Btrfs: do not clear our orphan item runtime flag on eexist
[pandora-kernel.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
46 #include "compat.h"
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "ordered-data.h"
53 #include "xattr.h"
54 #include "tree-log.h"
55 #include "volumes.h"
56 #include "compression.h"
57 #include "locking.h"
58 #include "free-space-cache.h"
59 #include "inode-map.h"
60 #include "backref.h"
61 #include "hash.h"
62
63 struct btrfs_iget_args {
64         u64 ino;
65         struct btrfs_root *root;
66 };
67
68 static const struct inode_operations btrfs_dir_inode_operations;
69 static const struct inode_operations btrfs_symlink_inode_operations;
70 static const struct inode_operations btrfs_dir_ro_inode_operations;
71 static const struct inode_operations btrfs_special_inode_operations;
72 static const struct inode_operations btrfs_file_inode_operations;
73 static const struct address_space_operations btrfs_aops;
74 static const struct address_space_operations btrfs_symlink_aops;
75 static const struct file_operations btrfs_dir_file_operations;
76 static struct extent_io_ops btrfs_extent_io_ops;
77
78 static struct kmem_cache *btrfs_inode_cachep;
79 static struct kmem_cache *btrfs_delalloc_work_cachep;
80 struct kmem_cache *btrfs_trans_handle_cachep;
81 struct kmem_cache *btrfs_transaction_cachep;
82 struct kmem_cache *btrfs_path_cachep;
83 struct kmem_cache *btrfs_free_space_cachep;
84
85 #define S_SHIFT 12
86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
88         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
89         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
90         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
91         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
92         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
93         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
94 };
95
96 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
97 static int btrfs_truncate(struct inode *inode);
98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
99 static noinline int cow_file_range(struct inode *inode,
100                                    struct page *locked_page,
101                                    u64 start, u64 end, int *page_started,
102                                    unsigned long *nr_written, int unlock);
103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104                                            u64 len, u64 orig_start,
105                                            u64 block_start, u64 block_len,
106                                            u64 orig_block_len, u64 ram_bytes,
107                                            int type);
108
109 static int btrfs_dirty_inode(struct inode *inode);
110
111 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
112                                      struct inode *inode,  struct inode *dir,
113                                      const struct qstr *qstr)
114 {
115         int err;
116
117         err = btrfs_init_acl(trans, inode, dir);
118         if (!err)
119                 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
120         return err;
121 }
122
123 /*
124  * this does all the hard work for inserting an inline extent into
125  * the btree.  The caller should have done a btrfs_drop_extents so that
126  * no overlapping inline items exist in the btree
127  */
128 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
129                                 struct btrfs_root *root, struct inode *inode,
130                                 u64 start, size_t size, size_t compressed_size,
131                                 int compress_type,
132                                 struct page **compressed_pages)
133 {
134         struct btrfs_key key;
135         struct btrfs_path *path;
136         struct extent_buffer *leaf;
137         struct page *page = NULL;
138         char *kaddr;
139         unsigned long ptr;
140         struct btrfs_file_extent_item *ei;
141         int err = 0;
142         int ret;
143         size_t cur_size = size;
144         size_t datasize;
145         unsigned long offset;
146
147         if (compressed_size && compressed_pages)
148                 cur_size = compressed_size;
149
150         path = btrfs_alloc_path();
151         if (!path)
152                 return -ENOMEM;
153
154         path->leave_spinning = 1;
155
156         key.objectid = btrfs_ino(inode);
157         key.offset = start;
158         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
159         datasize = btrfs_file_extent_calc_inline_size(cur_size);
160
161         inode_add_bytes(inode, size);
162         ret = btrfs_insert_empty_item(trans, root, path, &key,
163                                       datasize);
164         if (ret) {
165                 err = ret;
166                 goto fail;
167         }
168         leaf = path->nodes[0];
169         ei = btrfs_item_ptr(leaf, path->slots[0],
170                             struct btrfs_file_extent_item);
171         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
172         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
173         btrfs_set_file_extent_encryption(leaf, ei, 0);
174         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
175         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
176         ptr = btrfs_file_extent_inline_start(ei);
177
178         if (compress_type != BTRFS_COMPRESS_NONE) {
179                 struct page *cpage;
180                 int i = 0;
181                 while (compressed_size > 0) {
182                         cpage = compressed_pages[i];
183                         cur_size = min_t(unsigned long, compressed_size,
184                                        PAGE_CACHE_SIZE);
185
186                         kaddr = kmap_atomic(cpage);
187                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
188                         kunmap_atomic(kaddr);
189
190                         i++;
191                         ptr += cur_size;
192                         compressed_size -= cur_size;
193                 }
194                 btrfs_set_file_extent_compression(leaf, ei,
195                                                   compress_type);
196         } else {
197                 page = find_get_page(inode->i_mapping,
198                                      start >> PAGE_CACHE_SHIFT);
199                 btrfs_set_file_extent_compression(leaf, ei, 0);
200                 kaddr = kmap_atomic(page);
201                 offset = start & (PAGE_CACHE_SIZE - 1);
202                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
203                 kunmap_atomic(kaddr);
204                 page_cache_release(page);
205         }
206         btrfs_mark_buffer_dirty(leaf);
207         btrfs_free_path(path);
208
209         /*
210          * we're an inline extent, so nobody can
211          * extend the file past i_size without locking
212          * a page we already have locked.
213          *
214          * We must do any isize and inode updates
215          * before we unlock the pages.  Otherwise we
216          * could end up racing with unlink.
217          */
218         BTRFS_I(inode)->disk_i_size = inode->i_size;
219         ret = btrfs_update_inode(trans, root, inode);
220
221         return ret;
222 fail:
223         btrfs_free_path(path);
224         return err;
225 }
226
227
228 /*
229  * conditionally insert an inline extent into the file.  This
230  * does the checks required to make sure the data is small enough
231  * to fit as an inline extent.
232  */
233 static noinline int cow_file_range_inline(struct btrfs_root *root,
234                                           struct inode *inode, u64 start,
235                                           u64 end, size_t compressed_size,
236                                           int compress_type,
237                                           struct page **compressed_pages)
238 {
239         struct btrfs_trans_handle *trans;
240         u64 isize = i_size_read(inode);
241         u64 actual_end = min(end + 1, isize);
242         u64 inline_len = actual_end - start;
243         u64 aligned_end = ALIGN(end, root->sectorsize);
244         u64 data_len = inline_len;
245         int ret;
246
247         if (compressed_size)
248                 data_len = compressed_size;
249
250         if (start > 0 ||
251             actual_end >= PAGE_CACHE_SIZE ||
252             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
253             (!compressed_size &&
254             (actual_end & (root->sectorsize - 1)) == 0) ||
255             end + 1 < isize ||
256             data_len > root->fs_info->max_inline) {
257                 return 1;
258         }
259
260         trans = btrfs_join_transaction(root);
261         if (IS_ERR(trans))
262                 return PTR_ERR(trans);
263         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
264
265         ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
266         if (ret) {
267                 btrfs_abort_transaction(trans, root, ret);
268                 goto out;
269         }
270
271         if (isize > actual_end)
272                 inline_len = min_t(u64, isize, actual_end);
273         ret = insert_inline_extent(trans, root, inode, start,
274                                    inline_len, compressed_size,
275                                    compress_type, compressed_pages);
276         if (ret && ret != -ENOSPC) {
277                 btrfs_abort_transaction(trans, root, ret);
278                 goto out;
279         } else if (ret == -ENOSPC) {
280                 ret = 1;
281                 goto out;
282         }
283
284         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
285         btrfs_delalloc_release_metadata(inode, end + 1 - start);
286         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
287 out:
288         btrfs_end_transaction(trans, root);
289         return ret;
290 }
291
292 struct async_extent {
293         u64 start;
294         u64 ram_size;
295         u64 compressed_size;
296         struct page **pages;
297         unsigned long nr_pages;
298         int compress_type;
299         struct list_head list;
300 };
301
302 struct async_cow {
303         struct inode *inode;
304         struct btrfs_root *root;
305         struct page *locked_page;
306         u64 start;
307         u64 end;
308         struct list_head extents;
309         struct btrfs_work work;
310 };
311
312 static noinline int add_async_extent(struct async_cow *cow,
313                                      u64 start, u64 ram_size,
314                                      u64 compressed_size,
315                                      struct page **pages,
316                                      unsigned long nr_pages,
317                                      int compress_type)
318 {
319         struct async_extent *async_extent;
320
321         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
322         BUG_ON(!async_extent); /* -ENOMEM */
323         async_extent->start = start;
324         async_extent->ram_size = ram_size;
325         async_extent->compressed_size = compressed_size;
326         async_extent->pages = pages;
327         async_extent->nr_pages = nr_pages;
328         async_extent->compress_type = compress_type;
329         list_add_tail(&async_extent->list, &cow->extents);
330         return 0;
331 }
332
333 /*
334  * we create compressed extents in two phases.  The first
335  * phase compresses a range of pages that have already been
336  * locked (both pages and state bits are locked).
337  *
338  * This is done inside an ordered work queue, and the compression
339  * is spread across many cpus.  The actual IO submission is step
340  * two, and the ordered work queue takes care of making sure that
341  * happens in the same order things were put onto the queue by
342  * writepages and friends.
343  *
344  * If this code finds it can't get good compression, it puts an
345  * entry onto the work queue to write the uncompressed bytes.  This
346  * makes sure that both compressed inodes and uncompressed inodes
347  * are written in the same order that the flusher thread sent them
348  * down.
349  */
350 static noinline int compress_file_range(struct inode *inode,
351                                         struct page *locked_page,
352                                         u64 start, u64 end,
353                                         struct async_cow *async_cow,
354                                         int *num_added)
355 {
356         struct btrfs_root *root = BTRFS_I(inode)->root;
357         u64 num_bytes;
358         u64 blocksize = root->sectorsize;
359         u64 actual_end;
360         u64 isize = i_size_read(inode);
361         int ret = 0;
362         struct page **pages = NULL;
363         unsigned long nr_pages;
364         unsigned long nr_pages_ret = 0;
365         unsigned long total_compressed = 0;
366         unsigned long total_in = 0;
367         unsigned long max_compressed = 128 * 1024;
368         unsigned long max_uncompressed = 128 * 1024;
369         int i;
370         int will_compress;
371         int compress_type = root->fs_info->compress_type;
372         int redirty = 0;
373
374         /* if this is a small write inside eof, kick off a defrag */
375         if ((end - start + 1) < 16 * 1024 &&
376             (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
377                 btrfs_add_inode_defrag(NULL, inode);
378
379         actual_end = min_t(u64, isize, end + 1);
380 again:
381         will_compress = 0;
382         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
383         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
384
385         /*
386          * we don't want to send crud past the end of i_size through
387          * compression, that's just a waste of CPU time.  So, if the
388          * end of the file is before the start of our current
389          * requested range of bytes, we bail out to the uncompressed
390          * cleanup code that can deal with all of this.
391          *
392          * It isn't really the fastest way to fix things, but this is a
393          * very uncommon corner.
394          */
395         if (actual_end <= start)
396                 goto cleanup_and_bail_uncompressed;
397
398         total_compressed = actual_end - start;
399
400         /* we want to make sure that amount of ram required to uncompress
401          * an extent is reasonable, so we limit the total size in ram
402          * of a compressed extent to 128k.  This is a crucial number
403          * because it also controls how easily we can spread reads across
404          * cpus for decompression.
405          *
406          * We also want to make sure the amount of IO required to do
407          * a random read is reasonably small, so we limit the size of
408          * a compressed extent to 128k.
409          */
410         total_compressed = min(total_compressed, max_uncompressed);
411         num_bytes = ALIGN(end - start + 1, blocksize);
412         num_bytes = max(blocksize,  num_bytes);
413         total_in = 0;
414         ret = 0;
415
416         /*
417          * we do compression for mount -o compress and when the
418          * inode has not been flagged as nocompress.  This flag can
419          * change at any time if we discover bad compression ratios.
420          */
421         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
422             (btrfs_test_opt(root, COMPRESS) ||
423              (BTRFS_I(inode)->force_compress) ||
424              (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
425                 WARN_ON(pages);
426                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
427                 if (!pages) {
428                         /* just bail out to the uncompressed code */
429                         goto cont;
430                 }
431
432                 if (BTRFS_I(inode)->force_compress)
433                         compress_type = BTRFS_I(inode)->force_compress;
434
435                 /*
436                  * we need to call clear_page_dirty_for_io on each
437                  * page in the range.  Otherwise applications with the file
438                  * mmap'd can wander in and change the page contents while
439                  * we are compressing them.
440                  *
441                  * If the compression fails for any reason, we set the pages
442                  * dirty again later on.
443                  */
444                 extent_range_clear_dirty_for_io(inode, start, end);
445                 redirty = 1;
446                 ret = btrfs_compress_pages(compress_type,
447                                            inode->i_mapping, start,
448                                            total_compressed, pages,
449                                            nr_pages, &nr_pages_ret,
450                                            &total_in,
451                                            &total_compressed,
452                                            max_compressed);
453
454                 if (!ret) {
455                         unsigned long offset = total_compressed &
456                                 (PAGE_CACHE_SIZE - 1);
457                         struct page *page = pages[nr_pages_ret - 1];
458                         char *kaddr;
459
460                         /* zero the tail end of the last page, we might be
461                          * sending it down to disk
462                          */
463                         if (offset) {
464                                 kaddr = kmap_atomic(page);
465                                 memset(kaddr + offset, 0,
466                                        PAGE_CACHE_SIZE - offset);
467                                 kunmap_atomic(kaddr);
468                         }
469                         will_compress = 1;
470                 }
471         }
472 cont:
473         if (start == 0) {
474                 /* lets try to make an inline extent */
475                 if (ret || total_in < (actual_end - start)) {
476                         /* we didn't compress the entire range, try
477                          * to make an uncompressed inline extent.
478                          */
479                         ret = cow_file_range_inline(root, inode, start, end,
480                                                     0, 0, NULL);
481                 } else {
482                         /* try making a compressed inline extent */
483                         ret = cow_file_range_inline(root, inode, start, end,
484                                                     total_compressed,
485                                                     compress_type, pages);
486                 }
487                 if (ret <= 0) {
488                         unsigned long clear_flags = EXTENT_DELALLOC |
489                                 EXTENT_DEFRAG;
490                         clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
491
492                         /*
493                          * inline extent creation worked or returned error,
494                          * we don't need to create any more async work items.
495                          * Unlock and free up our temp pages.
496                          */
497                         extent_clear_unlock_delalloc(inode, start, end, NULL,
498                                                      clear_flags, PAGE_UNLOCK |
499                                                      PAGE_CLEAR_DIRTY |
500                                                      PAGE_SET_WRITEBACK |
501                                                      PAGE_END_WRITEBACK);
502                         goto free_pages_out;
503                 }
504         }
505
506         if (will_compress) {
507                 /*
508                  * we aren't doing an inline extent round the compressed size
509                  * up to a block size boundary so the allocator does sane
510                  * things
511                  */
512                 total_compressed = ALIGN(total_compressed, blocksize);
513
514                 /*
515                  * one last check to make sure the compression is really a
516                  * win, compare the page count read with the blocks on disk
517                  */
518                 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
519                 if (total_compressed >= total_in) {
520                         will_compress = 0;
521                 } else {
522                         num_bytes = total_in;
523                 }
524         }
525         if (!will_compress && pages) {
526                 /*
527                  * the compression code ran but failed to make things smaller,
528                  * free any pages it allocated and our page pointer array
529                  */
530                 for (i = 0; i < nr_pages_ret; i++) {
531                         WARN_ON(pages[i]->mapping);
532                         page_cache_release(pages[i]);
533                 }
534                 kfree(pages);
535                 pages = NULL;
536                 total_compressed = 0;
537                 nr_pages_ret = 0;
538
539                 /* flag the file so we don't compress in the future */
540                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
541                     !(BTRFS_I(inode)->force_compress)) {
542                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
543                 }
544         }
545         if (will_compress) {
546                 *num_added += 1;
547
548                 /* the async work queues will take care of doing actual
549                  * allocation on disk for these compressed pages,
550                  * and will submit them to the elevator.
551                  */
552                 add_async_extent(async_cow, start, num_bytes,
553                                  total_compressed, pages, nr_pages_ret,
554                                  compress_type);
555
556                 if (start + num_bytes < end) {
557                         start += num_bytes;
558                         pages = NULL;
559                         cond_resched();
560                         goto again;
561                 }
562         } else {
563 cleanup_and_bail_uncompressed:
564                 /*
565                  * No compression, but we still need to write the pages in
566                  * the file we've been given so far.  redirty the locked
567                  * page if it corresponds to our extent and set things up
568                  * for the async work queue to run cow_file_range to do
569                  * the normal delalloc dance
570                  */
571                 if (page_offset(locked_page) >= start &&
572                     page_offset(locked_page) <= end) {
573                         __set_page_dirty_nobuffers(locked_page);
574                         /* unlocked later on in the async handlers */
575                 }
576                 if (redirty)
577                         extent_range_redirty_for_io(inode, start, end);
578                 add_async_extent(async_cow, start, end - start + 1,
579                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
580                 *num_added += 1;
581         }
582
583 out:
584         return ret;
585
586 free_pages_out:
587         for (i = 0; i < nr_pages_ret; i++) {
588                 WARN_ON(pages[i]->mapping);
589                 page_cache_release(pages[i]);
590         }
591         kfree(pages);
592
593         goto out;
594 }
595
596 /*
597  * phase two of compressed writeback.  This is the ordered portion
598  * of the code, which only gets called in the order the work was
599  * queued.  We walk all the async extents created by compress_file_range
600  * and send them down to the disk.
601  */
602 static noinline int submit_compressed_extents(struct inode *inode,
603                                               struct async_cow *async_cow)
604 {
605         struct async_extent *async_extent;
606         u64 alloc_hint = 0;
607         struct btrfs_key ins;
608         struct extent_map *em;
609         struct btrfs_root *root = BTRFS_I(inode)->root;
610         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
611         struct extent_io_tree *io_tree;
612         int ret = 0;
613
614         if (list_empty(&async_cow->extents))
615                 return 0;
616
617 again:
618         while (!list_empty(&async_cow->extents)) {
619                 async_extent = list_entry(async_cow->extents.next,
620                                           struct async_extent, list);
621                 list_del(&async_extent->list);
622
623                 io_tree = &BTRFS_I(inode)->io_tree;
624
625 retry:
626                 /* did the compression code fall back to uncompressed IO? */
627                 if (!async_extent->pages) {
628                         int page_started = 0;
629                         unsigned long nr_written = 0;
630
631                         lock_extent(io_tree, async_extent->start,
632                                          async_extent->start +
633                                          async_extent->ram_size - 1);
634
635                         /* allocate blocks */
636                         ret = cow_file_range(inode, async_cow->locked_page,
637                                              async_extent->start,
638                                              async_extent->start +
639                                              async_extent->ram_size - 1,
640                                              &page_started, &nr_written, 0);
641
642                         /* JDM XXX */
643
644                         /*
645                          * if page_started, cow_file_range inserted an
646                          * inline extent and took care of all the unlocking
647                          * and IO for us.  Otherwise, we need to submit
648                          * all those pages down to the drive.
649                          */
650                         if (!page_started && !ret)
651                                 extent_write_locked_range(io_tree,
652                                                   inode, async_extent->start,
653                                                   async_extent->start +
654                                                   async_extent->ram_size - 1,
655                                                   btrfs_get_extent,
656                                                   WB_SYNC_ALL);
657                         else if (ret)
658                                 unlock_page(async_cow->locked_page);
659                         kfree(async_extent);
660                         cond_resched();
661                         continue;
662                 }
663
664                 lock_extent(io_tree, async_extent->start,
665                             async_extent->start + async_extent->ram_size - 1);
666
667                 ret = btrfs_reserve_extent(root,
668                                            async_extent->compressed_size,
669                                            async_extent->compressed_size,
670                                            0, alloc_hint, &ins, 1);
671                 if (ret) {
672                         int i;
673
674                         for (i = 0; i < async_extent->nr_pages; i++) {
675                                 WARN_ON(async_extent->pages[i]->mapping);
676                                 page_cache_release(async_extent->pages[i]);
677                         }
678                         kfree(async_extent->pages);
679                         async_extent->nr_pages = 0;
680                         async_extent->pages = NULL;
681
682                         if (ret == -ENOSPC) {
683                                 unlock_extent(io_tree, async_extent->start,
684                                               async_extent->start +
685                                               async_extent->ram_size - 1);
686                                 goto retry;
687                         }
688                         goto out_free;
689                 }
690
691                 /*
692                  * here we're doing allocation and writeback of the
693                  * compressed pages
694                  */
695                 btrfs_drop_extent_cache(inode, async_extent->start,
696                                         async_extent->start +
697                                         async_extent->ram_size - 1, 0);
698
699                 em = alloc_extent_map();
700                 if (!em) {
701                         ret = -ENOMEM;
702                         goto out_free_reserve;
703                 }
704                 em->start = async_extent->start;
705                 em->len = async_extent->ram_size;
706                 em->orig_start = em->start;
707                 em->mod_start = em->start;
708                 em->mod_len = em->len;
709
710                 em->block_start = ins.objectid;
711                 em->block_len = ins.offset;
712                 em->orig_block_len = ins.offset;
713                 em->ram_bytes = async_extent->ram_size;
714                 em->bdev = root->fs_info->fs_devices->latest_bdev;
715                 em->compress_type = async_extent->compress_type;
716                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
717                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
718                 em->generation = -1;
719
720                 while (1) {
721                         write_lock(&em_tree->lock);
722                         ret = add_extent_mapping(em_tree, em, 1);
723                         write_unlock(&em_tree->lock);
724                         if (ret != -EEXIST) {
725                                 free_extent_map(em);
726                                 break;
727                         }
728                         btrfs_drop_extent_cache(inode, async_extent->start,
729                                                 async_extent->start +
730                                                 async_extent->ram_size - 1, 0);
731                 }
732
733                 if (ret)
734                         goto out_free_reserve;
735
736                 ret = btrfs_add_ordered_extent_compress(inode,
737                                                 async_extent->start,
738                                                 ins.objectid,
739                                                 async_extent->ram_size,
740                                                 ins.offset,
741                                                 BTRFS_ORDERED_COMPRESSED,
742                                                 async_extent->compress_type);
743                 if (ret)
744                         goto out_free_reserve;
745
746                 /*
747                  * clear dirty, set writeback and unlock the pages.
748                  */
749                 extent_clear_unlock_delalloc(inode, async_extent->start,
750                                 async_extent->start +
751                                 async_extent->ram_size - 1,
752                                 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
753                                 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
754                                 PAGE_SET_WRITEBACK);
755                 ret = btrfs_submit_compressed_write(inode,
756                                     async_extent->start,
757                                     async_extent->ram_size,
758                                     ins.objectid,
759                                     ins.offset, async_extent->pages,
760                                     async_extent->nr_pages);
761                 alloc_hint = ins.objectid + ins.offset;
762                 kfree(async_extent);
763                 if (ret)
764                         goto out;
765                 cond_resched();
766         }
767         ret = 0;
768 out:
769         return ret;
770 out_free_reserve:
771         btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
772 out_free:
773         extent_clear_unlock_delalloc(inode, async_extent->start,
774                                      async_extent->start +
775                                      async_extent->ram_size - 1,
776                                      NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
777                                      EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
778                                      PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
779                                      PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
780         kfree(async_extent);
781         goto again;
782 }
783
784 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
785                                       u64 num_bytes)
786 {
787         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
788         struct extent_map *em;
789         u64 alloc_hint = 0;
790
791         read_lock(&em_tree->lock);
792         em = search_extent_mapping(em_tree, start, num_bytes);
793         if (em) {
794                 /*
795                  * if block start isn't an actual block number then find the
796                  * first block in this inode and use that as a hint.  If that
797                  * block is also bogus then just don't worry about it.
798                  */
799                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
800                         free_extent_map(em);
801                         em = search_extent_mapping(em_tree, 0, 0);
802                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
803                                 alloc_hint = em->block_start;
804                         if (em)
805                                 free_extent_map(em);
806                 } else {
807                         alloc_hint = em->block_start;
808                         free_extent_map(em);
809                 }
810         }
811         read_unlock(&em_tree->lock);
812
813         return alloc_hint;
814 }
815
816 /*
817  * when extent_io.c finds a delayed allocation range in the file,
818  * the call backs end up in this code.  The basic idea is to
819  * allocate extents on disk for the range, and create ordered data structs
820  * in ram to track those extents.
821  *
822  * locked_page is the page that writepage had locked already.  We use
823  * it to make sure we don't do extra locks or unlocks.
824  *
825  * *page_started is set to one if we unlock locked_page and do everything
826  * required to start IO on it.  It may be clean and already done with
827  * IO when we return.
828  */
829 static noinline int cow_file_range(struct inode *inode,
830                                    struct page *locked_page,
831                                    u64 start, u64 end, int *page_started,
832                                    unsigned long *nr_written,
833                                    int unlock)
834 {
835         struct btrfs_root *root = BTRFS_I(inode)->root;
836         u64 alloc_hint = 0;
837         u64 num_bytes;
838         unsigned long ram_size;
839         u64 disk_num_bytes;
840         u64 cur_alloc_size;
841         u64 blocksize = root->sectorsize;
842         struct btrfs_key ins;
843         struct extent_map *em;
844         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
845         int ret = 0;
846
847         BUG_ON(btrfs_is_free_space_inode(inode));
848
849         num_bytes = ALIGN(end - start + 1, blocksize);
850         num_bytes = max(blocksize,  num_bytes);
851         disk_num_bytes = num_bytes;
852
853         /* if this is a small write inside eof, kick off defrag */
854         if (num_bytes < 64 * 1024 &&
855             (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
856                 btrfs_add_inode_defrag(NULL, inode);
857
858         if (start == 0) {
859                 /* lets try to make an inline extent */
860                 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
861                                             NULL);
862                 if (ret == 0) {
863                         extent_clear_unlock_delalloc(inode, start, end, NULL,
864                                      EXTENT_LOCKED | EXTENT_DELALLOC |
865                                      EXTENT_DEFRAG, PAGE_UNLOCK |
866                                      PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
867                                      PAGE_END_WRITEBACK);
868
869                         *nr_written = *nr_written +
870                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
871                         *page_started = 1;
872                         goto out;
873                 } else if (ret < 0) {
874                         goto out_unlock;
875                 }
876         }
877
878         BUG_ON(disk_num_bytes >
879                btrfs_super_total_bytes(root->fs_info->super_copy));
880
881         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
882         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
883
884         while (disk_num_bytes > 0) {
885                 unsigned long op;
886
887                 cur_alloc_size = disk_num_bytes;
888                 ret = btrfs_reserve_extent(root, cur_alloc_size,
889                                            root->sectorsize, 0, alloc_hint,
890                                            &ins, 1);
891                 if (ret < 0)
892                         goto out_unlock;
893
894                 em = alloc_extent_map();
895                 if (!em) {
896                         ret = -ENOMEM;
897                         goto out_reserve;
898                 }
899                 em->start = start;
900                 em->orig_start = em->start;
901                 ram_size = ins.offset;
902                 em->len = ins.offset;
903                 em->mod_start = em->start;
904                 em->mod_len = em->len;
905
906                 em->block_start = ins.objectid;
907                 em->block_len = ins.offset;
908                 em->orig_block_len = ins.offset;
909                 em->ram_bytes = ram_size;
910                 em->bdev = root->fs_info->fs_devices->latest_bdev;
911                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
912                 em->generation = -1;
913
914                 while (1) {
915                         write_lock(&em_tree->lock);
916                         ret = add_extent_mapping(em_tree, em, 1);
917                         write_unlock(&em_tree->lock);
918                         if (ret != -EEXIST) {
919                                 free_extent_map(em);
920                                 break;
921                         }
922                         btrfs_drop_extent_cache(inode, start,
923                                                 start + ram_size - 1, 0);
924                 }
925                 if (ret)
926                         goto out_reserve;
927
928                 cur_alloc_size = ins.offset;
929                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
930                                                ram_size, cur_alloc_size, 0);
931                 if (ret)
932                         goto out_reserve;
933
934                 if (root->root_key.objectid ==
935                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
936                         ret = btrfs_reloc_clone_csums(inode, start,
937                                                       cur_alloc_size);
938                         if (ret)
939                                 goto out_reserve;
940                 }
941
942                 if (disk_num_bytes < cur_alloc_size)
943                         break;
944
945                 /* we're not doing compressed IO, don't unlock the first
946                  * page (which the caller expects to stay locked), don't
947                  * clear any dirty bits and don't set any writeback bits
948                  *
949                  * Do set the Private2 bit so we know this page was properly
950                  * setup for writepage
951                  */
952                 op = unlock ? PAGE_UNLOCK : 0;
953                 op |= PAGE_SET_PRIVATE2;
954
955                 extent_clear_unlock_delalloc(inode, start,
956                                              start + ram_size - 1, locked_page,
957                                              EXTENT_LOCKED | EXTENT_DELALLOC,
958                                              op);
959                 disk_num_bytes -= cur_alloc_size;
960                 num_bytes -= cur_alloc_size;
961                 alloc_hint = ins.objectid + ins.offset;
962                 start += cur_alloc_size;
963         }
964 out:
965         return ret;
966
967 out_reserve:
968         btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
969 out_unlock:
970         extent_clear_unlock_delalloc(inode, start, end, locked_page,
971                                      EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
972                                      EXTENT_DELALLOC | EXTENT_DEFRAG,
973                                      PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
974                                      PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
975         goto out;
976 }
977
978 /*
979  * work queue call back to started compression on a file and pages
980  */
981 static noinline void async_cow_start(struct btrfs_work *work)
982 {
983         struct async_cow *async_cow;
984         int num_added = 0;
985         async_cow = container_of(work, struct async_cow, work);
986
987         compress_file_range(async_cow->inode, async_cow->locked_page,
988                             async_cow->start, async_cow->end, async_cow,
989                             &num_added);
990         if (num_added == 0) {
991                 btrfs_add_delayed_iput(async_cow->inode);
992                 async_cow->inode = NULL;
993         }
994 }
995
996 /*
997  * work queue call back to submit previously compressed pages
998  */
999 static noinline void async_cow_submit(struct btrfs_work *work)
1000 {
1001         struct async_cow *async_cow;
1002         struct btrfs_root *root;
1003         unsigned long nr_pages;
1004
1005         async_cow = container_of(work, struct async_cow, work);
1006
1007         root = async_cow->root;
1008         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1009                 PAGE_CACHE_SHIFT;
1010
1011         if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1012             5 * 1024 * 1024 &&
1013             waitqueue_active(&root->fs_info->async_submit_wait))
1014                 wake_up(&root->fs_info->async_submit_wait);
1015
1016         if (async_cow->inode)
1017                 submit_compressed_extents(async_cow->inode, async_cow);
1018 }
1019
1020 static noinline void async_cow_free(struct btrfs_work *work)
1021 {
1022         struct async_cow *async_cow;
1023         async_cow = container_of(work, struct async_cow, work);
1024         if (async_cow->inode)
1025                 btrfs_add_delayed_iput(async_cow->inode);
1026         kfree(async_cow);
1027 }
1028
1029 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1030                                 u64 start, u64 end, int *page_started,
1031                                 unsigned long *nr_written)
1032 {
1033         struct async_cow *async_cow;
1034         struct btrfs_root *root = BTRFS_I(inode)->root;
1035         unsigned long nr_pages;
1036         u64 cur_end;
1037         int limit = 10 * 1024 * 1024;
1038
1039         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1040                          1, 0, NULL, GFP_NOFS);
1041         while (start < end) {
1042                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1043                 BUG_ON(!async_cow); /* -ENOMEM */
1044                 async_cow->inode = igrab(inode);
1045                 async_cow->root = root;
1046                 async_cow->locked_page = locked_page;
1047                 async_cow->start = start;
1048
1049                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1050                         cur_end = end;
1051                 else
1052                         cur_end = min(end, start + 512 * 1024 - 1);
1053
1054                 async_cow->end = cur_end;
1055                 INIT_LIST_HEAD(&async_cow->extents);
1056
1057                 async_cow->work.func = async_cow_start;
1058                 async_cow->work.ordered_func = async_cow_submit;
1059                 async_cow->work.ordered_free = async_cow_free;
1060                 async_cow->work.flags = 0;
1061
1062                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1063                         PAGE_CACHE_SHIFT;
1064                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1065
1066                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1067                                    &async_cow->work);
1068
1069                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1070                         wait_event(root->fs_info->async_submit_wait,
1071                            (atomic_read(&root->fs_info->async_delalloc_pages) <
1072                             limit));
1073                 }
1074
1075                 while (atomic_read(&root->fs_info->async_submit_draining) &&
1076                       atomic_read(&root->fs_info->async_delalloc_pages)) {
1077                         wait_event(root->fs_info->async_submit_wait,
1078                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
1079                            0));
1080                 }
1081
1082                 *nr_written += nr_pages;
1083                 start = cur_end + 1;
1084         }
1085         *page_started = 1;
1086         return 0;
1087 }
1088
1089 static noinline int csum_exist_in_range(struct btrfs_root *root,
1090                                         u64 bytenr, u64 num_bytes)
1091 {
1092         int ret;
1093         struct btrfs_ordered_sum *sums;
1094         LIST_HEAD(list);
1095
1096         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1097                                        bytenr + num_bytes - 1, &list, 0);
1098         if (ret == 0 && list_empty(&list))
1099                 return 0;
1100
1101         while (!list_empty(&list)) {
1102                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1103                 list_del(&sums->list);
1104                 kfree(sums);
1105         }
1106         return 1;
1107 }
1108
1109 /*
1110  * when nowcow writeback call back.  This checks for snapshots or COW copies
1111  * of the extents that exist in the file, and COWs the file as required.
1112  *
1113  * If no cow copies or snapshots exist, we write directly to the existing
1114  * blocks on disk
1115  */
1116 static noinline int run_delalloc_nocow(struct inode *inode,
1117                                        struct page *locked_page,
1118                               u64 start, u64 end, int *page_started, int force,
1119                               unsigned long *nr_written)
1120 {
1121         struct btrfs_root *root = BTRFS_I(inode)->root;
1122         struct btrfs_trans_handle *trans;
1123         struct extent_buffer *leaf;
1124         struct btrfs_path *path;
1125         struct btrfs_file_extent_item *fi;
1126         struct btrfs_key found_key;
1127         u64 cow_start;
1128         u64 cur_offset;
1129         u64 extent_end;
1130         u64 extent_offset;
1131         u64 disk_bytenr;
1132         u64 num_bytes;
1133         u64 disk_num_bytes;
1134         u64 ram_bytes;
1135         int extent_type;
1136         int ret, err;
1137         int type;
1138         int nocow;
1139         int check_prev = 1;
1140         bool nolock;
1141         u64 ino = btrfs_ino(inode);
1142
1143         path = btrfs_alloc_path();
1144         if (!path) {
1145                 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1146                                              EXTENT_LOCKED | EXTENT_DELALLOC |
1147                                              EXTENT_DO_ACCOUNTING |
1148                                              EXTENT_DEFRAG, PAGE_UNLOCK |
1149                                              PAGE_CLEAR_DIRTY |
1150                                              PAGE_SET_WRITEBACK |
1151                                              PAGE_END_WRITEBACK);
1152                 return -ENOMEM;
1153         }
1154
1155         nolock = btrfs_is_free_space_inode(inode);
1156
1157         if (nolock)
1158                 trans = btrfs_join_transaction_nolock(root);
1159         else
1160                 trans = btrfs_join_transaction(root);
1161
1162         if (IS_ERR(trans)) {
1163                 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1164                                              EXTENT_LOCKED | EXTENT_DELALLOC |
1165                                              EXTENT_DO_ACCOUNTING |
1166                                              EXTENT_DEFRAG, PAGE_UNLOCK |
1167                                              PAGE_CLEAR_DIRTY |
1168                                              PAGE_SET_WRITEBACK |
1169                                              PAGE_END_WRITEBACK);
1170                 btrfs_free_path(path);
1171                 return PTR_ERR(trans);
1172         }
1173
1174         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1175
1176         cow_start = (u64)-1;
1177         cur_offset = start;
1178         while (1) {
1179                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1180                                                cur_offset, 0);
1181                 if (ret < 0) {
1182                         btrfs_abort_transaction(trans, root, ret);
1183                         goto error;
1184                 }
1185                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1186                         leaf = path->nodes[0];
1187                         btrfs_item_key_to_cpu(leaf, &found_key,
1188                                               path->slots[0] - 1);
1189                         if (found_key.objectid == ino &&
1190                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1191                                 path->slots[0]--;
1192                 }
1193                 check_prev = 0;
1194 next_slot:
1195                 leaf = path->nodes[0];
1196                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1197                         ret = btrfs_next_leaf(root, path);
1198                         if (ret < 0) {
1199                                 btrfs_abort_transaction(trans, root, ret);
1200                                 goto error;
1201                         }
1202                         if (ret > 0)
1203                                 break;
1204                         leaf = path->nodes[0];
1205                 }
1206
1207                 nocow = 0;
1208                 disk_bytenr = 0;
1209                 num_bytes = 0;
1210                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1211
1212                 if (found_key.objectid > ino ||
1213                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1214                     found_key.offset > end)
1215                         break;
1216
1217                 if (found_key.offset > cur_offset) {
1218                         extent_end = found_key.offset;
1219                         extent_type = 0;
1220                         goto out_check;
1221                 }
1222
1223                 fi = btrfs_item_ptr(leaf, path->slots[0],
1224                                     struct btrfs_file_extent_item);
1225                 extent_type = btrfs_file_extent_type(leaf, fi);
1226
1227                 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1228                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1229                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1230                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1231                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1232                         extent_end = found_key.offset +
1233                                 btrfs_file_extent_num_bytes(leaf, fi);
1234                         disk_num_bytes =
1235                                 btrfs_file_extent_disk_num_bytes(leaf, fi);
1236                         if (extent_end <= start) {
1237                                 path->slots[0]++;
1238                                 goto next_slot;
1239                         }
1240                         if (disk_bytenr == 0)
1241                                 goto out_check;
1242                         if (btrfs_file_extent_compression(leaf, fi) ||
1243                             btrfs_file_extent_encryption(leaf, fi) ||
1244                             btrfs_file_extent_other_encoding(leaf, fi))
1245                                 goto out_check;
1246                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1247                                 goto out_check;
1248                         if (btrfs_extent_readonly(root, disk_bytenr))
1249                                 goto out_check;
1250                         if (btrfs_cross_ref_exist(trans, root, ino,
1251                                                   found_key.offset -
1252                                                   extent_offset, disk_bytenr))
1253                                 goto out_check;
1254                         disk_bytenr += extent_offset;
1255                         disk_bytenr += cur_offset - found_key.offset;
1256                         num_bytes = min(end + 1, extent_end) - cur_offset;
1257                         /*
1258                          * force cow if csum exists in the range.
1259                          * this ensure that csum for a given extent are
1260                          * either valid or do not exist.
1261                          */
1262                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1263                                 goto out_check;
1264                         nocow = 1;
1265                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1266                         extent_end = found_key.offset +
1267                                 btrfs_file_extent_inline_len(leaf, fi);
1268                         extent_end = ALIGN(extent_end, root->sectorsize);
1269                 } else {
1270                         BUG_ON(1);
1271                 }
1272 out_check:
1273                 if (extent_end <= start) {
1274                         path->slots[0]++;
1275                         goto next_slot;
1276                 }
1277                 if (!nocow) {
1278                         if (cow_start == (u64)-1)
1279                                 cow_start = cur_offset;
1280                         cur_offset = extent_end;
1281                         if (cur_offset > end)
1282                                 break;
1283                         path->slots[0]++;
1284                         goto next_slot;
1285                 }
1286
1287                 btrfs_release_path(path);
1288                 if (cow_start != (u64)-1) {
1289                         ret = cow_file_range(inode, locked_page,
1290                                              cow_start, found_key.offset - 1,
1291                                              page_started, nr_written, 1);
1292                         if (ret) {
1293                                 btrfs_abort_transaction(trans, root, ret);
1294                                 goto error;
1295                         }
1296                         cow_start = (u64)-1;
1297                 }
1298
1299                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1300                         struct extent_map *em;
1301                         struct extent_map_tree *em_tree;
1302                         em_tree = &BTRFS_I(inode)->extent_tree;
1303                         em = alloc_extent_map();
1304                         BUG_ON(!em); /* -ENOMEM */
1305                         em->start = cur_offset;
1306                         em->orig_start = found_key.offset - extent_offset;
1307                         em->len = num_bytes;
1308                         em->block_len = num_bytes;
1309                         em->block_start = disk_bytenr;
1310                         em->orig_block_len = disk_num_bytes;
1311                         em->ram_bytes = ram_bytes;
1312                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1313                         em->mod_start = em->start;
1314                         em->mod_len = em->len;
1315                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1316                         set_bit(EXTENT_FLAG_FILLING, &em->flags);
1317                         em->generation = -1;
1318                         while (1) {
1319                                 write_lock(&em_tree->lock);
1320                                 ret = add_extent_mapping(em_tree, em, 1);
1321                                 write_unlock(&em_tree->lock);
1322                                 if (ret != -EEXIST) {
1323                                         free_extent_map(em);
1324                                         break;
1325                                 }
1326                                 btrfs_drop_extent_cache(inode, em->start,
1327                                                 em->start + em->len - 1, 0);
1328                         }
1329                         type = BTRFS_ORDERED_PREALLOC;
1330                 } else {
1331                         type = BTRFS_ORDERED_NOCOW;
1332                 }
1333
1334                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1335                                                num_bytes, num_bytes, type);
1336                 BUG_ON(ret); /* -ENOMEM */
1337
1338                 if (root->root_key.objectid ==
1339                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1340                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1341                                                       num_bytes);
1342                         if (ret) {
1343                                 btrfs_abort_transaction(trans, root, ret);
1344                                 goto error;
1345                         }
1346                 }
1347
1348                 extent_clear_unlock_delalloc(inode, cur_offset,
1349                                              cur_offset + num_bytes - 1,
1350                                              locked_page, EXTENT_LOCKED |
1351                                              EXTENT_DELALLOC, PAGE_UNLOCK |
1352                                              PAGE_SET_PRIVATE2);
1353                 cur_offset = extent_end;
1354                 if (cur_offset > end)
1355                         break;
1356         }
1357         btrfs_release_path(path);
1358
1359         if (cur_offset <= end && cow_start == (u64)-1) {
1360                 cow_start = cur_offset;
1361                 cur_offset = end;
1362         }
1363
1364         if (cow_start != (u64)-1) {
1365                 ret = cow_file_range(inode, locked_page, cow_start, end,
1366                                      page_started, nr_written, 1);
1367                 if (ret) {
1368                         btrfs_abort_transaction(trans, root, ret);
1369                         goto error;
1370                 }
1371         }
1372
1373 error:
1374         err = btrfs_end_transaction(trans, root);
1375         if (!ret)
1376                 ret = err;
1377
1378         if (ret && cur_offset < end)
1379                 extent_clear_unlock_delalloc(inode, cur_offset, end,
1380                                              locked_page, EXTENT_LOCKED |
1381                                              EXTENT_DELALLOC | EXTENT_DEFRAG |
1382                                              EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1383                                              PAGE_CLEAR_DIRTY |
1384                                              PAGE_SET_WRITEBACK |
1385                                              PAGE_END_WRITEBACK);
1386         btrfs_free_path(path);
1387         return ret;
1388 }
1389
1390 /*
1391  * extent_io.c call back to do delayed allocation processing
1392  */
1393 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1394                               u64 start, u64 end, int *page_started,
1395                               unsigned long *nr_written)
1396 {
1397         int ret;
1398         struct btrfs_root *root = BTRFS_I(inode)->root;
1399
1400         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1401                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1402                                          page_started, 1, nr_written);
1403         } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1404                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1405                                          page_started, 0, nr_written);
1406         } else if (!btrfs_test_opt(root, COMPRESS) &&
1407                    !(BTRFS_I(inode)->force_compress) &&
1408                    !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1409                 ret = cow_file_range(inode, locked_page, start, end,
1410                                       page_started, nr_written, 1);
1411         } else {
1412                 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1413                         &BTRFS_I(inode)->runtime_flags);
1414                 ret = cow_file_range_async(inode, locked_page, start, end,
1415                                            page_started, nr_written);
1416         }
1417         return ret;
1418 }
1419
1420 static void btrfs_split_extent_hook(struct inode *inode,
1421                                     struct extent_state *orig, u64 split)
1422 {
1423         /* not delalloc, ignore it */
1424         if (!(orig->state & EXTENT_DELALLOC))
1425                 return;
1426
1427         spin_lock(&BTRFS_I(inode)->lock);
1428         BTRFS_I(inode)->outstanding_extents++;
1429         spin_unlock(&BTRFS_I(inode)->lock);
1430 }
1431
1432 /*
1433  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1434  * extents so we can keep track of new extents that are just merged onto old
1435  * extents, such as when we are doing sequential writes, so we can properly
1436  * account for the metadata space we'll need.
1437  */
1438 static void btrfs_merge_extent_hook(struct inode *inode,
1439                                     struct extent_state *new,
1440                                     struct extent_state *other)
1441 {
1442         /* not delalloc, ignore it */
1443         if (!(other->state & EXTENT_DELALLOC))
1444                 return;
1445
1446         spin_lock(&BTRFS_I(inode)->lock);
1447         BTRFS_I(inode)->outstanding_extents--;
1448         spin_unlock(&BTRFS_I(inode)->lock);
1449 }
1450
1451 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1452                                       struct inode *inode)
1453 {
1454         spin_lock(&root->delalloc_lock);
1455         if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1456                 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1457                               &root->delalloc_inodes);
1458                 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1459                         &BTRFS_I(inode)->runtime_flags);
1460                 root->nr_delalloc_inodes++;
1461                 if (root->nr_delalloc_inodes == 1) {
1462                         spin_lock(&root->fs_info->delalloc_root_lock);
1463                         BUG_ON(!list_empty(&root->delalloc_root));
1464                         list_add_tail(&root->delalloc_root,
1465                                       &root->fs_info->delalloc_roots);
1466                         spin_unlock(&root->fs_info->delalloc_root_lock);
1467                 }
1468         }
1469         spin_unlock(&root->delalloc_lock);
1470 }
1471
1472 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1473                                      struct inode *inode)
1474 {
1475         spin_lock(&root->delalloc_lock);
1476         if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1477                 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1478                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1479                           &BTRFS_I(inode)->runtime_flags);
1480                 root->nr_delalloc_inodes--;
1481                 if (!root->nr_delalloc_inodes) {
1482                         spin_lock(&root->fs_info->delalloc_root_lock);
1483                         BUG_ON(list_empty(&root->delalloc_root));
1484                         list_del_init(&root->delalloc_root);
1485                         spin_unlock(&root->fs_info->delalloc_root_lock);
1486                 }
1487         }
1488         spin_unlock(&root->delalloc_lock);
1489 }
1490
1491 /*
1492  * extent_io.c set_bit_hook, used to track delayed allocation
1493  * bytes in this file, and to maintain the list of inodes that
1494  * have pending delalloc work to be done.
1495  */
1496 static void btrfs_set_bit_hook(struct inode *inode,
1497                                struct extent_state *state, unsigned long *bits)
1498 {
1499
1500         /*
1501          * set_bit and clear bit hooks normally require _irqsave/restore
1502          * but in this case, we are only testing for the DELALLOC
1503          * bit, which is only set or cleared with irqs on
1504          */
1505         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1506                 struct btrfs_root *root = BTRFS_I(inode)->root;
1507                 u64 len = state->end + 1 - state->start;
1508                 bool do_list = !btrfs_is_free_space_inode(inode);
1509
1510                 if (*bits & EXTENT_FIRST_DELALLOC) {
1511                         *bits &= ~EXTENT_FIRST_DELALLOC;
1512                 } else {
1513                         spin_lock(&BTRFS_I(inode)->lock);
1514                         BTRFS_I(inode)->outstanding_extents++;
1515                         spin_unlock(&BTRFS_I(inode)->lock);
1516                 }
1517
1518                 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1519                                      root->fs_info->delalloc_batch);
1520                 spin_lock(&BTRFS_I(inode)->lock);
1521                 BTRFS_I(inode)->delalloc_bytes += len;
1522                 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1523                                          &BTRFS_I(inode)->runtime_flags))
1524                         btrfs_add_delalloc_inodes(root, inode);
1525                 spin_unlock(&BTRFS_I(inode)->lock);
1526         }
1527 }
1528
1529 /*
1530  * extent_io.c clear_bit_hook, see set_bit_hook for why
1531  */
1532 static void btrfs_clear_bit_hook(struct inode *inode,
1533                                  struct extent_state *state,
1534                                  unsigned long *bits)
1535 {
1536         /*
1537          * set_bit and clear bit hooks normally require _irqsave/restore
1538          * but in this case, we are only testing for the DELALLOC
1539          * bit, which is only set or cleared with irqs on
1540          */
1541         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1542                 struct btrfs_root *root = BTRFS_I(inode)->root;
1543                 u64 len = state->end + 1 - state->start;
1544                 bool do_list = !btrfs_is_free_space_inode(inode);
1545
1546                 if (*bits & EXTENT_FIRST_DELALLOC) {
1547                         *bits &= ~EXTENT_FIRST_DELALLOC;
1548                 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1549                         spin_lock(&BTRFS_I(inode)->lock);
1550                         BTRFS_I(inode)->outstanding_extents--;
1551                         spin_unlock(&BTRFS_I(inode)->lock);
1552                 }
1553
1554                 if (*bits & EXTENT_DO_ACCOUNTING)
1555                         btrfs_delalloc_release_metadata(inode, len);
1556
1557                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1558                     && do_list && !(state->state & EXTENT_NORESERVE))
1559                         btrfs_free_reserved_data_space(inode, len);
1560
1561                 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1562                                      root->fs_info->delalloc_batch);
1563                 spin_lock(&BTRFS_I(inode)->lock);
1564                 BTRFS_I(inode)->delalloc_bytes -= len;
1565                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1566                     test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1567                              &BTRFS_I(inode)->runtime_flags))
1568                         btrfs_del_delalloc_inode(root, inode);
1569                 spin_unlock(&BTRFS_I(inode)->lock);
1570         }
1571 }
1572
1573 /*
1574  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1575  * we don't create bios that span stripes or chunks
1576  */
1577 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1578                          size_t size, struct bio *bio,
1579                          unsigned long bio_flags)
1580 {
1581         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1582         u64 logical = (u64)bio->bi_sector << 9;
1583         u64 length = 0;
1584         u64 map_length;
1585         int ret;
1586
1587         if (bio_flags & EXTENT_BIO_COMPRESSED)
1588                 return 0;
1589
1590         length = bio->bi_size;
1591         map_length = length;
1592         ret = btrfs_map_block(root->fs_info, rw, logical,
1593                               &map_length, NULL, 0);
1594         /* Will always return 0 with map_multi == NULL */
1595         BUG_ON(ret < 0);
1596         if (map_length < length + size)
1597                 return 1;
1598         return 0;
1599 }
1600
1601 /*
1602  * in order to insert checksums into the metadata in large chunks,
1603  * we wait until bio submission time.   All the pages in the bio are
1604  * checksummed and sums are attached onto the ordered extent record.
1605  *
1606  * At IO completion time the cums attached on the ordered extent record
1607  * are inserted into the btree
1608  */
1609 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1610                                     struct bio *bio, int mirror_num,
1611                                     unsigned long bio_flags,
1612                                     u64 bio_offset)
1613 {
1614         struct btrfs_root *root = BTRFS_I(inode)->root;
1615         int ret = 0;
1616
1617         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1618         BUG_ON(ret); /* -ENOMEM */
1619         return 0;
1620 }
1621
1622 /*
1623  * in order to insert checksums into the metadata in large chunks,
1624  * we wait until bio submission time.   All the pages in the bio are
1625  * checksummed and sums are attached onto the ordered extent record.
1626  *
1627  * At IO completion time the cums attached on the ordered extent record
1628  * are inserted into the btree
1629  */
1630 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1631                           int mirror_num, unsigned long bio_flags,
1632                           u64 bio_offset)
1633 {
1634         struct btrfs_root *root = BTRFS_I(inode)->root;
1635         int ret;
1636
1637         ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1638         if (ret)
1639                 bio_endio(bio, ret);
1640         return ret;
1641 }
1642
1643 /*
1644  * extent_io.c submission hook. This does the right thing for csum calculation
1645  * on write, or reading the csums from the tree before a read
1646  */
1647 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1648                           int mirror_num, unsigned long bio_flags,
1649                           u64 bio_offset)
1650 {
1651         struct btrfs_root *root = BTRFS_I(inode)->root;
1652         int ret = 0;
1653         int skip_sum;
1654         int metadata = 0;
1655         int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1656
1657         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1658
1659         if (btrfs_is_free_space_inode(inode))
1660                 metadata = 2;
1661
1662         if (!(rw & REQ_WRITE)) {
1663                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1664                 if (ret)
1665                         goto out;
1666
1667                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1668                         ret = btrfs_submit_compressed_read(inode, bio,
1669                                                            mirror_num,
1670                                                            bio_flags);
1671                         goto out;
1672                 } else if (!skip_sum) {
1673                         ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1674                         if (ret)
1675                                 goto out;
1676                 }
1677                 goto mapit;
1678         } else if (async && !skip_sum) {
1679                 /* csum items have already been cloned */
1680                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1681                         goto mapit;
1682                 /* we're doing a write, do the async checksumming */
1683                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1684                                    inode, rw, bio, mirror_num,
1685                                    bio_flags, bio_offset,
1686                                    __btrfs_submit_bio_start,
1687                                    __btrfs_submit_bio_done);
1688                 goto out;
1689         } else if (!skip_sum) {
1690                 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1691                 if (ret)
1692                         goto out;
1693         }
1694
1695 mapit:
1696         ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1697
1698 out:
1699         if (ret < 0)
1700                 bio_endio(bio, ret);
1701         return ret;
1702 }
1703
1704 /*
1705  * given a list of ordered sums record them in the inode.  This happens
1706  * at IO completion time based on sums calculated at bio submission time.
1707  */
1708 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1709                              struct inode *inode, u64 file_offset,
1710                              struct list_head *list)
1711 {
1712         struct btrfs_ordered_sum *sum;
1713
1714         list_for_each_entry(sum, list, list) {
1715                 trans->adding_csums = 1;
1716                 btrfs_csum_file_blocks(trans,
1717                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1718                 trans->adding_csums = 0;
1719         }
1720         return 0;
1721 }
1722
1723 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1724                               struct extent_state **cached_state)
1725 {
1726         WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1727         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1728                                    cached_state, GFP_NOFS);
1729 }
1730
1731 /* see btrfs_writepage_start_hook for details on why this is required */
1732 struct btrfs_writepage_fixup {
1733         struct page *page;
1734         struct btrfs_work work;
1735 };
1736
1737 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1738 {
1739         struct btrfs_writepage_fixup *fixup;
1740         struct btrfs_ordered_extent *ordered;
1741         struct extent_state *cached_state = NULL;
1742         struct page *page;
1743         struct inode *inode;
1744         u64 page_start;
1745         u64 page_end;
1746         int ret;
1747
1748         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1749         page = fixup->page;
1750 again:
1751         lock_page(page);
1752         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1753                 ClearPageChecked(page);
1754                 goto out_page;
1755         }
1756
1757         inode = page->mapping->host;
1758         page_start = page_offset(page);
1759         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1760
1761         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1762                          &cached_state);
1763
1764         /* already ordered? We're done */
1765         if (PagePrivate2(page))
1766                 goto out;
1767
1768         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1769         if (ordered) {
1770                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1771                                      page_end, &cached_state, GFP_NOFS);
1772                 unlock_page(page);
1773                 btrfs_start_ordered_extent(inode, ordered, 1);
1774                 btrfs_put_ordered_extent(ordered);
1775                 goto again;
1776         }
1777
1778         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1779         if (ret) {
1780                 mapping_set_error(page->mapping, ret);
1781                 end_extent_writepage(page, ret, page_start, page_end);
1782                 ClearPageChecked(page);
1783                 goto out;
1784          }
1785
1786         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1787         ClearPageChecked(page);
1788         set_page_dirty(page);
1789 out:
1790         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1791                              &cached_state, GFP_NOFS);
1792 out_page:
1793         unlock_page(page);
1794         page_cache_release(page);
1795         kfree(fixup);
1796 }
1797
1798 /*
1799  * There are a few paths in the higher layers of the kernel that directly
1800  * set the page dirty bit without asking the filesystem if it is a
1801  * good idea.  This causes problems because we want to make sure COW
1802  * properly happens and the data=ordered rules are followed.
1803  *
1804  * In our case any range that doesn't have the ORDERED bit set
1805  * hasn't been properly setup for IO.  We kick off an async process
1806  * to fix it up.  The async helper will wait for ordered extents, set
1807  * the delalloc bit and make it safe to write the page.
1808  */
1809 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1810 {
1811         struct inode *inode = page->mapping->host;
1812         struct btrfs_writepage_fixup *fixup;
1813         struct btrfs_root *root = BTRFS_I(inode)->root;
1814
1815         /* this page is properly in the ordered list */
1816         if (TestClearPagePrivate2(page))
1817                 return 0;
1818
1819         if (PageChecked(page))
1820                 return -EAGAIN;
1821
1822         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1823         if (!fixup)
1824                 return -EAGAIN;
1825
1826         SetPageChecked(page);
1827         page_cache_get(page);
1828         fixup->work.func = btrfs_writepage_fixup_worker;
1829         fixup->page = page;
1830         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1831         return -EBUSY;
1832 }
1833
1834 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1835                                        struct inode *inode, u64 file_pos,
1836                                        u64 disk_bytenr, u64 disk_num_bytes,
1837                                        u64 num_bytes, u64 ram_bytes,
1838                                        u8 compression, u8 encryption,
1839                                        u16 other_encoding, int extent_type)
1840 {
1841         struct btrfs_root *root = BTRFS_I(inode)->root;
1842         struct btrfs_file_extent_item *fi;
1843         struct btrfs_path *path;
1844         struct extent_buffer *leaf;
1845         struct btrfs_key ins;
1846         int ret;
1847
1848         path = btrfs_alloc_path();
1849         if (!path)
1850                 return -ENOMEM;
1851
1852         path->leave_spinning = 1;
1853
1854         /*
1855          * we may be replacing one extent in the tree with another.
1856          * The new extent is pinned in the extent map, and we don't want
1857          * to drop it from the cache until it is completely in the btree.
1858          *
1859          * So, tell btrfs_drop_extents to leave this extent in the cache.
1860          * the caller is expected to unpin it and allow it to be merged
1861          * with the others.
1862          */
1863         ret = btrfs_drop_extents(trans, root, inode, file_pos,
1864                                  file_pos + num_bytes, 0);
1865         if (ret)
1866                 goto out;
1867
1868         ins.objectid = btrfs_ino(inode);
1869         ins.offset = file_pos;
1870         ins.type = BTRFS_EXTENT_DATA_KEY;
1871         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1872         if (ret)
1873                 goto out;
1874         leaf = path->nodes[0];
1875         fi = btrfs_item_ptr(leaf, path->slots[0],
1876                             struct btrfs_file_extent_item);
1877         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1878         btrfs_set_file_extent_type(leaf, fi, extent_type);
1879         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1880         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1881         btrfs_set_file_extent_offset(leaf, fi, 0);
1882         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1883         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1884         btrfs_set_file_extent_compression(leaf, fi, compression);
1885         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1886         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1887
1888         btrfs_mark_buffer_dirty(leaf);
1889         btrfs_release_path(path);
1890
1891         inode_add_bytes(inode, num_bytes);
1892
1893         ins.objectid = disk_bytenr;
1894         ins.offset = disk_num_bytes;
1895         ins.type = BTRFS_EXTENT_ITEM_KEY;
1896         ret = btrfs_alloc_reserved_file_extent(trans, root,
1897                                         root->root_key.objectid,
1898                                         btrfs_ino(inode), file_pos, &ins);
1899 out:
1900         btrfs_free_path(path);
1901
1902         return ret;
1903 }
1904
1905 /* snapshot-aware defrag */
1906 struct sa_defrag_extent_backref {
1907         struct rb_node node;
1908         struct old_sa_defrag_extent *old;
1909         u64 root_id;
1910         u64 inum;
1911         u64 file_pos;
1912         u64 extent_offset;
1913         u64 num_bytes;
1914         u64 generation;
1915 };
1916
1917 struct old_sa_defrag_extent {
1918         struct list_head list;
1919         struct new_sa_defrag_extent *new;
1920
1921         u64 extent_offset;
1922         u64 bytenr;
1923         u64 offset;
1924         u64 len;
1925         int count;
1926 };
1927
1928 struct new_sa_defrag_extent {
1929         struct rb_root root;
1930         struct list_head head;
1931         struct btrfs_path *path;
1932         struct inode *inode;
1933         u64 file_pos;
1934         u64 len;
1935         u64 bytenr;
1936         u64 disk_len;
1937         u8 compress_type;
1938 };
1939
1940 static int backref_comp(struct sa_defrag_extent_backref *b1,
1941                         struct sa_defrag_extent_backref *b2)
1942 {
1943         if (b1->root_id < b2->root_id)
1944                 return -1;
1945         else if (b1->root_id > b2->root_id)
1946                 return 1;
1947
1948         if (b1->inum < b2->inum)
1949                 return -1;
1950         else if (b1->inum > b2->inum)
1951                 return 1;
1952
1953         if (b1->file_pos < b2->file_pos)
1954                 return -1;
1955         else if (b1->file_pos > b2->file_pos)
1956                 return 1;
1957
1958         /*
1959          * [------------------------------] ===> (a range of space)
1960          *     |<--->|   |<---->| =============> (fs/file tree A)
1961          * |<---------------------------->| ===> (fs/file tree B)
1962          *
1963          * A range of space can refer to two file extents in one tree while
1964          * refer to only one file extent in another tree.
1965          *
1966          * So we may process a disk offset more than one time(two extents in A)
1967          * and locate at the same extent(one extent in B), then insert two same
1968          * backrefs(both refer to the extent in B).
1969          */
1970         return 0;
1971 }
1972
1973 static void backref_insert(struct rb_root *root,
1974                            struct sa_defrag_extent_backref *backref)
1975 {
1976         struct rb_node **p = &root->rb_node;
1977         struct rb_node *parent = NULL;
1978         struct sa_defrag_extent_backref *entry;
1979         int ret;
1980
1981         while (*p) {
1982                 parent = *p;
1983                 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
1984
1985                 ret = backref_comp(backref, entry);
1986                 if (ret < 0)
1987                         p = &(*p)->rb_left;
1988                 else
1989                         p = &(*p)->rb_right;
1990         }
1991
1992         rb_link_node(&backref->node, parent, p);
1993         rb_insert_color(&backref->node, root);
1994 }
1995
1996 /*
1997  * Note the backref might has changed, and in this case we just return 0.
1998  */
1999 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2000                                        void *ctx)
2001 {
2002         struct btrfs_file_extent_item *extent;
2003         struct btrfs_fs_info *fs_info;
2004         struct old_sa_defrag_extent *old = ctx;
2005         struct new_sa_defrag_extent *new = old->new;
2006         struct btrfs_path *path = new->path;
2007         struct btrfs_key key;
2008         struct btrfs_root *root;
2009         struct sa_defrag_extent_backref *backref;
2010         struct extent_buffer *leaf;
2011         struct inode *inode = new->inode;
2012         int slot;
2013         int ret;
2014         u64 extent_offset;
2015         u64 num_bytes;
2016
2017         if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2018             inum == btrfs_ino(inode))
2019                 return 0;
2020
2021         key.objectid = root_id;
2022         key.type = BTRFS_ROOT_ITEM_KEY;
2023         key.offset = (u64)-1;
2024
2025         fs_info = BTRFS_I(inode)->root->fs_info;
2026         root = btrfs_read_fs_root_no_name(fs_info, &key);
2027         if (IS_ERR(root)) {
2028                 if (PTR_ERR(root) == -ENOENT)
2029                         return 0;
2030                 WARN_ON(1);
2031                 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2032                          inum, offset, root_id);
2033                 return PTR_ERR(root);
2034         }
2035
2036         key.objectid = inum;
2037         key.type = BTRFS_EXTENT_DATA_KEY;
2038         if (offset > (u64)-1 << 32)
2039                 key.offset = 0;
2040         else
2041                 key.offset = offset;
2042
2043         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2044         if (ret < 0) {
2045                 WARN_ON(1);
2046                 return ret;
2047         }
2048         ret = 0;
2049
2050         while (1) {
2051                 cond_resched();
2052
2053                 leaf = path->nodes[0];
2054                 slot = path->slots[0];
2055
2056                 if (slot >= btrfs_header_nritems(leaf)) {
2057                         ret = btrfs_next_leaf(root, path);
2058                         if (ret < 0) {
2059                                 goto out;
2060                         } else if (ret > 0) {
2061                                 ret = 0;
2062                                 goto out;
2063                         }
2064                         continue;
2065                 }
2066
2067                 path->slots[0]++;
2068
2069                 btrfs_item_key_to_cpu(leaf, &key, slot);
2070
2071                 if (key.objectid > inum)
2072                         goto out;
2073
2074                 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2075                         continue;
2076
2077                 extent = btrfs_item_ptr(leaf, slot,
2078                                         struct btrfs_file_extent_item);
2079
2080                 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2081                         continue;
2082
2083                 /*
2084                  * 'offset' refers to the exact key.offset,
2085                  * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2086                  * (key.offset - extent_offset).
2087                  */
2088                 if (key.offset != offset)
2089                         continue;
2090
2091                 extent_offset = btrfs_file_extent_offset(leaf, extent);
2092                 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2093
2094                 if (extent_offset >= old->extent_offset + old->offset +
2095                     old->len || extent_offset + num_bytes <=
2096                     old->extent_offset + old->offset)
2097                         continue;
2098                 break;
2099         }
2100
2101         backref = kmalloc(sizeof(*backref), GFP_NOFS);
2102         if (!backref) {
2103                 ret = -ENOENT;
2104                 goto out;
2105         }
2106
2107         backref->root_id = root_id;
2108         backref->inum = inum;
2109         backref->file_pos = offset;
2110         backref->num_bytes = num_bytes;
2111         backref->extent_offset = extent_offset;
2112         backref->generation = btrfs_file_extent_generation(leaf, extent);
2113         backref->old = old;
2114         backref_insert(&new->root, backref);
2115         old->count++;
2116 out:
2117         btrfs_release_path(path);
2118         WARN_ON(ret);
2119         return ret;
2120 }
2121
2122 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2123                                    struct new_sa_defrag_extent *new)
2124 {
2125         struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2126         struct old_sa_defrag_extent *old, *tmp;
2127         int ret;
2128
2129         new->path = path;
2130
2131         list_for_each_entry_safe(old, tmp, &new->head, list) {
2132                 ret = iterate_inodes_from_logical(old->bytenr +
2133                                                   old->extent_offset, fs_info,
2134                                                   path, record_one_backref,
2135                                                   old);
2136                 BUG_ON(ret < 0 && ret != -ENOENT);
2137
2138                 /* no backref to be processed for this extent */
2139                 if (!old->count) {
2140                         list_del(&old->list);
2141                         kfree(old);
2142                 }
2143         }
2144
2145         if (list_empty(&new->head))
2146                 return false;
2147
2148         return true;
2149 }
2150
2151 static int relink_is_mergable(struct extent_buffer *leaf,
2152                               struct btrfs_file_extent_item *fi,
2153                               struct new_sa_defrag_extent *new)
2154 {
2155         if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2156                 return 0;
2157
2158         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2159                 return 0;
2160
2161         if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2162                 return 0;
2163
2164         if (btrfs_file_extent_encryption(leaf, fi) ||
2165             btrfs_file_extent_other_encoding(leaf, fi))
2166                 return 0;
2167
2168         return 1;
2169 }
2170
2171 /*
2172  * Note the backref might has changed, and in this case we just return 0.
2173  */
2174 static noinline int relink_extent_backref(struct btrfs_path *path,
2175                                  struct sa_defrag_extent_backref *prev,
2176                                  struct sa_defrag_extent_backref *backref)
2177 {
2178         struct btrfs_file_extent_item *extent;
2179         struct btrfs_file_extent_item *item;
2180         struct btrfs_ordered_extent *ordered;
2181         struct btrfs_trans_handle *trans;
2182         struct btrfs_fs_info *fs_info;
2183         struct btrfs_root *root;
2184         struct btrfs_key key;
2185         struct extent_buffer *leaf;
2186         struct old_sa_defrag_extent *old = backref->old;
2187         struct new_sa_defrag_extent *new = old->new;
2188         struct inode *src_inode = new->inode;
2189         struct inode *inode;
2190         struct extent_state *cached = NULL;
2191         int ret = 0;
2192         u64 start;
2193         u64 len;
2194         u64 lock_start;
2195         u64 lock_end;
2196         bool merge = false;
2197         int index;
2198
2199         if (prev && prev->root_id == backref->root_id &&
2200             prev->inum == backref->inum &&
2201             prev->file_pos + prev->num_bytes == backref->file_pos)
2202                 merge = true;
2203
2204         /* step 1: get root */
2205         key.objectid = backref->root_id;
2206         key.type = BTRFS_ROOT_ITEM_KEY;
2207         key.offset = (u64)-1;
2208
2209         fs_info = BTRFS_I(src_inode)->root->fs_info;
2210         index = srcu_read_lock(&fs_info->subvol_srcu);
2211
2212         root = btrfs_read_fs_root_no_name(fs_info, &key);
2213         if (IS_ERR(root)) {
2214                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2215                 if (PTR_ERR(root) == -ENOENT)
2216                         return 0;
2217                 return PTR_ERR(root);
2218         }
2219
2220         /* step 2: get inode */
2221         key.objectid = backref->inum;
2222         key.type = BTRFS_INODE_ITEM_KEY;
2223         key.offset = 0;
2224
2225         inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2226         if (IS_ERR(inode)) {
2227                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2228                 return 0;
2229         }
2230
2231         srcu_read_unlock(&fs_info->subvol_srcu, index);
2232
2233         /* step 3: relink backref */
2234         lock_start = backref->file_pos;
2235         lock_end = backref->file_pos + backref->num_bytes - 1;
2236         lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2237                          0, &cached);
2238
2239         ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2240         if (ordered) {
2241                 btrfs_put_ordered_extent(ordered);
2242                 goto out_unlock;
2243         }
2244
2245         trans = btrfs_join_transaction(root);
2246         if (IS_ERR(trans)) {
2247                 ret = PTR_ERR(trans);
2248                 goto out_unlock;
2249         }
2250
2251         key.objectid = backref->inum;
2252         key.type = BTRFS_EXTENT_DATA_KEY;
2253         key.offset = backref->file_pos;
2254
2255         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2256         if (ret < 0) {
2257                 goto out_free_path;
2258         } else if (ret > 0) {
2259                 ret = 0;
2260                 goto out_free_path;
2261         }
2262
2263         extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2264                                 struct btrfs_file_extent_item);
2265
2266         if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2267             backref->generation)
2268                 goto out_free_path;
2269
2270         btrfs_release_path(path);
2271
2272         start = backref->file_pos;
2273         if (backref->extent_offset < old->extent_offset + old->offset)
2274                 start += old->extent_offset + old->offset -
2275                          backref->extent_offset;
2276
2277         len = min(backref->extent_offset + backref->num_bytes,
2278                   old->extent_offset + old->offset + old->len);
2279         len -= max(backref->extent_offset, old->extent_offset + old->offset);
2280
2281         ret = btrfs_drop_extents(trans, root, inode, start,
2282                                  start + len, 1);
2283         if (ret)
2284                 goto out_free_path;
2285 again:
2286         key.objectid = btrfs_ino(inode);
2287         key.type = BTRFS_EXTENT_DATA_KEY;
2288         key.offset = start;
2289
2290         path->leave_spinning = 1;
2291         if (merge) {
2292                 struct btrfs_file_extent_item *fi;
2293                 u64 extent_len;
2294                 struct btrfs_key found_key;
2295
2296                 ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2297                 if (ret < 0)
2298                         goto out_free_path;
2299
2300                 path->slots[0]--;
2301                 leaf = path->nodes[0];
2302                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2303
2304                 fi = btrfs_item_ptr(leaf, path->slots[0],
2305                                     struct btrfs_file_extent_item);
2306                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2307
2308                 if (extent_len + found_key.offset == start &&
2309                     relink_is_mergable(leaf, fi, new)) {
2310                         btrfs_set_file_extent_num_bytes(leaf, fi,
2311                                                         extent_len + len);
2312                         btrfs_mark_buffer_dirty(leaf);
2313                         inode_add_bytes(inode, len);
2314
2315                         ret = 1;
2316                         goto out_free_path;
2317                 } else {
2318                         merge = false;
2319                         btrfs_release_path(path);
2320                         goto again;
2321                 }
2322         }
2323
2324         ret = btrfs_insert_empty_item(trans, root, path, &key,
2325                                         sizeof(*extent));
2326         if (ret) {
2327                 btrfs_abort_transaction(trans, root, ret);
2328                 goto out_free_path;
2329         }
2330
2331         leaf = path->nodes[0];
2332         item = btrfs_item_ptr(leaf, path->slots[0],
2333                                 struct btrfs_file_extent_item);
2334         btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2335         btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2336         btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2337         btrfs_set_file_extent_num_bytes(leaf, item, len);
2338         btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2339         btrfs_set_file_extent_generation(leaf, item, trans->transid);
2340         btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2341         btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2342         btrfs_set_file_extent_encryption(leaf, item, 0);
2343         btrfs_set_file_extent_other_encoding(leaf, item, 0);
2344
2345         btrfs_mark_buffer_dirty(leaf);
2346         inode_add_bytes(inode, len);
2347         btrfs_release_path(path);
2348
2349         ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2350                         new->disk_len, 0,
2351                         backref->root_id, backref->inum,
2352                         new->file_pos, 0);      /* start - extent_offset */
2353         if (ret) {
2354                 btrfs_abort_transaction(trans, root, ret);
2355                 goto out_free_path;
2356         }
2357
2358         ret = 1;
2359 out_free_path:
2360         btrfs_release_path(path);
2361         path->leave_spinning = 0;
2362         btrfs_end_transaction(trans, root);
2363 out_unlock:
2364         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2365                              &cached, GFP_NOFS);
2366         iput(inode);
2367         return ret;
2368 }
2369
2370 static void relink_file_extents(struct new_sa_defrag_extent *new)
2371 {
2372         struct btrfs_path *path;
2373         struct old_sa_defrag_extent *old, *tmp;
2374         struct sa_defrag_extent_backref *backref;
2375         struct sa_defrag_extent_backref *prev = NULL;
2376         struct inode *inode;
2377         struct btrfs_root *root;
2378         struct rb_node *node;
2379         int ret;
2380
2381         inode = new->inode;
2382         root = BTRFS_I(inode)->root;
2383
2384         path = btrfs_alloc_path();
2385         if (!path)
2386                 return;
2387
2388         if (!record_extent_backrefs(path, new)) {
2389                 btrfs_free_path(path);
2390                 goto out;
2391         }
2392         btrfs_release_path(path);
2393
2394         while (1) {
2395                 node = rb_first(&new->root);
2396                 if (!node)
2397                         break;
2398                 rb_erase(node, &new->root);
2399
2400                 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2401
2402                 ret = relink_extent_backref(path, prev, backref);
2403                 WARN_ON(ret < 0);
2404
2405                 kfree(prev);
2406
2407                 if (ret == 1)
2408                         prev = backref;
2409                 else
2410                         prev = NULL;
2411                 cond_resched();
2412         }
2413         kfree(prev);
2414
2415         btrfs_free_path(path);
2416
2417         list_for_each_entry_safe(old, tmp, &new->head, list) {
2418                 list_del(&old->list);
2419                 kfree(old);
2420         }
2421 out:
2422         atomic_dec(&root->fs_info->defrag_running);
2423         wake_up(&root->fs_info->transaction_wait);
2424
2425         kfree(new);
2426 }
2427
2428 static struct new_sa_defrag_extent *
2429 record_old_file_extents(struct inode *inode,
2430                         struct btrfs_ordered_extent *ordered)
2431 {
2432         struct btrfs_root *root = BTRFS_I(inode)->root;
2433         struct btrfs_path *path;
2434         struct btrfs_key key;
2435         struct old_sa_defrag_extent *old, *tmp;
2436         struct new_sa_defrag_extent *new;
2437         int ret;
2438
2439         new = kmalloc(sizeof(*new), GFP_NOFS);
2440         if (!new)
2441                 return NULL;
2442
2443         new->inode = inode;
2444         new->file_pos = ordered->file_offset;
2445         new->len = ordered->len;
2446         new->bytenr = ordered->start;
2447         new->disk_len = ordered->disk_len;
2448         new->compress_type = ordered->compress_type;
2449         new->root = RB_ROOT;
2450         INIT_LIST_HEAD(&new->head);
2451
2452         path = btrfs_alloc_path();
2453         if (!path)
2454                 goto out_kfree;
2455
2456         key.objectid = btrfs_ino(inode);
2457         key.type = BTRFS_EXTENT_DATA_KEY;
2458         key.offset = new->file_pos;
2459
2460         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2461         if (ret < 0)
2462                 goto out_free_path;
2463         if (ret > 0 && path->slots[0] > 0)
2464                 path->slots[0]--;
2465
2466         /* find out all the old extents for the file range */
2467         while (1) {
2468                 struct btrfs_file_extent_item *extent;
2469                 struct extent_buffer *l;
2470                 int slot;
2471                 u64 num_bytes;
2472                 u64 offset;
2473                 u64 end;
2474                 u64 disk_bytenr;
2475                 u64 extent_offset;
2476
2477                 l = path->nodes[0];
2478                 slot = path->slots[0];
2479
2480                 if (slot >= btrfs_header_nritems(l)) {
2481                         ret = btrfs_next_leaf(root, path);
2482                         if (ret < 0)
2483                                 goto out_free_list;
2484                         else if (ret > 0)
2485                                 break;
2486                         continue;
2487                 }
2488
2489                 btrfs_item_key_to_cpu(l, &key, slot);
2490
2491                 if (key.objectid != btrfs_ino(inode))
2492                         break;
2493                 if (key.type != BTRFS_EXTENT_DATA_KEY)
2494                         break;
2495                 if (key.offset >= new->file_pos + new->len)
2496                         break;
2497
2498                 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2499
2500                 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2501                 if (key.offset + num_bytes < new->file_pos)
2502                         goto next;
2503
2504                 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2505                 if (!disk_bytenr)
2506                         goto next;
2507
2508                 extent_offset = btrfs_file_extent_offset(l, extent);
2509
2510                 old = kmalloc(sizeof(*old), GFP_NOFS);
2511                 if (!old)
2512                         goto out_free_list;
2513
2514                 offset = max(new->file_pos, key.offset);
2515                 end = min(new->file_pos + new->len, key.offset + num_bytes);
2516
2517                 old->bytenr = disk_bytenr;
2518                 old->extent_offset = extent_offset;
2519                 old->offset = offset - key.offset;
2520                 old->len = end - offset;
2521                 old->new = new;
2522                 old->count = 0;
2523                 list_add_tail(&old->list, &new->head);
2524 next:
2525                 path->slots[0]++;
2526                 cond_resched();
2527         }
2528
2529         btrfs_free_path(path);
2530         atomic_inc(&root->fs_info->defrag_running);
2531
2532         return new;
2533
2534 out_free_list:
2535         list_for_each_entry_safe(old, tmp, &new->head, list) {
2536                 list_del(&old->list);
2537                 kfree(old);
2538         }
2539 out_free_path:
2540         btrfs_free_path(path);
2541 out_kfree:
2542         kfree(new);
2543         return NULL;
2544 }
2545
2546 /*
2547  * helper function for btrfs_finish_ordered_io, this
2548  * just reads in some of the csum leaves to prime them into ram
2549  * before we start the transaction.  It limits the amount of btree
2550  * reads required while inside the transaction.
2551  */
2552 /* as ordered data IO finishes, this gets called so we can finish
2553  * an ordered extent if the range of bytes in the file it covers are
2554  * fully written.
2555  */
2556 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2557 {
2558         struct inode *inode = ordered_extent->inode;
2559         struct btrfs_root *root = BTRFS_I(inode)->root;
2560         struct btrfs_trans_handle *trans = NULL;
2561         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2562         struct extent_state *cached_state = NULL;
2563         struct new_sa_defrag_extent *new = NULL;
2564         int compress_type = 0;
2565         int ret;
2566         bool nolock;
2567
2568         nolock = btrfs_is_free_space_inode(inode);
2569
2570         if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2571                 ret = -EIO;
2572                 goto out;
2573         }
2574
2575         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2576                 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2577                 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2578                 if (nolock)
2579                         trans = btrfs_join_transaction_nolock(root);
2580                 else
2581                         trans = btrfs_join_transaction(root);
2582                 if (IS_ERR(trans)) {
2583                         ret = PTR_ERR(trans);
2584                         trans = NULL;
2585                         goto out;
2586                 }
2587                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2588                 ret = btrfs_update_inode_fallback(trans, root, inode);
2589                 if (ret) /* -ENOMEM or corruption */
2590                         btrfs_abort_transaction(trans, root, ret);
2591                 goto out;
2592         }
2593
2594         lock_extent_bits(io_tree, ordered_extent->file_offset,
2595                          ordered_extent->file_offset + ordered_extent->len - 1,
2596                          0, &cached_state);
2597
2598         ret = test_range_bit(io_tree, ordered_extent->file_offset,
2599                         ordered_extent->file_offset + ordered_extent->len - 1,
2600                         EXTENT_DEFRAG, 1, cached_state);
2601         if (ret) {
2602                 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2603                 if (last_snapshot >= BTRFS_I(inode)->generation)
2604                         /* the inode is shared */
2605                         new = record_old_file_extents(inode, ordered_extent);
2606
2607                 clear_extent_bit(io_tree, ordered_extent->file_offset,
2608                         ordered_extent->file_offset + ordered_extent->len - 1,
2609                         EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2610         }
2611
2612         if (nolock)
2613                 trans = btrfs_join_transaction_nolock(root);
2614         else
2615                 trans = btrfs_join_transaction(root);
2616         if (IS_ERR(trans)) {
2617                 ret = PTR_ERR(trans);
2618                 trans = NULL;
2619                 goto out_unlock;
2620         }
2621         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2622
2623         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2624                 compress_type = ordered_extent->compress_type;
2625         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2626                 BUG_ON(compress_type);
2627                 ret = btrfs_mark_extent_written(trans, inode,
2628                                                 ordered_extent->file_offset,
2629                                                 ordered_extent->file_offset +
2630                                                 ordered_extent->len);
2631         } else {
2632                 BUG_ON(root == root->fs_info->tree_root);
2633                 ret = insert_reserved_file_extent(trans, inode,
2634                                                 ordered_extent->file_offset,
2635                                                 ordered_extent->start,
2636                                                 ordered_extent->disk_len,
2637                                                 ordered_extent->len,
2638                                                 ordered_extent->len,
2639                                                 compress_type, 0, 0,
2640                                                 BTRFS_FILE_EXTENT_REG);
2641         }
2642         unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2643                            ordered_extent->file_offset, ordered_extent->len,
2644                            trans->transid);
2645         if (ret < 0) {
2646                 btrfs_abort_transaction(trans, root, ret);
2647                 goto out_unlock;
2648         }
2649
2650         add_pending_csums(trans, inode, ordered_extent->file_offset,
2651                           &ordered_extent->list);
2652
2653         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2654         ret = btrfs_update_inode_fallback(trans, root, inode);
2655         if (ret) { /* -ENOMEM or corruption */
2656                 btrfs_abort_transaction(trans, root, ret);
2657                 goto out_unlock;
2658         }
2659         ret = 0;
2660 out_unlock:
2661         unlock_extent_cached(io_tree, ordered_extent->file_offset,
2662                              ordered_extent->file_offset +
2663                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
2664 out:
2665         if (root != root->fs_info->tree_root)
2666                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2667         if (trans)
2668                 btrfs_end_transaction(trans, root);
2669
2670         if (ret) {
2671                 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
2672                                       ordered_extent->file_offset +
2673                                       ordered_extent->len - 1, NULL, GFP_NOFS);
2674
2675                 /*
2676                  * If the ordered extent had an IOERR or something else went
2677                  * wrong we need to return the space for this ordered extent
2678                  * back to the allocator.
2679                  */
2680                 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2681                     !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2682                         btrfs_free_reserved_extent(root, ordered_extent->start,
2683                                                    ordered_extent->disk_len);
2684         }
2685
2686
2687         /*
2688          * This needs to be done to make sure anybody waiting knows we are done
2689          * updating everything for this ordered extent.
2690          */
2691         btrfs_remove_ordered_extent(inode, ordered_extent);
2692
2693         /* for snapshot-aware defrag */
2694         if (new)
2695                 relink_file_extents(new);
2696
2697         /* once for us */
2698         btrfs_put_ordered_extent(ordered_extent);
2699         /* once for the tree */
2700         btrfs_put_ordered_extent(ordered_extent);
2701
2702         return ret;
2703 }
2704
2705 static void finish_ordered_fn(struct btrfs_work *work)
2706 {
2707         struct btrfs_ordered_extent *ordered_extent;
2708         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2709         btrfs_finish_ordered_io(ordered_extent);
2710 }
2711
2712 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2713                                 struct extent_state *state, int uptodate)
2714 {
2715         struct inode *inode = page->mapping->host;
2716         struct btrfs_root *root = BTRFS_I(inode)->root;
2717         struct btrfs_ordered_extent *ordered_extent = NULL;
2718         struct btrfs_workers *workers;
2719
2720         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2721
2722         ClearPagePrivate2(page);
2723         if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2724                                             end - start + 1, uptodate))
2725                 return 0;
2726
2727         ordered_extent->work.func = finish_ordered_fn;
2728         ordered_extent->work.flags = 0;
2729
2730         if (btrfs_is_free_space_inode(inode))
2731                 workers = &root->fs_info->endio_freespace_worker;
2732         else
2733                 workers = &root->fs_info->endio_write_workers;
2734         btrfs_queue_worker(workers, &ordered_extent->work);
2735
2736         return 0;
2737 }
2738
2739 /*
2740  * when reads are done, we need to check csums to verify the data is correct
2741  * if there's a match, we allow the bio to finish.  If not, the code in
2742  * extent_io.c will try to find good copies for us.
2743  */
2744 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2745                                       u64 phy_offset, struct page *page,
2746                                       u64 start, u64 end, int mirror)
2747 {
2748         size_t offset = start - page_offset(page);
2749         struct inode *inode = page->mapping->host;
2750         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2751         char *kaddr;
2752         struct btrfs_root *root = BTRFS_I(inode)->root;
2753         u32 csum_expected;
2754         u32 csum = ~(u32)0;
2755         static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2756                                       DEFAULT_RATELIMIT_BURST);
2757
2758         if (PageChecked(page)) {
2759                 ClearPageChecked(page);
2760                 goto good;
2761         }
2762
2763         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2764                 goto good;
2765
2766         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2767             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2768                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2769                                   GFP_NOFS);
2770                 return 0;
2771         }
2772
2773         phy_offset >>= inode->i_sb->s_blocksize_bits;
2774         csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
2775
2776         kaddr = kmap_atomic(page);
2777         csum = btrfs_csum_data(kaddr + offset, csum,  end - start + 1);
2778         btrfs_csum_final(csum, (char *)&csum);
2779         if (csum != csum_expected)
2780                 goto zeroit;
2781
2782         kunmap_atomic(kaddr);
2783 good:
2784         return 0;
2785
2786 zeroit:
2787         if (__ratelimit(&_rs))
2788                 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
2789                         btrfs_ino(page->mapping->host), start, csum, csum_expected);
2790         memset(kaddr + offset, 1, end - start + 1);
2791         flush_dcache_page(page);
2792         kunmap_atomic(kaddr);
2793         if (csum_expected == 0)
2794                 return 0;
2795         return -EIO;
2796 }
2797
2798 struct delayed_iput {
2799         struct list_head list;
2800         struct inode *inode;
2801 };
2802
2803 /* JDM: If this is fs-wide, why can't we add a pointer to
2804  * btrfs_inode instead and avoid the allocation? */
2805 void btrfs_add_delayed_iput(struct inode *inode)
2806 {
2807         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2808         struct delayed_iput *delayed;
2809
2810         if (atomic_add_unless(&inode->i_count, -1, 1))
2811                 return;
2812
2813         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2814         delayed->inode = inode;
2815
2816         spin_lock(&fs_info->delayed_iput_lock);
2817         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2818         spin_unlock(&fs_info->delayed_iput_lock);
2819 }
2820
2821 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2822 {
2823         LIST_HEAD(list);
2824         struct btrfs_fs_info *fs_info = root->fs_info;
2825         struct delayed_iput *delayed;
2826         int empty;
2827
2828         spin_lock(&fs_info->delayed_iput_lock);
2829         empty = list_empty(&fs_info->delayed_iputs);
2830         spin_unlock(&fs_info->delayed_iput_lock);
2831         if (empty)
2832                 return;
2833
2834         spin_lock(&fs_info->delayed_iput_lock);
2835         list_splice_init(&fs_info->delayed_iputs, &list);
2836         spin_unlock(&fs_info->delayed_iput_lock);
2837
2838         while (!list_empty(&list)) {
2839                 delayed = list_entry(list.next, struct delayed_iput, list);
2840                 list_del(&delayed->list);
2841                 iput(delayed->inode);
2842                 kfree(delayed);
2843         }
2844 }
2845
2846 /*
2847  * This is called in transaction commit time. If there are no orphan
2848  * files in the subvolume, it removes orphan item and frees block_rsv
2849  * structure.
2850  */
2851 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2852                               struct btrfs_root *root)
2853 {
2854         struct btrfs_block_rsv *block_rsv;
2855         int ret;
2856
2857         if (atomic_read(&root->orphan_inodes) ||
2858             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2859                 return;
2860
2861         spin_lock(&root->orphan_lock);
2862         if (atomic_read(&root->orphan_inodes)) {
2863                 spin_unlock(&root->orphan_lock);
2864                 return;
2865         }
2866
2867         if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2868                 spin_unlock(&root->orphan_lock);
2869                 return;
2870         }
2871
2872         block_rsv = root->orphan_block_rsv;
2873         root->orphan_block_rsv = NULL;
2874         spin_unlock(&root->orphan_lock);
2875
2876         if (root->orphan_item_inserted &&
2877             btrfs_root_refs(&root->root_item) > 0) {
2878                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2879                                             root->root_key.objectid);
2880                 if (ret)
2881                         btrfs_abort_transaction(trans, root, ret);
2882                 else
2883                         root->orphan_item_inserted = 0;
2884         }
2885
2886         if (block_rsv) {
2887                 WARN_ON(block_rsv->size > 0);
2888                 btrfs_free_block_rsv(root, block_rsv);
2889         }
2890 }
2891
2892 /*
2893  * This creates an orphan entry for the given inode in case something goes
2894  * wrong in the middle of an unlink/truncate.
2895  *
2896  * NOTE: caller of this function should reserve 5 units of metadata for
2897  *       this function.
2898  */
2899 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2900 {
2901         struct btrfs_root *root = BTRFS_I(inode)->root;
2902         struct btrfs_block_rsv *block_rsv = NULL;
2903         int reserve = 0;
2904         int insert = 0;
2905         int ret;
2906
2907         if (!root->orphan_block_rsv) {
2908                 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2909                 if (!block_rsv)
2910                         return -ENOMEM;
2911         }
2912
2913         spin_lock(&root->orphan_lock);
2914         if (!root->orphan_block_rsv) {
2915                 root->orphan_block_rsv = block_rsv;
2916         } else if (block_rsv) {
2917                 btrfs_free_block_rsv(root, block_rsv);
2918                 block_rsv = NULL;
2919         }
2920
2921         if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2922                               &BTRFS_I(inode)->runtime_flags)) {
2923 #if 0
2924                 /*
2925                  * For proper ENOSPC handling, we should do orphan
2926                  * cleanup when mounting. But this introduces backward
2927                  * compatibility issue.
2928                  */
2929                 if (!xchg(&root->orphan_item_inserted, 1))
2930                         insert = 2;
2931                 else
2932                         insert = 1;
2933 #endif
2934                 insert = 1;
2935                 atomic_inc(&root->orphan_inodes);
2936         }
2937
2938         if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2939                               &BTRFS_I(inode)->runtime_flags))
2940                 reserve = 1;
2941         spin_unlock(&root->orphan_lock);
2942
2943         /* grab metadata reservation from transaction handle */
2944         if (reserve) {
2945                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2946                 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2947         }
2948
2949         /* insert an orphan item to track this unlinked/truncated file */
2950         if (insert >= 1) {
2951                 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2952                 if (ret) {
2953                         if (reserve) {
2954                                 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2955                                           &BTRFS_I(inode)->runtime_flags);
2956                                 btrfs_orphan_release_metadata(inode);
2957                         }
2958                         if (ret != -EEXIST) {
2959                                 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2960                                           &BTRFS_I(inode)->runtime_flags);
2961                                 btrfs_abort_transaction(trans, root, ret);
2962                                 return ret;
2963                         }
2964                 }
2965                 ret = 0;
2966         }
2967
2968         /* insert an orphan item to track subvolume contains orphan files */
2969         if (insert >= 2) {
2970                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2971                                                root->root_key.objectid);
2972                 if (ret && ret != -EEXIST) {
2973                         btrfs_abort_transaction(trans, root, ret);
2974                         return ret;
2975                 }
2976         }
2977         return 0;
2978 }
2979
2980 /*
2981  * We have done the truncate/delete so we can go ahead and remove the orphan
2982  * item for this particular inode.
2983  */
2984 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
2985                             struct inode *inode)
2986 {
2987         struct btrfs_root *root = BTRFS_I(inode)->root;
2988         int delete_item = 0;
2989         int release_rsv = 0;
2990         int ret = 0;
2991
2992         spin_lock(&root->orphan_lock);
2993         if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2994                                &BTRFS_I(inode)->runtime_flags))
2995                 delete_item = 1;
2996
2997         if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2998                                &BTRFS_I(inode)->runtime_flags))
2999                 release_rsv = 1;
3000         spin_unlock(&root->orphan_lock);
3001
3002         if (trans && delete_item)
3003                 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
3004
3005         if (release_rsv) {
3006                 btrfs_orphan_release_metadata(inode);
3007                 atomic_dec(&root->orphan_inodes);
3008         }
3009
3010         return ret;
3011 }
3012
3013 /*
3014  * this cleans up any orphans that may be left on the list from the last use
3015  * of this root.
3016  */
3017 int btrfs_orphan_cleanup(struct btrfs_root *root)
3018 {
3019         struct btrfs_path *path;
3020         struct extent_buffer *leaf;
3021         struct btrfs_key key, found_key;
3022         struct btrfs_trans_handle *trans;
3023         struct inode *inode;
3024         u64 last_objectid = 0;
3025         int ret = 0, nr_unlink = 0, nr_truncate = 0;
3026
3027         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3028                 return 0;
3029
3030         path = btrfs_alloc_path();
3031         if (!path) {
3032                 ret = -ENOMEM;
3033                 goto out;
3034         }
3035         path->reada = -1;
3036
3037         key.objectid = BTRFS_ORPHAN_OBJECTID;
3038         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3039         key.offset = (u64)-1;
3040
3041         while (1) {
3042                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3043                 if (ret < 0)
3044                         goto out;
3045
3046                 /*
3047                  * if ret == 0 means we found what we were searching for, which
3048                  * is weird, but possible, so only screw with path if we didn't
3049                  * find the key and see if we have stuff that matches
3050                  */
3051                 if (ret > 0) {
3052                         ret = 0;
3053                         if (path->slots[0] == 0)
3054                                 break;
3055                         path->slots[0]--;
3056                 }
3057
3058                 /* pull out the item */
3059                 leaf = path->nodes[0];
3060                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3061
3062                 /* make sure the item matches what we want */
3063                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3064                         break;
3065                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3066                         break;
3067
3068                 /* release the path since we're done with it */
3069                 btrfs_release_path(path);
3070
3071                 /*
3072                  * this is where we are basically btrfs_lookup, without the
3073                  * crossing root thing.  we store the inode number in the
3074                  * offset of the orphan item.
3075                  */
3076
3077                 if (found_key.offset == last_objectid) {
3078                         btrfs_err(root->fs_info,
3079                                 "Error removing orphan entry, stopping orphan cleanup");
3080                         ret = -EINVAL;
3081                         goto out;
3082                 }
3083
3084                 last_objectid = found_key.offset;
3085
3086                 found_key.objectid = found_key.offset;
3087                 found_key.type = BTRFS_INODE_ITEM_KEY;
3088                 found_key.offset = 0;
3089                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3090                 ret = PTR_RET(inode);
3091                 if (ret && ret != -ESTALE)
3092                         goto out;
3093
3094                 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3095                         struct btrfs_root *dead_root;
3096                         struct btrfs_fs_info *fs_info = root->fs_info;
3097                         int is_dead_root = 0;
3098
3099                         /*
3100                          * this is an orphan in the tree root. Currently these
3101                          * could come from 2 sources:
3102                          *  a) a snapshot deletion in progress
3103                          *  b) a free space cache inode
3104                          * We need to distinguish those two, as the snapshot
3105                          * orphan must not get deleted.
3106                          * find_dead_roots already ran before us, so if this
3107                          * is a snapshot deletion, we should find the root
3108                          * in the dead_roots list
3109                          */
3110                         spin_lock(&fs_info->trans_lock);
3111                         list_for_each_entry(dead_root, &fs_info->dead_roots,
3112                                             root_list) {
3113                                 if (dead_root->root_key.objectid ==
3114                                     found_key.objectid) {
3115                                         is_dead_root = 1;
3116                                         break;
3117                                 }
3118                         }
3119                         spin_unlock(&fs_info->trans_lock);
3120                         if (is_dead_root) {
3121                                 /* prevent this orphan from being found again */
3122                                 key.offset = found_key.objectid - 1;
3123                                 continue;
3124                         }
3125                 }
3126                 /*
3127                  * Inode is already gone but the orphan item is still there,
3128                  * kill the orphan item.
3129                  */
3130                 if (ret == -ESTALE) {
3131                         trans = btrfs_start_transaction(root, 1);
3132                         if (IS_ERR(trans)) {
3133                                 ret = PTR_ERR(trans);
3134                                 goto out;
3135                         }
3136                         btrfs_debug(root->fs_info, "auto deleting %Lu",
3137                                 found_key.objectid);
3138                         ret = btrfs_del_orphan_item(trans, root,
3139                                                     found_key.objectid);
3140                         btrfs_end_transaction(trans, root);
3141                         if (ret)
3142                                 goto out;
3143                         continue;
3144                 }
3145
3146                 /*
3147                  * add this inode to the orphan list so btrfs_orphan_del does
3148                  * the proper thing when we hit it
3149                  */
3150                 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3151                         &BTRFS_I(inode)->runtime_flags);
3152                 atomic_inc(&root->orphan_inodes);
3153
3154                 /* if we have links, this was a truncate, lets do that */
3155                 if (inode->i_nlink) {
3156                         if (!S_ISREG(inode->i_mode)) {
3157                                 WARN_ON(1);
3158                                 iput(inode);
3159                                 continue;
3160                         }
3161                         nr_truncate++;
3162
3163                         /* 1 for the orphan item deletion. */
3164                         trans = btrfs_start_transaction(root, 1);
3165                         if (IS_ERR(trans)) {
3166                                 iput(inode);
3167                                 ret = PTR_ERR(trans);
3168                                 goto out;
3169                         }
3170                         ret = btrfs_orphan_add(trans, inode);
3171                         btrfs_end_transaction(trans, root);
3172                         if (ret) {
3173                                 iput(inode);
3174                                 goto out;
3175                         }
3176
3177                         ret = btrfs_truncate(inode);
3178                         if (ret)
3179                                 btrfs_orphan_del(NULL, inode);
3180                 } else {
3181                         nr_unlink++;
3182                 }
3183
3184                 /* this will do delete_inode and everything for us */
3185                 iput(inode);
3186                 if (ret)
3187                         goto out;
3188         }
3189         /* release the path since we're done with it */
3190         btrfs_release_path(path);
3191
3192         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3193
3194         if (root->orphan_block_rsv)
3195                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3196                                         (u64)-1);
3197
3198         if (root->orphan_block_rsv || root->orphan_item_inserted) {
3199                 trans = btrfs_join_transaction(root);
3200                 if (!IS_ERR(trans))
3201                         btrfs_end_transaction(trans, root);
3202         }
3203
3204         if (nr_unlink)
3205                 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3206         if (nr_truncate)
3207                 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3208
3209 out:
3210         if (ret)
3211                 btrfs_crit(root->fs_info,
3212                         "could not do orphan cleanup %d", ret);
3213         btrfs_free_path(path);
3214         return ret;
3215 }
3216
3217 /*
3218  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3219  * don't find any xattrs, we know there can't be any acls.
3220  *
3221  * slot is the slot the inode is in, objectid is the objectid of the inode
3222  */
3223 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3224                                           int slot, u64 objectid)
3225 {
3226         u32 nritems = btrfs_header_nritems(leaf);
3227         struct btrfs_key found_key;
3228         static u64 xattr_access = 0;
3229         static u64 xattr_default = 0;
3230         int scanned = 0;
3231
3232         if (!xattr_access) {
3233                 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3234                                         strlen(POSIX_ACL_XATTR_ACCESS));
3235                 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3236                                         strlen(POSIX_ACL_XATTR_DEFAULT));
3237         }
3238
3239         slot++;
3240         while (slot < nritems) {
3241                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3242
3243                 /* we found a different objectid, there must not be acls */
3244                 if (found_key.objectid != objectid)
3245                         return 0;
3246
3247                 /* we found an xattr, assume we've got an acl */
3248                 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3249                         if (found_key.offset == xattr_access ||
3250                             found_key.offset == xattr_default)
3251                                 return 1;
3252                 }
3253
3254                 /*
3255                  * we found a key greater than an xattr key, there can't
3256                  * be any acls later on
3257                  */
3258                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3259                         return 0;
3260
3261                 slot++;
3262                 scanned++;
3263
3264                 /*
3265                  * it goes inode, inode backrefs, xattrs, extents,
3266                  * so if there are a ton of hard links to an inode there can
3267                  * be a lot of backrefs.  Don't waste time searching too hard,
3268                  * this is just an optimization
3269                  */
3270                 if (scanned >= 8)
3271                         break;
3272         }
3273         /* we hit the end of the leaf before we found an xattr or
3274          * something larger than an xattr.  We have to assume the inode
3275          * has acls
3276          */
3277         return 1;
3278 }
3279
3280 /*
3281  * read an inode from the btree into the in-memory inode
3282  */
3283 static void btrfs_read_locked_inode(struct inode *inode)
3284 {
3285         struct btrfs_path *path;
3286         struct extent_buffer *leaf;
3287         struct btrfs_inode_item *inode_item;
3288         struct btrfs_timespec *tspec;
3289         struct btrfs_root *root = BTRFS_I(inode)->root;
3290         struct btrfs_key location;
3291         int maybe_acls;
3292         u32 rdev;
3293         int ret;
3294         bool filled = false;
3295
3296         ret = btrfs_fill_inode(inode, &rdev);
3297         if (!ret)
3298                 filled = true;
3299
3300         path = btrfs_alloc_path();
3301         if (!path)
3302                 goto make_bad;
3303
3304         path->leave_spinning = 1;
3305         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3306
3307         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3308         if (ret)
3309                 goto make_bad;
3310
3311         leaf = path->nodes[0];
3312
3313         if (filled)
3314                 goto cache_acl;
3315
3316         inode_item = btrfs_item_ptr(leaf, path->slots[0],
3317                                     struct btrfs_inode_item);
3318         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3319         set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3320         i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3321         i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3322         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3323
3324         tspec = btrfs_inode_atime(inode_item);
3325         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3326         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3327
3328         tspec = btrfs_inode_mtime(inode_item);
3329         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3330         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3331
3332         tspec = btrfs_inode_ctime(inode_item);
3333         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3334         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3335
3336         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3337         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3338         BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3339
3340         /*
3341          * If we were modified in the current generation and evicted from memory
3342          * and then re-read we need to do a full sync since we don't have any
3343          * idea about which extents were modified before we were evicted from
3344          * cache.
3345          */
3346         if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3347                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3348                         &BTRFS_I(inode)->runtime_flags);
3349
3350         inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3351         inode->i_generation = BTRFS_I(inode)->generation;
3352         inode->i_rdev = 0;
3353         rdev = btrfs_inode_rdev(leaf, inode_item);
3354
3355         BTRFS_I(inode)->index_cnt = (u64)-1;
3356         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3357 cache_acl:
3358         /*
3359          * try to precache a NULL acl entry for files that don't have
3360          * any xattrs or acls
3361          */
3362         maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3363                                            btrfs_ino(inode));
3364         if (!maybe_acls)
3365                 cache_no_acl(inode);
3366
3367         btrfs_free_path(path);
3368
3369         switch (inode->i_mode & S_IFMT) {
3370         case S_IFREG:
3371                 inode->i_mapping->a_ops = &btrfs_aops;
3372                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3373                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3374                 inode->i_fop = &btrfs_file_operations;
3375                 inode->i_op = &btrfs_file_inode_operations;
3376                 break;
3377         case S_IFDIR:
3378                 inode->i_fop = &btrfs_dir_file_operations;
3379                 if (root == root->fs_info->tree_root)
3380                         inode->i_op = &btrfs_dir_ro_inode_operations;
3381                 else
3382                         inode->i_op = &btrfs_dir_inode_operations;
3383                 break;
3384         case S_IFLNK:
3385                 inode->i_op = &btrfs_symlink_inode_operations;
3386                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3387                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3388                 break;
3389         default:
3390                 inode->i_op = &btrfs_special_inode_operations;
3391                 init_special_inode(inode, inode->i_mode, rdev);
3392                 break;
3393         }
3394
3395         btrfs_update_iflags(inode);
3396         return;
3397
3398 make_bad:
3399         btrfs_free_path(path);
3400         make_bad_inode(inode);
3401 }
3402
3403 /*
3404  * given a leaf and an inode, copy the inode fields into the leaf
3405  */
3406 static void fill_inode_item(struct btrfs_trans_handle *trans,
3407                             struct extent_buffer *leaf,
3408                             struct btrfs_inode_item *item,
3409                             struct inode *inode)
3410 {
3411         struct btrfs_map_token token;
3412
3413         btrfs_init_map_token(&token);
3414
3415         btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3416         btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3417         btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3418                                    &token);
3419         btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3420         btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3421
3422         btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3423                                      inode->i_atime.tv_sec, &token);
3424         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3425                                       inode->i_atime.tv_nsec, &token);
3426
3427         btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3428                                      inode->i_mtime.tv_sec, &token);
3429         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3430                                       inode->i_mtime.tv_nsec, &token);
3431
3432         btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3433                                      inode->i_ctime.tv_sec, &token);
3434         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3435                                       inode->i_ctime.tv_nsec, &token);
3436
3437         btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3438                                      &token);
3439         btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3440                                          &token);
3441         btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3442         btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3443         btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3444         btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3445         btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3446 }
3447
3448 /*
3449  * copy everything in the in-memory inode into the btree.
3450  */
3451 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3452                                 struct btrfs_root *root, struct inode *inode)
3453 {
3454         struct btrfs_inode_item *inode_item;
3455         struct btrfs_path *path;
3456         struct extent_buffer *leaf;
3457         int ret;
3458
3459         path = btrfs_alloc_path();
3460         if (!path)
3461                 return -ENOMEM;
3462
3463         path->leave_spinning = 1;
3464         ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3465                                  1);
3466         if (ret) {
3467                 if (ret > 0)
3468                         ret = -ENOENT;
3469                 goto failed;
3470         }
3471
3472         btrfs_unlock_up_safe(path, 1);
3473         leaf = path->nodes[0];
3474         inode_item = btrfs_item_ptr(leaf, path->slots[0],
3475                                     struct btrfs_inode_item);
3476
3477         fill_inode_item(trans, leaf, inode_item, inode);
3478         btrfs_mark_buffer_dirty(leaf);
3479         btrfs_set_inode_last_trans(trans, inode);
3480         ret = 0;
3481 failed:
3482         btrfs_free_path(path);
3483         return ret;
3484 }
3485
3486 /*
3487  * copy everything in the in-memory inode into the btree.
3488  */
3489 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3490                                 struct btrfs_root *root, struct inode *inode)
3491 {
3492         int ret;
3493
3494         /*
3495          * If the inode is a free space inode, we can deadlock during commit
3496          * if we put it into the delayed code.
3497          *
3498          * The data relocation inode should also be directly updated
3499          * without delay
3500          */
3501         if (!btrfs_is_free_space_inode(inode)
3502             && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
3503                 btrfs_update_root_times(trans, root);
3504
3505                 ret = btrfs_delayed_update_inode(trans, root, inode);
3506                 if (!ret)
3507                         btrfs_set_inode_last_trans(trans, inode);
3508                 return ret;
3509         }
3510
3511         return btrfs_update_inode_item(trans, root, inode);
3512 }
3513
3514 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3515                                          struct btrfs_root *root,
3516                                          struct inode *inode)
3517 {
3518         int ret;
3519
3520         ret = btrfs_update_inode(trans, root, inode);
3521         if (ret == -ENOSPC)
3522                 return btrfs_update_inode_item(trans, root, inode);
3523         return ret;
3524 }
3525
3526 /*
3527  * unlink helper that gets used here in inode.c and in the tree logging
3528  * recovery code.  It remove a link in a directory with a given name, and
3529  * also drops the back refs in the inode to the directory
3530  */
3531 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3532                                 struct btrfs_root *root,
3533                                 struct inode *dir, struct inode *inode,
3534                                 const char *name, int name_len)
3535 {
3536         struct btrfs_path *path;
3537         int ret = 0;
3538         struct extent_buffer *leaf;
3539         struct btrfs_dir_item *di;
3540         struct btrfs_key key;
3541         u64 index;
3542         u64 ino = btrfs_ino(inode);
3543         u64 dir_ino = btrfs_ino(dir);
3544
3545         path = btrfs_alloc_path();
3546         if (!path) {
3547                 ret = -ENOMEM;
3548                 goto out;
3549         }
3550
3551         path->leave_spinning = 1;
3552         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3553                                     name, name_len, -1);
3554         if (IS_ERR(di)) {
3555                 ret = PTR_ERR(di);
3556                 goto err;
3557         }
3558         if (!di) {
3559                 ret = -ENOENT;
3560                 goto err;
3561         }
3562         leaf = path->nodes[0];
3563         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3564         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3565         if (ret)
3566                 goto err;
3567         btrfs_release_path(path);
3568
3569         ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3570                                   dir_ino, &index);
3571         if (ret) {
3572                 btrfs_info(root->fs_info,
3573                         "failed to delete reference to %.*s, inode %llu parent %llu",
3574                         name_len, name, ino, dir_ino);
3575                 btrfs_abort_transaction(trans, root, ret);
3576                 goto err;
3577         }
3578
3579         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3580         if (ret) {
3581                 btrfs_abort_transaction(trans, root, ret);
3582                 goto err;
3583         }
3584
3585         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3586                                          inode, dir_ino);
3587         if (ret != 0 && ret != -ENOENT) {
3588                 btrfs_abort_transaction(trans, root, ret);
3589                 goto err;
3590         }
3591
3592         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3593                                            dir, index);
3594         if (ret == -ENOENT)
3595                 ret = 0;
3596         else if (ret)
3597                 btrfs_abort_transaction(trans, root, ret);
3598 err:
3599         btrfs_free_path(path);
3600         if (ret)
3601                 goto out;
3602
3603         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3604         inode_inc_iversion(inode);
3605         inode_inc_iversion(dir);
3606         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3607         ret = btrfs_update_inode(trans, root, dir);
3608 out:
3609         return ret;
3610 }
3611
3612 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3613                        struct btrfs_root *root,
3614                        struct inode *dir, struct inode *inode,
3615                        const char *name, int name_len)
3616 {
3617         int ret;
3618         ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3619         if (!ret) {
3620                 btrfs_drop_nlink(inode);
3621                 ret = btrfs_update_inode(trans, root, inode);
3622         }
3623         return ret;
3624 }
3625
3626 /*
3627  * helper to start transaction for unlink and rmdir.
3628  *
3629  * unlink and rmdir are special in btrfs, they do not always free space, so
3630  * if we cannot make our reservations the normal way try and see if there is
3631  * plenty of slack room in the global reserve to migrate, otherwise we cannot
3632  * allow the unlink to occur.
3633  */
3634 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3635 {
3636         struct btrfs_trans_handle *trans;
3637         struct btrfs_root *root = BTRFS_I(dir)->root;
3638         int ret;
3639
3640         /*
3641          * 1 for the possible orphan item
3642          * 1 for the dir item
3643          * 1 for the dir index
3644          * 1 for the inode ref
3645          * 1 for the inode
3646          */
3647         trans = btrfs_start_transaction(root, 5);
3648         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3649                 return trans;
3650
3651         if (PTR_ERR(trans) == -ENOSPC) {
3652                 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3653
3654                 trans = btrfs_start_transaction(root, 0);
3655                 if (IS_ERR(trans))
3656                         return trans;
3657                 ret = btrfs_cond_migrate_bytes(root->fs_info,
3658                                                &root->fs_info->trans_block_rsv,
3659                                                num_bytes, 5);
3660                 if (ret) {
3661                         btrfs_end_transaction(trans, root);
3662                         return ERR_PTR(ret);
3663                 }
3664                 trans->block_rsv = &root->fs_info->trans_block_rsv;
3665                 trans->bytes_reserved = num_bytes;
3666         }
3667         return trans;
3668 }
3669
3670 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3671 {
3672         struct btrfs_root *root = BTRFS_I(dir)->root;
3673         struct btrfs_trans_handle *trans;
3674         struct inode *inode = dentry->d_inode;
3675         int ret;
3676
3677         trans = __unlink_start_trans(dir);
3678         if (IS_ERR(trans))
3679                 return PTR_ERR(trans);
3680
3681         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3682
3683         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3684                                  dentry->d_name.name, dentry->d_name.len);
3685         if (ret)
3686                 goto out;
3687
3688         if (inode->i_nlink == 0) {
3689                 ret = btrfs_orphan_add(trans, inode);
3690                 if (ret)
3691                         goto out;
3692         }
3693
3694 out:
3695         btrfs_end_transaction(trans, root);
3696         btrfs_btree_balance_dirty(root);
3697         return ret;
3698 }
3699
3700 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3701                         struct btrfs_root *root,
3702                         struct inode *dir, u64 objectid,
3703                         const char *name, int name_len)
3704 {
3705         struct btrfs_path *path;
3706         struct extent_buffer *leaf;
3707         struct btrfs_dir_item *di;
3708         struct btrfs_key key;
3709         u64 index;
3710         int ret;
3711         u64 dir_ino = btrfs_ino(dir);
3712
3713         path = btrfs_alloc_path();
3714         if (!path)
3715                 return -ENOMEM;
3716
3717         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3718                                    name, name_len, -1);
3719         if (IS_ERR_OR_NULL(di)) {
3720                 if (!di)
3721                         ret = -ENOENT;
3722                 else
3723                         ret = PTR_ERR(di);
3724                 goto out;
3725         }
3726
3727         leaf = path->nodes[0];
3728         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3729         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3730         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3731         if (ret) {
3732                 btrfs_abort_transaction(trans, root, ret);
3733                 goto out;
3734         }
3735         btrfs_release_path(path);
3736
3737         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3738                                  objectid, root->root_key.objectid,
3739                                  dir_ino, &index, name, name_len);
3740         if (ret < 0) {
3741                 if (ret != -ENOENT) {
3742                         btrfs_abort_transaction(trans, root, ret);
3743                         goto out;
3744                 }
3745                 di = btrfs_search_dir_index_item(root, path, dir_ino,
3746                                                  name, name_len);
3747                 if (IS_ERR_OR_NULL(di)) {
3748                         if (!di)
3749                                 ret = -ENOENT;
3750                         else
3751                                 ret = PTR_ERR(di);
3752                         btrfs_abort_transaction(trans, root, ret);
3753                         goto out;
3754                 }
3755
3756                 leaf = path->nodes[0];
3757                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3758                 btrfs_release_path(path);
3759                 index = key.offset;
3760         }
3761         btrfs_release_path(path);
3762
3763         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3764         if (ret) {
3765                 btrfs_abort_transaction(trans, root, ret);
3766                 goto out;
3767         }
3768
3769         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3770         inode_inc_iversion(dir);
3771         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3772         ret = btrfs_update_inode_fallback(trans, root, dir);
3773         if (ret)
3774                 btrfs_abort_transaction(trans, root, ret);
3775 out:
3776         btrfs_free_path(path);
3777         return ret;
3778 }
3779
3780 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3781 {
3782         struct inode *inode = dentry->d_inode;
3783         int err = 0;
3784         struct btrfs_root *root = BTRFS_I(dir)->root;
3785         struct btrfs_trans_handle *trans;
3786
3787         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3788                 return -ENOTEMPTY;
3789         if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3790                 return -EPERM;
3791
3792         trans = __unlink_start_trans(dir);
3793         if (IS_ERR(trans))
3794                 return PTR_ERR(trans);
3795
3796         if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3797                 err = btrfs_unlink_subvol(trans, root, dir,
3798                                           BTRFS_I(inode)->location.objectid,
3799                                           dentry->d_name.name,
3800                                           dentry->d_name.len);
3801                 goto out;
3802         }
3803
3804         err = btrfs_orphan_add(trans, inode);
3805         if (err)
3806                 goto out;
3807
3808         /* now the directory is empty */
3809         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3810                                  dentry->d_name.name, dentry->d_name.len);
3811         if (!err)
3812                 btrfs_i_size_write(inode, 0);
3813 out:
3814         btrfs_end_transaction(trans, root);
3815         btrfs_btree_balance_dirty(root);
3816
3817         return err;
3818 }
3819
3820 /*
3821  * this can truncate away extent items, csum items and directory items.
3822  * It starts at a high offset and removes keys until it can't find
3823  * any higher than new_size
3824  *
3825  * csum items that cross the new i_size are truncated to the new size
3826  * as well.
3827  *
3828  * min_type is the minimum key type to truncate down to.  If set to 0, this
3829  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3830  */
3831 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3832                                struct btrfs_root *root,
3833                                struct inode *inode,
3834                                u64 new_size, u32 min_type)
3835 {
3836         struct btrfs_path *path;
3837         struct extent_buffer *leaf;
3838         struct btrfs_file_extent_item *fi;
3839         struct btrfs_key key;
3840         struct btrfs_key found_key;
3841         u64 extent_start = 0;
3842         u64 extent_num_bytes = 0;
3843         u64 extent_offset = 0;
3844         u64 item_end = 0;
3845         u32 found_type = (u8)-1;
3846         int found_extent;
3847         int del_item;
3848         int pending_del_nr = 0;
3849         int pending_del_slot = 0;
3850         int extent_type = -1;
3851         int ret;
3852         int err = 0;
3853         u64 ino = btrfs_ino(inode);
3854
3855         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3856
3857         path = btrfs_alloc_path();
3858         if (!path)
3859                 return -ENOMEM;
3860         path->reada = -1;
3861
3862         /*
3863          * We want to drop from the next block forward in case this new size is
3864          * not block aligned since we will be keeping the last block of the
3865          * extent just the way it is.
3866          */
3867         if (root->ref_cows || root == root->fs_info->tree_root)
3868                 btrfs_drop_extent_cache(inode, ALIGN(new_size,
3869                                         root->sectorsize), (u64)-1, 0);
3870
3871         /*
3872          * This function is also used to drop the items in the log tree before
3873          * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3874          * it is used to drop the loged items. So we shouldn't kill the delayed
3875          * items.
3876          */
3877         if (min_type == 0 && root == BTRFS_I(inode)->root)
3878                 btrfs_kill_delayed_inode_items(inode);
3879
3880         key.objectid = ino;
3881         key.offset = (u64)-1;
3882         key.type = (u8)-1;
3883
3884 search_again:
3885         path->leave_spinning = 1;
3886         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3887         if (ret < 0) {
3888                 err = ret;
3889                 goto out;
3890         }
3891
3892         if (ret > 0) {
3893                 /* there are no items in the tree for us to truncate, we're
3894                  * done
3895                  */
3896                 if (path->slots[0] == 0)
3897                         goto out;
3898                 path->slots[0]--;
3899         }
3900
3901         while (1) {
3902                 fi = NULL;
3903                 leaf = path->nodes[0];
3904                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3905                 found_type = btrfs_key_type(&found_key);
3906
3907                 if (found_key.objectid != ino)
3908                         break;
3909
3910                 if (found_type < min_type)
3911                         break;
3912
3913                 item_end = found_key.offset;
3914                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3915                         fi = btrfs_item_ptr(leaf, path->slots[0],
3916                                             struct btrfs_file_extent_item);
3917                         extent_type = btrfs_file_extent_type(leaf, fi);
3918                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3919                                 item_end +=
3920                                     btrfs_file_extent_num_bytes(leaf, fi);
3921                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3922                                 item_end += btrfs_file_extent_inline_len(leaf,
3923                                                                          fi);
3924                         }
3925                         item_end--;
3926                 }
3927                 if (found_type > min_type) {
3928                         del_item = 1;
3929                 } else {
3930                         if (item_end < new_size)
3931                                 break;
3932                         if (found_key.offset >= new_size)
3933                                 del_item = 1;
3934                         else
3935                                 del_item = 0;
3936                 }
3937                 found_extent = 0;
3938                 /* FIXME, shrink the extent if the ref count is only 1 */
3939                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3940                         goto delete;
3941
3942                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3943                         u64 num_dec;
3944                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3945                         if (!del_item) {
3946                                 u64 orig_num_bytes =
3947                                         btrfs_file_extent_num_bytes(leaf, fi);
3948                                 extent_num_bytes = ALIGN(new_size -
3949                                                 found_key.offset,
3950                                                 root->sectorsize);
3951                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3952                                                          extent_num_bytes);
3953                                 num_dec = (orig_num_bytes -
3954                                            extent_num_bytes);
3955                                 if (root->ref_cows && extent_start != 0)
3956                                         inode_sub_bytes(inode, num_dec);
3957                                 btrfs_mark_buffer_dirty(leaf);
3958                         } else {
3959                                 extent_num_bytes =
3960                                         btrfs_file_extent_disk_num_bytes(leaf,
3961                                                                          fi);
3962                                 extent_offset = found_key.offset -
3963                                         btrfs_file_extent_offset(leaf, fi);
3964
3965                                 /* FIXME blocksize != 4096 */
3966                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3967                                 if (extent_start != 0) {
3968                                         found_extent = 1;
3969                                         if (root->ref_cows)
3970                                                 inode_sub_bytes(inode, num_dec);
3971                                 }
3972                         }
3973                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3974                         /*
3975                          * we can't truncate inline items that have had
3976                          * special encodings
3977                          */
3978                         if (!del_item &&
3979                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3980                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3981                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3982                                 u32 size = new_size - found_key.offset;
3983
3984                                 if (root->ref_cows) {
3985                                         inode_sub_bytes(inode, item_end + 1 -
3986                                                         new_size);
3987                                 }
3988                                 size =
3989                                     btrfs_file_extent_calc_inline_size(size);
3990                                 btrfs_truncate_item(root, path, size, 1);
3991                         } else if (root->ref_cows) {
3992                                 inode_sub_bytes(inode, item_end + 1 -
3993                                                 found_key.offset);
3994                         }
3995                 }
3996 delete:
3997                 if (del_item) {
3998                         if (!pending_del_nr) {
3999                                 /* no pending yet, add ourselves */
4000                                 pending_del_slot = path->slots[0];
4001                                 pending_del_nr = 1;
4002                         } else if (pending_del_nr &&
4003                                    path->slots[0] + 1 == pending_del_slot) {
4004                                 /* hop on the pending chunk */
4005                                 pending_del_nr++;
4006                                 pending_del_slot = path->slots[0];
4007                         } else {
4008                                 BUG();
4009                         }
4010                 } else {
4011                         break;
4012                 }
4013                 if (found_extent && (root->ref_cows ||
4014                                      root == root->fs_info->tree_root)) {
4015                         btrfs_set_path_blocking(path);
4016                         ret = btrfs_free_extent(trans, root, extent_start,
4017                                                 extent_num_bytes, 0,
4018                                                 btrfs_header_owner(leaf),
4019                                                 ino, extent_offset, 0);
4020                         BUG_ON(ret);
4021                 }
4022
4023                 if (found_type == BTRFS_INODE_ITEM_KEY)
4024                         break;
4025
4026                 if (path->slots[0] == 0 ||
4027                     path->slots[0] != pending_del_slot) {
4028                         if (pending_del_nr) {
4029                                 ret = btrfs_del_items(trans, root, path,
4030                                                 pending_del_slot,
4031                                                 pending_del_nr);
4032                                 if (ret) {
4033                                         btrfs_abort_transaction(trans,
4034                                                                 root, ret);
4035                                         goto error;
4036                                 }
4037                                 pending_del_nr = 0;
4038                         }
4039                         btrfs_release_path(path);
4040                         goto search_again;
4041                 } else {
4042                         path->slots[0]--;
4043                 }
4044         }
4045 out:
4046         if (pending_del_nr) {
4047                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4048                                       pending_del_nr);
4049                 if (ret)
4050                         btrfs_abort_transaction(trans, root, ret);
4051         }
4052 error:
4053         btrfs_free_path(path);
4054         return err;
4055 }
4056
4057 /*
4058  * btrfs_truncate_page - read, zero a chunk and write a page
4059  * @inode - inode that we're zeroing
4060  * @from - the offset to start zeroing
4061  * @len - the length to zero, 0 to zero the entire range respective to the
4062  *      offset
4063  * @front - zero up to the offset instead of from the offset on
4064  *
4065  * This will find the page for the "from" offset and cow the page and zero the
4066  * part we want to zero.  This is used with truncate and hole punching.
4067  */
4068 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4069                         int front)
4070 {
4071         struct address_space *mapping = inode->i_mapping;
4072         struct btrfs_root *root = BTRFS_I(inode)->root;
4073         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4074         struct btrfs_ordered_extent *ordered;
4075         struct extent_state *cached_state = NULL;
4076         char *kaddr;
4077         u32 blocksize = root->sectorsize;
4078         pgoff_t index = from >> PAGE_CACHE_SHIFT;
4079         unsigned offset = from & (PAGE_CACHE_SIZE-1);
4080         struct page *page;
4081         gfp_t mask = btrfs_alloc_write_mask(mapping);
4082         int ret = 0;
4083         u64 page_start;
4084         u64 page_end;
4085
4086         if ((offset & (blocksize - 1)) == 0 &&
4087             (!len || ((len & (blocksize - 1)) == 0)))
4088                 goto out;
4089         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4090         if (ret)
4091                 goto out;
4092
4093 again:
4094         page = find_or_create_page(mapping, index, mask);
4095         if (!page) {
4096                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4097                 ret = -ENOMEM;
4098                 goto out;
4099         }
4100
4101         page_start = page_offset(page);
4102         page_end = page_start + PAGE_CACHE_SIZE - 1;
4103
4104         if (!PageUptodate(page)) {
4105                 ret = btrfs_readpage(NULL, page);
4106                 lock_page(page);
4107                 if (page->mapping != mapping) {
4108                         unlock_page(page);
4109                         page_cache_release(page);
4110                         goto again;
4111                 }
4112                 if (!PageUptodate(page)) {
4113                         ret = -EIO;
4114                         goto out_unlock;
4115                 }
4116         }
4117         wait_on_page_writeback(page);
4118
4119         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4120         set_page_extent_mapped(page);
4121
4122         ordered = btrfs_lookup_ordered_extent(inode, page_start);
4123         if (ordered) {
4124                 unlock_extent_cached(io_tree, page_start, page_end,
4125                                      &cached_state, GFP_NOFS);
4126                 unlock_page(page);
4127                 page_cache_release(page);
4128                 btrfs_start_ordered_extent(inode, ordered, 1);
4129                 btrfs_put_ordered_extent(ordered);
4130                 goto again;
4131         }
4132
4133         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4134                           EXTENT_DIRTY | EXTENT_DELALLOC |
4135                           EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4136                           0, 0, &cached_state, GFP_NOFS);
4137
4138         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4139                                         &cached_state);
4140         if (ret) {
4141                 unlock_extent_cached(io_tree, page_start, page_end,
4142                                      &cached_state, GFP_NOFS);
4143                 goto out_unlock;
4144         }
4145
4146         if (offset != PAGE_CACHE_SIZE) {
4147                 if (!len)
4148                         len = PAGE_CACHE_SIZE - offset;
4149                 kaddr = kmap(page);
4150                 if (front)
4151                         memset(kaddr, 0, offset);
4152                 else
4153                         memset(kaddr + offset, 0, len);
4154                 flush_dcache_page(page);
4155                 kunmap(page);
4156         }
4157         ClearPageChecked(page);
4158         set_page_dirty(page);
4159         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4160                              GFP_NOFS);
4161
4162 out_unlock:
4163         if (ret)
4164                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4165         unlock_page(page);
4166         page_cache_release(page);
4167 out:
4168         return ret;
4169 }
4170
4171 /*
4172  * This function puts in dummy file extents for the area we're creating a hole
4173  * for.  So if we are truncating this file to a larger size we need to insert
4174  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4175  * the range between oldsize and size
4176  */
4177 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4178 {
4179         struct btrfs_trans_handle *trans;
4180         struct btrfs_root *root = BTRFS_I(inode)->root;
4181         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4182         struct extent_map *em = NULL;
4183         struct extent_state *cached_state = NULL;
4184         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4185         u64 hole_start = ALIGN(oldsize, root->sectorsize);
4186         u64 block_end = ALIGN(size, root->sectorsize);
4187         u64 last_byte;
4188         u64 cur_offset;
4189         u64 hole_size;
4190         int err = 0;
4191
4192         /*
4193          * If our size started in the middle of a page we need to zero out the
4194          * rest of the page before we expand the i_size, otherwise we could
4195          * expose stale data.
4196          */
4197         err = btrfs_truncate_page(inode, oldsize, 0, 0);
4198         if (err)
4199                 return err;
4200
4201         if (size <= hole_start)
4202                 return 0;
4203
4204         while (1) {
4205                 struct btrfs_ordered_extent *ordered;
4206                 btrfs_wait_ordered_range(inode, hole_start,
4207                                          block_end - hole_start);
4208                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4209                                  &cached_state);
4210                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
4211                 if (!ordered)
4212                         break;
4213                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4214                                      &cached_state, GFP_NOFS);
4215                 btrfs_put_ordered_extent(ordered);
4216         }
4217
4218         cur_offset = hole_start;
4219         while (1) {
4220                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4221                                 block_end - cur_offset, 0);
4222                 if (IS_ERR(em)) {
4223                         err = PTR_ERR(em);
4224                         em = NULL;
4225                         break;
4226                 }
4227                 last_byte = min(extent_map_end(em), block_end);
4228                 last_byte = ALIGN(last_byte , root->sectorsize);
4229                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4230                         struct extent_map *hole_em;
4231                         hole_size = last_byte - cur_offset;
4232
4233                         trans = btrfs_start_transaction(root, 3);
4234                         if (IS_ERR(trans)) {
4235                                 err = PTR_ERR(trans);
4236                                 break;
4237                         }
4238
4239                         err = btrfs_drop_extents(trans, root, inode,
4240                                                  cur_offset,
4241                                                  cur_offset + hole_size, 1);
4242                         if (err) {
4243                                 btrfs_abort_transaction(trans, root, err);
4244                                 btrfs_end_transaction(trans, root);
4245                                 break;
4246                         }
4247
4248                         err = btrfs_insert_file_extent(trans, root,
4249                                         btrfs_ino(inode), cur_offset, 0,
4250                                         0, hole_size, 0, hole_size,
4251                                         0, 0, 0);
4252                         if (err) {
4253                                 btrfs_abort_transaction(trans, root, err);
4254                                 btrfs_end_transaction(trans, root);
4255                                 break;
4256                         }
4257
4258                         btrfs_drop_extent_cache(inode, cur_offset,
4259                                                 cur_offset + hole_size - 1, 0);
4260                         hole_em = alloc_extent_map();
4261                         if (!hole_em) {
4262                                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4263                                         &BTRFS_I(inode)->runtime_flags);
4264                                 goto next;
4265                         }
4266                         hole_em->start = cur_offset;
4267                         hole_em->len = hole_size;
4268                         hole_em->orig_start = cur_offset;
4269
4270                         hole_em->block_start = EXTENT_MAP_HOLE;
4271                         hole_em->block_len = 0;
4272                         hole_em->orig_block_len = 0;
4273                         hole_em->ram_bytes = hole_size;
4274                         hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4275                         hole_em->compress_type = BTRFS_COMPRESS_NONE;
4276                         hole_em->generation = trans->transid;
4277
4278                         while (1) {
4279                                 write_lock(&em_tree->lock);
4280                                 err = add_extent_mapping(em_tree, hole_em, 1);
4281                                 write_unlock(&em_tree->lock);
4282                                 if (err != -EEXIST)
4283                                         break;
4284                                 btrfs_drop_extent_cache(inode, cur_offset,
4285                                                         cur_offset +
4286                                                         hole_size - 1, 0);
4287                         }
4288                         free_extent_map(hole_em);
4289 next:
4290                         btrfs_update_inode(trans, root, inode);
4291                         btrfs_end_transaction(trans, root);
4292                 }
4293                 free_extent_map(em);
4294                 em = NULL;
4295                 cur_offset = last_byte;
4296                 if (cur_offset >= block_end)
4297                         break;
4298         }
4299
4300         free_extent_map(em);
4301         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4302                              GFP_NOFS);
4303         return err;
4304 }
4305
4306 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4307 {
4308         struct btrfs_root *root = BTRFS_I(inode)->root;
4309         struct btrfs_trans_handle *trans;
4310         loff_t oldsize = i_size_read(inode);
4311         loff_t newsize = attr->ia_size;
4312         int mask = attr->ia_valid;
4313         int ret;
4314
4315         /*
4316          * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4317          * special case where we need to update the times despite not having
4318          * these flags set.  For all other operations the VFS set these flags
4319          * explicitly if it wants a timestamp update.
4320          */
4321         if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4322                 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4323
4324         if (newsize > oldsize) {
4325                 truncate_pagecache(inode, oldsize, newsize);
4326                 ret = btrfs_cont_expand(inode, oldsize, newsize);
4327                 if (ret)
4328                         return ret;
4329
4330                 trans = btrfs_start_transaction(root, 1);
4331                 if (IS_ERR(trans))
4332                         return PTR_ERR(trans);
4333
4334                 i_size_write(inode, newsize);
4335                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4336                 ret = btrfs_update_inode(trans, root, inode);
4337                 btrfs_end_transaction(trans, root);
4338         } else {
4339
4340                 /*
4341                  * We're truncating a file that used to have good data down to
4342                  * zero. Make sure it gets into the ordered flush list so that
4343                  * any new writes get down to disk quickly.
4344                  */
4345                 if (newsize == 0)
4346                         set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4347                                 &BTRFS_I(inode)->runtime_flags);
4348
4349                 /*
4350                  * 1 for the orphan item we're going to add
4351                  * 1 for the orphan item deletion.
4352                  */
4353                 trans = btrfs_start_transaction(root, 2);
4354                 if (IS_ERR(trans))
4355                         return PTR_ERR(trans);
4356
4357                 /*
4358                  * We need to do this in case we fail at _any_ point during the
4359                  * actual truncate.  Once we do the truncate_setsize we could
4360                  * invalidate pages which forces any outstanding ordered io to
4361                  * be instantly completed which will give us extents that need
4362                  * to be truncated.  If we fail to get an orphan inode down we
4363                  * could have left over extents that were never meant to live,
4364                  * so we need to garuntee from this point on that everything
4365                  * will be consistent.
4366                  */
4367                 ret = btrfs_orphan_add(trans, inode);
4368                 btrfs_end_transaction(trans, root);
4369                 if (ret)
4370                         return ret;
4371
4372                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4373                 truncate_setsize(inode, newsize);
4374
4375                 /* Disable nonlocked read DIO to avoid the end less truncate */
4376                 btrfs_inode_block_unlocked_dio(inode);
4377                 inode_dio_wait(inode);
4378                 btrfs_inode_resume_unlocked_dio(inode);
4379
4380                 ret = btrfs_truncate(inode);
4381                 if (ret && inode->i_nlink)
4382                         btrfs_orphan_del(NULL, inode);
4383         }
4384
4385         return ret;
4386 }
4387
4388 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4389 {
4390         struct inode *inode = dentry->d_inode;
4391         struct btrfs_root *root = BTRFS_I(inode)->root;
4392         int err;
4393
4394         if (btrfs_root_readonly(root))
4395                 return -EROFS;
4396
4397         err = inode_change_ok(inode, attr);
4398         if (err)
4399                 return err;
4400
4401         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4402                 err = btrfs_setsize(inode, attr);
4403                 if (err)
4404                         return err;
4405         }
4406
4407         if (attr->ia_valid) {
4408                 setattr_copy(inode, attr);
4409                 inode_inc_iversion(inode);
4410                 err = btrfs_dirty_inode(inode);
4411
4412                 if (!err && attr->ia_valid & ATTR_MODE)
4413                         err = btrfs_acl_chmod(inode);
4414         }
4415
4416         return err;
4417 }
4418
4419 void btrfs_evict_inode(struct inode *inode)
4420 {
4421         struct btrfs_trans_handle *trans;
4422         struct btrfs_root *root = BTRFS_I(inode)->root;
4423         struct btrfs_block_rsv *rsv, *global_rsv;
4424         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4425         int ret;
4426
4427         trace_btrfs_inode_evict(inode);
4428
4429         truncate_inode_pages(&inode->i_data, 0);
4430         if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
4431                                btrfs_is_free_space_inode(inode)))
4432                 goto no_delete;
4433
4434         if (is_bad_inode(inode)) {
4435                 btrfs_orphan_del(NULL, inode);
4436                 goto no_delete;
4437         }
4438         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4439         btrfs_wait_ordered_range(inode, 0, (u64)-1);
4440
4441         if (root->fs_info->log_root_recovering) {
4442                 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4443                                  &BTRFS_I(inode)->runtime_flags));
4444                 goto no_delete;
4445         }
4446
4447         if (inode->i_nlink > 0) {
4448                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
4449                 goto no_delete;
4450         }
4451
4452         ret = btrfs_commit_inode_delayed_inode(inode);
4453         if (ret) {
4454                 btrfs_orphan_del(NULL, inode);
4455                 goto no_delete;
4456         }
4457
4458         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4459         if (!rsv) {
4460                 btrfs_orphan_del(NULL, inode);
4461                 goto no_delete;
4462         }
4463         rsv->size = min_size;
4464         rsv->failfast = 1;
4465         global_rsv = &root->fs_info->global_block_rsv;
4466
4467         btrfs_i_size_write(inode, 0);
4468
4469         /*
4470          * This is a bit simpler than btrfs_truncate since we've already
4471          * reserved our space for our orphan item in the unlink, so we just
4472          * need to reserve some slack space in case we add bytes and update
4473          * inode item when doing the truncate.
4474          */
4475         while (1) {
4476                 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4477                                              BTRFS_RESERVE_FLUSH_LIMIT);
4478
4479                 /*
4480                  * Try and steal from the global reserve since we will
4481                  * likely not use this space anyway, we want to try as
4482                  * hard as possible to get this to work.
4483                  */
4484                 if (ret)
4485                         ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4486
4487                 if (ret) {
4488                         btrfs_warn(root->fs_info,
4489                                 "Could not get space for a delete, will truncate on mount %d",
4490                                 ret);
4491                         btrfs_orphan_del(NULL, inode);
4492                         btrfs_free_block_rsv(root, rsv);
4493                         goto no_delete;
4494                 }
4495
4496                 trans = btrfs_join_transaction(root);
4497                 if (IS_ERR(trans)) {
4498                         btrfs_orphan_del(NULL, inode);
4499                         btrfs_free_block_rsv(root, rsv);
4500                         goto no_delete;
4501                 }
4502
4503                 trans->block_rsv = rsv;
4504
4505                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4506                 if (ret != -ENOSPC)
4507                         break;
4508
4509                 trans->block_rsv = &root->fs_info->trans_block_rsv;
4510                 btrfs_end_transaction(trans, root);
4511                 trans = NULL;
4512                 btrfs_btree_balance_dirty(root);
4513         }
4514
4515         btrfs_free_block_rsv(root, rsv);
4516
4517         /*
4518          * Errors here aren't a big deal, it just means we leave orphan items
4519          * in the tree.  They will be cleaned up on the next mount.
4520          */
4521         if (ret == 0) {
4522                 trans->block_rsv = root->orphan_block_rsv;
4523                 btrfs_orphan_del(trans, inode);
4524         } else {
4525                 btrfs_orphan_del(NULL, inode);
4526         }
4527
4528         trans->block_rsv = &root->fs_info->trans_block_rsv;
4529         if (!(root == root->fs_info->tree_root ||
4530               root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4531                 btrfs_return_ino(root, btrfs_ino(inode));
4532
4533         btrfs_end_transaction(trans, root);
4534         btrfs_btree_balance_dirty(root);
4535 no_delete:
4536         btrfs_remove_delayed_node(inode);
4537         clear_inode(inode);
4538         return;
4539 }
4540
4541 /*
4542  * this returns the key found in the dir entry in the location pointer.
4543  * If no dir entries were found, location->objectid is 0.
4544  */
4545 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4546                                struct btrfs_key *location)
4547 {
4548         const char *name = dentry->d_name.name;
4549         int namelen = dentry->d_name.len;
4550         struct btrfs_dir_item *di;
4551         struct btrfs_path *path;
4552         struct btrfs_root *root = BTRFS_I(dir)->root;
4553         int ret = 0;
4554
4555         path = btrfs_alloc_path();
4556         if (!path)
4557                 return -ENOMEM;
4558
4559         di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4560                                     namelen, 0);
4561         if (IS_ERR(di))
4562                 ret = PTR_ERR(di);
4563
4564         if (IS_ERR_OR_NULL(di))
4565                 goto out_err;
4566
4567         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4568 out:
4569         btrfs_free_path(path);
4570         return ret;
4571 out_err:
4572         location->objectid = 0;
4573         goto out;
4574 }
4575
4576 /*
4577  * when we hit a tree root in a directory, the btrfs part of the inode
4578  * needs to be changed to reflect the root directory of the tree root.  This
4579  * is kind of like crossing a mount point.
4580  */
4581 static int fixup_tree_root_location(struct btrfs_root *root,
4582                                     struct inode *dir,
4583                                     struct dentry *dentry,
4584                                     struct btrfs_key *location,
4585                                     struct btrfs_root **sub_root)
4586 {
4587         struct btrfs_path *path;
4588         struct btrfs_root *new_root;
4589         struct btrfs_root_ref *ref;
4590         struct extent_buffer *leaf;
4591         int ret;
4592         int err = 0;
4593
4594         path = btrfs_alloc_path();
4595         if (!path) {
4596                 err = -ENOMEM;
4597                 goto out;
4598         }
4599
4600         err = -ENOENT;
4601         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4602                                   BTRFS_I(dir)->root->root_key.objectid,
4603                                   location->objectid);
4604         if (ret) {
4605                 if (ret < 0)
4606                         err = ret;
4607                 goto out;
4608         }
4609
4610         leaf = path->nodes[0];
4611         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4612         if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4613             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4614                 goto out;
4615
4616         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4617                                    (unsigned long)(ref + 1),
4618                                    dentry->d_name.len);
4619         if (ret)
4620                 goto out;
4621
4622         btrfs_release_path(path);
4623
4624         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4625         if (IS_ERR(new_root)) {
4626                 err = PTR_ERR(new_root);
4627                 goto out;
4628         }
4629
4630         *sub_root = new_root;
4631         location->objectid = btrfs_root_dirid(&new_root->root_item);
4632         location->type = BTRFS_INODE_ITEM_KEY;
4633         location->offset = 0;
4634         err = 0;
4635 out:
4636         btrfs_free_path(path);
4637         return err;
4638 }
4639
4640 static void inode_tree_add(struct inode *inode)
4641 {
4642         struct btrfs_root *root = BTRFS_I(inode)->root;
4643         struct btrfs_inode *entry;
4644         struct rb_node **p;
4645         struct rb_node *parent;
4646         u64 ino = btrfs_ino(inode);
4647
4648         if (inode_unhashed(inode))
4649                 return;
4650 again:
4651         parent = NULL;
4652         spin_lock(&root->inode_lock);
4653         p = &root->inode_tree.rb_node;
4654         while (*p) {
4655                 parent = *p;
4656                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4657
4658                 if (ino < btrfs_ino(&entry->vfs_inode))
4659                         p = &parent->rb_left;
4660                 else if (ino > btrfs_ino(&entry->vfs_inode))
4661                         p = &parent->rb_right;
4662                 else {
4663                         WARN_ON(!(entry->vfs_inode.i_state &
4664                                   (I_WILL_FREE | I_FREEING)));
4665                         rb_erase(parent, &root->inode_tree);
4666                         RB_CLEAR_NODE(parent);
4667                         spin_unlock(&root->inode_lock);
4668                         goto again;
4669                 }
4670         }
4671         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4672         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4673         spin_unlock(&root->inode_lock);
4674 }
4675
4676 static void inode_tree_del(struct inode *inode)
4677 {
4678         struct btrfs_root *root = BTRFS_I(inode)->root;
4679         int empty = 0;
4680
4681         spin_lock(&root->inode_lock);
4682         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4683                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4684                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4685                 empty = RB_EMPTY_ROOT(&root->inode_tree);
4686         }
4687         spin_unlock(&root->inode_lock);
4688
4689         /*
4690          * Free space cache has inodes in the tree root, but the tree root has a
4691          * root_refs of 0, so this could end up dropping the tree root as a
4692          * snapshot, so we need the extra !root->fs_info->tree_root check to
4693          * make sure we don't drop it.
4694          */
4695         if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4696             root != root->fs_info->tree_root) {
4697                 synchronize_srcu(&root->fs_info->subvol_srcu);
4698                 spin_lock(&root->inode_lock);
4699                 empty = RB_EMPTY_ROOT(&root->inode_tree);
4700                 spin_unlock(&root->inode_lock);
4701                 if (empty)
4702                         btrfs_add_dead_root(root);
4703         }
4704 }
4705
4706 void btrfs_invalidate_inodes(struct btrfs_root *root)
4707 {
4708         struct rb_node *node;
4709         struct rb_node *prev;
4710         struct btrfs_inode *entry;
4711         struct inode *inode;
4712         u64 objectid = 0;
4713
4714         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4715
4716         spin_lock(&root->inode_lock);
4717 again:
4718         node = root->inode_tree.rb_node;
4719         prev = NULL;
4720         while (node) {
4721                 prev = node;
4722                 entry = rb_entry(node, struct btrfs_inode, rb_node);
4723
4724                 if (objectid < btrfs_ino(&entry->vfs_inode))
4725                         node = node->rb_left;
4726                 else if (objectid > btrfs_ino(&entry->vfs_inode))
4727                         node = node->rb_right;
4728                 else
4729                         break;
4730         }
4731         if (!node) {
4732                 while (prev) {
4733                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
4734                         if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4735                                 node = prev;
4736                                 break;
4737                         }
4738                         prev = rb_next(prev);
4739                 }
4740         }
4741         while (node) {
4742                 entry = rb_entry(node, struct btrfs_inode, rb_node);
4743                 objectid = btrfs_ino(&entry->vfs_inode) + 1;
4744                 inode = igrab(&entry->vfs_inode);
4745                 if (inode) {
4746                         spin_unlock(&root->inode_lock);
4747                         if (atomic_read(&inode->i_count) > 1)
4748                                 d_prune_aliases(inode);
4749                         /*
4750                          * btrfs_drop_inode will have it removed from
4751                          * the inode cache when its usage count
4752                          * hits zero.
4753                          */
4754                         iput(inode);
4755                         cond_resched();
4756                         spin_lock(&root->inode_lock);
4757                         goto again;
4758                 }
4759
4760                 if (cond_resched_lock(&root->inode_lock))
4761                         goto again;
4762
4763                 node = rb_next(node);
4764         }
4765         spin_unlock(&root->inode_lock);
4766 }
4767
4768 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4769 {
4770         struct btrfs_iget_args *args = p;
4771         inode->i_ino = args->ino;
4772         BTRFS_I(inode)->root = args->root;
4773         return 0;
4774 }
4775
4776 static int btrfs_find_actor(struct inode *inode, void *opaque)
4777 {
4778         struct btrfs_iget_args *args = opaque;
4779         return args->ino == btrfs_ino(inode) &&
4780                 args->root == BTRFS_I(inode)->root;
4781 }
4782
4783 static struct inode *btrfs_iget_locked(struct super_block *s,
4784                                        u64 objectid,
4785                                        struct btrfs_root *root)
4786 {
4787         struct inode *inode;
4788         struct btrfs_iget_args args;
4789         args.ino = objectid;
4790         args.root = root;
4791
4792         inode = iget5_locked(s, objectid, btrfs_find_actor,
4793                              btrfs_init_locked_inode,
4794                              (void *)&args);
4795         return inode;
4796 }
4797
4798 /* Get an inode object given its location and corresponding root.
4799  * Returns in *is_new if the inode was read from disk
4800  */
4801 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4802                          struct btrfs_root *root, int *new)
4803 {
4804         struct inode *inode;
4805
4806         inode = btrfs_iget_locked(s, location->objectid, root);
4807         if (!inode)
4808                 return ERR_PTR(-ENOMEM);
4809
4810         if (inode->i_state & I_NEW) {
4811                 BTRFS_I(inode)->root = root;
4812                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4813                 btrfs_read_locked_inode(inode);
4814                 if (!is_bad_inode(inode)) {
4815                         inode_tree_add(inode);
4816                         unlock_new_inode(inode);
4817                         if (new)
4818                                 *new = 1;
4819                 } else {
4820                         unlock_new_inode(inode);
4821                         iput(inode);
4822                         inode = ERR_PTR(-ESTALE);
4823                 }
4824         }
4825
4826         return inode;
4827 }
4828
4829 static struct inode *new_simple_dir(struct super_block *s,
4830                                     struct btrfs_key *key,
4831                                     struct btrfs_root *root)
4832 {
4833         struct inode *inode = new_inode(s);
4834
4835         if (!inode)
4836                 return ERR_PTR(-ENOMEM);
4837
4838         BTRFS_I(inode)->root = root;
4839         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4840         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4841
4842         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4843         inode->i_op = &btrfs_dir_ro_inode_operations;
4844         inode->i_fop = &simple_dir_operations;
4845         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4846         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4847
4848         return inode;
4849 }
4850
4851 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4852 {
4853         struct inode *inode;
4854         struct btrfs_root *root = BTRFS_I(dir)->root;
4855         struct btrfs_root *sub_root = root;
4856         struct btrfs_key location;
4857         int index;
4858         int ret = 0;
4859
4860         if (dentry->d_name.len > BTRFS_NAME_LEN)
4861                 return ERR_PTR(-ENAMETOOLONG);
4862
4863         ret = btrfs_inode_by_name(dir, dentry, &location);
4864         if (ret < 0)
4865                 return ERR_PTR(ret);
4866
4867         if (location.objectid == 0)
4868                 return NULL;
4869
4870         if (location.type == BTRFS_INODE_ITEM_KEY) {
4871                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4872                 return inode;
4873         }
4874
4875         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4876
4877         index = srcu_read_lock(&root->fs_info->subvol_srcu);
4878         ret = fixup_tree_root_location(root, dir, dentry,
4879                                        &location, &sub_root);
4880         if (ret < 0) {
4881                 if (ret != -ENOENT)
4882                         inode = ERR_PTR(ret);
4883                 else
4884                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
4885         } else {
4886                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4887         }
4888         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4889
4890         if (!IS_ERR(inode) && root != sub_root) {
4891                 down_read(&root->fs_info->cleanup_work_sem);
4892                 if (!(inode->i_sb->s_flags & MS_RDONLY))
4893                         ret = btrfs_orphan_cleanup(sub_root);
4894                 up_read(&root->fs_info->cleanup_work_sem);
4895                 if (ret) {
4896                         iput(inode);
4897                         inode = ERR_PTR(ret);
4898                 }
4899         }
4900
4901         return inode;
4902 }
4903
4904 static int btrfs_dentry_delete(const struct dentry *dentry)
4905 {
4906         struct btrfs_root *root;
4907         struct inode *inode = dentry->d_inode;
4908
4909         if (!inode && !IS_ROOT(dentry))
4910                 inode = dentry->d_parent->d_inode;
4911
4912         if (inode) {
4913                 root = BTRFS_I(inode)->root;
4914                 if (btrfs_root_refs(&root->root_item) == 0)
4915                         return 1;
4916
4917                 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4918                         return 1;
4919         }
4920         return 0;
4921 }
4922
4923 static void btrfs_dentry_release(struct dentry *dentry)
4924 {
4925         if (dentry->d_fsdata)
4926                 kfree(dentry->d_fsdata);
4927 }
4928
4929 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4930                                    unsigned int flags)
4931 {
4932         struct dentry *ret;
4933
4934         ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4935         return ret;
4936 }
4937
4938 unsigned char btrfs_filetype_table[] = {
4939         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4940 };
4941
4942 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
4943 {
4944         struct inode *inode = file_inode(file);
4945         struct btrfs_root *root = BTRFS_I(inode)->root;
4946         struct btrfs_item *item;
4947         struct btrfs_dir_item *di;
4948         struct btrfs_key key;
4949         struct btrfs_key found_key;
4950         struct btrfs_path *path;
4951         struct list_head ins_list;
4952         struct list_head del_list;
4953         int ret;
4954         struct extent_buffer *leaf;
4955         int slot;
4956         unsigned char d_type;
4957         int over = 0;
4958         u32 di_cur;
4959         u32 di_total;
4960         u32 di_len;
4961         int key_type = BTRFS_DIR_INDEX_KEY;
4962         char tmp_name[32];
4963         char *name_ptr;
4964         int name_len;
4965         int is_curr = 0;        /* ctx->pos points to the current index? */
4966
4967         /* FIXME, use a real flag for deciding about the key type */
4968         if (root->fs_info->tree_root == root)
4969                 key_type = BTRFS_DIR_ITEM_KEY;
4970
4971         if (!dir_emit_dots(file, ctx))
4972                 return 0;
4973
4974         path = btrfs_alloc_path();
4975         if (!path)
4976                 return -ENOMEM;
4977
4978         path->reada = 1;
4979
4980         if (key_type == BTRFS_DIR_INDEX_KEY) {
4981                 INIT_LIST_HEAD(&ins_list);
4982                 INIT_LIST_HEAD(&del_list);
4983                 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4984         }
4985
4986         btrfs_set_key_type(&key, key_type);
4987         key.offset = ctx->pos;
4988         key.objectid = btrfs_ino(inode);
4989
4990         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4991         if (ret < 0)
4992                 goto err;
4993
4994         while (1) {
4995                 leaf = path->nodes[0];
4996                 slot = path->slots[0];
4997                 if (slot >= btrfs_header_nritems(leaf)) {
4998                         ret = btrfs_next_leaf(root, path);
4999                         if (ret < 0)
5000                                 goto err;
5001                         else if (ret > 0)
5002                                 break;
5003                         continue;
5004                 }
5005
5006                 item = btrfs_item_nr(leaf, slot);
5007                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5008
5009                 if (found_key.objectid != key.objectid)
5010                         break;
5011                 if (btrfs_key_type(&found_key) != key_type)
5012                         break;
5013                 if (found_key.offset < ctx->pos)
5014                         goto next;
5015                 if (key_type == BTRFS_DIR_INDEX_KEY &&
5016                     btrfs_should_delete_dir_index(&del_list,
5017                                                   found_key.offset))
5018                         goto next;
5019
5020                 ctx->pos = found_key.offset;
5021                 is_curr = 1;
5022
5023                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5024                 di_cur = 0;
5025                 di_total = btrfs_item_size(leaf, item);
5026
5027                 while (di_cur < di_total) {
5028                         struct btrfs_key location;
5029
5030                         if (verify_dir_item(root, leaf, di))
5031                                 break;
5032
5033                         name_len = btrfs_dir_name_len(leaf, di);
5034                         if (name_len <= sizeof(tmp_name)) {
5035                                 name_ptr = tmp_name;
5036                         } else {
5037                                 name_ptr = kmalloc(name_len, GFP_NOFS);
5038                                 if (!name_ptr) {
5039                                         ret = -ENOMEM;
5040                                         goto err;
5041                                 }
5042                         }
5043                         read_extent_buffer(leaf, name_ptr,
5044                                            (unsigned long)(di + 1), name_len);
5045
5046                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5047                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
5048
5049
5050                         /* is this a reference to our own snapshot? If so
5051                          * skip it.
5052                          *
5053                          * In contrast to old kernels, we insert the snapshot's
5054                          * dir item and dir index after it has been created, so
5055                          * we won't find a reference to our own snapshot. We
5056                          * still keep the following code for backward
5057                          * compatibility.
5058                          */
5059                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
5060                             location.objectid == root->root_key.objectid) {
5061                                 over = 0;
5062                                 goto skip;
5063                         }
5064                         over = !dir_emit(ctx, name_ptr, name_len,
5065                                        location.objectid, d_type);
5066
5067 skip:
5068                         if (name_ptr != tmp_name)
5069                                 kfree(name_ptr);
5070
5071                         if (over)
5072                                 goto nopos;
5073                         di_len = btrfs_dir_name_len(leaf, di) +
5074                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
5075                         di_cur += di_len;
5076                         di = (struct btrfs_dir_item *)((char *)di + di_len);
5077                 }
5078 next:
5079                 path->slots[0]++;
5080         }
5081
5082         if (key_type == BTRFS_DIR_INDEX_KEY) {
5083                 if (is_curr)
5084                         ctx->pos++;
5085                 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5086                 if (ret)
5087                         goto nopos;
5088         }
5089
5090         /* Reached end of directory/root. Bump pos past the last item. */
5091         ctx->pos++;
5092
5093         /*
5094          * Stop new entries from being returned after we return the last
5095          * entry.
5096          *
5097          * New directory entries are assigned a strictly increasing
5098          * offset.  This means that new entries created during readdir
5099          * are *guaranteed* to be seen in the future by that readdir.
5100          * This has broken buggy programs which operate on names as
5101          * they're returned by readdir.  Until we re-use freed offsets
5102          * we have this hack to stop new entries from being returned
5103          * under the assumption that they'll never reach this huge
5104          * offset.
5105          *
5106          * This is being careful not to overflow 32bit loff_t unless the
5107          * last entry requires it because doing so has broken 32bit apps
5108          * in the past.
5109          */
5110         if (key_type == BTRFS_DIR_INDEX_KEY) {
5111                 if (ctx->pos >= INT_MAX)
5112                         ctx->pos = LLONG_MAX;
5113                 else
5114                         ctx->pos = INT_MAX;
5115         }
5116 nopos:
5117         ret = 0;
5118 err:
5119         if (key_type == BTRFS_DIR_INDEX_KEY)
5120                 btrfs_put_delayed_items(&ins_list, &del_list);
5121         btrfs_free_path(path);
5122         return ret;
5123 }
5124
5125 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5126 {
5127         struct btrfs_root *root = BTRFS_I(inode)->root;
5128         struct btrfs_trans_handle *trans;
5129         int ret = 0;
5130         bool nolock = false;
5131
5132         if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5133                 return 0;
5134
5135         if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5136                 nolock = true;
5137
5138         if (wbc->sync_mode == WB_SYNC_ALL) {
5139                 if (nolock)
5140                         trans = btrfs_join_transaction_nolock(root);
5141                 else
5142                         trans = btrfs_join_transaction(root);
5143                 if (IS_ERR(trans))
5144                         return PTR_ERR(trans);
5145                 ret = btrfs_commit_transaction(trans, root);
5146         }
5147         return ret;
5148 }
5149
5150 /*
5151  * This is somewhat expensive, updating the tree every time the
5152  * inode changes.  But, it is most likely to find the inode in cache.
5153  * FIXME, needs more benchmarking...there are no reasons other than performance
5154  * to keep or drop this code.
5155  */
5156 static int btrfs_dirty_inode(struct inode *inode)
5157 {
5158         struct btrfs_root *root = BTRFS_I(inode)->root;
5159         struct btrfs_trans_handle *trans;
5160         int ret;
5161
5162         if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5163                 return 0;
5164
5165         trans = btrfs_join_transaction(root);
5166         if (IS_ERR(trans))
5167                 return PTR_ERR(trans);
5168
5169         ret = btrfs_update_inode(trans, root, inode);
5170         if (ret && ret == -ENOSPC) {
5171                 /* whoops, lets try again with the full transaction */
5172                 btrfs_end_transaction(trans, root);
5173                 trans = btrfs_start_transaction(root, 1);
5174                 if (IS_ERR(trans))
5175                         return PTR_ERR(trans);
5176
5177                 ret = btrfs_update_inode(trans, root, inode);
5178         }
5179         btrfs_end_transaction(trans, root);
5180         if (BTRFS_I(inode)->delayed_node)
5181                 btrfs_balance_delayed_items(root);
5182
5183         return ret;
5184 }
5185
5186 /*
5187  * This is a copy of file_update_time.  We need this so we can return error on
5188  * ENOSPC for updating the inode in the case of file write and mmap writes.
5189  */
5190 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5191                              int flags)
5192 {
5193         struct btrfs_root *root = BTRFS_I(inode)->root;
5194
5195         if (btrfs_root_readonly(root))
5196                 return -EROFS;
5197
5198         if (flags & S_VERSION)
5199                 inode_inc_iversion(inode);
5200         if (flags & S_CTIME)
5201                 inode->i_ctime = *now;
5202         if (flags & S_MTIME)
5203                 inode->i_mtime = *now;
5204         if (flags & S_ATIME)
5205                 inode->i_atime = *now;
5206         return btrfs_dirty_inode(inode);
5207 }
5208
5209 /*
5210  * find the highest existing sequence number in a directory
5211  * and then set the in-memory index_cnt variable to reflect
5212  * free sequence numbers
5213  */
5214 static int btrfs_set_inode_index_count(struct inode *inode)
5215 {
5216         struct btrfs_root *root = BTRFS_I(inode)->root;
5217         struct btrfs_key key, found_key;
5218         struct btrfs_path *path;
5219         struct extent_buffer *leaf;
5220         int ret;
5221
5222         key.objectid = btrfs_ino(inode);
5223         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5224         key.offset = (u64)-1;
5225
5226         path = btrfs_alloc_path();
5227         if (!path)
5228                 return -ENOMEM;
5229
5230         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5231         if (ret < 0)
5232                 goto out;
5233         /* FIXME: we should be able to handle this */
5234         if (ret == 0)
5235                 goto out;
5236         ret = 0;
5237
5238         /*
5239          * MAGIC NUMBER EXPLANATION:
5240          * since we search a directory based on f_pos we have to start at 2
5241          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5242          * else has to start at 2
5243          */
5244         if (path->slots[0] == 0) {
5245                 BTRFS_I(inode)->index_cnt = 2;
5246                 goto out;
5247         }
5248
5249         path->slots[0]--;
5250
5251         leaf = path->nodes[0];
5252         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5253
5254         if (found_key.objectid != btrfs_ino(inode) ||
5255             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5256                 BTRFS_I(inode)->index_cnt = 2;
5257                 goto out;
5258         }
5259
5260         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5261 out:
5262         btrfs_free_path(path);
5263         return ret;
5264 }
5265
5266 /*
5267  * helper to find a free sequence number in a given directory.  This current
5268  * code is very simple, later versions will do smarter things in the btree
5269  */
5270 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5271 {
5272         int ret = 0;
5273
5274         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5275                 ret = btrfs_inode_delayed_dir_index_count(dir);
5276                 if (ret) {
5277                         ret = btrfs_set_inode_index_count(dir);
5278                         if (ret)
5279                                 return ret;
5280                 }
5281         }
5282
5283         *index = BTRFS_I(dir)->index_cnt;
5284         BTRFS_I(dir)->index_cnt++;
5285
5286         return ret;
5287 }
5288
5289 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5290                                      struct btrfs_root *root,
5291                                      struct inode *dir,
5292                                      const char *name, int name_len,
5293                                      u64 ref_objectid, u64 objectid,
5294                                      umode_t mode, u64 *index)
5295 {
5296         struct inode *inode;
5297         struct btrfs_inode_item *inode_item;
5298         struct btrfs_key *location;
5299         struct btrfs_path *path;
5300         struct btrfs_inode_ref *ref;
5301         struct btrfs_key key[2];
5302         u32 sizes[2];
5303         unsigned long ptr;
5304         int ret;
5305         int owner;
5306
5307         path = btrfs_alloc_path();
5308         if (!path)
5309                 return ERR_PTR(-ENOMEM);
5310
5311         inode = new_inode(root->fs_info->sb);
5312         if (!inode) {
5313                 btrfs_free_path(path);
5314                 return ERR_PTR(-ENOMEM);
5315         }
5316
5317         /*
5318          * we have to initialize this early, so we can reclaim the inode
5319          * number if we fail afterwards in this function.
5320          */
5321         inode->i_ino = objectid;
5322
5323         if (dir) {
5324                 trace_btrfs_inode_request(dir);
5325
5326                 ret = btrfs_set_inode_index(dir, index);
5327                 if (ret) {
5328                         btrfs_free_path(path);
5329                         iput(inode);
5330                         return ERR_PTR(ret);
5331                 }
5332         }
5333         /*
5334          * index_cnt is ignored for everything but a dir,
5335          * btrfs_get_inode_index_count has an explanation for the magic
5336          * number
5337          */
5338         BTRFS_I(inode)->index_cnt = 2;
5339         BTRFS_I(inode)->root = root;
5340         BTRFS_I(inode)->generation = trans->transid;
5341         inode->i_generation = BTRFS_I(inode)->generation;
5342
5343         /*
5344          * We could have gotten an inode number from somebody who was fsynced
5345          * and then removed in this same transaction, so let's just set full
5346          * sync since it will be a full sync anyway and this will blow away the
5347          * old info in the log.
5348          */
5349         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5350
5351         if (S_ISDIR(mode))
5352                 owner = 0;
5353         else
5354                 owner = 1;
5355
5356         key[0].objectid = objectid;
5357         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5358         key[0].offset = 0;
5359
5360         /*
5361          * Start new inodes with an inode_ref. This is slightly more
5362          * efficient for small numbers of hard links since they will
5363          * be packed into one item. Extended refs will kick in if we
5364          * add more hard links than can fit in the ref item.
5365          */
5366         key[1].objectid = objectid;
5367         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5368         key[1].offset = ref_objectid;
5369
5370         sizes[0] = sizeof(struct btrfs_inode_item);
5371         sizes[1] = name_len + sizeof(*ref);
5372
5373         path->leave_spinning = 1;
5374         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5375         if (ret != 0)
5376                 goto fail;
5377
5378         inode_init_owner(inode, dir, mode);
5379         inode_set_bytes(inode, 0);
5380         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5381         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5382                                   struct btrfs_inode_item);
5383         memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5384                              sizeof(*inode_item));
5385         fill_inode_item(trans, path->nodes[0], inode_item, inode);
5386
5387         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5388                              struct btrfs_inode_ref);
5389         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5390         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5391         ptr = (unsigned long)(ref + 1);
5392         write_extent_buffer(path->nodes[0], name, ptr, name_len);
5393
5394         btrfs_mark_buffer_dirty(path->nodes[0]);
5395         btrfs_free_path(path);
5396
5397         location = &BTRFS_I(inode)->location;
5398         location->objectid = objectid;
5399         location->offset = 0;
5400         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5401
5402         btrfs_inherit_iflags(inode, dir);
5403
5404         if (S_ISREG(mode)) {
5405                 if (btrfs_test_opt(root, NODATASUM))
5406                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5407                 if (btrfs_test_opt(root, NODATACOW))
5408                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5409                                 BTRFS_INODE_NODATASUM;
5410         }
5411
5412         insert_inode_hash(inode);
5413         inode_tree_add(inode);
5414
5415         trace_btrfs_inode_new(inode);
5416         btrfs_set_inode_last_trans(trans, inode);
5417
5418         btrfs_update_root_times(trans, root);
5419
5420         return inode;
5421 fail:
5422         if (dir)
5423                 BTRFS_I(dir)->index_cnt--;
5424         btrfs_free_path(path);
5425         iput(inode);
5426         return ERR_PTR(ret);
5427 }
5428
5429 static inline u8 btrfs_inode_type(struct inode *inode)
5430 {
5431         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5432 }
5433
5434 /*
5435  * utility function to add 'inode' into 'parent_inode' with
5436  * a give name and a given sequence number.
5437  * if 'add_backref' is true, also insert a backref from the
5438  * inode to the parent directory.
5439  */
5440 int btrfs_add_link(struct btrfs_trans_handle *trans,
5441                    struct inode *parent_inode, struct inode *inode,
5442                    const char *name, int name_len, int add_backref, u64 index)
5443 {
5444         int ret = 0;
5445         struct btrfs_key key;
5446         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5447         u64 ino = btrfs_ino(inode);
5448         u64 parent_ino = btrfs_ino(parent_inode);
5449
5450         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5451                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5452         } else {
5453                 key.objectid = ino;
5454                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5455                 key.offset = 0;
5456         }
5457
5458         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5459                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5460                                          key.objectid, root->root_key.objectid,
5461                                          parent_ino, index, name, name_len);
5462         } else if (add_backref) {
5463                 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5464                                              parent_ino, index);
5465         }
5466
5467         /* Nothing to clean up yet */
5468         if (ret)
5469                 return ret;
5470
5471         ret = btrfs_insert_dir_item(trans, root, name, name_len,
5472                                     parent_inode, &key,
5473                                     btrfs_inode_type(inode), index);
5474         if (ret == -EEXIST || ret == -EOVERFLOW)
5475                 goto fail_dir_item;
5476         else if (ret) {
5477                 btrfs_abort_transaction(trans, root, ret);
5478                 return ret;
5479         }
5480
5481         btrfs_i_size_write(parent_inode, parent_inode->i_size +
5482                            name_len * 2);
5483         inode_inc_iversion(parent_inode);
5484         parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5485         ret = btrfs_update_inode(trans, root, parent_inode);
5486         if (ret)
5487                 btrfs_abort_transaction(trans, root, ret);
5488         return ret;
5489
5490 fail_dir_item:
5491         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5492                 u64 local_index;
5493                 int err;
5494                 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5495                                  key.objectid, root->root_key.objectid,
5496                                  parent_ino, &local_index, name, name_len);
5497
5498         } else if (add_backref) {
5499                 u64 local_index;
5500                 int err;
5501
5502                 err = btrfs_del_inode_ref(trans, root, name, name_len,
5503                                           ino, parent_ino, &local_index);
5504         }
5505         return ret;
5506 }
5507
5508 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5509                             struct inode *dir, struct dentry *dentry,
5510                             struct inode *inode, int backref, u64 index)
5511 {
5512         int err = btrfs_add_link(trans, dir, inode,
5513                                  dentry->d_name.name, dentry->d_name.len,
5514                                  backref, index);
5515         if (err > 0)
5516                 err = -EEXIST;
5517         return err;
5518 }
5519
5520 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5521                         umode_t mode, dev_t rdev)
5522 {
5523         struct btrfs_trans_handle *trans;
5524         struct btrfs_root *root = BTRFS_I(dir)->root;
5525         struct inode *inode = NULL;
5526         int err;
5527         int drop_inode = 0;
5528         u64 objectid;
5529         u64 index = 0;
5530
5531         if (!new_valid_dev(rdev))
5532                 return -EINVAL;
5533
5534         /*
5535          * 2 for inode item and ref
5536          * 2 for dir items
5537          * 1 for xattr if selinux is on
5538          */
5539         trans = btrfs_start_transaction(root, 5);
5540         if (IS_ERR(trans))
5541                 return PTR_ERR(trans);
5542
5543         err = btrfs_find_free_ino(root, &objectid);
5544         if (err)
5545                 goto out_unlock;
5546
5547         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5548                                 dentry->d_name.len, btrfs_ino(dir), objectid,
5549                                 mode, &index);
5550         if (IS_ERR(inode)) {
5551                 err = PTR_ERR(inode);
5552                 goto out_unlock;
5553         }
5554
5555         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5556         if (err) {
5557                 drop_inode = 1;
5558                 goto out_unlock;
5559         }
5560
5561         /*
5562         * If the active LSM wants to access the inode during
5563         * d_instantiate it needs these. Smack checks to see
5564         * if the filesystem supports xattrs by looking at the
5565         * ops vector.
5566         */
5567
5568         inode->i_op = &btrfs_special_inode_operations;
5569         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5570         if (err)
5571                 drop_inode = 1;
5572         else {
5573                 init_special_inode(inode, inode->i_mode, rdev);
5574                 btrfs_update_inode(trans, root, inode);
5575                 d_instantiate(dentry, inode);
5576         }
5577 out_unlock:
5578         btrfs_end_transaction(trans, root);
5579         btrfs_btree_balance_dirty(root);
5580         if (drop_inode) {
5581                 inode_dec_link_count(inode);
5582                 iput(inode);
5583         }
5584         return err;
5585 }
5586
5587 static int btrfs_create(struct inode *dir, struct dentry *dentry,
5588                         umode_t mode, bool excl)
5589 {
5590         struct btrfs_trans_handle *trans;
5591         struct btrfs_root *root = BTRFS_I(dir)->root;
5592         struct inode *inode = NULL;
5593         int drop_inode_on_err = 0;
5594         int err;
5595         u64 objectid;
5596         u64 index = 0;
5597
5598         /*
5599          * 2 for inode item and ref
5600          * 2 for dir items
5601          * 1 for xattr if selinux is on
5602          */
5603         trans = btrfs_start_transaction(root, 5);
5604         if (IS_ERR(trans))
5605                 return PTR_ERR(trans);
5606
5607         err = btrfs_find_free_ino(root, &objectid);
5608         if (err)
5609                 goto out_unlock;
5610
5611         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5612                                 dentry->d_name.len, btrfs_ino(dir), objectid,
5613                                 mode, &index);
5614         if (IS_ERR(inode)) {
5615                 err = PTR_ERR(inode);
5616                 goto out_unlock;
5617         }
5618         drop_inode_on_err = 1;
5619
5620         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5621         if (err)
5622                 goto out_unlock;
5623
5624         err = btrfs_update_inode(trans, root, inode);
5625         if (err)
5626                 goto out_unlock;
5627
5628         /*
5629         * If the active LSM wants to access the inode during
5630         * d_instantiate it needs these. Smack checks to see
5631         * if the filesystem supports xattrs by looking at the
5632         * ops vector.
5633         */
5634         inode->i_fop = &btrfs_file_operations;
5635         inode->i_op = &btrfs_file_inode_operations;
5636
5637         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5638         if (err)
5639                 goto out_unlock;
5640
5641         inode->i_mapping->a_ops = &btrfs_aops;
5642         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5643         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5644         d_instantiate(dentry, inode);
5645
5646 out_unlock:
5647         btrfs_end_transaction(trans, root);
5648         if (err && drop_inode_on_err) {
5649                 inode_dec_link_count(inode);
5650                 iput(inode);
5651         }
5652         btrfs_btree_balance_dirty(root);
5653         return err;
5654 }
5655
5656 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5657                       struct dentry *dentry)
5658 {
5659         struct btrfs_trans_handle *trans;
5660         struct btrfs_root *root = BTRFS_I(dir)->root;
5661         struct inode *inode = old_dentry->d_inode;
5662         u64 index;
5663         int err;
5664         int drop_inode = 0;
5665
5666         /* do not allow sys_link's with other subvols of the same device */
5667         if (root->objectid != BTRFS_I(inode)->root->objectid)
5668                 return -EXDEV;
5669
5670         if (inode->i_nlink >= BTRFS_LINK_MAX)
5671                 return -EMLINK;
5672
5673         err = btrfs_set_inode_index(dir, &index);
5674         if (err)
5675                 goto fail;
5676
5677         /*
5678          * 2 items for inode and inode ref
5679          * 2 items for dir items
5680          * 1 item for parent inode
5681          */
5682         trans = btrfs_start_transaction(root, 5);
5683         if (IS_ERR(trans)) {
5684                 err = PTR_ERR(trans);
5685                 goto fail;
5686         }
5687
5688         btrfs_inc_nlink(inode);
5689         inode_inc_iversion(inode);
5690         inode->i_ctime = CURRENT_TIME;
5691         ihold(inode);
5692         set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
5693
5694         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5695
5696         if (err) {
5697                 drop_inode = 1;
5698         } else {
5699                 struct dentry *parent = dentry->d_parent;
5700                 err = btrfs_update_inode(trans, root, inode);
5701                 if (err)
5702                         goto fail;
5703                 d_instantiate(dentry, inode);
5704                 btrfs_log_new_name(trans, inode, NULL, parent);
5705         }
5706
5707         btrfs_end_transaction(trans, root);
5708 fail:
5709         if (drop_inode) {
5710                 inode_dec_link_count(inode);
5711                 iput(inode);
5712         }
5713         btrfs_btree_balance_dirty(root);
5714         return err;
5715 }
5716
5717 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5718 {
5719         struct inode *inode = NULL;
5720         struct btrfs_trans_handle *trans;
5721         struct btrfs_root *root = BTRFS_I(dir)->root;
5722         int err = 0;
5723         int drop_on_err = 0;
5724         u64 objectid = 0;
5725         u64 index = 0;
5726
5727         /*
5728          * 2 items for inode and ref
5729          * 2 items for dir items
5730          * 1 for xattr if selinux is on
5731          */
5732         trans = btrfs_start_transaction(root, 5);
5733         if (IS_ERR(trans))
5734                 return PTR_ERR(trans);
5735
5736         err = btrfs_find_free_ino(root, &objectid);
5737         if (err)
5738                 goto out_fail;
5739
5740         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5741                                 dentry->d_name.len, btrfs_ino(dir), objectid,
5742                                 S_IFDIR | mode, &index);
5743         if (IS_ERR(inode)) {
5744                 err = PTR_ERR(inode);
5745                 goto out_fail;
5746         }
5747
5748         drop_on_err = 1;
5749
5750         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5751         if (err)
5752                 goto out_fail;
5753
5754         inode->i_op = &btrfs_dir_inode_operations;
5755         inode->i_fop = &btrfs_dir_file_operations;
5756
5757         btrfs_i_size_write(inode, 0);
5758         err = btrfs_update_inode(trans, root, inode);
5759         if (err)
5760                 goto out_fail;
5761
5762         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5763                              dentry->d_name.len, 0, index);
5764         if (err)
5765                 goto out_fail;
5766
5767         d_instantiate(dentry, inode);
5768         drop_on_err = 0;
5769
5770 out_fail:
5771         btrfs_end_transaction(trans, root);
5772         if (drop_on_err)
5773                 iput(inode);
5774         btrfs_btree_balance_dirty(root);
5775         return err;
5776 }
5777
5778 /* helper for btfs_get_extent.  Given an existing extent in the tree,
5779  * and an extent that you want to insert, deal with overlap and insert
5780  * the new extent into the tree.
5781  */
5782 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5783                                 struct extent_map *existing,
5784                                 struct extent_map *em,
5785                                 u64 map_start, u64 map_len)
5786 {
5787         u64 start_diff;
5788
5789         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5790         start_diff = map_start - em->start;
5791         em->start = map_start;
5792         em->len = map_len;
5793         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5794             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5795                 em->block_start += start_diff;
5796                 em->block_len -= start_diff;
5797         }
5798         return add_extent_mapping(em_tree, em, 0);
5799 }
5800
5801 static noinline int uncompress_inline(struct btrfs_path *path,
5802                                       struct inode *inode, struct page *page,
5803                                       size_t pg_offset, u64 extent_offset,
5804                                       struct btrfs_file_extent_item *item)
5805 {
5806         int ret;
5807         struct extent_buffer *leaf = path->nodes[0];
5808         char *tmp;
5809         size_t max_size;
5810         unsigned long inline_size;
5811         unsigned long ptr;
5812         int compress_type;
5813
5814         WARN_ON(pg_offset != 0);
5815         compress_type = btrfs_file_extent_compression(leaf, item);
5816         max_size = btrfs_file_extent_ram_bytes(leaf, item);
5817         inline_size = btrfs_file_extent_inline_item_len(leaf,
5818                                         btrfs_item_nr(leaf, path->slots[0]));
5819         tmp = kmalloc(inline_size, GFP_NOFS);
5820         if (!tmp)
5821                 return -ENOMEM;
5822         ptr = btrfs_file_extent_inline_start(item);
5823
5824         read_extent_buffer(leaf, tmp, ptr, inline_size);
5825
5826         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5827         ret = btrfs_decompress(compress_type, tmp, page,
5828                                extent_offset, inline_size, max_size);
5829         if (ret) {
5830                 char *kaddr = kmap_atomic(page);
5831                 unsigned long copy_size = min_t(u64,
5832                                   PAGE_CACHE_SIZE - pg_offset,
5833                                   max_size - extent_offset);
5834                 memset(kaddr + pg_offset, 0, copy_size);
5835                 kunmap_atomic(kaddr);
5836         }
5837         kfree(tmp);
5838         return 0;
5839 }
5840
5841 /*
5842  * a bit scary, this does extent mapping from logical file offset to the disk.
5843  * the ugly parts come from merging extents from the disk with the in-ram
5844  * representation.  This gets more complex because of the data=ordered code,
5845  * where the in-ram extents might be locked pending data=ordered completion.
5846  *
5847  * This also copies inline extents directly into the page.
5848  */
5849
5850 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5851                                     size_t pg_offset, u64 start, u64 len,
5852                                     int create)
5853 {
5854         int ret;
5855         int err = 0;
5856         u64 bytenr;
5857         u64 extent_start = 0;
5858         u64 extent_end = 0;
5859         u64 objectid = btrfs_ino(inode);
5860         u32 found_type;
5861         struct btrfs_path *path = NULL;
5862         struct btrfs_root *root = BTRFS_I(inode)->root;
5863         struct btrfs_file_extent_item *item;
5864         struct extent_buffer *leaf;
5865         struct btrfs_key found_key;
5866         struct extent_map *em = NULL;
5867         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5868         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5869         struct btrfs_trans_handle *trans = NULL;
5870         int compress_type;
5871
5872 again:
5873         read_lock(&em_tree->lock);
5874         em = lookup_extent_mapping(em_tree, start, len);
5875         if (em)
5876                 em->bdev = root->fs_info->fs_devices->latest_bdev;
5877         read_unlock(&em_tree->lock);
5878
5879         if (em) {
5880                 if (em->start > start || em->start + em->len <= start)
5881                         free_extent_map(em);
5882                 else if (em->block_start == EXTENT_MAP_INLINE && page)
5883                         free_extent_map(em);
5884                 else
5885                         goto out;
5886         }
5887         em = alloc_extent_map();
5888         if (!em) {
5889                 err = -ENOMEM;
5890                 goto out;
5891         }
5892         em->bdev = root->fs_info->fs_devices->latest_bdev;
5893         em->start = EXTENT_MAP_HOLE;
5894         em->orig_start = EXTENT_MAP_HOLE;
5895         em->len = (u64)-1;
5896         em->block_len = (u64)-1;
5897
5898         if (!path) {
5899                 path = btrfs_alloc_path();
5900                 if (!path) {
5901                         err = -ENOMEM;
5902                         goto out;
5903                 }
5904                 /*
5905                  * Chances are we'll be called again, so go ahead and do
5906                  * readahead
5907                  */
5908                 path->reada = 1;
5909         }
5910
5911         ret = btrfs_lookup_file_extent(trans, root, path,
5912                                        objectid, start, trans != NULL);
5913         if (ret < 0) {
5914                 err = ret;
5915                 goto out;
5916         }
5917
5918         if (ret != 0) {
5919                 if (path->slots[0] == 0)
5920                         goto not_found;
5921                 path->slots[0]--;
5922         }
5923
5924         leaf = path->nodes[0];
5925         item = btrfs_item_ptr(leaf, path->slots[0],
5926                               struct btrfs_file_extent_item);
5927         /* are we inside the extent that was found? */
5928         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5929         found_type = btrfs_key_type(&found_key);
5930         if (found_key.objectid != objectid ||
5931             found_type != BTRFS_EXTENT_DATA_KEY) {
5932                 goto not_found;
5933         }
5934
5935         found_type = btrfs_file_extent_type(leaf, item);
5936         extent_start = found_key.offset;
5937         compress_type = btrfs_file_extent_compression(leaf, item);
5938         if (found_type == BTRFS_FILE_EXTENT_REG ||
5939             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5940                 extent_end = extent_start +
5941                        btrfs_file_extent_num_bytes(leaf, item);
5942         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5943                 size_t size;
5944                 size = btrfs_file_extent_inline_len(leaf, item);
5945                 extent_end = ALIGN(extent_start + size, root->sectorsize);
5946         }
5947
5948         if (start >= extent_end) {
5949                 path->slots[0]++;
5950                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5951                         ret = btrfs_next_leaf(root, path);
5952                         if (ret < 0) {
5953                                 err = ret;
5954                                 goto out;
5955                         }
5956                         if (ret > 0)
5957                                 goto not_found;
5958                         leaf = path->nodes[0];
5959                 }
5960                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5961                 if (found_key.objectid != objectid ||
5962                     found_key.type != BTRFS_EXTENT_DATA_KEY)
5963                         goto not_found;
5964                 if (start + len <= found_key.offset)
5965                         goto not_found;
5966                 em->start = start;
5967                 em->orig_start = start;
5968                 em->len = found_key.offset - start;
5969                 goto not_found_em;
5970         }
5971
5972         em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
5973         if (found_type == BTRFS_FILE_EXTENT_REG ||
5974             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5975                 em->start = extent_start;
5976                 em->len = extent_end - extent_start;
5977                 em->orig_start = extent_start -
5978                                  btrfs_file_extent_offset(leaf, item);
5979                 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
5980                                                                       item);
5981                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5982                 if (bytenr == 0) {
5983                         em->block_start = EXTENT_MAP_HOLE;
5984                         goto insert;
5985                 }
5986                 if (compress_type != BTRFS_COMPRESS_NONE) {
5987                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5988                         em->compress_type = compress_type;
5989                         em->block_start = bytenr;
5990                         em->block_len = em->orig_block_len;
5991                 } else {
5992                         bytenr += btrfs_file_extent_offset(leaf, item);
5993                         em->block_start = bytenr;
5994                         em->block_len = em->len;
5995                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5996                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5997                 }
5998                 goto insert;
5999         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6000                 unsigned long ptr;
6001                 char *map;
6002                 size_t size;
6003                 size_t extent_offset;
6004                 size_t copy_size;
6005
6006                 em->block_start = EXTENT_MAP_INLINE;
6007                 if (!page || create) {
6008                         em->start = extent_start;
6009                         em->len = extent_end - extent_start;
6010                         goto out;
6011                 }
6012
6013                 size = btrfs_file_extent_inline_len(leaf, item);
6014                 extent_offset = page_offset(page) + pg_offset - extent_start;
6015                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6016                                 size - extent_offset);
6017                 em->start = extent_start + extent_offset;
6018                 em->len = ALIGN(copy_size, root->sectorsize);
6019                 em->orig_block_len = em->len;
6020                 em->orig_start = em->start;
6021                 if (compress_type) {
6022                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6023                         em->compress_type = compress_type;
6024                 }
6025                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6026                 if (create == 0 && !PageUptodate(page)) {
6027                         if (btrfs_file_extent_compression(leaf, item) !=
6028                             BTRFS_COMPRESS_NONE) {
6029                                 ret = uncompress_inline(path, inode, page,
6030                                                         pg_offset,
6031                                                         extent_offset, item);
6032                                 BUG_ON(ret); /* -ENOMEM */
6033                         } else {
6034                                 map = kmap(page);
6035                                 read_extent_buffer(leaf, map + pg_offset, ptr,
6036                                                    copy_size);
6037                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6038                                         memset(map + pg_offset + copy_size, 0,
6039                                                PAGE_CACHE_SIZE - pg_offset -
6040                                                copy_size);
6041                                 }
6042                                 kunmap(page);
6043                         }
6044                         flush_dcache_page(page);
6045                 } else if (create && PageUptodate(page)) {
6046                         BUG();
6047                         if (!trans) {
6048                                 kunmap(page);
6049                                 free_extent_map(em);
6050                                 em = NULL;
6051
6052                                 btrfs_release_path(path);
6053                                 trans = btrfs_join_transaction(root);
6054
6055                                 if (IS_ERR(trans))
6056                                         return ERR_CAST(trans);
6057                                 goto again;
6058                         }
6059                         map = kmap(page);
6060                         write_extent_buffer(leaf, map + pg_offset, ptr,
6061                                             copy_size);
6062                         kunmap(page);
6063                         btrfs_mark_buffer_dirty(leaf);
6064                 }
6065                 set_extent_uptodate(io_tree, em->start,
6066                                     extent_map_end(em) - 1, NULL, GFP_NOFS);
6067                 goto insert;
6068         } else {
6069                 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
6070         }
6071 not_found:
6072         em->start = start;
6073         em->orig_start = start;
6074         em->len = len;
6075 not_found_em:
6076         em->block_start = EXTENT_MAP_HOLE;
6077         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6078 insert:
6079         btrfs_release_path(path);
6080         if (em->start > start || extent_map_end(em) <= start) {
6081                 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6082                         em->start, em->len, start, len);
6083                 err = -EIO;
6084                 goto out;
6085         }
6086
6087         err = 0;
6088         write_lock(&em_tree->lock);
6089         ret = add_extent_mapping(em_tree, em, 0);
6090         /* it is possible that someone inserted the extent into the tree
6091          * while we had the lock dropped.  It is also possible that
6092          * an overlapping map exists in the tree
6093          */
6094         if (ret == -EEXIST) {
6095                 struct extent_map *existing;
6096
6097                 ret = 0;
6098
6099                 existing = lookup_extent_mapping(em_tree, start, len);
6100                 if (existing && (existing->start > start ||
6101                     existing->start + existing->len <= start)) {
6102                         free_extent_map(existing);
6103                         existing = NULL;
6104                 }
6105                 if (!existing) {
6106                         existing = lookup_extent_mapping(em_tree, em->start,
6107                                                          em->len);
6108                         if (existing) {
6109                                 err = merge_extent_mapping(em_tree, existing,
6110                                                            em, start,
6111                                                            root->sectorsize);
6112                                 free_extent_map(existing);
6113                                 if (err) {
6114                                         free_extent_map(em);
6115                                         em = NULL;
6116                                 }
6117                         } else {
6118                                 err = -EIO;
6119                                 free_extent_map(em);
6120                                 em = NULL;
6121                         }
6122                 } else {
6123                         free_extent_map(em);
6124                         em = existing;
6125                         err = 0;
6126                 }
6127         }
6128         write_unlock(&em_tree->lock);
6129 out:
6130
6131         if (em)
6132                 trace_btrfs_get_extent(root, em);
6133
6134         if (path)
6135                 btrfs_free_path(path);
6136         if (trans) {
6137                 ret = btrfs_end_transaction(trans, root);
6138                 if (!err)
6139                         err = ret;
6140         }
6141         if (err) {
6142                 free_extent_map(em);
6143                 return ERR_PTR(err);
6144         }
6145         BUG_ON(!em); /* Error is always set */
6146         return em;
6147 }
6148
6149 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6150                                            size_t pg_offset, u64 start, u64 len,
6151                                            int create)
6152 {
6153         struct extent_map *em;
6154         struct extent_map *hole_em = NULL;
6155         u64 range_start = start;
6156         u64 end;
6157         u64 found;
6158         u64 found_end;
6159         int err = 0;
6160
6161         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6162         if (IS_ERR(em))
6163                 return em;
6164         if (em) {
6165                 /*
6166                  * if our em maps to
6167                  * -  a hole or
6168                  * -  a pre-alloc extent,
6169                  * there might actually be delalloc bytes behind it.
6170                  */
6171                 if (em->block_start != EXTENT_MAP_HOLE &&
6172                     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6173                         return em;
6174                 else
6175                         hole_em = em;
6176         }
6177
6178         /* check to see if we've wrapped (len == -1 or similar) */
6179         end = start + len;
6180         if (end < start)
6181                 end = (u64)-1;
6182         else
6183                 end -= 1;
6184
6185         em = NULL;
6186
6187         /* ok, we didn't find anything, lets look for delalloc */
6188         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6189                                  end, len, EXTENT_DELALLOC, 1);
6190         found_end = range_start + found;
6191         if (found_end < range_start)
6192                 found_end = (u64)-1;
6193
6194         /*
6195          * we didn't find anything useful, return
6196          * the original results from get_extent()
6197          */
6198         if (range_start > end || found_end <= start) {
6199                 em = hole_em;
6200                 hole_em = NULL;
6201                 goto out;
6202         }
6203
6204         /* adjust the range_start to make sure it doesn't
6205          * go backwards from the start they passed in
6206          */
6207         range_start = max(start,range_start);
6208         found = found_end - range_start;
6209
6210         if (found > 0) {
6211                 u64 hole_start = start;
6212                 u64 hole_len = len;
6213
6214                 em = alloc_extent_map();
6215                 if (!em) {
6216                         err = -ENOMEM;
6217                         goto out;
6218                 }
6219                 /*
6220                  * when btrfs_get_extent can't find anything it
6221                  * returns one huge hole
6222                  *
6223                  * make sure what it found really fits our range, and
6224                  * adjust to make sure it is based on the start from
6225                  * the caller
6226                  */
6227                 if (hole_em) {
6228                         u64 calc_end = extent_map_end(hole_em);
6229
6230                         if (calc_end <= start || (hole_em->start > end)) {
6231                                 free_extent_map(hole_em);
6232                                 hole_em = NULL;
6233                         } else {
6234                                 hole_start = max(hole_em->start, start);
6235                                 hole_len = calc_end - hole_start;
6236                         }
6237                 }
6238                 em->bdev = NULL;
6239                 if (hole_em && range_start > hole_start) {
6240                         /* our hole starts before our delalloc, so we
6241                          * have to return just the parts of the hole
6242                          * that go until  the delalloc starts
6243                          */
6244                         em->len = min(hole_len,
6245                                       range_start - hole_start);
6246                         em->start = hole_start;
6247                         em->orig_start = hole_start;
6248                         /*
6249                          * don't adjust block start at all,
6250                          * it is fixed at EXTENT_MAP_HOLE
6251                          */
6252                         em->block_start = hole_em->block_start;
6253                         em->block_len = hole_len;
6254                         if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6255                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6256                 } else {
6257                         em->start = range_start;
6258                         em->len = found;
6259                         em->orig_start = range_start;
6260                         em->block_start = EXTENT_MAP_DELALLOC;
6261                         em->block_len = found;
6262                 }
6263         } else if (hole_em) {
6264                 return hole_em;
6265         }
6266 out:
6267
6268         free_extent_map(hole_em);
6269         if (err) {
6270                 free_extent_map(em);
6271                 return ERR_PTR(err);
6272         }
6273         return em;
6274 }
6275
6276 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6277                                                   u64 start, u64 len)
6278 {
6279         struct btrfs_root *root = BTRFS_I(inode)->root;
6280         struct extent_map *em;
6281         struct btrfs_key ins;
6282         u64 alloc_hint;
6283         int ret;
6284
6285         alloc_hint = get_extent_allocation_hint(inode, start, len);
6286         ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
6287                                    alloc_hint, &ins, 1);
6288         if (ret)
6289                 return ERR_PTR(ret);
6290
6291         em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6292                               ins.offset, ins.offset, ins.offset, 0);
6293         if (IS_ERR(em)) {
6294                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6295                 return em;
6296         }
6297
6298         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6299                                            ins.offset, ins.offset, 0);
6300         if (ret) {
6301                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6302                 free_extent_map(em);
6303                 return ERR_PTR(ret);
6304         }
6305
6306         return em;
6307 }
6308
6309 /*
6310  * returns 1 when the nocow is safe, < 1 on error, 0 if the
6311  * block must be cow'd
6312  */
6313 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6314                               u64 *orig_start, u64 *orig_block_len,
6315                               u64 *ram_bytes)
6316 {
6317         struct btrfs_trans_handle *trans;
6318         struct btrfs_path *path;
6319         int ret;
6320         struct extent_buffer *leaf;
6321         struct btrfs_root *root = BTRFS_I(inode)->root;
6322         struct btrfs_file_extent_item *fi;
6323         struct btrfs_key key;
6324         u64 disk_bytenr;
6325         u64 backref_offset;
6326         u64 extent_end;
6327         u64 num_bytes;
6328         int slot;
6329         int found_type;
6330         bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6331         path = btrfs_alloc_path();
6332         if (!path)
6333                 return -ENOMEM;
6334
6335         ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
6336                                        offset, 0);
6337         if (ret < 0)
6338                 goto out;
6339
6340         slot = path->slots[0];
6341         if (ret == 1) {
6342                 if (slot == 0) {
6343                         /* can't find the item, must cow */
6344                         ret = 0;
6345                         goto out;
6346                 }
6347                 slot--;
6348         }
6349         ret = 0;
6350         leaf = path->nodes[0];
6351         btrfs_item_key_to_cpu(leaf, &key, slot);
6352         if (key.objectid != btrfs_ino(inode) ||
6353             key.type != BTRFS_EXTENT_DATA_KEY) {
6354                 /* not our file or wrong item type, must cow */
6355                 goto out;
6356         }
6357
6358         if (key.offset > offset) {
6359                 /* Wrong offset, must cow */
6360                 goto out;
6361         }
6362
6363         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6364         found_type = btrfs_file_extent_type(leaf, fi);
6365         if (found_type != BTRFS_FILE_EXTENT_REG &&
6366             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6367                 /* not a regular extent, must cow */
6368                 goto out;
6369         }
6370
6371         if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6372                 goto out;
6373
6374         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6375         if (disk_bytenr == 0)
6376                 goto out;
6377
6378         if (btrfs_file_extent_compression(leaf, fi) ||
6379             btrfs_file_extent_encryption(leaf, fi) ||
6380             btrfs_file_extent_other_encoding(leaf, fi))
6381                 goto out;
6382
6383         backref_offset = btrfs_file_extent_offset(leaf, fi);
6384
6385         if (orig_start) {
6386                 *orig_start = key.offset - backref_offset;
6387                 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6388                 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6389         }
6390
6391         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6392
6393         if (btrfs_extent_readonly(root, disk_bytenr))
6394                 goto out;
6395
6396         /*
6397          * look for other files referencing this extent, if we
6398          * find any we must cow
6399          */
6400         trans = btrfs_join_transaction(root);
6401         if (IS_ERR(trans)) {
6402                 ret = 0;
6403                 goto out;
6404         }
6405
6406         ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6407                                     key.offset - backref_offset, disk_bytenr);
6408         btrfs_end_transaction(trans, root);
6409         if (ret) {
6410                 ret = 0;
6411                 goto out;
6412         }
6413
6414         /*
6415          * adjust disk_bytenr and num_bytes to cover just the bytes
6416          * in this extent we are about to write.  If there
6417          * are any csums in that range we have to cow in order
6418          * to keep the csums correct
6419          */
6420         disk_bytenr += backref_offset;
6421         disk_bytenr += offset - key.offset;
6422         num_bytes = min(offset + *len, extent_end) - offset;
6423         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6424                                 goto out;
6425         /*
6426          * all of the above have passed, it is safe to overwrite this extent
6427          * without cow
6428          */
6429         *len = num_bytes;
6430         ret = 1;
6431 out:
6432         btrfs_free_path(path);
6433         return ret;
6434 }
6435
6436 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6437                               struct extent_state **cached_state, int writing)
6438 {
6439         struct btrfs_ordered_extent *ordered;
6440         int ret = 0;
6441
6442         while (1) {
6443                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6444                                  0, cached_state);
6445                 /*
6446                  * We're concerned with the entire range that we're going to be
6447                  * doing DIO to, so we need to make sure theres no ordered
6448                  * extents in this range.
6449                  */
6450                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6451                                                      lockend - lockstart + 1);
6452
6453                 /*
6454                  * We need to make sure there are no buffered pages in this
6455                  * range either, we could have raced between the invalidate in
6456                  * generic_file_direct_write and locking the extent.  The
6457                  * invalidate needs to happen so that reads after a write do not
6458                  * get stale data.
6459                  */
6460                 if (!ordered && (!writing ||
6461                     !test_range_bit(&BTRFS_I(inode)->io_tree,
6462                                     lockstart, lockend, EXTENT_UPTODATE, 0,
6463                                     *cached_state)))
6464                         break;
6465
6466                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6467                                      cached_state, GFP_NOFS);
6468
6469                 if (ordered) {
6470                         btrfs_start_ordered_extent(inode, ordered, 1);
6471                         btrfs_put_ordered_extent(ordered);
6472                 } else {
6473                         /* Screw you mmap */
6474                         ret = filemap_write_and_wait_range(inode->i_mapping,
6475                                                            lockstart,
6476                                                            lockend);
6477                         if (ret)
6478                                 break;
6479
6480                         /*
6481                          * If we found a page that couldn't be invalidated just
6482                          * fall back to buffered.
6483                          */
6484                         ret = invalidate_inode_pages2_range(inode->i_mapping,
6485                                         lockstart >> PAGE_CACHE_SHIFT,
6486                                         lockend >> PAGE_CACHE_SHIFT);
6487                         if (ret)
6488                                 break;
6489                 }
6490
6491                 cond_resched();
6492         }
6493
6494         return ret;
6495 }
6496
6497 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6498                                            u64 len, u64 orig_start,
6499                                            u64 block_start, u64 block_len,
6500                                            u64 orig_block_len, u64 ram_bytes,
6501                                            int type)
6502 {
6503         struct extent_map_tree *em_tree;
6504         struct extent_map *em;
6505         struct btrfs_root *root = BTRFS_I(inode)->root;
6506         int ret;
6507
6508         em_tree = &BTRFS_I(inode)->extent_tree;
6509         em = alloc_extent_map();
6510         if (!em)
6511                 return ERR_PTR(-ENOMEM);
6512
6513         em->start = start;
6514         em->orig_start = orig_start;
6515         em->mod_start = start;
6516         em->mod_len = len;
6517         em->len = len;
6518         em->block_len = block_len;
6519         em->block_start = block_start;
6520         em->bdev = root->fs_info->fs_devices->latest_bdev;
6521         em->orig_block_len = orig_block_len;
6522         em->ram_bytes = ram_bytes;
6523         em->generation = -1;
6524         set_bit(EXTENT_FLAG_PINNED, &em->flags);
6525         if (type == BTRFS_ORDERED_PREALLOC)
6526                 set_bit(EXTENT_FLAG_FILLING, &em->flags);
6527
6528         do {
6529                 btrfs_drop_extent_cache(inode, em->start,
6530                                 em->start + em->len - 1, 0);
6531                 write_lock(&em_tree->lock);
6532                 ret = add_extent_mapping(em_tree, em, 1);
6533                 write_unlock(&em_tree->lock);
6534         } while (ret == -EEXIST);
6535
6536         if (ret) {
6537                 free_extent_map(em);
6538                 return ERR_PTR(ret);
6539         }
6540
6541         return em;
6542 }
6543
6544
6545 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6546                                    struct buffer_head *bh_result, int create)
6547 {
6548         struct extent_map *em;
6549         struct btrfs_root *root = BTRFS_I(inode)->root;
6550         struct extent_state *cached_state = NULL;
6551         u64 start = iblock << inode->i_blkbits;
6552         u64 lockstart, lockend;
6553         u64 len = bh_result->b_size;
6554         int unlock_bits = EXTENT_LOCKED;
6555         int ret = 0;
6556
6557         if (create)
6558                 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
6559         else
6560                 len = min_t(u64, len, root->sectorsize);
6561
6562         lockstart = start;
6563         lockend = start + len - 1;
6564
6565         /*
6566          * If this errors out it's because we couldn't invalidate pagecache for
6567          * this range and we need to fallback to buffered.
6568          */
6569         if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6570                 return -ENOTBLK;
6571
6572         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
6573         if (IS_ERR(em)) {
6574                 ret = PTR_ERR(em);
6575                 goto unlock_err;
6576         }
6577
6578         /*
6579          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6580          * io.  INLINE is special, and we could probably kludge it in here, but
6581          * it's still buffered so for safety lets just fall back to the generic
6582          * buffered path.
6583          *
6584          * For COMPRESSED we _have_ to read the entire extent in so we can
6585          * decompress it, so there will be buffering required no matter what we
6586          * do, so go ahead and fallback to buffered.
6587          *
6588          * We return -ENOTBLK because thats what makes DIO go ahead and go back
6589          * to buffered IO.  Don't blame me, this is the price we pay for using
6590          * the generic code.
6591          */
6592         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6593             em->block_start == EXTENT_MAP_INLINE) {
6594                 free_extent_map(em);
6595                 ret = -ENOTBLK;
6596                 goto unlock_err;
6597         }
6598
6599         /* Just a good old fashioned hole, return */
6600         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6601                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6602                 free_extent_map(em);
6603                 goto unlock_err;
6604         }
6605
6606         /*
6607          * We don't allocate a new extent in the following cases
6608          *
6609          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
6610          * existing extent.
6611          * 2) The extent is marked as PREALLOC.  We're good to go here and can
6612          * just use the extent.
6613          *
6614          */
6615         if (!create) {
6616                 len = min(len, em->len - (start - em->start));
6617                 lockstart = start + len;
6618                 goto unlock;
6619         }
6620
6621         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6622             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6623              em->block_start != EXTENT_MAP_HOLE)) {
6624                 int type;
6625                 int ret;
6626                 u64 block_start, orig_start, orig_block_len, ram_bytes;
6627
6628                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6629                         type = BTRFS_ORDERED_PREALLOC;
6630                 else
6631                         type = BTRFS_ORDERED_NOCOW;
6632                 len = min(len, em->len - (start - em->start));
6633                 block_start = em->block_start + (start - em->start);
6634
6635                 if (can_nocow_extent(inode, start, &len, &orig_start,
6636                                      &orig_block_len, &ram_bytes) == 1) {
6637                         if (type == BTRFS_ORDERED_PREALLOC) {
6638                                 free_extent_map(em);
6639                                 em = create_pinned_em(inode, start, len,
6640                                                        orig_start,
6641                                                        block_start, len,
6642                                                        orig_block_len,
6643                                                        ram_bytes, type);
6644                                 if (IS_ERR(em))
6645                                         goto unlock_err;
6646                         }
6647
6648                         ret = btrfs_add_ordered_extent_dio(inode, start,
6649                                            block_start, len, len, type);
6650                         if (ret) {
6651                                 free_extent_map(em);
6652                                 goto unlock_err;
6653                         }
6654                         goto unlock;
6655                 }
6656         }
6657
6658         /*
6659          * this will cow the extent, reset the len in case we changed
6660          * it above
6661          */
6662         len = bh_result->b_size;
6663         free_extent_map(em);
6664         em = btrfs_new_extent_direct(inode, start, len);
6665         if (IS_ERR(em)) {
6666                 ret = PTR_ERR(em);
6667                 goto unlock_err;
6668         }
6669         len = min(len, em->len - (start - em->start));
6670 unlock:
6671         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6672                 inode->i_blkbits;
6673         bh_result->b_size = len;
6674         bh_result->b_bdev = em->bdev;
6675         set_buffer_mapped(bh_result);
6676         if (create) {
6677                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6678                         set_buffer_new(bh_result);
6679
6680                 /*
6681                  * Need to update the i_size under the extent lock so buffered
6682                  * readers will get the updated i_size when we unlock.
6683                  */
6684                 if (start + len > i_size_read(inode))
6685                         i_size_write(inode, start + len);
6686
6687                 spin_lock(&BTRFS_I(inode)->lock);
6688                 BTRFS_I(inode)->outstanding_extents++;
6689                 spin_unlock(&BTRFS_I(inode)->lock);
6690
6691                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6692                                      lockstart + len - 1, EXTENT_DELALLOC, NULL,
6693                                      &cached_state, GFP_NOFS);
6694                 BUG_ON(ret);
6695         }
6696
6697         /*
6698          * In the case of write we need to clear and unlock the entire range,
6699          * in the case of read we need to unlock only the end area that we
6700          * aren't using if there is any left over space.
6701          */
6702         if (lockstart < lockend) {
6703                 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6704                                  lockend, unlock_bits, 1, 0,
6705                                  &cached_state, GFP_NOFS);
6706         } else {
6707                 free_extent_state(cached_state);
6708         }
6709
6710         free_extent_map(em);
6711
6712         return 0;
6713
6714 unlock_err:
6715         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6716                          unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6717         return ret;
6718 }
6719
6720 static void btrfs_endio_direct_read(struct bio *bio, int err)
6721 {
6722         struct btrfs_dio_private *dip = bio->bi_private;
6723         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6724         struct bio_vec *bvec = bio->bi_io_vec;
6725         struct inode *inode = dip->inode;
6726         struct btrfs_root *root = BTRFS_I(inode)->root;
6727         struct bio *dio_bio;
6728         u32 *csums = (u32 *)dip->csum;
6729         int index = 0;
6730         u64 start;
6731
6732         start = dip->logical_offset;
6733         do {
6734                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6735                         struct page *page = bvec->bv_page;
6736                         char *kaddr;
6737                         u32 csum = ~(u32)0;
6738                         unsigned long flags;
6739
6740                         local_irq_save(flags);
6741                         kaddr = kmap_atomic(page);
6742                         csum = btrfs_csum_data(kaddr + bvec->bv_offset,
6743                                                csum, bvec->bv_len);
6744                         btrfs_csum_final(csum, (char *)&csum);
6745                         kunmap_atomic(kaddr);
6746                         local_irq_restore(flags);
6747
6748                         flush_dcache_page(bvec->bv_page);
6749                         if (csum != csums[index]) {
6750                                 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
6751                                           btrfs_ino(inode), start, csum,
6752                                           csums[index]);
6753                                 err = -EIO;
6754                         }
6755                 }
6756
6757                 start += bvec->bv_len;
6758                 bvec++;
6759                 index++;
6760         } while (bvec <= bvec_end);
6761
6762         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6763                       dip->logical_offset + dip->bytes - 1);
6764         dio_bio = dip->dio_bio;
6765
6766         kfree(dip);
6767
6768         /* If we had a csum failure make sure to clear the uptodate flag */
6769         if (err)
6770                 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6771         dio_end_io(dio_bio, err);
6772         bio_put(bio);
6773 }
6774
6775 static void btrfs_endio_direct_write(struct bio *bio, int err)
6776 {
6777         struct btrfs_dio_private *dip = bio->bi_private;
6778         struct inode *inode = dip->inode;
6779         struct btrfs_root *root = BTRFS_I(inode)->root;
6780         struct btrfs_ordered_extent *ordered = NULL;
6781         u64 ordered_offset = dip->logical_offset;
6782         u64 ordered_bytes = dip->bytes;
6783         struct bio *dio_bio;
6784         int ret;
6785
6786         if (err)
6787                 goto out_done;
6788 again:
6789         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6790                                                    &ordered_offset,
6791                                                    ordered_bytes, !err);
6792         if (!ret)
6793                 goto out_test;
6794
6795         ordered->work.func = finish_ordered_fn;
6796         ordered->work.flags = 0;
6797         btrfs_queue_worker(&root->fs_info->endio_write_workers,
6798                            &ordered->work);
6799 out_test:
6800         /*
6801          * our bio might span multiple ordered extents.  If we haven't
6802          * completed the accounting for the whole dio, go back and try again
6803          */
6804         if (ordered_offset < dip->logical_offset + dip->bytes) {
6805                 ordered_bytes = dip->logical_offset + dip->bytes -
6806                         ordered_offset;
6807                 ordered = NULL;
6808                 goto again;
6809         }
6810 out_done:
6811         dio_bio = dip->dio_bio;
6812
6813         kfree(dip);
6814
6815         /* If we had an error make sure to clear the uptodate flag */
6816         if (err)
6817                 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6818         dio_end_io(dio_bio, err);
6819         bio_put(bio);
6820 }
6821
6822 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6823                                     struct bio *bio, int mirror_num,
6824                                     unsigned long bio_flags, u64 offset)
6825 {
6826         int ret;
6827         struct btrfs_root *root = BTRFS_I(inode)->root;
6828         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6829         BUG_ON(ret); /* -ENOMEM */
6830         return 0;
6831 }
6832
6833 static void btrfs_end_dio_bio(struct bio *bio, int err)
6834 {
6835         struct btrfs_dio_private *dip = bio->bi_private;
6836
6837         if (err) {
6838                 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6839                       "sector %#Lx len %u err no %d\n",
6840                       btrfs_ino(dip->inode), bio->bi_rw,
6841                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
6842                 dip->errors = 1;
6843
6844                 /*
6845                  * before atomic variable goto zero, we must make sure
6846                  * dip->errors is perceived to be set.
6847                  */
6848                 smp_mb__before_atomic_dec();
6849         }
6850
6851         /* if there are more bios still pending for this dio, just exit */
6852         if (!atomic_dec_and_test(&dip->pending_bios))
6853                 goto out;
6854
6855         if (dip->errors) {
6856                 bio_io_error(dip->orig_bio);
6857         } else {
6858                 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
6859                 bio_endio(dip->orig_bio, 0);
6860         }
6861 out:
6862         bio_put(bio);
6863 }
6864
6865 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6866                                        u64 first_sector, gfp_t gfp_flags)
6867 {
6868         int nr_vecs = bio_get_nr_vecs(bdev);
6869         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6870 }
6871
6872 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6873                                          int rw, u64 file_offset, int skip_sum,
6874                                          int async_submit)
6875 {
6876         struct btrfs_dio_private *dip = bio->bi_private;
6877         int write = rw & REQ_WRITE;
6878         struct btrfs_root *root = BTRFS_I(inode)->root;
6879         int ret;
6880
6881         if (async_submit)
6882                 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
6883
6884         bio_get(bio);
6885
6886         if (!write) {
6887                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6888                 if (ret)
6889                         goto err;
6890         }
6891
6892         if (skip_sum)
6893                 goto map;
6894
6895         if (write && async_submit) {
6896                 ret = btrfs_wq_submit_bio(root->fs_info,
6897                                    inode, rw, bio, 0, 0,
6898                                    file_offset,
6899                                    __btrfs_submit_bio_start_direct_io,
6900                                    __btrfs_submit_bio_done);
6901                 goto err;
6902         } else if (write) {
6903                 /*
6904                  * If we aren't doing async submit, calculate the csum of the
6905                  * bio now.
6906                  */
6907                 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6908                 if (ret)
6909                         goto err;
6910         } else if (!skip_sum) {
6911                 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
6912                                                 file_offset);
6913                 if (ret)
6914                         goto err;
6915         }
6916
6917 map:
6918         ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6919 err:
6920         bio_put(bio);
6921         return ret;
6922 }
6923
6924 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6925                                     int skip_sum)
6926 {
6927         struct inode *inode = dip->inode;
6928         struct btrfs_root *root = BTRFS_I(inode)->root;
6929         struct bio *bio;
6930         struct bio *orig_bio = dip->orig_bio;
6931         struct bio_vec *bvec = orig_bio->bi_io_vec;
6932         u64 start_sector = orig_bio->bi_sector;
6933         u64 file_offset = dip->logical_offset;
6934         u64 submit_len = 0;
6935         u64 map_length;
6936         int nr_pages = 0;
6937         int ret = 0;
6938         int async_submit = 0;
6939
6940         map_length = orig_bio->bi_size;
6941         ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
6942                               &map_length, NULL, 0);
6943         if (ret) {
6944                 bio_put(orig_bio);
6945                 return -EIO;
6946         }
6947
6948         if (map_length >= orig_bio->bi_size) {
6949                 bio = orig_bio;
6950                 goto submit;
6951         }
6952
6953         /* async crcs make it difficult to collect full stripe writes. */
6954         if (btrfs_get_alloc_profile(root, 1) &
6955             (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
6956                 async_submit = 0;
6957         else
6958                 async_submit = 1;
6959
6960         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6961         if (!bio)
6962                 return -ENOMEM;
6963         bio->bi_private = dip;
6964         bio->bi_end_io = btrfs_end_dio_bio;
6965         atomic_inc(&dip->pending_bios);
6966
6967         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6968                 if (unlikely(map_length < submit_len + bvec->bv_len ||
6969                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6970                                  bvec->bv_offset) < bvec->bv_len)) {
6971                         /*
6972                          * inc the count before we submit the bio so
6973                          * we know the end IO handler won't happen before
6974                          * we inc the count. Otherwise, the dip might get freed
6975                          * before we're done setting it up
6976                          */
6977                         atomic_inc(&dip->pending_bios);
6978                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
6979                                                      file_offset, skip_sum,
6980                                                      async_submit);
6981                         if (ret) {
6982                                 bio_put(bio);
6983                                 atomic_dec(&dip->pending_bios);
6984                                 goto out_err;
6985                         }
6986
6987                         start_sector += submit_len >> 9;
6988                         file_offset += submit_len;
6989
6990                         submit_len = 0;
6991                         nr_pages = 0;
6992
6993                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6994                                                   start_sector, GFP_NOFS);
6995                         if (!bio)
6996                                 goto out_err;
6997                         bio->bi_private = dip;
6998                         bio->bi_end_io = btrfs_end_dio_bio;
6999
7000                         map_length = orig_bio->bi_size;
7001                         ret = btrfs_map_block(root->fs_info, rw,
7002                                               start_sector << 9,
7003                                               &map_length, NULL, 0);
7004                         if (ret) {
7005                                 bio_put(bio);
7006                                 goto out_err;
7007                         }
7008                 } else {
7009                         submit_len += bvec->bv_len;
7010                         nr_pages ++;
7011                         bvec++;
7012                 }
7013         }
7014
7015 submit:
7016         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7017                                      async_submit);
7018         if (!ret)
7019                 return 0;
7020
7021         bio_put(bio);
7022 out_err:
7023         dip->errors = 1;
7024         /*
7025          * before atomic variable goto zero, we must
7026          * make sure dip->errors is perceived to be set.
7027          */
7028         smp_mb__before_atomic_dec();
7029         if (atomic_dec_and_test(&dip->pending_bios))
7030                 bio_io_error(dip->orig_bio);
7031
7032         /* bio_end_io() will handle error, so we needn't return it */
7033         return 0;
7034 }
7035
7036 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7037                                 struct inode *inode, loff_t file_offset)
7038 {
7039         struct btrfs_root *root = BTRFS_I(inode)->root;
7040         struct btrfs_dio_private *dip;
7041         struct bio *io_bio;
7042         int skip_sum;
7043         int sum_len;
7044         int write = rw & REQ_WRITE;
7045         int ret = 0;
7046         u16 csum_size;
7047
7048         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7049
7050         io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7051         if (!io_bio) {
7052                 ret = -ENOMEM;
7053                 goto free_ordered;
7054         }
7055
7056         if (!skip_sum && !write) {
7057                 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
7058                 sum_len = dio_bio->bi_size >> inode->i_sb->s_blocksize_bits;
7059                 sum_len *= csum_size;
7060         } else {
7061                 sum_len = 0;
7062         }
7063
7064         dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
7065         if (!dip) {
7066                 ret = -ENOMEM;
7067                 goto free_io_bio;
7068         }
7069
7070         dip->private = dio_bio->bi_private;
7071         dip->inode = inode;
7072         dip->logical_offset = file_offset;
7073         dip->bytes = dio_bio->bi_size;
7074         dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7075         io_bio->bi_private = dip;
7076         dip->errors = 0;
7077         dip->orig_bio = io_bio;
7078         dip->dio_bio = dio_bio;
7079         atomic_set(&dip->pending_bios, 0);
7080
7081         if (write)
7082                 io_bio->bi_end_io = btrfs_endio_direct_write;
7083         else
7084                 io_bio->bi_end_io = btrfs_endio_direct_read;
7085
7086         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7087         if (!ret)
7088                 return;
7089
7090 free_io_bio:
7091         bio_put(io_bio);
7092
7093 free_ordered:
7094         /*
7095          * If this is a write, we need to clean up the reserved space and kill
7096          * the ordered extent.
7097          */
7098         if (write) {
7099                 struct btrfs_ordered_extent *ordered;
7100                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7101                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7102                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7103                         btrfs_free_reserved_extent(root, ordered->start,
7104                                                    ordered->disk_len);
7105                 btrfs_put_ordered_extent(ordered);
7106                 btrfs_put_ordered_extent(ordered);
7107         }
7108         bio_endio(dio_bio, ret);
7109 }
7110
7111 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7112                         const struct iovec *iov, loff_t offset,
7113                         unsigned long nr_segs)
7114 {
7115         int seg;
7116         int i;
7117         size_t size;
7118         unsigned long addr;
7119         unsigned blocksize_mask = root->sectorsize - 1;
7120         ssize_t retval = -EINVAL;
7121         loff_t end = offset;
7122
7123         if (offset & blocksize_mask)
7124                 goto out;
7125
7126         /* Check the memory alignment.  Blocks cannot straddle pages */
7127         for (seg = 0; seg < nr_segs; seg++) {
7128                 addr = (unsigned long)iov[seg].iov_base;
7129                 size = iov[seg].iov_len;
7130                 end += size;
7131                 if ((addr & blocksize_mask) || (size & blocksize_mask))
7132                         goto out;
7133
7134                 /* If this is a write we don't need to check anymore */
7135                 if (rw & WRITE)
7136                         continue;
7137
7138                 /*
7139                  * Check to make sure we don't have duplicate iov_base's in this
7140                  * iovec, if so return EINVAL, otherwise we'll get csum errors
7141                  * when reading back.
7142                  */
7143                 for (i = seg + 1; i < nr_segs; i++) {
7144                         if (iov[seg].iov_base == iov[i].iov_base)
7145                                 goto out;
7146                 }
7147         }
7148         retval = 0;
7149 out:
7150         return retval;
7151 }
7152
7153 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7154                         const struct iovec *iov, loff_t offset,
7155                         unsigned long nr_segs)
7156 {
7157         struct file *file = iocb->ki_filp;
7158         struct inode *inode = file->f_mapping->host;
7159         size_t count = 0;
7160         int flags = 0;
7161         bool wakeup = true;
7162         bool relock = false;
7163         ssize_t ret;
7164
7165         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
7166                             offset, nr_segs))
7167                 return 0;
7168
7169         atomic_inc(&inode->i_dio_count);
7170         smp_mb__after_atomic_inc();
7171
7172         /*
7173          * The generic stuff only does filemap_write_and_wait_range, which isn't
7174          * enough if we've written compressed pages to this area, so we need to
7175          * call btrfs_wait_ordered_range to make absolutely sure that any
7176          * outstanding dirty pages are on disk.
7177          */
7178         count = iov_length(iov, nr_segs);
7179         btrfs_wait_ordered_range(inode, offset, count);
7180
7181         if (rw & WRITE) {
7182                 /*
7183                  * If the write DIO is beyond the EOF, we need update
7184                  * the isize, but it is protected by i_mutex. So we can
7185                  * not unlock the i_mutex at this case.
7186                  */
7187                 if (offset + count <= inode->i_size) {
7188                         mutex_unlock(&inode->i_mutex);
7189                         relock = true;
7190                 }
7191                 ret = btrfs_delalloc_reserve_space(inode, count);
7192                 if (ret)
7193                         goto out;
7194         } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7195                                      &BTRFS_I(inode)->runtime_flags))) {
7196                 inode_dio_done(inode);
7197                 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7198                 wakeup = false;
7199         }
7200
7201         ret = __blockdev_direct_IO(rw, iocb, inode,
7202                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7203                         iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
7204                         btrfs_submit_direct, flags);
7205         if (rw & WRITE) {
7206                 if (ret < 0 && ret != -EIOCBQUEUED)
7207                         btrfs_delalloc_release_space(inode, count);
7208                 else if (ret >= 0 && (size_t)ret < count)
7209                         btrfs_delalloc_release_space(inode,
7210                                                      count - (size_t)ret);
7211                 else
7212                         btrfs_delalloc_release_metadata(inode, 0);
7213         }
7214 out:
7215         if (wakeup)
7216                 inode_dio_done(inode);
7217         if (relock)
7218                 mutex_lock(&inode->i_mutex);
7219
7220         return ret;
7221 }
7222
7223 #define BTRFS_FIEMAP_FLAGS      (FIEMAP_FLAG_SYNC)
7224
7225 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7226                 __u64 start, __u64 len)
7227 {
7228         int     ret;
7229
7230         ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7231         if (ret)
7232                 return ret;
7233
7234         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
7235 }
7236
7237 int btrfs_readpage(struct file *file, struct page *page)
7238 {
7239         struct extent_io_tree *tree;
7240         tree = &BTRFS_I(page->mapping->host)->io_tree;
7241         return extent_read_full_page(tree, page, btrfs_get_extent, 0);
7242 }
7243
7244 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
7245 {
7246         struct extent_io_tree *tree;
7247
7248
7249         if (current->flags & PF_MEMALLOC) {
7250                 redirty_page_for_writepage(wbc, page);
7251                 unlock_page(page);
7252                 return 0;
7253         }
7254         tree = &BTRFS_I(page->mapping->host)->io_tree;
7255         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
7256 }
7257
7258 static int btrfs_writepages(struct address_space *mapping,
7259                             struct writeback_control *wbc)
7260 {
7261         struct extent_io_tree *tree;
7262
7263         tree = &BTRFS_I(mapping->host)->io_tree;
7264         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7265 }
7266
7267 static int
7268 btrfs_readpages(struct file *file, struct address_space *mapping,
7269                 struct list_head *pages, unsigned nr_pages)
7270 {
7271         struct extent_io_tree *tree;
7272         tree = &BTRFS_I(mapping->host)->io_tree;
7273         return extent_readpages(tree, mapping, pages, nr_pages,
7274                                 btrfs_get_extent);
7275 }
7276 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7277 {
7278         struct extent_io_tree *tree;
7279         struct extent_map_tree *map;
7280         int ret;
7281
7282         tree = &BTRFS_I(page->mapping->host)->io_tree;
7283         map = &BTRFS_I(page->mapping->host)->extent_tree;
7284         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
7285         if (ret == 1) {
7286                 ClearPagePrivate(page);
7287                 set_page_private(page, 0);
7288                 page_cache_release(page);
7289         }
7290         return ret;
7291 }
7292
7293 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7294 {
7295         if (PageWriteback(page) || PageDirty(page))
7296                 return 0;
7297         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
7298 }
7299
7300 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7301                                  unsigned int length)
7302 {
7303         struct inode *inode = page->mapping->host;
7304         struct extent_io_tree *tree;
7305         struct btrfs_ordered_extent *ordered;
7306         struct extent_state *cached_state = NULL;
7307         u64 page_start = page_offset(page);
7308         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
7309
7310         /*
7311          * we have the page locked, so new writeback can't start,
7312          * and the dirty bit won't be cleared while we are here.
7313          *
7314          * Wait for IO on this page so that we can safely clear
7315          * the PagePrivate2 bit and do ordered accounting
7316          */
7317         wait_on_page_writeback(page);
7318
7319         tree = &BTRFS_I(inode)->io_tree;
7320         if (offset) {
7321                 btrfs_releasepage(page, GFP_NOFS);
7322                 return;
7323         }
7324         lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7325         ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
7326         if (ordered) {
7327                 /*
7328                  * IO on this page will never be started, so we need
7329                  * to account for any ordered extents now
7330                  */
7331                 clear_extent_bit(tree, page_start, page_end,
7332                                  EXTENT_DIRTY | EXTENT_DELALLOC |
7333                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7334                                  EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
7335                 /*
7336                  * whoever cleared the private bit is responsible
7337                  * for the finish_ordered_io
7338                  */
7339                 if (TestClearPagePrivate2(page) &&
7340                     btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
7341                                                    PAGE_CACHE_SIZE, 1)) {
7342                         btrfs_finish_ordered_io(ordered);
7343                 }
7344                 btrfs_put_ordered_extent(ordered);
7345                 cached_state = NULL;
7346                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7347         }
7348         clear_extent_bit(tree, page_start, page_end,
7349                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
7350                  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
7351                  &cached_state, GFP_NOFS);
7352         __btrfs_releasepage(page, GFP_NOFS);
7353
7354         ClearPageChecked(page);
7355         if (PagePrivate(page)) {
7356                 ClearPagePrivate(page);
7357                 set_page_private(page, 0);
7358                 page_cache_release(page);
7359         }
7360 }
7361
7362 /*
7363  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7364  * called from a page fault handler when a page is first dirtied. Hence we must
7365  * be careful to check for EOF conditions here. We set the page up correctly
7366  * for a written page which means we get ENOSPC checking when writing into
7367  * holes and correct delalloc and unwritten extent mapping on filesystems that
7368  * support these features.
7369  *
7370  * We are not allowed to take the i_mutex here so we have to play games to
7371  * protect against truncate races as the page could now be beyond EOF.  Because
7372  * vmtruncate() writes the inode size before removing pages, once we have the
7373  * page lock we can determine safely if the page is beyond EOF. If it is not
7374  * beyond EOF, then the page is guaranteed safe against truncation until we
7375  * unlock the page.
7376  */
7377 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
7378 {
7379         struct page *page = vmf->page;
7380         struct inode *inode = file_inode(vma->vm_file);
7381         struct btrfs_root *root = BTRFS_I(inode)->root;
7382         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7383         struct btrfs_ordered_extent *ordered;
7384         struct extent_state *cached_state = NULL;
7385         char *kaddr;
7386         unsigned long zero_start;
7387         loff_t size;
7388         int ret;
7389         int reserved = 0;
7390         u64 page_start;
7391         u64 page_end;
7392
7393         sb_start_pagefault(inode->i_sb);
7394         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
7395         if (!ret) {
7396                 ret = file_update_time(vma->vm_file);
7397                 reserved = 1;
7398         }
7399         if (ret) {
7400                 if (ret == -ENOMEM)
7401                         ret = VM_FAULT_OOM;
7402                 else /* -ENOSPC, -EIO, etc */
7403                         ret = VM_FAULT_SIGBUS;
7404                 if (reserved)
7405                         goto out;
7406                 goto out_noreserve;
7407         }
7408
7409         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
7410 again:
7411         lock_page(page);
7412         size = i_size_read(inode);
7413         page_start = page_offset(page);
7414         page_end = page_start + PAGE_CACHE_SIZE - 1;
7415
7416         if ((page->mapping != inode->i_mapping) ||
7417             (page_start >= size)) {
7418                 /* page got truncated out from underneath us */
7419                 goto out_unlock;
7420         }
7421         wait_on_page_writeback(page);
7422
7423         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
7424         set_page_extent_mapped(page);
7425
7426         /*
7427          * we can't set the delalloc bits if there are pending ordered
7428          * extents.  Drop our locks and wait for them to finish
7429          */
7430         ordered = btrfs_lookup_ordered_extent(inode, page_start);
7431         if (ordered) {
7432                 unlock_extent_cached(io_tree, page_start, page_end,
7433                                      &cached_state, GFP_NOFS);
7434                 unlock_page(page);
7435                 btrfs_start_ordered_extent(inode, ordered, 1);
7436                 btrfs_put_ordered_extent(ordered);
7437                 goto again;
7438         }
7439
7440         /*
7441          * XXX - page_mkwrite gets called every time the page is dirtied, even
7442          * if it was already dirty, so for space accounting reasons we need to
7443          * clear any delalloc bits for the range we are fixing to save.  There
7444          * is probably a better way to do this, but for now keep consistent with
7445          * prepare_pages in the normal write path.
7446          */
7447         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
7448                           EXTENT_DIRTY | EXTENT_DELALLOC |
7449                           EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
7450                           0, 0, &cached_state, GFP_NOFS);
7451
7452         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7453                                         &cached_state);
7454         if (ret) {
7455                 unlock_extent_cached(io_tree, page_start, page_end,
7456                                      &cached_state, GFP_NOFS);
7457                 ret = VM_FAULT_SIGBUS;
7458                 goto out_unlock;
7459         }
7460         ret = 0;
7461
7462         /* page is wholly or partially inside EOF */
7463         if (page_start + PAGE_CACHE_SIZE > size)
7464                 zero_start = size & ~PAGE_CACHE_MASK;
7465         else
7466                 zero_start = PAGE_CACHE_SIZE;
7467
7468         if (zero_start != PAGE_CACHE_SIZE) {
7469                 kaddr = kmap(page);
7470                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7471                 flush_dcache_page(page);
7472                 kunmap(page);
7473         }
7474         ClearPageChecked(page);
7475         set_page_dirty(page);
7476         SetPageUptodate(page);
7477
7478         BTRFS_I(inode)->last_trans = root->fs_info->generation;
7479         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
7480         BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
7481
7482         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
7483
7484 out_unlock:
7485         if (!ret) {
7486                 sb_end_pagefault(inode->i_sb);
7487                 return VM_FAULT_LOCKED;
7488         }
7489         unlock_page(page);
7490 out:
7491         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
7492 out_noreserve:
7493         sb_end_pagefault(inode->i_sb);
7494         return ret;
7495 }
7496
7497 static int btrfs_truncate(struct inode *inode)
7498 {
7499         struct btrfs_root *root = BTRFS_I(inode)->root;
7500         struct btrfs_block_rsv *rsv;
7501         int ret = 0;
7502         int err = 0;
7503         struct btrfs_trans_handle *trans;
7504         u64 mask = root->sectorsize - 1;
7505         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
7506
7507         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
7508         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
7509
7510         /*
7511          * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
7512          * 3 things going on here
7513          *
7514          * 1) We need to reserve space for our orphan item and the space to
7515          * delete our orphan item.  Lord knows we don't want to have a dangling
7516          * orphan item because we didn't reserve space to remove it.
7517          *
7518          * 2) We need to reserve space to update our inode.
7519          *
7520          * 3) We need to have something to cache all the space that is going to
7521          * be free'd up by the truncate operation, but also have some slack
7522          * space reserved in case it uses space during the truncate (thank you
7523          * very much snapshotting).
7524          *
7525          * And we need these to all be seperate.  The fact is we can use alot of
7526          * space doing the truncate, and we have no earthly idea how much space
7527          * we will use, so we need the truncate reservation to be seperate so it
7528          * doesn't end up using space reserved for updating the inode or
7529          * removing the orphan item.  We also need to be able to stop the
7530          * transaction and start a new one, which means we need to be able to
7531          * update the inode several times, and we have no idea of knowing how
7532          * many times that will be, so we can't just reserve 1 item for the
7533          * entirety of the opration, so that has to be done seperately as well.
7534          * Then there is the orphan item, which does indeed need to be held on
7535          * to for the whole operation, and we need nobody to touch this reserved
7536          * space except the orphan code.
7537          *
7538          * So that leaves us with
7539          *
7540          * 1) root->orphan_block_rsv - for the orphan deletion.
7541          * 2) rsv - for the truncate reservation, which we will steal from the
7542          * transaction reservation.
7543          * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7544          * updating the inode.
7545          */
7546         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
7547         if (!rsv)
7548                 return -ENOMEM;
7549         rsv->size = min_size;
7550         rsv->failfast = 1;
7551
7552         /*
7553          * 1 for the truncate slack space
7554          * 1 for updating the inode.
7555          */
7556         trans = btrfs_start_transaction(root, 2);
7557         if (IS_ERR(trans)) {
7558                 err = PTR_ERR(trans);
7559                 goto out;
7560         }
7561
7562         /* Migrate the slack space for the truncate to our reserve */
7563         ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7564                                       min_size);
7565         BUG_ON(ret);
7566
7567         /*
7568          * setattr is responsible for setting the ordered_data_close flag,
7569          * but that is only tested during the last file release.  That
7570          * could happen well after the next commit, leaving a great big
7571          * window where new writes may get lost if someone chooses to write
7572          * to this file after truncating to zero
7573          *
7574          * The inode doesn't have any dirty data here, and so if we commit
7575          * this is a noop.  If someone immediately starts writing to the inode
7576          * it is very likely we'll catch some of their writes in this
7577          * transaction, and the commit will find this file on the ordered
7578          * data list with good things to send down.
7579          *
7580          * This is a best effort solution, there is still a window where
7581          * using truncate to replace the contents of the file will
7582          * end up with a zero length file after a crash.
7583          */
7584         if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7585                                            &BTRFS_I(inode)->runtime_flags))
7586                 btrfs_add_ordered_operation(trans, root, inode);
7587
7588         /*
7589          * So if we truncate and then write and fsync we normally would just
7590          * write the extents that changed, which is a problem if we need to
7591          * first truncate that entire inode.  So set this flag so we write out
7592          * all of the extents in the inode to the sync log so we're completely
7593          * safe.
7594          */
7595         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
7596         trans->block_rsv = rsv;
7597
7598         while (1) {
7599                 ret = btrfs_truncate_inode_items(trans, root, inode,
7600                                                  inode->i_size,
7601                                                  BTRFS_EXTENT_DATA_KEY);
7602                 if (ret != -ENOSPC) {
7603                         err = ret;
7604                         break;
7605                 }
7606
7607                 trans->block_rsv = &root->fs_info->trans_block_rsv;
7608                 ret = btrfs_update_inode(trans, root, inode);
7609                 if (ret) {
7610                         err = ret;
7611                         break;
7612                 }
7613
7614                 btrfs_end_transaction(trans, root);
7615                 btrfs_btree_balance_dirty(root);
7616
7617                 trans = btrfs_start_transaction(root, 2);
7618                 if (IS_ERR(trans)) {
7619                         ret = err = PTR_ERR(trans);
7620                         trans = NULL;
7621                         break;
7622                 }
7623
7624                 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7625                                               rsv, min_size);
7626                 BUG_ON(ret);    /* shouldn't happen */
7627                 trans->block_rsv = rsv;
7628         }
7629
7630         if (ret == 0 && inode->i_nlink > 0) {
7631                 trans->block_rsv = root->orphan_block_rsv;
7632                 ret = btrfs_orphan_del(trans, inode);
7633                 if (ret)
7634                         err = ret;
7635         }
7636
7637         if (trans) {
7638                 trans->block_rsv = &root->fs_info->trans_block_rsv;
7639                 ret = btrfs_update_inode(trans, root, inode);
7640                 if (ret && !err)
7641                         err = ret;
7642
7643                 ret = btrfs_end_transaction(trans, root);
7644                 btrfs_btree_balance_dirty(root);
7645         }
7646
7647 out:
7648         btrfs_free_block_rsv(root, rsv);
7649
7650         if (ret && !err)
7651                 err = ret;
7652
7653         return err;
7654 }
7655
7656 /*
7657  * create a new subvolume directory/inode (helper for the ioctl).
7658  */
7659 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
7660                              struct btrfs_root *new_root, u64 new_dirid)
7661 {
7662         struct inode *inode;
7663         int err;
7664         u64 index = 0;
7665
7666         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7667                                 new_dirid, new_dirid,
7668                                 S_IFDIR | (~current_umask() & S_IRWXUGO),
7669                                 &index);
7670         if (IS_ERR(inode))
7671                 return PTR_ERR(inode);
7672         inode->i_op = &btrfs_dir_inode_operations;
7673         inode->i_fop = &btrfs_dir_file_operations;
7674
7675         set_nlink(inode, 1);
7676         btrfs_i_size_write(inode, 0);
7677
7678         err = btrfs_update_inode(trans, new_root, inode);
7679
7680         iput(inode);
7681         return err;
7682 }
7683
7684 struct inode *btrfs_alloc_inode(struct super_block *sb)
7685 {
7686         struct btrfs_inode *ei;
7687         struct inode *inode;
7688
7689         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7690         if (!ei)
7691                 return NULL;
7692
7693         ei->root = NULL;
7694         ei->generation = 0;
7695         ei->last_trans = 0;
7696         ei->last_sub_trans = 0;
7697         ei->logged_trans = 0;
7698         ei->delalloc_bytes = 0;
7699         ei->disk_i_size = 0;
7700         ei->flags = 0;
7701         ei->csum_bytes = 0;
7702         ei->index_cnt = (u64)-1;
7703         ei->last_unlink_trans = 0;
7704         ei->last_log_commit = 0;
7705
7706         spin_lock_init(&ei->lock);
7707         ei->outstanding_extents = 0;
7708         ei->reserved_extents = 0;
7709
7710         ei->runtime_flags = 0;
7711         ei->force_compress = BTRFS_COMPRESS_NONE;
7712
7713         ei->delayed_node = NULL;
7714
7715         inode = &ei->vfs_inode;
7716         extent_map_tree_init(&ei->extent_tree);
7717         extent_io_tree_init(&ei->io_tree, &inode->i_data);
7718         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
7719         ei->io_tree.track_uptodate = 1;
7720         ei->io_failure_tree.track_uptodate = 1;
7721         atomic_set(&ei->sync_writers, 0);
7722         mutex_init(&ei->log_mutex);
7723         mutex_init(&ei->delalloc_mutex);
7724         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7725         INIT_LIST_HEAD(&ei->delalloc_inodes);
7726         INIT_LIST_HEAD(&ei->ordered_operations);
7727         RB_CLEAR_NODE(&ei->rb_node);
7728
7729         return inode;
7730 }
7731
7732 static void btrfs_i_callback(struct rcu_head *head)
7733 {
7734         struct inode *inode = container_of(head, struct inode, i_rcu);
7735         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7736 }
7737
7738 void btrfs_destroy_inode(struct inode *inode)
7739 {
7740         struct btrfs_ordered_extent *ordered;
7741         struct btrfs_root *root = BTRFS_I(inode)->root;
7742
7743         WARN_ON(!hlist_empty(&inode->i_dentry));
7744         WARN_ON(inode->i_data.nrpages);
7745         WARN_ON(BTRFS_I(inode)->outstanding_extents);
7746         WARN_ON(BTRFS_I(inode)->reserved_extents);
7747         WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7748         WARN_ON(BTRFS_I(inode)->csum_bytes);
7749
7750         /*
7751          * This can happen where we create an inode, but somebody else also
7752          * created the same inode and we need to destroy the one we already
7753          * created.
7754          */
7755         if (!root)
7756                 goto free;
7757
7758         /*
7759          * Make sure we're properly removed from the ordered operation
7760          * lists.
7761          */
7762         smp_mb();
7763         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7764                 spin_lock(&root->fs_info->ordered_root_lock);
7765                 list_del_init(&BTRFS_I(inode)->ordered_operations);
7766                 spin_unlock(&root->fs_info->ordered_root_lock);
7767         }
7768
7769         if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7770                      &BTRFS_I(inode)->runtime_flags)) {
7771                 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
7772                         btrfs_ino(inode));
7773                 atomic_dec(&root->orphan_inodes);
7774         }
7775
7776         while (1) {
7777                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7778                 if (!ordered)
7779                         break;
7780                 else {
7781                         btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
7782                                 ordered->file_offset, ordered->len);
7783                         btrfs_remove_ordered_extent(inode, ordered);
7784                         btrfs_put_ordered_extent(ordered);
7785                         btrfs_put_ordered_extent(ordered);
7786                 }
7787         }
7788         inode_tree_del(inode);
7789         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7790 free:
7791         call_rcu(&inode->i_rcu, btrfs_i_callback);
7792 }
7793
7794 int btrfs_drop_inode(struct inode *inode)
7795 {
7796         struct btrfs_root *root = BTRFS_I(inode)->root;
7797
7798         if (root == NULL)
7799                 return 1;
7800
7801         /* the snap/subvol tree is on deleting */
7802         if (btrfs_root_refs(&root->root_item) == 0 &&
7803             root != root->fs_info->tree_root)
7804                 return 1;
7805         else
7806                 return generic_drop_inode(inode);
7807 }
7808
7809 static void init_once(void *foo)
7810 {
7811         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7812
7813         inode_init_once(&ei->vfs_inode);
7814 }
7815
7816 void btrfs_destroy_cachep(void)
7817 {
7818         /*
7819          * Make sure all delayed rcu free inodes are flushed before we
7820          * destroy cache.
7821          */
7822         rcu_barrier();
7823         if (btrfs_inode_cachep)
7824                 kmem_cache_destroy(btrfs_inode_cachep);
7825         if (btrfs_trans_handle_cachep)
7826                 kmem_cache_destroy(btrfs_trans_handle_cachep);
7827         if (btrfs_transaction_cachep)
7828                 kmem_cache_destroy(btrfs_transaction_cachep);
7829         if (btrfs_path_cachep)
7830                 kmem_cache_destroy(btrfs_path_cachep);
7831         if (btrfs_free_space_cachep)
7832                 kmem_cache_destroy(btrfs_free_space_cachep);
7833         if (btrfs_delalloc_work_cachep)
7834                 kmem_cache_destroy(btrfs_delalloc_work_cachep);
7835 }
7836
7837 int btrfs_init_cachep(void)
7838 {
7839         btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7840                         sizeof(struct btrfs_inode), 0,
7841                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7842         if (!btrfs_inode_cachep)
7843                 goto fail;
7844
7845         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
7846                         sizeof(struct btrfs_trans_handle), 0,
7847                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7848         if (!btrfs_trans_handle_cachep)
7849                 goto fail;
7850
7851         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
7852                         sizeof(struct btrfs_transaction), 0,
7853                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7854         if (!btrfs_transaction_cachep)
7855                 goto fail;
7856
7857         btrfs_path_cachep = kmem_cache_create("btrfs_path",
7858                         sizeof(struct btrfs_path), 0,
7859                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7860         if (!btrfs_path_cachep)
7861                 goto fail;
7862
7863         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
7864                         sizeof(struct btrfs_free_space), 0,
7865                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7866         if (!btrfs_free_space_cachep)
7867                 goto fail;
7868
7869         btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7870                         sizeof(struct btrfs_delalloc_work), 0,
7871                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7872                         NULL);
7873         if (!btrfs_delalloc_work_cachep)
7874                 goto fail;
7875
7876         return 0;
7877 fail:
7878         btrfs_destroy_cachep();
7879         return -ENOMEM;
7880 }
7881
7882 static int btrfs_getattr(struct vfsmount *mnt,
7883                          struct dentry *dentry, struct kstat *stat)
7884 {
7885         u64 delalloc_bytes;
7886         struct inode *inode = dentry->d_inode;
7887         u32 blocksize = inode->i_sb->s_blocksize;
7888
7889         generic_fillattr(inode, stat);
7890         stat->dev = BTRFS_I(inode)->root->anon_dev;
7891         stat->blksize = PAGE_CACHE_SIZE;
7892
7893         spin_lock(&BTRFS_I(inode)->lock);
7894         delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
7895         spin_unlock(&BTRFS_I(inode)->lock);
7896         stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7897                         ALIGN(delalloc_bytes, blocksize)) >> 9;
7898         return 0;
7899 }
7900
7901 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7902                            struct inode *new_dir, struct dentry *new_dentry)
7903 {
7904         struct btrfs_trans_handle *trans;
7905         struct btrfs_root *root = BTRFS_I(old_dir)->root;
7906         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7907         struct inode *new_inode = new_dentry->d_inode;
7908         struct inode *old_inode = old_dentry->d_inode;
7909         struct timespec ctime = CURRENT_TIME;
7910         u64 index = 0;
7911         u64 root_objectid;
7912         int ret;
7913         u64 old_ino = btrfs_ino(old_inode);
7914
7915         if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
7916                 return -EPERM;
7917
7918         /* we only allow rename subvolume link between subvolumes */
7919         if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
7920                 return -EXDEV;
7921
7922         if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7923             (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
7924                 return -ENOTEMPTY;
7925
7926         if (S_ISDIR(old_inode->i_mode) && new_inode &&
7927             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7928                 return -ENOTEMPTY;
7929
7930
7931         /* check for collisions, even if the  name isn't there */
7932         ret = btrfs_check_dir_item_collision(root, new_dir->i_ino,
7933                              new_dentry->d_name.name,
7934                              new_dentry->d_name.len);
7935
7936         if (ret) {
7937                 if (ret == -EEXIST) {
7938                         /* we shouldn't get
7939                          * eexist without a new_inode */
7940                         if (!new_inode) {
7941                                 WARN_ON(1);
7942                                 return ret;
7943                         }
7944                 } else {
7945                         /* maybe -EOVERFLOW */
7946                         return ret;
7947                 }
7948         }
7949         ret = 0;
7950
7951         /*
7952          * we're using rename to replace one file with another.
7953          * and the replacement file is large.  Start IO on it now so
7954          * we don't add too much work to the end of the transaction
7955          */
7956         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
7957             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7958                 filemap_flush(old_inode->i_mapping);
7959
7960         /* close the racy window with snapshot create/destroy ioctl */
7961         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7962                 down_read(&root->fs_info->subvol_sem);
7963         /*
7964          * We want to reserve the absolute worst case amount of items.  So if
7965          * both inodes are subvols and we need to unlink them then that would
7966          * require 4 item modifications, but if they are both normal inodes it
7967          * would require 5 item modifications, so we'll assume their normal
7968          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7969          * should cover the worst case number of items we'll modify.
7970          */
7971         trans = btrfs_start_transaction(root, 11);
7972         if (IS_ERR(trans)) {
7973                 ret = PTR_ERR(trans);
7974                 goto out_notrans;
7975         }
7976
7977         if (dest != root)
7978                 btrfs_record_root_in_trans(trans, dest);
7979
7980         ret = btrfs_set_inode_index(new_dir, &index);
7981         if (ret)
7982                 goto out_fail;
7983
7984         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7985                 /* force full log commit if subvolume involved. */
7986                 root->fs_info->last_trans_log_full_commit = trans->transid;
7987         } else {
7988                 ret = btrfs_insert_inode_ref(trans, dest,
7989                                              new_dentry->d_name.name,
7990                                              new_dentry->d_name.len,
7991                                              old_ino,
7992                                              btrfs_ino(new_dir), index);
7993                 if (ret)
7994                         goto out_fail;
7995                 /*
7996                  * this is an ugly little race, but the rename is required
7997                  * to make sure that if we crash, the inode is either at the
7998                  * old name or the new one.  pinning the log transaction lets
7999                  * us make sure we don't allow a log commit to come in after
8000                  * we unlink the name but before we add the new name back in.
8001                  */
8002                 btrfs_pin_log_trans(root);
8003         }
8004         /*
8005          * make sure the inode gets flushed if it is replacing
8006          * something.
8007          */
8008         if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
8009                 btrfs_add_ordered_operation(trans, root, old_inode);
8010
8011         inode_inc_iversion(old_dir);
8012         inode_inc_iversion(new_dir);
8013         inode_inc_iversion(old_inode);
8014         old_dir->i_ctime = old_dir->i_mtime = ctime;
8015         new_dir->i_ctime = new_dir->i_mtime = ctime;
8016         old_inode->i_ctime = ctime;
8017
8018         if (old_dentry->d_parent != new_dentry->d_parent)
8019                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8020
8021         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8022                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8023                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8024                                         old_dentry->d_name.name,
8025                                         old_dentry->d_name.len);
8026         } else {
8027                 ret = __btrfs_unlink_inode(trans, root, old_dir,
8028                                         old_dentry->d_inode,
8029                                         old_dentry->d_name.name,
8030                                         old_dentry->d_name.len);
8031                 if (!ret)
8032                         ret = btrfs_update_inode(trans, root, old_inode);
8033         }
8034         if (ret) {
8035                 btrfs_abort_transaction(trans, root, ret);
8036                 goto out_fail;
8037         }
8038
8039         if (new_inode) {
8040                 inode_inc_iversion(new_inode);
8041                 new_inode->i_ctime = CURRENT_TIME;
8042                 if (unlikely(btrfs_ino(new_inode) ==
8043                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8044                         root_objectid = BTRFS_I(new_inode)->location.objectid;
8045                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
8046                                                 root_objectid,
8047                                                 new_dentry->d_name.name,
8048                                                 new_dentry->d_name.len);
8049                         BUG_ON(new_inode->i_nlink == 0);
8050                 } else {
8051                         ret = btrfs_unlink_inode(trans, dest, new_dir,
8052                                                  new_dentry->d_inode,
8053                                                  new_dentry->d_name.name,
8054                                                  new_dentry->d_name.len);
8055                 }
8056                 if (!ret && new_inode->i_nlink == 0)
8057                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8058                 if (ret) {
8059                         btrfs_abort_transaction(trans, root, ret);
8060                         goto out_fail;
8061                 }
8062         }
8063
8064         ret = btrfs_add_link(trans, new_dir, old_inode,
8065                              new_dentry->d_name.name,
8066                              new_dentry->d_name.len, 0, index);
8067         if (ret) {
8068                 btrfs_abort_transaction(trans, root, ret);
8069                 goto out_fail;
8070         }
8071
8072         if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8073                 struct dentry *parent = new_dentry->d_parent;
8074                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
8075                 btrfs_end_log_trans(root);
8076         }
8077 out_fail:
8078         btrfs_end_transaction(trans, root);
8079 out_notrans:
8080         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8081                 up_read(&root->fs_info->subvol_sem);
8082
8083         return ret;
8084 }
8085
8086 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8087 {
8088         struct btrfs_delalloc_work *delalloc_work;
8089
8090         delalloc_work = container_of(work, struct btrfs_delalloc_work,
8091                                      work);
8092         if (delalloc_work->wait)
8093                 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
8094         else
8095                 filemap_flush(delalloc_work->inode->i_mapping);
8096
8097         if (delalloc_work->delay_iput)
8098                 btrfs_add_delayed_iput(delalloc_work->inode);
8099         else
8100                 iput(delalloc_work->inode);
8101         complete(&delalloc_work->completion);
8102 }
8103
8104 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8105                                                     int wait, int delay_iput)
8106 {
8107         struct btrfs_delalloc_work *work;
8108
8109         work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8110         if (!work)
8111                 return NULL;
8112
8113         init_completion(&work->completion);
8114         INIT_LIST_HEAD(&work->list);
8115         work->inode = inode;
8116         work->wait = wait;
8117         work->delay_iput = delay_iput;
8118         work->work.func = btrfs_run_delalloc_work;
8119
8120         return work;
8121 }
8122
8123 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8124 {
8125         wait_for_completion(&work->completion);
8126         kmem_cache_free(btrfs_delalloc_work_cachep, work);
8127 }
8128
8129 /*
8130  * some fairly slow code that needs optimization. This walks the list
8131  * of all the inodes with pending delalloc and forces them to disk.
8132  */
8133 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8134 {
8135         struct btrfs_inode *binode;
8136         struct inode *inode;
8137         struct btrfs_delalloc_work *work, *next;
8138         struct list_head works;
8139         struct list_head splice;
8140         int ret = 0;
8141
8142         INIT_LIST_HEAD(&works);
8143         INIT_LIST_HEAD(&splice);
8144
8145         spin_lock(&root->delalloc_lock);
8146         list_splice_init(&root->delalloc_inodes, &splice);
8147         while (!list_empty(&splice)) {
8148                 binode = list_entry(splice.next, struct btrfs_inode,
8149                                     delalloc_inodes);
8150
8151                 list_move_tail(&binode->delalloc_inodes,
8152                                &root->delalloc_inodes);
8153                 inode = igrab(&binode->vfs_inode);
8154                 if (!inode) {
8155                         cond_resched_lock(&root->delalloc_lock);
8156                         continue;
8157                 }
8158                 spin_unlock(&root->delalloc_lock);
8159
8160                 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8161                 if (unlikely(!work)) {
8162                         ret = -ENOMEM;
8163                         goto out;
8164                 }
8165                 list_add_tail(&work->list, &works);
8166                 btrfs_queue_worker(&root->fs_info->flush_workers,
8167                                    &work->work);
8168
8169                 cond_resched();
8170                 spin_lock(&root->delalloc_lock);
8171         }
8172         spin_unlock(&root->delalloc_lock);
8173
8174         list_for_each_entry_safe(work, next, &works, list) {
8175                 list_del_init(&work->list);
8176                 btrfs_wait_and_free_delalloc_work(work);
8177         }
8178         return 0;
8179 out:
8180         list_for_each_entry_safe(work, next, &works, list) {
8181                 list_del_init(&work->list);
8182                 btrfs_wait_and_free_delalloc_work(work);
8183         }
8184
8185         if (!list_empty_careful(&splice)) {
8186                 spin_lock(&root->delalloc_lock);
8187                 list_splice_tail(&splice, &root->delalloc_inodes);
8188                 spin_unlock(&root->delalloc_lock);
8189         }
8190         return ret;
8191 }
8192
8193 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8194 {
8195         int ret;
8196
8197         if (root->fs_info->sb->s_flags & MS_RDONLY)
8198                 return -EROFS;
8199
8200         ret = __start_delalloc_inodes(root, delay_iput);
8201         /*
8202          * the filemap_flush will queue IO into the worker threads, but
8203          * we have to make sure the IO is actually started and that
8204          * ordered extents get created before we return
8205          */
8206         atomic_inc(&root->fs_info->async_submit_draining);
8207         while (atomic_read(&root->fs_info->nr_async_submits) ||
8208               atomic_read(&root->fs_info->async_delalloc_pages)) {
8209                 wait_event(root->fs_info->async_submit_wait,
8210                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8211                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8212         }
8213         atomic_dec(&root->fs_info->async_submit_draining);
8214         return ret;
8215 }
8216
8217 int btrfs_start_all_delalloc_inodes(struct btrfs_fs_info *fs_info,
8218                                     int delay_iput)
8219 {
8220         struct btrfs_root *root;
8221         struct list_head splice;
8222         int ret;
8223
8224         if (fs_info->sb->s_flags & MS_RDONLY)
8225                 return -EROFS;
8226
8227         INIT_LIST_HEAD(&splice);
8228
8229         spin_lock(&fs_info->delalloc_root_lock);
8230         list_splice_init(&fs_info->delalloc_roots, &splice);
8231         while (!list_empty(&splice)) {
8232                 root = list_first_entry(&splice, struct btrfs_root,
8233                                         delalloc_root);
8234                 root = btrfs_grab_fs_root(root);
8235                 BUG_ON(!root);
8236                 list_move_tail(&root->delalloc_root,
8237                                &fs_info->delalloc_roots);
8238                 spin_unlock(&fs_info->delalloc_root_lock);
8239
8240                 ret = __start_delalloc_inodes(root, delay_iput);
8241                 btrfs_put_fs_root(root);
8242                 if (ret)
8243                         goto out;
8244
8245                 spin_lock(&fs_info->delalloc_root_lock);
8246         }
8247         spin_unlock(&fs_info->delalloc_root_lock);
8248
8249         atomic_inc(&fs_info->async_submit_draining);
8250         while (atomic_read(&fs_info->nr_async_submits) ||
8251               atomic_read(&fs_info->async_delalloc_pages)) {
8252                 wait_event(fs_info->async_submit_wait,
8253                    (atomic_read(&fs_info->nr_async_submits) == 0 &&
8254                     atomic_read(&fs_info->async_delalloc_pages) == 0));
8255         }
8256         atomic_dec(&fs_info->async_submit_draining);
8257         return 0;
8258 out:
8259         if (!list_empty_careful(&splice)) {
8260                 spin_lock(&fs_info->delalloc_root_lock);
8261                 list_splice_tail(&splice, &fs_info->delalloc_roots);
8262                 spin_unlock(&fs_info->delalloc_root_lock);
8263         }
8264         return ret;
8265 }
8266
8267 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8268                          const char *symname)
8269 {
8270         struct btrfs_trans_handle *trans;
8271         struct btrfs_root *root = BTRFS_I(dir)->root;
8272         struct btrfs_path *path;
8273         struct btrfs_key key;
8274         struct inode *inode = NULL;
8275         int err;
8276         int drop_inode = 0;
8277         u64 objectid;
8278         u64 index = 0 ;
8279         int name_len;
8280         int datasize;
8281         unsigned long ptr;
8282         struct btrfs_file_extent_item *ei;
8283         struct extent_buffer *leaf;
8284
8285         name_len = strlen(symname) + 1;
8286         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8287                 return -ENAMETOOLONG;
8288
8289         /*
8290          * 2 items for inode item and ref
8291          * 2 items for dir items
8292          * 1 item for xattr if selinux is on
8293          */
8294         trans = btrfs_start_transaction(root, 5);
8295         if (IS_ERR(trans))
8296                 return PTR_ERR(trans);
8297
8298         err = btrfs_find_free_ino(root, &objectid);
8299         if (err)
8300                 goto out_unlock;
8301
8302         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
8303                                 dentry->d_name.len, btrfs_ino(dir), objectid,
8304                                 S_IFLNK|S_IRWXUGO, &index);
8305         if (IS_ERR(inode)) {
8306                 err = PTR_ERR(inode);
8307                 goto out_unlock;
8308         }
8309
8310         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
8311         if (err) {
8312                 drop_inode = 1;
8313                 goto out_unlock;
8314         }
8315
8316         /*
8317         * If the active LSM wants to access the inode during
8318         * d_instantiate it needs these. Smack checks to see
8319         * if the filesystem supports xattrs by looking at the
8320         * ops vector.
8321         */
8322         inode->i_fop = &btrfs_file_operations;
8323         inode->i_op = &btrfs_file_inode_operations;
8324
8325         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
8326         if (err)
8327                 drop_inode = 1;
8328         else {
8329                 inode->i_mapping->a_ops = &btrfs_aops;
8330                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8331                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
8332         }
8333         if (drop_inode)
8334                 goto out_unlock;
8335
8336         path = btrfs_alloc_path();
8337         if (!path) {
8338                 err = -ENOMEM;
8339                 drop_inode = 1;
8340                 goto out_unlock;
8341         }
8342         key.objectid = btrfs_ino(inode);
8343         key.offset = 0;
8344         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8345         datasize = btrfs_file_extent_calc_inline_size(name_len);
8346         err = btrfs_insert_empty_item(trans, root, path, &key,
8347                                       datasize);
8348         if (err) {
8349                 drop_inode = 1;
8350                 btrfs_free_path(path);
8351                 goto out_unlock;
8352         }
8353         leaf = path->nodes[0];
8354         ei = btrfs_item_ptr(leaf, path->slots[0],
8355                             struct btrfs_file_extent_item);
8356         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8357         btrfs_set_file_extent_type(leaf, ei,
8358                                    BTRFS_FILE_EXTENT_INLINE);
8359         btrfs_set_file_extent_encryption(leaf, ei, 0);
8360         btrfs_set_file_extent_compression(leaf, ei, 0);
8361         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8362         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8363
8364         ptr = btrfs_file_extent_inline_start(ei);
8365         write_extent_buffer(leaf, symname, ptr, name_len);
8366         btrfs_mark_buffer_dirty(leaf);
8367         btrfs_free_path(path);
8368
8369         inode->i_op = &btrfs_symlink_inode_operations;
8370         inode->i_mapping->a_ops = &btrfs_symlink_aops;
8371         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8372         inode_set_bytes(inode, name_len);
8373         btrfs_i_size_write(inode, name_len - 1);
8374         err = btrfs_update_inode(trans, root, inode);
8375         if (err)
8376                 drop_inode = 1;
8377
8378 out_unlock:
8379         if (!err)
8380                 d_instantiate(dentry, inode);
8381         btrfs_end_transaction(trans, root);
8382         if (drop_inode) {
8383                 inode_dec_link_count(inode);
8384                 iput(inode);
8385         }
8386         btrfs_btree_balance_dirty(root);
8387         return err;
8388 }
8389
8390 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8391                                        u64 start, u64 num_bytes, u64 min_size,
8392                                        loff_t actual_len, u64 *alloc_hint,
8393                                        struct btrfs_trans_handle *trans)
8394 {
8395         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8396         struct extent_map *em;
8397         struct btrfs_root *root = BTRFS_I(inode)->root;
8398         struct btrfs_key ins;
8399         u64 cur_offset = start;
8400         u64 i_size;
8401         u64 cur_bytes;
8402         int ret = 0;
8403         bool own_trans = true;
8404
8405         if (trans)
8406                 own_trans = false;
8407         while (num_bytes > 0) {
8408                 if (own_trans) {
8409                         trans = btrfs_start_transaction(root, 3);
8410                         if (IS_ERR(trans)) {
8411                                 ret = PTR_ERR(trans);
8412                                 break;
8413                         }
8414                 }
8415
8416                 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8417                 cur_bytes = max(cur_bytes, min_size);
8418                 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
8419                                            *alloc_hint, &ins, 1);
8420                 if (ret) {
8421                         if (own_trans)
8422                                 btrfs_end_transaction(trans, root);
8423                         break;
8424                 }
8425
8426                 ret = insert_reserved_file_extent(trans, inode,
8427                                                   cur_offset, ins.objectid,
8428                                                   ins.offset, ins.offset,
8429                                                   ins.offset, 0, 0, 0,
8430                                                   BTRFS_FILE_EXTENT_PREALLOC);
8431                 if (ret) {
8432                         btrfs_abort_transaction(trans, root, ret);
8433                         if (own_trans)
8434                                 btrfs_end_transaction(trans, root);
8435                         break;
8436                 }
8437                 btrfs_drop_extent_cache(inode, cur_offset,
8438                                         cur_offset + ins.offset -1, 0);
8439
8440                 em = alloc_extent_map();
8441                 if (!em) {
8442                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8443                                 &BTRFS_I(inode)->runtime_flags);
8444                         goto next;
8445                 }
8446
8447                 em->start = cur_offset;
8448                 em->orig_start = cur_offset;
8449                 em->len = ins.offset;
8450                 em->block_start = ins.objectid;
8451                 em->block_len = ins.offset;
8452                 em->orig_block_len = ins.offset;
8453                 em->ram_bytes = ins.offset;
8454                 em->bdev = root->fs_info->fs_devices->latest_bdev;
8455                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8456                 em->generation = trans->transid;
8457
8458                 while (1) {
8459                         write_lock(&em_tree->lock);
8460                         ret = add_extent_mapping(em_tree, em, 1);
8461                         write_unlock(&em_tree->lock);
8462                         if (ret != -EEXIST)
8463                                 break;
8464                         btrfs_drop_extent_cache(inode, cur_offset,
8465                                                 cur_offset + ins.offset - 1,
8466                                                 0);
8467                 }
8468                 free_extent_map(em);
8469 next:
8470                 num_bytes -= ins.offset;
8471                 cur_offset += ins.offset;
8472                 *alloc_hint = ins.objectid + ins.offset;
8473
8474                 inode_inc_iversion(inode);
8475                 inode->i_ctime = CURRENT_TIME;
8476                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8477                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8478                     (actual_len > inode->i_size) &&
8479                     (cur_offset > inode->i_size)) {
8480                         if (cur_offset > actual_len)
8481                                 i_size = actual_len;
8482                         else
8483                                 i_size = cur_offset;
8484                         i_size_write(inode, i_size);
8485                         btrfs_ordered_update_i_size(inode, i_size, NULL);
8486                 }
8487
8488                 ret = btrfs_update_inode(trans, root, inode);
8489
8490                 if (ret) {
8491                         btrfs_abort_transaction(trans, root, ret);
8492                         if (own_trans)
8493                                 btrfs_end_transaction(trans, root);
8494                         break;
8495                 }
8496
8497                 if (own_trans)
8498                         btrfs_end_transaction(trans, root);
8499         }
8500         return ret;
8501 }
8502
8503 int btrfs_prealloc_file_range(struct inode *inode, int mode,
8504                               u64 start, u64 num_bytes, u64 min_size,
8505                               loff_t actual_len, u64 *alloc_hint)
8506 {
8507         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8508                                            min_size, actual_len, alloc_hint,
8509                                            NULL);
8510 }
8511
8512 int btrfs_prealloc_file_range_trans(struct inode *inode,
8513                                     struct btrfs_trans_handle *trans, int mode,
8514                                     u64 start, u64 num_bytes, u64 min_size,
8515                                     loff_t actual_len, u64 *alloc_hint)
8516 {
8517         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8518                                            min_size, actual_len, alloc_hint, trans);
8519 }
8520
8521 static int btrfs_set_page_dirty(struct page *page)
8522 {
8523         return __set_page_dirty_nobuffers(page);
8524 }
8525
8526 static int btrfs_permission(struct inode *inode, int mask)
8527 {
8528         struct btrfs_root *root = BTRFS_I(inode)->root;
8529         umode_t mode = inode->i_mode;
8530
8531         if (mask & MAY_WRITE &&
8532             (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8533                 if (btrfs_root_readonly(root))
8534                         return -EROFS;
8535                 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8536                         return -EACCES;
8537         }
8538         return generic_permission(inode, mask);
8539 }
8540
8541 static const struct inode_operations btrfs_dir_inode_operations = {
8542         .getattr        = btrfs_getattr,
8543         .lookup         = btrfs_lookup,
8544         .create         = btrfs_create,
8545         .unlink         = btrfs_unlink,
8546         .link           = btrfs_link,
8547         .mkdir          = btrfs_mkdir,
8548         .rmdir          = btrfs_rmdir,
8549         .rename         = btrfs_rename,
8550         .symlink        = btrfs_symlink,
8551         .setattr        = btrfs_setattr,
8552         .mknod          = btrfs_mknod,
8553         .setxattr       = btrfs_setxattr,
8554         .getxattr       = btrfs_getxattr,
8555         .listxattr      = btrfs_listxattr,
8556         .removexattr    = btrfs_removexattr,
8557         .permission     = btrfs_permission,
8558         .get_acl        = btrfs_get_acl,
8559 };
8560 static const struct inode_operations btrfs_dir_ro_inode_operations = {
8561         .lookup         = btrfs_lookup,
8562         .permission     = btrfs_permission,
8563         .get_acl        = btrfs_get_acl,
8564 };
8565
8566 static const struct file_operations btrfs_dir_file_operations = {
8567         .llseek         = generic_file_llseek,
8568         .read           = generic_read_dir,
8569         .iterate        = btrfs_real_readdir,
8570         .unlocked_ioctl = btrfs_ioctl,
8571 #ifdef CONFIG_COMPAT
8572         .compat_ioctl   = btrfs_ioctl,
8573 #endif
8574         .release        = btrfs_release_file,
8575         .fsync          = btrfs_sync_file,
8576 };
8577
8578 static struct extent_io_ops btrfs_extent_io_ops = {
8579         .fill_delalloc = run_delalloc_range,
8580         .submit_bio_hook = btrfs_submit_bio_hook,
8581         .merge_bio_hook = btrfs_merge_bio_hook,
8582         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
8583         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
8584         .writepage_start_hook = btrfs_writepage_start_hook,
8585         .set_bit_hook = btrfs_set_bit_hook,
8586         .clear_bit_hook = btrfs_clear_bit_hook,
8587         .merge_extent_hook = btrfs_merge_extent_hook,
8588         .split_extent_hook = btrfs_split_extent_hook,
8589 };
8590
8591 /*
8592  * btrfs doesn't support the bmap operation because swapfiles
8593  * use bmap to make a mapping of extents in the file.  They assume
8594  * these extents won't change over the life of the file and they
8595  * use the bmap result to do IO directly to the drive.
8596  *
8597  * the btrfs bmap call would return logical addresses that aren't
8598  * suitable for IO and they also will change frequently as COW
8599  * operations happen.  So, swapfile + btrfs == corruption.
8600  *
8601  * For now we're avoiding this by dropping bmap.
8602  */
8603 static const struct address_space_operations btrfs_aops = {
8604         .readpage       = btrfs_readpage,
8605         .writepage      = btrfs_writepage,
8606         .writepages     = btrfs_writepages,
8607         .readpages      = btrfs_readpages,
8608         .direct_IO      = btrfs_direct_IO,
8609         .invalidatepage = btrfs_invalidatepage,
8610         .releasepage    = btrfs_releasepage,
8611         .set_page_dirty = btrfs_set_page_dirty,
8612         .error_remove_page = generic_error_remove_page,
8613 };
8614
8615 static const struct address_space_operations btrfs_symlink_aops = {
8616         .readpage       = btrfs_readpage,
8617         .writepage      = btrfs_writepage,
8618         .invalidatepage = btrfs_invalidatepage,
8619         .releasepage    = btrfs_releasepage,
8620 };
8621
8622 static const struct inode_operations btrfs_file_inode_operations = {
8623         .getattr        = btrfs_getattr,
8624         .setattr        = btrfs_setattr,
8625         .setxattr       = btrfs_setxattr,
8626         .getxattr       = btrfs_getxattr,
8627         .listxattr      = btrfs_listxattr,
8628         .removexattr    = btrfs_removexattr,
8629         .permission     = btrfs_permission,
8630         .fiemap         = btrfs_fiemap,
8631         .get_acl        = btrfs_get_acl,
8632         .update_time    = btrfs_update_time,
8633 };
8634 static const struct inode_operations btrfs_special_inode_operations = {
8635         .getattr        = btrfs_getattr,
8636         .setattr        = btrfs_setattr,
8637         .permission     = btrfs_permission,
8638         .setxattr       = btrfs_setxattr,
8639         .getxattr       = btrfs_getxattr,
8640         .listxattr      = btrfs_listxattr,
8641         .removexattr    = btrfs_removexattr,
8642         .get_acl        = btrfs_get_acl,
8643         .update_time    = btrfs_update_time,
8644 };
8645 static const struct inode_operations btrfs_symlink_inode_operations = {
8646         .readlink       = generic_readlink,
8647         .follow_link    = page_follow_link_light,
8648         .put_link       = page_put_link,
8649         .getattr        = btrfs_getattr,
8650         .setattr        = btrfs_setattr,
8651         .permission     = btrfs_permission,
8652         .setxattr       = btrfs_setxattr,
8653         .getxattr       = btrfs_getxattr,
8654         .listxattr      = btrfs_listxattr,
8655         .removexattr    = btrfs_removexattr,
8656         .get_acl        = btrfs_get_acl,
8657         .update_time    = btrfs_update_time,
8658 };
8659
8660 const struct dentry_operations btrfs_dentry_operations = {
8661         .d_delete       = btrfs_dentry_delete,
8662         .d_release      = btrfs_dentry_release,
8663 };