extent(ordered);
5713
5714 out_test:
5715         /*
5716          * our bio might span multiple ordered extents.  If we haven't
5717          * completed the accounting for the whole dio, go back and try again
5718          */
5719         if (ordered_offset < dip->logical_offset + dip->bytes) {
5720                 ordered_bytes = dip->logical_offset + dip->bytes -
5721                         ordered_offset;
5722                 goto again;
5723         }
5724 out_done:
5725         bio->bi_private = dip->private;
5726
5727         kfree(dip->csums);
5728         kfree(dip);
5729         dio_end_io(bio, err);
5730 }
5731
5732 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5733                                     struct bio *bio, int mirror_num,
5734                                     unsigned long bio_flags, u64 offset)
5735 {
5736         int ret;
5737         struct btrfs_root *root = BTRFS_I(inode)->root;
5738         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5739         BUG_ON(ret);
5740         return 0;
5741 }
5742
5743 static void btrfs_end_dio_bio(struct bio *bio, int err)
5744 {
5745         struct btrfs_dio_private *dip = bio->bi_private;
5746
5747         if (err) {
5748                 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5749                       "sector %#Lx len %u err no %d\n",
5750                       dip->inode->i_ino, bio->bi_rw,
5751                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
5752                 dip->errors = 1;
5753
5754                 /*
5755                  * before atomic variable goto zero, we must make sure
5756                  * dip->errors is perceived to be set.
5757                  */
5758                 smp_mb__before_atomic_dec();
5759         }
5760
5761         /* if there are more bios still pending for this dio, just exit */
5762         if (!atomic_dec_and_test(&dip->pending_bios))
5763                 goto out;
5764
5765         if (dip->errors)
5766                 bio_io_error(dip->orig_bio);
5767         else {
5768                 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5769                 bio_endio(dip->orig_bio, 0);
5770         }
5771 out:
5772         bio_put(bio);
5773 }
5774
5775 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5776                                        u64 first_sector, gfp_t gfp_flags)
5777 {
5778         int nr_vecs = bio_get_nr_vecs(bdev);
5779         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5780 }
5781
5782 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5783                                          int rw, u64 file_offset, int skip_sum,
5784                                          u32 *csums)
5785 {
5786         int write = rw & REQ_WRITE;
5787         struct btrfs_root *root = BTRFS_I(inode)->root;
5788         int ret;
5789
5790         bio_get(bio);
5791         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5792         if (ret)
5793                 goto err;
5794
5795         if (write && !skip_sum) {
5796                 ret = btrfs_wq_submit_bio(root->fs_info,
5797                                    inode, rw, bio, 0, 0,
5798                                    file_offset,
5799                                    __btrfs_submit_bio_start_direct_io,
5800                                    __btrfs_submit_bio_done);
5801                 goto err;
5802         } else if (!skip_sum)
5803                 btrfs_lookup_bio_sums_dio(root, inode, bio,
5804                                           file_offset, csums);
5805
5806         ret = btrfs_map_bio(root, rw, bio, 0, 1);
5807 err:
5808         bio_put(bio);
5809         return ret;
5810 }
5811
5812 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5813                                     int skip_sum)
5814 {
5815         struct inode *inode = dip->inode;
5816         struct btrfs_root *root = BTRFS_I(inode)->root;
5817         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5818         struct bio *bio;
5819         struct bio *orig_bio = dip->orig_bio;
5820         struct bio_vec *bvec = orig_bio->bi_io_vec;
5821         u64 start_sector = orig_bio->bi_sector;
5822         u64 file_offset = dip->logical_offset;
5823         u64 submit_len = 0;
5824         u64 map_length;
5825         int nr_pages = 0;
5826         u32 *csums = dip->csums;
5827         int ret = 0;
5828
5829         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5830         if (!bio)
5831                 return -ENOMEM;
5832         bio->bi_private = dip;
5833         bio->bi_end_io = btrfs_end_dio_bio;
5834         atomic_inc(&dip->pending_bios);
5835
5836         map_length = orig_bio->bi_size;
5837         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5838                               &map_length, NULL, 0);
5839         if (ret) {
5840                 bio_put(bio);
5841                 return -EIO;
5842         }
5843
5844         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5845                 if (unlikely(map_length < submit_len + bvec->bv_len ||
5846                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5847                                  bvec->bv_offset) < bvec->bv_len)) {
5848                         /*
5849                          * inc the count before we submit the bio so
5850                          * we know the end IO handler won't happen before
5851                          * we inc the count. Otherwise, the dip might get freed
5852                          * before we're done setting it up
5853                          */
5854                         atomic_inc(&dip->pending_bios);
5855                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
5856                                                      file_offset, skip_sum,
5857                                                      csums);
5858                         if (ret) {
5859                                 bio_put(bio);
5860                                 atomic_dec(&dip->pending_bios);
5861                                 goto out_err;
5862                         }
5863
5864                         if (!skip_sum)
5865                                 csums = csums + nr_pages;
5866                         start_sector += submit_len >> 9;
5867                         file_offset += submit_len;
5868
5869                         submit_len = 0;
5870                         nr_pages = 0;
5871
5872                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5873                                                   start_sector, GFP_NOFS);
5874                         if (!bio)
5875                                 goto out_err;
5876                         bio->bi_private = dip;
5877                         bio->bi_end_io = btrfs_end_dio_bio;
5878
5879                         map_length = orig_bio->bi_size;
5880                         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5881                                               &map_length, NULL, 0);
5882                         if (ret) {
5883                                 bio_put(bio);
5884                                 goto out_err;
5885                         }
5886                 } else {
5887                         submit_len += bvec->bv_len;
5888                         nr_pages ++;
5889                         bvec++;
5890                 }
5891         }
5892
5893         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
5894                                      csums);
5895         if (!ret)
5896                 return 0;
5897
5898         bio_put(bio);
5899 out_err:
5900         dip->errors = 1;
5901         /*
5902          * before atomic variable goto zero, we must
5903          * make sure dip->errors is perceived to be set.
5904          */
5905         smp_mb__before_atomic_dec();
5906         if (atomic_dec_and_test(&dip->pending_bios))
5907                 bio_io_error(dip->orig_bio);
5908
5909         /* bio_end_io() will handle error, so we needn't return it */
5910         return 0;
5911 }
5912
5913 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
5914                                 loff_t file_offset)
5915 {
5916         struct btrfs_root *root = BTRFS_I(inode)->root;
5917         struct btrfs_dio_private *dip;
5918         struct bio_vec *bvec = bio->bi_io_vec;
5919         int skip_sum;
5920         int write = rw & REQ_WRITE;
5921         int ret = 0;
5922
5923         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5924
5925         dip = kmalloc(sizeof(*dip), GFP_NOFS);
5926         if (!dip) {
5927                 ret = -ENOMEM;
5928                 goto free_ordered;
5929         }
5930         dip->csums = NULL;
5931
5932         if (!skip_sum) {
5933                 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
5934                 if (!dip->csums) {
5935                         ret = -ENOMEM;
5936                         goto free_ordered;
5937                 }
5938         }
5939
5940         dip->private = bio->bi_private;
5941         dip->inode = inode;
5942         dip->logical_offset = file_offset;
5943
5944         dip->bytes = 0;
5945         do {
5946                 dip->bytes += bvec->bv_len;
5947                 bvec++;
5948         } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
5949
5950         dip->disk_bytenr = (u64)bio->bi_sector << 9;
5951         bio->bi_private = dip;
5952         dip->errors = 0;
5953         dip->orig_bio = bio;
5954         atomic_set(&dip->pending_bios, 0);
5955
5956         if (write)
5957                 bio->bi_end_io = btrfs_endio_direct_write;
5958         else
5959                 bio->bi_end_io = btrfs_endio_direct_read;
5960
5961         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
5962         if (!ret)
5963                 return;
5964 free_ordered:
5965         /*
5966          * If this is a write, we need to clean up the reserved space and kill
5967          * the ordered extent.
5968          */
5969         if (write) {
5970                 struct btrfs_ordered_extent *ordered;
5971                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
5972                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
5973                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
5974                         btrfs_free_reserved_extent(root, ordered->start,
5975                                                    ordered->disk_len);
5976                 btrfs_put_ordered_extent(ordered);
5977                 btrfs_put_ordered_extent(ordered);
5978         }
5979         bio_endio(bio, ret);
5980 }
5981
5982 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
5983                         const struct iovec *iov, loff_t offset,
5984                         unsigned long nr_segs)
5985 {
5986         int seg;
5987         size_t size;
5988         unsigned long addr;
5989         unsigned blocksize_mask = root->sectorsize - 1;
5990         ssize_t retval = -EINVAL;
5991         loff_t end = offset;
5992
5993         if (offset & blocksize_mask)
5994                 goto out;
5995
5996         /* Check the memory alignment.  Blocks cannot straddle pages */
5997         for (seg = 0; seg < nr_segs; seg++) {
5998                 addr = (unsigned long)iov[seg].iov_base;
5999                 size = iov[seg].iov_len;
6000                 end += size;
6001                 if ((addr & blocksize_mask) || (size & blocksize_mask)) 
6002                         goto out;
6003         }
6004         retval = 0;
6005 out:
6006         return retval;
6007 }
6008 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6009                         const struct iovec *iov, loff_t offset,
6010                         unsigned long nr_segs)
6011 {
6012         struct file *file = iocb->ki_filp;
6013         struct inode *inode = file->f_mapping->host;
6014         struct btrfs_ordered_extent *ordered;
6015         struct extent_state *cached_state = NULL;
6016         u64 lockstart, lockend;
6017         ssize_t ret;
6018         int writing = rw & WRITE;
6019         int write_bits = 0;
6020         size_t count = iov_length(iov, nr_segs);
6021
6022         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6023                             offset, nr_segs)) {
6024                 return 0;
6025         }
6026
6027         lockstart = offset;
6028         lockend = offset + count - 1;
6029
6030         if (writing) {
6031                 ret = btrfs_delalloc_reserve_space(inode, count);
6032                 if (ret)
6033                         goto out;
6034         }
6035
6036         while (1) {
6037                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6038                                  0, &cached_state, GFP_NOFS);
6039                 /*
6040                  * We're concerned with the entire range that we're going to be
6041                  * doing DIO to, so we need to make sure theres no ordered
6042                  * extents in this range.
6043                  */
6044                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6045                                                      lockend - lockstart + 1);
6046                 if (!ordered)
6047                         break;
6048                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6049                                      &cached_state, GFP_NOFS);
6050                 btrfs_start_ordered_extent(inode, ordered, 1);
6051                 btrfs_put_ordered_extent(ordered);
6052                 cond_resched();
6053         }
6054
6055         /*
6056          * we don't use btrfs_set_extent_delalloc because we don't want
6057          * the dirty or uptodate bits
6058          */
6059         if (writing) {
6060                 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6061                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6062                                      EXTENT_DELALLOC, 0, NULL, &cached_state,
6063                                      GFP_NOFS);
6064                 if (ret) {
6065                         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6066                                          lockend, EXTENT_LOCKED | write_bits,
6067                                          1, 0, &cached_state, GFP_NOFS);
6068                         goto out;
6069                 }
6070         }
6071
6072         free_extent_state(cached_state);
6073         cached_state = NULL;
6074
6075         ret = __blockdev_direct_IO(rw, iocb, inode,
6076                    BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6077                    iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6078                    btrfs_submit_direct, 0);
6079
6080         if (ret < 0 && ret != -EIOCBQUEUED) {
6081                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6082                               offset + iov_length(iov, nr_segs) - 1,
6083                               EXTENT_LOCKED | write_bits, 1, 0,
6084                               &cached_state, GFP_NOFS);
6085         } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6086                 /*
6087                  * We're falling back to buffered, unlock the section we didn't
6088                  * do IO on.
6089                  */
6090                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6091                               offset + iov_length(iov, nr_segs) - 1,
6092                               EXTENT_LOCKED | write_bits, 1, 0,
6093                               &cached_state, GFP_NOFS);
6094         }
6095 out:
6096         free_extent_state(cached_state);
6097         return ret;
6098 }
6099
6100 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6101                 __u64 start, __u64 len)
6102 {
6103         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
6104 }
6105
6106 int btrfs_readpage(struct file *file, struct page *page)
6107 {
6108         struct extent_io_tree *tree;
6109         tree = &BTRFS_I(page->mapping->host)->io_tree;
6110         return extent_read_full_page(tree, page, btrfs_get_extent);
6111 }
6112
6113 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6114 {
6115         struct extent_io_tree *tree;
6116
6117
6118         if (current->flags & PF_MEMALLOC) {
6119                 redirty_page_for_writepage(wbc, page);
6120                 unlock_page(page);
6121                 return 0;
6122         }
6123         tree = &BTRFS_I(page->mapping->host)->io_tree;
6124         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6125 }
6126
6127 int btrfs_writepages(struct address_space *mapping,
6128                      struct writeback_control *wbc)
6129 {
6130         struct extent_io_tree *tree;
6131
6132         tree = &BTRFS_I(mapping->host)->io_tree;
6133         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6134 }
6135
6136 static int
6137 btrfs_readpages(struct file *file, struct address_space *mapping,
6138                 struct list_head *pages, unsigned nr_pages)
6139 {
6140         struct extent_io_tree *tree;
6141         tree = &BTRFS_I(mapping->host)->io_tree;
6142         return extent_readpages(tree, mapping, pages, nr_pages,
6143                                 btrfs_get_extent);
6144 }
6145 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6146 {
6147         struct extent_io_tree *tree;
6148         struct extent_map_tree *map;
6149         int ret;
6150
6151         tree = &BTRFS_I(page->mapping->host)->io_tree;
6152         map = &BTRFS_I(page->mapping->host)->extent_tree;
6153         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6154         if (ret == 1) {
6155                 ClearPagePrivate(page);
6156                 set_page_private(page, 0);
6157                 page_cache_release(page);
6158         }
6159         return ret;
6160 }
6161
6162 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6163 {
6164         if (PageWriteback(page) || PageDirty(page))
6165                 return 0;
6166         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6167 }
6168
6169 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6170 {
6171         struct extent_io_tree *tree;
6172         struct btrfs_ordered_extent *ordered;
6173         struct extent_state *cached_state = NULL;
6174         u64 page_start = page_offset(page);
6175         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6176
6177
6178         /*
6179          * we have the page locked, so new writeback can't start,
6180          * and the dirty bit won't be cleared while we are here.
6181          *
6182          * Wait for IO on this page so that we can safely clear
6183          * the PagePrivate2 bit and do ordered accounting
6184          */
6185         wait_on_page_writeback(page);
6186
6187         tree = &BTRFS_I(page->mapping->host)->io_tree;
6188         if (offset) {
6189                 btrfs_releasepage(page, GFP_NOFS);
6190                 return;
6191         }
6192         lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6193                          GFP_NOFS);
6194         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6195                                            page_offset(page));
6196         if (ordered) {
6197                 /*
6198                  * IO on this page will never be started, so we need
6199                  * to account for any ordered extents now
6200                  */
6201                 clear_extent_bit(tree, page_start, page_end,
6202                                  EXTENT_DIRTY | EXTENT_DELALLOC |
6203                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6204                                  &cached_state, GFP_NOFS);
6205                 /*
6206                  * whoever cleared the private bit is responsible
6207                  * for the finish_ordered_io
6208                  */
6209                 if (TestClearPagePrivate2(page)) {
6210                         btrfs_finish_ordered_io(page->mapping->host,
6211                                                 page_start, page_end);
6212                 }
6213                 btrfs_put_ordered_extent(ordered);
6214                 cached_state = NULL;
6215                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6216                                  GFP_NOFS);
6217         }
6218         clear_extent_bit(tree, page_start, page_end,
6219                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6220                  EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6221         __btrfs_releasepage(page, GFP_NOFS);
6222
6223         ClearPageChecked(page);
6224         if (PagePrivate(page)) {
6225                 ClearPagePrivate(page);
6226                 set_page_private(page, 0);
6227                 page_cache_release(page);
6228         }
6229 }
6230
6231 /*
6232  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6233  * called from a page fault handler when a page is first dirtied. Hence we must
6234  * be careful to check for EOF conditions here. We set the page up correctly
6235  * for a written page which means we get ENOSPC checking when writing into
6236  * holes and correct delalloc and unwritten extent mapping on filesystems that
6237  * support these features.
6238  *
6239  * We are not allowed to take the i_mutex here so we have to play games to
6240  * protect against truncate races as the page could now be beyond EOF.  Because
6241  * vmtruncate() writes the inode size before removing pages, once we have the
6242  * page lock we can determine safely if the page is beyond EOF. If it is not
6243  * beyond EOF, then the page is guaranteed safe against truncation until we
6244  * unlock the page.
6245  */
6246 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6247 {
6248         struct page *page = vmf->page;
6249         struct inode *inode = fdentry(vma->vm_file)->d_inode;
6250         struct btrfs_root *root = BTRFS_I(inode)->root;
6251         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6252         struct btrfs_ordered_extent *ordered;
6253         struct extent_state *cached_state = NULL;
6254         char *kaddr;
6255         unsigned long zero_start;
6256         loff_t size;
6257         int ret;
6258         u64 page_start;
6259         u64 page_end;
6260
6261         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6262         if (ret) {
6263                 if (ret == -ENOMEM)
6264                         ret = VM_FAULT_OOM;
6265                 else /* -ENOSPC, -EIO, etc */
6266                         ret = VM_FAULT_SIGBUS;
6267                 goto out;
6268         }
6269
6270         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6271 again:
6272         lock_page(page);
6273         size = i_size_read(inode);
6274         page_start = page_offset(page);
6275         page_end = page_start + PAGE_CACHE_SIZE - 1;
6276
6277         if ((page->mapping != inode->i_mapping) ||
6278             (page_start >= size)) {
6279                 /* page got truncated out from underneath us */
6280                 goto out_unlock;
6281         }
6282         wait_on_page_writeback(page);
6283
6284         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6285                          GFP_NOFS);
6286         set_page_extent_mapped(page);
6287
6288         /*
6289          * we can't set the delalloc bits if there are pending ordered
6290          * extents.  Drop our locks and wait for them to finish
6291          */
6292         ordered = btrfs_lookup_ordered_extent(inode, page_start);
6293         if (ordered) {
6294                 unlock_extent_cached(io_tree, page_start, page_end,
6295                                      &cached_state, GFP_NOFS);
6296                 unlock_page(page);
6297                 btrfs_start_ordered_extent(inode, ordered, 1);
6298                 btrfs_put_ordered_extent(ordered);
6299                 goto again;
6300         }
6301
6302         /*
6303          * XXX - page_mkwrite gets called every time the page is dirtied, even
6304          * if it was already dirty, so for space accounting reasons we need to
6305          * clear any delalloc bits for the range we are fixing to save.  There
6306          * is probably a better way to do this, but for now keep consistent with
6307          * prepare_pages in the normal write path.
6308          */
6309         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6310                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6311                           0, 0, &cached_state, GFP_NOFS);
6312
6313         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6314                                         &cached_state);
6315         if (ret) {
6316                 unlock_extent_cached(io_tree, page_start, page_end,
6317                                      &cached_state, GFP_NOFS);
6318                 ret = VM_FAULT_SIGBUS;
6319                 goto out_unlock;
6320         }
6321         ret = 0;
6322
6323         /* page is wholly or partially inside EOF */
6324         if (page_start + PAGE_CACHE_SIZE > size)
6325                 zero_start = size & ~PAGE_CACHE_MASK;
6326         else
6327                 zero_start = PAGE_CACHE_SIZE;
6328
6329         if (zero_start != PAGE_CACHE_SIZE) {
6330                 kaddr = kmap(page);
6331                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6332                 flush_dcache_page(page);
6333                 kunmap(page);
6334         }
6335         ClearPageChecked(page);
6336         set_page_dirty(page);
6337         SetPageUptodate(page);
6338
6339         BTRFS_I(inode)->last_trans = root->fs_info->generation;
6340         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6341
6342         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6343
6344 out_unlock:
6345         if (!ret)
6346                 return VM_FAULT_LOCKED;
6347         unlock_page(page);
6348         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6349 out:
6350         return ret;
6351 }
6352
6353 static void btrfs_truncate(struct inode *inode)
6354 {
6355         struct btrfs_root *root = BTRFS_I(inode)->root;
6356         int ret;
6357         struct btrfs_trans_handle *trans;
6358         unsigned long nr;
6359         u64 mask = root->sectorsize - 1;
6360
6361         if (!S_ISREG(inode->i_mode)) {
6362                 WARN_ON(1);
6363                 return;
6364         }
6365
6366         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6367         if (ret)
6368                 return;
6369
6370         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6371         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6372
6373         trans = btrfs_start_transaction(root, 0);
6374         BUG_ON(IS_ERR(trans));
6375         btrfs_set_trans_block_group(trans, inode);
6376         trans->block_rsv = root->orphan_block_rsv;
6377
6378         /*
6379          * setattr is responsible for setting the ordered_data_close flag,
6380          * but that is only tested during the last file release.  That
6381          * could happen well after the next commit, leaving a great big
6382          * window where new writes may get lost if someone chooses to write
6383          * to this file after truncating to zero
6384          *
6385          * The inode doesn't have any dirty data here, and so if we commit
6386          * this is a noop.  If someone immediately starts writing to the inode
6387          * it is very likely we'll catch some of their writes in this
6388          * transaction, and the commit will find this file on the ordered
6389          * data list with good things to send down.
6390          *
6391          * This is a best effort solution, there is still a window where
6392          * using truncate to replace the contents of the file will
6393          * end up with a zero length file after a crash.
6394          */
6395         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6396                 btrfs_add_ordered_operation(trans, root, inode);
6397
6398         while (1) {
6399                 if (!trans) {
6400                         trans = btrfs_start_transaction(root, 0);
6401                         BUG_ON(IS_ERR(trans));
6402                         btrfs_set_trans_block_group(trans, inode);
6403                         trans->block_rsv = root->orphan_block_rsv;
6404                 }
6405
6406                 ret = btrfs_block_rsv_check(trans, root,
6407                                             root->orphan_block_rsv, 0, 5);
6408                 if (ret) {
6409                         BUG_ON(ret != -EAGAIN);
6410                         ret = btrfs_commit_transaction(trans, root);
6411                         BUG_ON(ret);
6412                         trans = NULL;
6413                         continue;
6414                 }
6415
6416                 ret = btrfs_truncate_inode_items(trans, root, inode,
6417                                                  inode->i_size,
6418                                                  BTRFS_EXTENT_DATA_KEY);
6419                 if (ret != -EAGAIN)
6420                         break;
6421
6422                 ret = btrfs_update_inode(trans, root, inode);
6423                 BUG_ON(ret);
6424
6425                 nr = trans->blocks_used;
6426                 btrfs_end_transaction(trans, root);
6427                 trans = NULL;
6428                 btrfs_btree_balance_dirty(root, nr);
6429         }
6430
6431         if (ret == 0 && inode->i_nlink > 0) {
6432                 ret = btrfs_orphan_del(trans, inode);
6433                 BUG_ON(ret);
6434         }
6435
6436         ret = btrfs_update_inode(trans, root, inode);
6437         BUG_ON(ret);
6438
6439         nr = trans->blocks_used;
6440         ret = btrfs_end_transaction_throttle(trans, root);
6441         BUG_ON(ret);
6442         btrfs_btree_balance_dirty(root, nr);
6443 }
6444
6445 /*
6446  * create a new subvolume directory/inode (helper for the ioctl).
6447  */
6448 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6449                              struct btrfs_root *new_root,
6450                              u64 new_dirid, u64 alloc_hint)
6451 {
6452         struct inode *inode;
6453         int err;
6454         u64 index = 0;
6455
6456         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6457                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6458         if (IS_ERR(inode))
6459                 return PTR_ERR(inode);
6460         inode->i_op = &btrfs_dir_inode_operations;
6461         inode->i_fop = &btrfs_dir_file_operations;
6462
6463         inode->i_nlink = 1;
6464         btrfs_i_size_write(inode, 0);
6465
6466         err = btrfs_update_inode(trans, new_root, inode);
6467         BUG_ON(err);
6468
6469         iput(inode);
6470         return 0;
6471 }
6472
6473 /* helper function for file defrag and space balancing.  This
6474  * forces readahead on a given range of bytes in an inode
6475  */
6476 unsigned long btrfs_force_ra(struct address_space *mapping,
6477                               struct file_ra_state *ra, struct file *file,
6478                               pgoff_t offset, pgoff_t last_index)
6479 {
6480         pgoff_t req_size = last_index - offset + 1;
6481
6482         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6483         return offset + req_size;
6484 }
6485
6486 struct inode *btrfs_alloc_inode(struct super_block *sb)
6487 {
6488         struct btrfs_inode *ei;
6489         struct inode *inode;
6490
6491         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6492         if (!ei)
6493                 return NULL;
6494
6495         ei->root = NULL;
6496         ei->space_info = NULL;
6497         ei->generation = 0;
6498         ei->sequence = 0;
6499         ei->last_trans = 0;
6500         ei->last_sub_trans = 0;
6501         ei->logged_trans = 0;
6502         ei->delalloc_bytes = 0;
6503         ei->reserved_bytes = 0;
6504         ei->disk_i_size = 0;
6505         ei->flags = 0;
6506         ei->index_cnt = (u64)-1;
6507         ei->last_unlink_trans = 0;
6508
6509         spin_lock_init(&ei->accounting_lock);
6510         atomic_set(&ei->outstanding_extents, 0);
6511         ei->reserved_extents = 0;
6512
6513         ei->ordered_data_close = 0;
6514         ei->orphan_meta_reserved = 0;
6515         ei->dummy_inode = 0;
6516         ei->force_compress = BTRFS_COMPRESS_NONE;
6517
6518         inode = &ei->vfs_inode;
6519         extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6520         extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6521         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6522         mutex_init(&ei->log_mutex);
6523         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6524         INIT_LIST_HEAD(&ei->i_orphan);
6525         INIT_LIST_HEAD(&ei->delalloc_inodes);
6526         INIT_LIST_HEAD(&ei->ordered_operations);
6527         RB_CLEAR_NODE(&ei->rb_node);
6528
6529         return inode;
6530 }
6531
6532 void btrfs_destroy_inode(struct inode *inode)
6533 {
6534         struct btrfs_ordered_extent *ordered;
6535         struct btrfs_root *root = BTRFS_I(inode)->root;
6536
6537         WARN_ON(!list_empty(&inode->i_dentry));
6538         WARN_ON(inode->i_data.nrpages);
6539         WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6540         WARN_ON(BTRFS_I(inode)->reserved_extents);
6541
6542         /*
6543          * This can happen where we create an inode, but somebody else also
6544          * created the same inode and we need to destroy the one we already
6545          * created.
6546          */
6547         if (!root)
6548                 goto free;
6549
6550         /*
6551          * Make sure we're properly removed from the ordered operation
6552          * lists.
6553          */
6554         smp_mb();
6555         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6556                 spin_lock(&root->fs_info->ordered_extent_lock);
6557                 list_del_init(&BTRFS_I(inode)->ordered_operations);
6558                 spin_unlock(&root->fs_info->ordered_extent_lock);
6559         }
6560
6561         if (root == root->fs_info->tree_root) {
6562                 struct btrfs_block_group_cache *block_group;
6563
6564                 block_group = btrfs_lookup_block_group(root->fs_info,
6565                                                 BTRFS_I(inode)->block_group);
6566                 if (block_group && block_group->inode == inode) {
6567                         spin_lock(&block_group->lock);
6568                         block_group->inode = NULL;
6569                         spin_unlock(&block_group->lock);
6570                         btrfs_put_block_group(block_group);
6571                 } else if (block_group) {
6572                         btrfs_put_block_group(block_group);
6573                 }
6574         }
6575
6576         spin_lock(&root->orphan_lock);
6577         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6578                 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6579                        inode->i_ino);
6580                 list_del_init(&BTRFS_I(inode)->i_orphan);
6581         }
6582         spin_unlock(&root->orphan_lock);
6583
6584         while (1) {
6585                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6586                 if (!ordered)
6587                         break;
6588                 else {
6589                         printk(KERN_ERR "btrfs found ordered "
6590                                "extent %llu %llu on inode cleanup\n",
6591                                (unsigned long long)ordered->file_offset,
6592                                (unsigned long long)ordered->len);
6593                         btrfs_remove_ordered_extent(inode, ordered);
6594                         btrfs_put_ordered_extent(ordered);
6595                         btrfs_put_ordered_extent(ordered);
6596                 }
6597         }
6598         inode_tree_del(inode);
6599         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6600 free:
6601         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6602 }
6603
6604 int btrfs_drop_inode(struct inode *inode)
6605 {
6606         struct btrfs_root *root = BTRFS_I(inode)->root;
6607
6608         if (btrfs_root_refs(&root->root_item) == 0 &&
6609             root != root->fs_info->tree_root)
6610                 return 1;
6611         else
6612                 return generic_drop_inode(inode);
6613 }
6614
6615 static void init_once(void *foo)
6616 {
6617         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6618
6619         inode_init_once(&ei->vfs_inode);
6620 }
6621
6622 void btrfs_destroy_cachep(void)
6623 {
6624         if (btrfs_inode_cachep)
6625                 kmem_cache_destroy(btrfs_inode_cachep);
6626         if (btrfs_trans_handle_cachep)
6627                 kmem_cache_destroy(btrfs_trans_handle_cachep);
6628         if (btrfs_transaction_cachep)
6629                 kmem_cache_destroy(btrfs_transaction_cachep);
6630         if (btrfs_path_cachep)
6631                 kmem_cache_destroy(btrfs_path_cachep);
6632 }
6633
6634 int btrfs_init_cachep(void)
6635 {
6636         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6637                         sizeof(struct btrfs_inode), 0,
6638                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6639         if (!btrfs_inode_cachep)
6640                 goto fail;
6641
6642         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6643                         sizeof(struct btrfs_trans_handle), 0,
6644                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6645         if (!btrfs_trans_handle_cachep)
6646                 goto fail;
6647
6648         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6649                         sizeof(struct btrfs_transaction), 0,
6650                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6651         if (!btrfs_transaction_cachep)
6652                 goto fail;
6653
6654         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6655                         sizeof(struct btrfs_path), 0,
6656                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6657         if (!btrfs_path_cachep)
6658                 goto fail;
6659
6660         return 0;
6661 fail:
6662         btrfs_destroy_cachep();
6663         return -ENOMEM;
6664 }
6665
6666 static int btrfs_getattr(struct vfsmount *mnt,
6667                          struct dentry *dentry, struct kstat *stat)
6668 {
6669         struct inode *inode = dentry->d_inode;
6670         generic_fillattr(inode, stat);
6671         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6672         stat->blksize = PAGE_CACHE_SIZE;
6673         stat->blocks = (inode_get_bytes(inode) +
6674                         BTRFS_I(inode)->delalloc_bytes) >> 9;
6675         return 0;
6676 }
6677
6678 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6679                            struct inode *new_dir, struct dentry *new_dentry)
6680 {
6681         struct btrfs_trans_handle *trans;
6682         struct btrfs_root *root = BTRFS_I(old_dir)->root;
6683         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6684         struct inode *new_inode = new_dentry->d_inode;
6685         struct inode *old_inode = old_dentry->d_inode;
6686         struct timespec ctime = CURRENT_TIME;
6687         u64 index = 0;
6688         u64 root_objectid;
6689         int ret;
6690
6691         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6692                 return -EPERM;
6693
6694         /* we only allow rename subvolume link between subvolumes */
6695         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6696                 return -EXDEV;
6697
6698         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6699             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6700                 return -ENOTEMPTY;
6701
6702         if (S_ISDIR(old_inode->i_mode) && new_inode &&
6703             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6704                 return -ENOTEMPTY;
6705         /*
6706          * we're using rename to replace one file with another.
6707          * and the replacement file is large.  Start IO on it now so
6708          * we don't add too much work to the end of the transaction
6709          */
6710         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6711             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6712                 filemap_flush(old_inode->i_mapping);
6713
6714         /* close the racy window with snapshot create/destroy ioctl */
6715         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6716                 down_read(&root->fs_info->subvol_sem);
6717         /*
6718          * We want to reserve the absolute worst case amount of items.  So if
6719          * both inodes are subvols and we need to unlink them then that would
6720          * require 4 item modifications, but if they are both normal inodes it
6721          * would require 5 item modifications, so we'll assume their normal
6722          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6723          * should cover the worst case number of items we'll modify.
6724          */
6725         trans = btrfs_start_transaction(root, 20);
6726         if (IS_ERR(trans))
6727                 return PTR_ERR(trans);
6728
6729         btrfs_set_trans_block_group(trans, new_dir);
6730
6731         if (dest != root)
6732                 btrfs_record_root_in_trans(trans, dest);
6733
6734         ret = btrfs_set_inode_index(new_dir, &index);
6735         if (ret)
6736                 goto out_fail;
6737
6738         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6739                 /* force full log commit if subvolume involved. */
6740                 root->fs_info->last_trans_log_full_commit = trans->transid;
6741         } else {
6742                 ret = btrfs_insert_inode_ref(trans, dest,
6743                                              new_dentry->d_name.name,
6744                                              new_dentry->d_name.len,
6745                                              old_inode->i_ino,
6746                                              new_dir->i_ino, index);
6747                 if (ret)
6748                         goto out_fail;
6749                 /*
6750                  * this is an ugly little race, but the rename is required
6751                  * to make sure that if we crash, the inode is either at the
6752                  * old name or the new one.  pinning the log transaction lets
6753                  * us make sure we don't allow a log commit to come in after
6754                  * we unlink the name but before we add the new name back in.
6755                  */
6756                 btrfs_pin_log_trans(root);
6757         }
6758         /*
6759          * make sure the inode gets flushed if it is replacing
6760          * something.
6761          */
6762         if (new_inode && new_inode->i_size &&
6763             old_inode && S_ISREG(old_inode->i_mode)) {
6764                 btrfs_add_ordered_operation(trans, root, old_inode);
6765         }
6766
6767         old_dir->i_ctime = old_dir->i_mtime = ctime;
6768         new_dir->i_ctime = new_dir->i_mtime = ctime;
6769         old_inode->i_ctime = ctime;
6770
6771         if (old_dentry->d_parent != new_dentry->d_parent)
6772                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6773
6774         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6775                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6776                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6777                                         old_dentry->d_name.name,
6778                                         old_dentry->d_name.len);
6779         } else {
6780                 btrfs_inc_nlink(old_dentry->d_inode);
6781                 ret = btrfs_unlink_inode(trans, root, old_dir,
6782                                          old_dentry->d_inode,
6783                                          old_dentry->d_name.name,
6784                                          old_dentry->d_name.len);
6785         }
6786         BUG_ON(ret);
6787
6788         if (new_inode) {
6789                 new_inode->i_ctime = CURRENT_TIME;
6790                 if (unlikely(new_inode->i_ino ==
6791                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6792                         root_objectid = BTRFS_I(new_inode)->location.objectid;
6793                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
6794                                                 root_objectid,
6795                                                 new_dentry->d_name.name,
6796                                                 new_dentry->d_name.len);
6797                         BUG_ON(new_inode->i_nlink == 0);
6798                 } else {
6799                         ret = btrfs_unlink_inode(trans, dest, new_dir,
6800                                                  new_dentry->d_inode,
6801                                                  new_dentry->d_name.name,
6802                                                  new_dentry->d_name.len);
6803                 }
6804                 BUG_ON(ret);
6805                 if (new_inode->i_nlink == 0) {
6806                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6807                         BUG_ON(ret);
6808                 }
6809         }
6810
6811         ret = btrfs_add_link(trans, new_dir, old_inode,
6812                              new_dentry->d_name.name,
6813                              new_dentry->d_name.len, 0, index);
6814         BUG_ON(ret);
6815
6816         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6817                 struct dentry *parent = dget_parent(new_dentry);
6818                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
6819                 dput(parent);
6820                 btrfs_end_log_trans(root);
6821         }
6822 out_fail:
6823         btrfs_end_transaction_throttle(trans, root);
6824
6825         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6826                 up_read(&root->fs_info->subvol_sem);
6827
6828         return ret;
6829 }
6830
6831 /*
6832  * some fairly slow code that needs optimization. This walks the list
6833  * of all the inodes with pending delalloc and forces them to disk.
6834  */
6835 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
6836 {
6837         struct list_head *head = &root->fs_info->delalloc_inodes;
6838         struct btrfs_inode *binode;
6839         struct inode *inode;
6840
6841         if (root->fs_info->sb->s_flags & MS_RDONLY)
6842                 return -EROFS;
6843
6844         spin_lock(&root->fs_info->delalloc_lock);
6845         while (!list_empty(head)) {
6846                 binode = list_entry(head->next, struct btrfs_inode,
6847                                     delalloc_inodes);
6848                 inode = igrab(&binode->vfs_inode);
6849                 if (!inode)
6850                         list_del_init(&binode->delalloc_inodes);
6851                 spin_unlock(&root->fs_info->delalloc_lock);
6852                 if (inode) {
6853                         filemap_flush(inode->i_mapping);
6854                         if (delay_iput)
6855                                 btrfs_add_delayed_iput(inode);
6856                         else
6857                                 iput(inode);
6858                 }
6859                 cond_resched();
6860                 spin_lock(&root->fs_info->delalloc_lock);
6861         }
6862         spin_unlock(&root->fs_info->delalloc_lock);
6863
6864         /* the filemap_flush will queue IO into the worker threads, but
6865          * we have to make sure the IO is actually started and that
6866          * ordered extents get created before we return
6867          */
6868         atomic_inc(&root->fs_info->async_submit_draining);
6869         while (atomic_read(&root->fs_info->nr_async_submits) ||
6870               atomic_read(&root->fs_info->async_delalloc_pages)) {
6871                 wait_event(root->fs_info->async_submit_wait,
6872                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
6873                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
6874         }
6875         atomic_dec(&root->fs_info->async_submit_draining);
6876         return 0;
6877 }
6878
6879 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
6880                                    int sync)
6881 {
6882         struct btrfs_inode *binode;
6883         struct inode *inode = NULL;
6884
6885         spin_lock(&root->fs_info->delalloc_lock);
6886         while (!list_empty(&root->fs_info->delalloc_inodes)) {
6887                 binode = list_entry(root->fs_info->delalloc_inodes.next,
6888                                     struct btrfs_inode, delalloc_inodes);
6889                 inode = igrab(&binode->vfs_inode);
6890                 if (inode) {
6891                         list_move_tail(&binode->delalloc_inodes,
6892                                        &root->fs_info->delalloc_inodes);
6893                         break;
6894                 }
6895
6896                 list_del_init(&binode->delalloc_inodes);
6897                 cond_resched_lock(&root->fs_info->delalloc_lock);
6898         }
6899         spin_unlock(&root->fs_info->delalloc_lock);
6900
6901         if (inode) {
6902                 if (sync) {
6903                         filemap_write_and_wait(inode->i_mapping);
6904                         /*
6905                          * We have to do this because compression doesn't
6906                          * actually set PG_writeback until it submits the pages
6907                          * for IO, which happens in an async thread, so we could
6908                          * race and not actually wait for any writeback pages
6909                          * because they've not been submitted yet.  Technically
6910                          * this could still be the case for the ordered stuff
6911                          * since the async thread may not have started to do its
6912                          * work yet.  If this becomes the case then we need to
6913                          * figure out a way to make sure that in writepage we
6914                          * wait for any async pages to be submitted before
6915                          * returning so that fdatawait does what its supposed to
6916                          * do.
6917                          */
6918                         btrfs_wait_ordered_range(inode, 0, (u64)-1);
6919                 } else {
6920                         filemap_flush(inode->i_mapping);
6921                 }
6922                 if (delay_iput)
6923                         btrfs_add_delayed_iput(inode);
6924                 else
6925                         iput(inode);
6926                 return 1;
6927         }
6928         return 0;
6929 }
6930
6931 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
6932                          const char *symname)
6933 {
6934         struct btrfs_trans_handle *trans;
6935         struct btrfs_root *root = BTRFS_I(dir)->root;
6936         struct btrfs_path *path;
6937         struct btrfs_key key;
6938         struct inode *inode = NULL;
6939         int err;
6940         int drop_inode = 0;
6941         u64 objectid;
6942         u64 index = 0 ;
6943         int name_len;
6944         int datasize;
6945         unsigned long ptr;
6946         struct btrfs_file_extent_item *ei;
6947         struct extent_buffer *leaf;
6948         unsigned long nr = 0;
6949
6950         name_len = strlen(symname) + 1;
6951         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
6952                 return -ENAMETOOLONG;
6953
6954         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
6955         if (err)
6956                 return err;
6957         /*
6958          * 2 items for inode item and ref
6959          * 2 items for dir items
6960          * 1 item for xattr if selinux is on
6961          */
6962         trans = btrfs_start_transaction(root, 5);
6963         if (IS_ERR(trans))
6964                 return PTR_ERR(trans);
6965
6966         btrfs_set_trans_block_group(trans, dir);
6967
6968         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6969                                 dentry->d_name.len, dir->i_ino, objectid,
6970                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
6971                                 &index);
6972         err = PTR_ERR(inode);
6973         if (IS_ERR(inode))
6974                 goto out_unlock;
6975
6976         err = btrfs_init_inode_security(trans, inode, dir);
6977         if (err) {
6978                 drop_inode = 1;
6979                 goto out_unlock;
6980         }
6981
6982         btrfs_set_trans_block_group(trans, inode);
6983         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6984         if (err)
6985                 drop_inode = 1;
6986         else {
6987                 inode->i_mapping->a_ops = &btrfs_aops;
6988                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6989                 inode->i_fop = &btrfs_file_operations;
6990                 inode->i_op = &btrfs_file_inode_operations;
6991                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6992         }
6993         btrfs_update_inode_block_group(trans, inode);
6994         btrfs_update_inode_block_group(trans, dir);
6995         if (drop_inode)
6996                 goto out_unlock;
6997
6998         path = btrfs_alloc_path();
6999         BUG_ON(!path);
7000         key.objectid = inode->i_ino;
7001         key.offset = 0;
7002         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7003         datasize = btrfs_file_extent_calc_inline_size(name_len);
7004         err = btrfs_insert_empty_item(trans, root, path, &key,
7005                                       datasize);
7006         if (err) {
7007                 drop_inode = 1;
7008                 goto out_unlock;
7009         }
7010         leaf = path->nodes[0];
7011         ei = btrfs_item_ptr(leaf, path->slots[0],
7012                             struct btrfs_file_extent_item);
7013         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7014         btrfs_set_file_extent_type(leaf, ei,
7015                                    BTRFS_FILE_EXTENT_INLINE);
7016         btrfs_set_file_extent_encryption(leaf, ei, 0);
7017         btrfs_set_file_extent_compression(leaf, ei, 0);
7018         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7019         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7020
7021         ptr = btrfs_file_extent_inline_start(ei);
7022         write_extent_buffer(leaf, symname, ptr, name_len);
7023         btrfs_mark_buffer_dirty(leaf);
7024         btrfs_free_path(path);
7025
7026         inode->i_op = &btrfs_symlink_inode_operations;
7027         inode->i_mapping->a_ops = &btrfs_symlink_aops;
7028         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7029         inode_set_bytes(inode, name_len);
7030         btrfs_i_size_write(inode, name_len - 1);
7031         err = btrfs_update_inode(trans, root, inode);
7032         if (err)
7033                 drop_inode = 1;
7034
7035 out_unlock:
7036         nr = trans->blocks_used;
7037         btrfs_end_transaction_throttle(trans, root);
7038         if (drop_inode) {
7039                 inode_dec_link_count(inode);
7040                 iput(inode);
7041         }
7042         btrfs_btree_balance_dirty(root, nr);
7043         return err;
7044 }
7045
7046 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7047                                        u64 start, u64 num_bytes, u64 min_size,
7048                                        loff_t actual_len, u64 *alloc_hint,
7049                                        struct btrfs_trans_handle *trans)
7050 {
7051         struct btrfs_root *root = BTRFS_I(inode)->root;
7052         struct btrfs_key ins;
7053         u64 cur_offset = start;
7054         u64 i_size;
7055         int ret = 0;
7056         bool own_trans = true;
7057
7058         if (trans)
7059                 own_trans = false;
7060         while (num_bytes > 0) {
7061                 if (own_trans) {
7062                         trans = btrfs_start_transaction(root, 3);
7063                         if (IS_ERR(trans)) {
7064                                 ret = PTR_ERR(trans);
7065                                 break;
7066                         }
7067                 }
7068
7069                 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7070                                            0, *alloc_hint, (u64)-1, &ins, 1);
7071                 if (ret) {
7072                         if (own_trans)
7073                                 btrfs_end_transaction(trans, root);
7074                         break;
7075                 }
7076
7077                 ret = insert_reserved_file_extent(trans, inode,
7078                                                   cur_offset, ins.objectid,
7079                                                   ins.offset, ins.offset,
7080                                                   ins.offset, 0, 0, 0,
7081                                                   BTRFS_FILE_EXTENT_PREALLOC);
7082                 BUG_ON(ret);
7083                 btrfs_drop_extent_cache(inode, cur_offset,
7084                                         cur_offset + ins.offset -1, 0);
7085
7086                 num_bytes -= ins.offset;
7087                 cur_offset += ins.offset;
7088                 *alloc_hint = ins.objectid + ins.offset;
7089
7090                 inode->i_ctime = CURRENT_TIME;
7091                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7092                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7093                     (actual_len > inode->i_size) &&
7094                     (cur_offset > inode->i_size)) {
7095                         if (cur_offset > actual_len)
7096                                 i_size = actual_len;
7097                         else
7098                                 i_size = cur_offset;
7099                         i_size_write(inode, i_size);
7100                         btrfs_ordered_update_i_size(inode, i_size, NULL);
7101                 }
7102
7103                 ret = btrfs_update_inode(trans, root, inode);
7104                 BUG_ON(ret);
7105
7106                 if (own_trans)
7107                         btrfs_end_transaction(trans, root);
7108         }
7109         return ret;
7110 }
7111
7112 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7113                               u64 start, u64 num_bytes, u64 min_size,
7114                               loff_t actual_len, u64 *alloc_hint)
7115 {
7116         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7117                                            min_size, actual_len, alloc_hint,
7118                                            NULL);
7119 }
7120
7121 int btrfs_prealloc_file_range_trans(struct inode *inode,
7122                                     struct btrfs_trans_handle *trans, int mode,
7123                                     u64 start, u64 num_bytes, u64 min_size,
7124                                     loff_t actual_len, u64 *alloc_hint)
7125 {
7126         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7127                                            min_size, actual_len, alloc_hint, trans);
7128 }
7129
7130 static long btrfs_fallocate(struct inode *inode, int mode,
7131                             loff_t offset, loff_t len)
7132 {
7133         struct extent_state *cached_state = NULL;
7134         u64 cur_offset;
7135         u64 last_byte;
7136         u64 alloc_start;
7137         u64 alloc_end;
7138         u64 alloc_hint = 0;
7139         u64 locked_end;
7140         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
7141         struct extent_map *em;
7142         int ret;
7143
7144         alloc_start = offset & ~mask;
7145         alloc_end =  (offset + len + mask) & ~mask;
7146
7147         /*
7148          * wait for ordered IO before we have any locks.  We'll loop again
7149          * below with the locks held.
7150          */
7151         btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
7152
7153         mutex_lock(&inode->i_mutex);
7154         ret = inode_newsize_ok(inode, alloc_end);
7155         if (ret)
7156                 goto out;
7157
7158         if (alloc_start > inode->i_size) {
7159                 ret = btrfs_cont_expand(inode, alloc_start);
7160                 if (ret)
7161                         goto out;
7162         }
7163
7164         ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
7165         if (ret)
7166                 goto out;
7167
7168         locked_end = alloc_end - 1;
7169         while (1) {
7170                 struct btrfs_ordered_extent *ordered;
7171
7172                 /* the extent lock is ordered inside the running
7173                  * transaction
7174                  */
7175                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
7176                                  locked_end, 0, &cached_state, GFP_NOFS);
7177                 ordered = btrfs_lookup_first_ordered_extent(inode,
7178                                                             alloc_end - 1);
7179                 if (ordered &&
7180                     ordered->file_offset + ordered->len > alloc_start &&
7181                     ordered->file_offset < alloc_end) {
7182                         btrfs_put_ordered_extent(ordered);
7183                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7184                                              alloc_start, locked_end,
7185                                              &cached_state, GFP_NOFS);
7186                         /*
7187                          * we can't wait on the range with the transaction
7188                          * running or with the extent lock held
7189                          */
7190                         btrfs_wait_ordered_range(inode, alloc_start,
7191                                                  alloc_end - alloc_start);
7192                 } else {
7193                         if (ordered)
7194                                 btrfs_put_ordered_extent(ordered);
7195                         break;
7196                 }
7197         }
7198
7199         cur_offset = alloc_start;
7200         while (1) {
7201                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
7202                                       alloc_end - cur_offset, 0);
7203                 BUG_ON(IS_ERR(em) || !em);
7204                 last_byte = min(extent_map_end(em), alloc_end);
7205                 last_byte = (last_byte + mask) & ~mask;
7206                 if (em->block_start == EXTENT_MAP_HOLE ||
7207                     (cur_offset >= inode->i_size &&
7208                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7209                         ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
7210                                                         last_byte - cur_offset,
7211                                                         1 << inode->i_blkbits,
7212                                                         offset + len,
7213                                                         &alloc_hint);
7214                         if (ret < 0) {
7215                                 free_extent_map(em);
7216                                 break;
7217                         }
7218                 }
7219                 free_extent_map(em);
7220
7221                 cur_offset = last_byte;
7222                 if (cur_offset >= alloc_end) {
7223                         ret = 0;
7224                         break;
7225                 }
7226         }
7227         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
7228                              &cached_state, GFP_NOFS);
7229
7230         btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
7231 out:
7232         mutex_unlock(&inode->i_mutex);
7233         return ret;
7234 }
7235
7236 static int btrfs_set_page_dirty(struct page *page)
7237 {
7238         return __set_page_dirty_nobuffers(page);
7239 }
7240
7241 static int btrfs_permission(struct inode *inode, int mask)
7242 {
7243         struct btrfs_root *root = BTRFS_I(inode)->root;
7244
7245         if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7246                 return -EROFS;
7247         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7248                 return -EACCES;
7249         return generic_permission(inode, mask, btrfs_check_acl);
7250 }
7251
7252 static const struct inode_operations btrfs_dir_inode_operations = {
7253         .getattr        = btrfs_getattr,
7254         .lookup         = btrfs_lookup,
7255         .create         = btrfs_create,
7256         .unlink         = btrfs_unlink,
7257         .link           = btrfs_link,
7258         .mkdir          = btrfs_mkdir,
7259         .rmdir          = btrfs_rmdir,
7260         .rename         = btrfs_rename,
7261         .symlink        = btrfs_symlink,
7262         .setattr        = btrfs_setattr,
7263         .mknod          = btrfs_mknod,
7264         .setxattr       = btrfs_setxattr,
7265         .getxattr       = btrfs_getxattr,
7266         .listxattr      = btrfs_listxattr,
7267         .removexattr    = btrfs_removexattr,
7268         .permission     = btrfs_permission,
7269 };
7270 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7271         .lookup         = btrfs_lookup,
7272         .permission     = btrfs_permission,
7273 };
7274
7275 static const struct file_operations btrfs_dir_file_operations = {
7276         .llseek         = generic_file_llseek,
7277         .read           = generic_read_dir,
7278         .readdir        = btrfs_real_readdir,
7279         .unlocked_ioctl = btrfs_ioctl,
7280 #ifdef CONFIG_COMPAT
7281         .compat_ioctl   = btrfs_ioctl,
7282 #endif
7283         .release        = btrfs_release_file,
7284         .fsync          = btrfs_sync_file,
7285 };
7286
7287 static struct extent_io_ops btrfs_extent_io_ops = {
7288         .fill_delalloc = run_delalloc_range,
7289         .submit_bio_hook = btrfs_submit_bio_hook,
7290         .merge_bio_hook = btrfs_merge_bio_hook,
7291         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7292         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7293         .writepage_start_hook = btrfs_writepage_start_hook,
7294         .readpage_io_failed_hook = btrfs_io_failed_hook,
7295         .set_bit_hook = btrfs_set_bit_hook,
7296         .clear_bit_hook = btrfs_clear_bit_hook,
7297         .merge_extent_hook = btrfs_merge_extent_hook,
7298         .split_extent_hook = btrfs_split_extent_hook,
7299 };
7300
7301 /*
7302  * btrfs doesn't support the bmap operation because swapfiles
7303  * use bmap to make a mapping of extents in the file.  They assume
7304  * these extents won't change over the life of the file and they
7305  * use the bmap result to do IO directly to the drive.
7306  *
7307  * the btrfs bmap call would return logical addresses that aren't
7308  * suitable for IO and they also will change frequently as COW
7309  * operations happen.  So, swapfile + btrfs == corruption.
7310  *
7311  * For now we're avoiding this by dropping bmap.
7312  */
7313 static const struct address_space_operations btrfs_aops = {
7314         .readpage       = btrfs_readpage,
7315         .writepage      = btrfs_writepage,
7316         .writepages     = btrfs_writepages,
7317         .readpages      = btrfs_readpages,
7318         .sync_page      = block_sync_page,
7319         .direct_IO      = btrfs_direct_IO,
7320         .invalidatepage = btrfs_invalidatepage,
7321         .releasepage    = btrfs_releasepage,
7322         .set_page_dirty = btrfs_set_page_dirty,
7323         .error_remove_page = generic_error_remove_page,
7324 };
7325
7326 static const struct address_space_operations btrfs_symlink_aops = {
7327         .readpage       = btrfs_readpage,
7328         .writepage      = btrfs_writepage,
7329         .invalidatepage = btrfs_invalidatepage,
7330         .releasepage    = btrfs_releasepage,
7331 };
7332
7333 static const struct inode_operations btrfs_file_inode_operations = {
7334         .truncate       = btrfs_truncate,
7335         .getattr        = btrfs_getattr,
7336         .setattr        = btrfs_setattr,
7337         .setxattr       = btrfs_setxattr,
7338         .getxattr       = btrfs_getxattr,
7339         .listxattr      = btrfs_listxattr,
7340         .removexattr    = btrfs_removexattr,
7341         .permission     = btrfs_permission,
7342         .fallocate      = btrfs_fallocate,
7343         .fiemap         = btrfs_fiemap,
7344 };
7345 static const struct inode_operations btrfs_special_inode_operations = {
7346         .getattr        = btrfs_getattr,
7347         .setattr        = btrfs_setattr,
7348         .permission     = btrfs_permission,
7349         .setxattr       = btrfs_setxattr,
7350         .getxattr       = btrfs_getxattr,
7351         .listxattr      = btrfs_listxattr,
7352         .removexattr    = btrfs_removexattr,
7353 };
7354 static const struct inode_operations btrfs_symlink_inode_operations = {
7355         .readlink       = generic_readlink,
7356         .follow_link    = page_follow_link_light,
7357         .put_link       = page_put_link,
7358         .getattr        = btrfs_getattr,
7359         .permission     = btrfs_permission,
7360         .setxattr       = btrfs_setxattr,
7361         .getxattr       = btrfs_getxattr,
7362         .listxattr      = btrfs_listxattr,
7363         .removexattr    = btrfs_removexattr,
7364 };
7365
7366 const struct dentry_operations btrfs_dentry_operations = {
7367         .d_delete       = btrfs_dentry_delete,
7368 };