Merge branch 'batman-adv/maint' of git://git.open-mesh.org/linux-merge
[pandora-kernel.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21
22 static struct kmem_cache *extent_state_cache;
23 static struct kmem_cache *extent_buffer_cache;
24
25 static LIST_HEAD(buffers);
26 static LIST_HEAD(states);
27
28 #define LEAK_DEBUG 0
29 #if LEAK_DEBUG
30 static DEFINE_SPINLOCK(leak_lock);
31 #endif
32
33 #define BUFFER_LRU_MAX 64
34
35 struct tree_entry {
36         u64 start;
37         u64 end;
38         struct rb_node rb_node;
39 };
40
41 struct extent_page_data {
42         struct bio *bio;
43         struct extent_io_tree *tree;
44         get_extent_t *get_extent;
45
46         /* tells writepage not to lock the state bits for this range
47          * it still does the unlocking
48          */
49         unsigned int extent_locked:1;
50
51         /* tells the submit_bio code to use a WRITE_SYNC */
52         unsigned int sync_io:1;
53 };
54
55 int __init extent_io_init(void)
56 {
57         extent_state_cache = kmem_cache_create("extent_state",
58                         sizeof(struct extent_state), 0,
59                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
60         if (!extent_state_cache)
61                 return -ENOMEM;
62
63         extent_buffer_cache = kmem_cache_create("extent_buffers",
64                         sizeof(struct extent_buffer), 0,
65                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
66         if (!extent_buffer_cache)
67                 goto free_state_cache;
68         return 0;
69
70 free_state_cache:
71         kmem_cache_destroy(extent_state_cache);
72         return -ENOMEM;
73 }
74
75 void extent_io_exit(void)
76 {
77         struct extent_state *state;
78         struct extent_buffer *eb;
79
80         while (!list_empty(&states)) {
81                 state = list_entry(states.next, struct extent_state, leak_list);
82                 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
83                        "state %lu in tree %p refs %d\n",
84                        (unsigned long long)state->start,
85                        (unsigned long long)state->end,
86                        state->state, state->tree, atomic_read(&state->refs));
87                 list_del(&state->leak_list);
88                 kmem_cache_free(extent_state_cache, state);
89
90         }
91
92         while (!list_empty(&buffers)) {
93                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
94                 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
95                        "refs %d\n", (unsigned long long)eb->start,
96                        eb->len, atomic_read(&eb->refs));
97                 list_del(&eb->leak_list);
98                 kmem_cache_free(extent_buffer_cache, eb);
99         }
100         if (extent_state_cache)
101                 kmem_cache_destroy(extent_state_cache);
102         if (extent_buffer_cache)
103                 kmem_cache_destroy(extent_buffer_cache);
104 }
105
106 void extent_io_tree_init(struct extent_io_tree *tree,
107                          struct address_space *mapping)
108 {
109         tree->state = RB_ROOT;
110         INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
111         tree->ops = NULL;
112         tree->dirty_bytes = 0;
113         spin_lock_init(&tree->lock);
114         spin_lock_init(&tree->buffer_lock);
115         tree->mapping = mapping;
116 }
117
118 static struct extent_state *alloc_extent_state(gfp_t mask)
119 {
120         struct extent_state *state;
121 #if LEAK_DEBUG
122         unsigned long flags;
123 #endif
124
125         state = kmem_cache_alloc(extent_state_cache, mask);
126         if (!state)
127                 return state;
128         state->state = 0;
129         state->private = 0;
130         state->tree = NULL;
131 #if LEAK_DEBUG
132         spin_lock_irqsave(&leak_lock, flags);
133         list_add(&state->leak_list, &states);
134         spin_unlock_irqrestore(&leak_lock, flags);
135 #endif
136         atomic_set(&state->refs, 1);
137         init_waitqueue_head(&state->wq);
138         return state;
139 }
140
141 void free_extent_state(struct extent_state *state)
142 {
143         if (!state)
144                 return;
145         if (atomic_dec_and_test(&state->refs)) {
146 #if LEAK_DEBUG
147                 unsigned long flags;
148 #endif
149                 WARN_ON(state->tree);
150 #if LEAK_DEBUG
151                 spin_lock_irqsave(&leak_lock, flags);
152                 list_del(&state->leak_list);
153                 spin_unlock_irqrestore(&leak_lock, flags);
154 #endif
155                 kmem_cache_free(extent_state_cache, state);
156         }
157 }
158
159 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
160                                    struct rb_node *node)
161 {
162         struct rb_node **p = &root->rb_node;
163         struct rb_node *parent = NULL;
164         struct tree_entry *entry;
165
166         while (*p) {
167                 parent = *p;
168                 entry = rb_entry(parent, struct tree_entry, rb_node);
169
170                 if (offset < entry->start)
171                         p = &(*p)->rb_left;
172                 else if (offset > entry->end)
173                         p = &(*p)->rb_right;
174                 else
175                         return parent;
176         }
177
178         entry = rb_entry(node, struct tree_entry, rb_node);
179         rb_link_node(node, parent, p);
180         rb_insert_color(node, root);
181         return NULL;
182 }
183
184 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
185                                      struct rb_node **prev_ret,
186                                      struct rb_node **next_ret)
187 {
188         struct rb_root *root = &tree->state;
189         struct rb_node *n = root->rb_node;
190         struct rb_node *prev = NULL;
191         struct rb_node *orig_prev = NULL;
192         struct tree_entry *entry;
193         struct tree_entry *prev_entry = NULL;
194
195         while (n) {
196                 entry = rb_entry(n, struct tree_entry, rb_node);
197                 prev = n;
198                 prev_entry = entry;
199
200                 if (offset < entry->start)
201                         n = n->rb_left;
202                 else if (offset > entry->end)
203                         n = n->rb_right;
204                 else
205                         return n;
206         }
207
208         if (prev_ret) {
209                 orig_prev = prev;
210                 while (prev && offset > prev_entry->end) {
211                         prev = rb_next(prev);
212                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
213                 }
214                 *prev_ret = prev;
215                 prev = orig_prev;
216         }
217
218         if (next_ret) {
219                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
220                 while (prev && offset < prev_entry->start) {
221                         prev = rb_prev(prev);
222                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
223                 }
224                 *next_ret = prev;
225         }
226         return NULL;
227 }
228
229 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
230                                           u64 offset)
231 {
232         struct rb_node *prev = NULL;
233         struct rb_node *ret;
234
235         ret = __etree_search(tree, offset, &prev, NULL);
236         if (!ret)
237                 return prev;
238         return ret;
239 }
240
241 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
242                      struct extent_state *other)
243 {
244         if (tree->ops && tree->ops->merge_extent_hook)
245                 tree->ops->merge_extent_hook(tree->mapping->host, new,
246                                              other);
247 }
248
249 /*
250  * utility function to look for merge candidates inside a given range.
251  * Any extents with matching state are merged together into a single
252  * extent in the tree.  Extents with EXTENT_IO in their state field
253  * are not merged because the end_io handlers need to be able to do
254  * operations on them without sleeping (or doing allocations/splits).
255  *
256  * This should be called with the tree lock held.
257  */
258 static void merge_state(struct extent_io_tree *tree,
259                         struct extent_state *state)
260 {
261         struct extent_state *other;
262         struct rb_node *other_node;
263
264         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
265                 return;
266
267         other_node = rb_prev(&state->rb_node);
268         if (other_node) {
269                 other = rb_entry(other_node, struct extent_state, rb_node);
270                 if (other->end == state->start - 1 &&
271                     other->state == state->state) {
272                         merge_cb(tree, state, other);
273                         state->start = other->start;
274                         other->tree = NULL;
275                         rb_erase(&other->rb_node, &tree->state);
276                         free_extent_state(other);
277                 }
278         }
279         other_node = rb_next(&state->rb_node);
280         if (other_node) {
281                 other = rb_entry(other_node, struct extent_state, rb_node);
282                 if (other->start == state->end + 1 &&
283                     other->state == state->state) {
284                         merge_cb(tree, state, other);
285                         state->end = other->end;
286                         other->tree = NULL;
287                         rb_erase(&other->rb_node, &tree->state);
288                         free_extent_state(other);
289                 }
290         }
291 }
292
293 static void set_state_cb(struct extent_io_tree *tree,
294                          struct extent_state *state, int *bits)
295 {
296         if (tree->ops && tree->ops->set_bit_hook)
297                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
298 }
299
300 static void clear_state_cb(struct extent_io_tree *tree,
301                            struct extent_state *state, int *bits)
302 {
303         if (tree->ops && tree->ops->clear_bit_hook)
304                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
305 }
306
307 static void set_state_bits(struct extent_io_tree *tree,
308                            struct extent_state *state, int *bits);
309
310 /*
311  * insert an extent_state struct into the tree.  'bits' are set on the
312  * struct before it is inserted.
313  *
314  * This may return -EEXIST if the extent is already there, in which case the
315  * state struct is freed.
316  *
317  * The tree lock is not taken internally.  This is a utility function and
318  * probably isn't what you want to call (see set/clear_extent_bit).
319  */
320 static int insert_state(struct extent_io_tree *tree,
321                         struct extent_state *state, u64 start, u64 end,
322                         int *bits)
323 {
324         struct rb_node *node;
325
326         if (end < start) {
327                 printk(KERN_ERR "btrfs end < start %llu %llu\n",
328                        (unsigned long long)end,
329                        (unsigned long long)start);
330                 WARN_ON(1);
331         }
332         state->start = start;
333         state->end = end;
334
335         set_state_bits(tree, state, bits);
336
337         node = tree_insert(&tree->state, end, &state->rb_node);
338         if (node) {
339                 struct extent_state *found;
340                 found = rb_entry(node, struct extent_state, rb_node);
341                 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
342                        "%llu %llu\n", (unsigned long long)found->start,
343                        (unsigned long long)found->end,
344                        (unsigned long long)start, (unsigned long long)end);
345                 return -EEXIST;
346         }
347         state->tree = tree;
348         merge_state(tree, state);
349         return 0;
350 }
351
352 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
353                      u64 split)
354 {
355         if (tree->ops && tree->ops->split_extent_hook)
356                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
357 }
358
359 /*
360  * split a given extent state struct in two, inserting the preallocated
361  * struct 'prealloc' as the newly created second half.  'split' indicates an
362  * offset inside 'orig' where it should be split.
363  *
364  * Before calling,
365  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
366  * are two extent state structs in the tree:
367  * prealloc: [orig->start, split - 1]
368  * orig: [ split, orig->end ]
369  *
370  * The tree locks are not taken by this function. They need to be held
371  * by the caller.
372  */
373 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
374                        struct extent_state *prealloc, u64 split)
375 {
376         struct rb_node *node;
377
378         split_cb(tree, orig, split);
379
380         prealloc->start = orig->start;
381         prealloc->end = split - 1;
382         prealloc->state = orig->state;
383         orig->start = split;
384
385         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
386         if (node) {
387                 free_extent_state(prealloc);
388                 return -EEXIST;
389         }
390         prealloc->tree = tree;
391         return 0;
392 }
393
394 /*
395  * utility function to clear some bits in an extent state struct.
396  * it will optionally wake up any one waiting on this state (wake == 1), or
397  * forcibly remove the state from the tree (delete == 1).
398  *
399  * If no bits are set on the state struct after clearing things, the
400  * struct is freed and removed from the tree
401  */
402 static int clear_state_bit(struct extent_io_tree *tree,
403                             struct extent_state *state,
404                             int *bits, int wake)
405 {
406         int bits_to_clear = *bits & ~EXTENT_CTLBITS;
407         int ret = state->state & bits_to_clear;
408
409         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
410                 u64 range = state->end - state->start + 1;
411                 WARN_ON(range > tree->dirty_bytes);
412                 tree->dirty_bytes -= range;
413         }
414         clear_state_cb(tree, state, bits);
415         state->state &= ~bits_to_clear;
416         if (wake)
417                 wake_up(&state->wq);
418         if (state->state == 0) {
419                 if (state->tree) {
420                         rb_erase(&state->rb_node, &tree->state);
421                         state->tree = NULL;
422                         free_extent_state(state);
423                 } else {
424                         WARN_ON(1);
425                 }
426         } else {
427                 merge_state(tree, state);
428         }
429         return ret;
430 }
431
432 static struct extent_state *
433 alloc_extent_state_atomic(struct extent_state *prealloc)
434 {
435         if (!prealloc)
436                 prealloc = alloc_extent_state(GFP_ATOMIC);
437
438         return prealloc;
439 }
440
441 /*
442  * clear some bits on a range in the tree.  This may require splitting
443  * or inserting elements in the tree, so the gfp mask is used to
444  * indicate which allocations or sleeping are allowed.
445  *
446  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
447  * the given range from the tree regardless of state (ie for truncate).
448  *
449  * the range [start, end] is inclusive.
450  *
451  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
452  * bits were already set, or zero if none of the bits were already set.
453  */
454 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
455                      int bits, int wake, int delete,
456                      struct extent_state **cached_state,
457                      gfp_t mask)
458 {
459         struct extent_state *state;
460         struct extent_state *cached;
461         struct extent_state *prealloc = NULL;
462         struct rb_node *next_node;
463         struct rb_node *node;
464         u64 last_end;
465         int err;
466         int set = 0;
467         int clear = 0;
468
469         if (delete)
470                 bits |= ~EXTENT_CTLBITS;
471         bits |= EXTENT_FIRST_DELALLOC;
472
473         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
474                 clear = 1;
475 again:
476         if (!prealloc && (mask & __GFP_WAIT)) {
477                 prealloc = alloc_extent_state(mask);
478                 if (!prealloc)
479                         return -ENOMEM;
480         }
481
482         spin_lock(&tree->lock);
483         if (cached_state) {
484                 cached = *cached_state;
485
486                 if (clear) {
487                         *cached_state = NULL;
488                         cached_state = NULL;
489                 }
490
491                 if (cached && cached->tree && cached->start <= start &&
492                     cached->end > start) {
493                         if (clear)
494                                 atomic_dec(&cached->refs);
495                         state = cached;
496                         goto hit_next;
497                 }
498                 if (clear)
499                         free_extent_state(cached);
500         }
501         /*
502          * this search will find the extents that end after
503          * our range starts
504          */
505         node = tree_search(tree, start);
506         if (!node)
507                 goto out;
508         state = rb_entry(node, struct extent_state, rb_node);
509 hit_next:
510         if (state->start > end)
511                 goto out;
512         WARN_ON(state->end < start);
513         last_end = state->end;
514
515         /*
516          *     | ---- desired range ---- |
517          *  | state | or
518          *  | ------------- state -------------- |
519          *
520          * We need to split the extent we found, and may flip
521          * bits on second half.
522          *
523          * If the extent we found extends past our range, we
524          * just split and search again.  It'll get split again
525          * the next time though.
526          *
527          * If the extent we found is inside our range, we clear
528          * the desired bit on it.
529          */
530
531         if (state->start < start) {
532                 prealloc = alloc_extent_state_atomic(prealloc);
533                 BUG_ON(!prealloc);
534                 err = split_state(tree, state, prealloc, start);
535                 BUG_ON(err == -EEXIST);
536                 prealloc = NULL;
537                 if (err)
538                         goto out;
539                 if (state->end <= end) {
540                         set |= clear_state_bit(tree, state, &bits, wake);
541                         if (last_end == (u64)-1)
542                                 goto out;
543                         start = last_end + 1;
544                 }
545                 goto search_again;
546         }
547         /*
548          * | ---- desired range ---- |
549          *                        | state |
550          * We need to split the extent, and clear the bit
551          * on the first half
552          */
553         if (state->start <= end && state->end > end) {
554                 prealloc = alloc_extent_state_atomic(prealloc);
555                 BUG_ON(!prealloc);
556                 err = split_state(tree, state, prealloc, end + 1);
557                 BUG_ON(err == -EEXIST);
558                 if (wake)
559                         wake_up(&state->wq);
560
561                 set |= clear_state_bit(tree, prealloc, &bits, wake);
562
563                 prealloc = NULL;
564                 goto out;
565         }
566
567         if (state->end < end && prealloc && !need_resched())
568                 next_node = rb_next(&state->rb_node);
569         else
570                 next_node = NULL;
571
572         set |= clear_state_bit(tree, state, &bits, wake);
573         if (last_end == (u64)-1)
574                 goto out;
575         start = last_end + 1;
576         if (start <= end && next_node) {
577                 state = rb_entry(next_node, struct extent_state,
578                                  rb_node);
579                 if (state->start == start)
580                         goto hit_next;
581         }
582         goto search_again;
583
584 out:
585         spin_unlock(&tree->lock);
586         if (prealloc)
587                 free_extent_state(prealloc);
588
589         return set;
590
591 search_again:
592         if (start > end)
593                 goto out;
594         spin_unlock(&tree->lock);
595         if (mask & __GFP_WAIT)
596                 cond_resched();
597         goto again;
598 }
599
600 static int wait_on_state(struct extent_io_tree *tree,
601                          struct extent_state *state)
602                 __releases(tree->lock)
603                 __acquires(tree->lock)
604 {
605         DEFINE_WAIT(wait);
606         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
607         spin_unlock(&tree->lock);
608         schedule();
609         spin_lock(&tree->lock);
610         finish_wait(&state->wq, &wait);
611         return 0;
612 }
613
614 /*
615  * waits for one or more bits to clear on a range in the state tree.
616  * The range [start, end] is inclusive.
617  * The tree lock is taken by this function
618  */
619 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
620 {
621         struct extent_state *state;
622         struct rb_node *node;
623
624         spin_lock(&tree->lock);
625 again:
626         while (1) {
627                 /*
628                  * this search will find all the extents that end after
629                  * our range starts
630                  */
631                 node = tree_search(tree, start);
632                 if (!node)
633                         break;
634
635                 state = rb_entry(node, struct extent_state, rb_node);
636
637                 if (state->start > end)
638                         goto out;
639
640                 if (state->state & bits) {
641                         start = state->start;
642                         atomic_inc(&state->refs);
643                         wait_on_state(tree, state);
644                         free_extent_state(state);
645                         goto again;
646                 }
647                 start = state->end + 1;
648
649                 if (start > end)
650                         break;
651
652                 cond_resched_lock(&tree->lock);
653         }
654 out:
655         spin_unlock(&tree->lock);
656         return 0;
657 }
658
659 static void set_state_bits(struct extent_io_tree *tree,
660                            struct extent_state *state,
661                            int *bits)
662 {
663         int bits_to_set = *bits & ~EXTENT_CTLBITS;
664
665         set_state_cb(tree, state, bits);
666         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
667                 u64 range = state->end - state->start + 1;
668                 tree->dirty_bytes += range;
669         }
670         state->state |= bits_to_set;
671 }
672
673 static void cache_state(struct extent_state *state,
674                         struct extent_state **cached_ptr)
675 {
676         if (cached_ptr && !(*cached_ptr)) {
677                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
678                         *cached_ptr = state;
679                         atomic_inc(&state->refs);
680                 }
681         }
682 }
683
684 static void uncache_state(struct extent_state **cached_ptr)
685 {
686         if (cached_ptr && (*cached_ptr)) {
687                 struct extent_state *state = *cached_ptr;
688                 *cached_ptr = NULL;
689                 free_extent_state(state);
690         }
691 }
692
693 /*
694  * set some bits on a range in the tree.  This may require allocations or
695  * sleeping, so the gfp mask is used to indicate what is allowed.
696  *
697  * If any of the exclusive bits are set, this will fail with -EEXIST if some
698  * part of the range already has the desired bits set.  The start of the
699  * existing range is returned in failed_start in this case.
700  *
701  * [start, end] is inclusive This takes the tree lock.
702  */
703
704 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
705                    int bits, int exclusive_bits, u64 *failed_start,
706                    struct extent_state **cached_state, gfp_t mask)
707 {
708         struct extent_state *state;
709         struct extent_state *prealloc = NULL;
710         struct rb_node *node;
711         int err = 0;
712         u64 last_start;
713         u64 last_end;
714
715         bits |= EXTENT_FIRST_DELALLOC;
716 again:
717         if (!prealloc && (mask & __GFP_WAIT)) {
718                 prealloc = alloc_extent_state(mask);
719                 BUG_ON(!prealloc);
720         }
721
722         spin_lock(&tree->lock);
723         if (cached_state && *cached_state) {
724                 state = *cached_state;
725                 if (state->start <= start && state->end > start &&
726                     state->tree) {
727                         node = &state->rb_node;
728                         goto hit_next;
729                 }
730         }
731         /*
732          * this search will find all the extents that end after
733          * our range starts.
734          */
735         node = tree_search(tree, start);
736         if (!node) {
737                 prealloc = alloc_extent_state_atomic(prealloc);
738                 BUG_ON(!prealloc);
739                 err = insert_state(tree, prealloc, start, end, &bits);
740                 prealloc = NULL;
741                 BUG_ON(err == -EEXIST);
742                 goto out;
743         }
744         state = rb_entry(node, struct extent_state, rb_node);
745 hit_next:
746         last_start = state->start;
747         last_end = state->end;
748
749         /*
750          * | ---- desired range ---- |
751          * | state |
752          *
753          * Just lock what we found and keep going
754          */
755         if (state->start == start && state->end <= end) {
756                 struct rb_node *next_node;
757                 if (state->state & exclusive_bits) {
758                         *failed_start = state->start;
759                         err = -EEXIST;
760                         goto out;
761                 }
762
763                 set_state_bits(tree, state, &bits);
764
765                 cache_state(state, cached_state);
766                 merge_state(tree, state);
767                 if (last_end == (u64)-1)
768                         goto out;
769
770                 start = last_end + 1;
771                 next_node = rb_next(&state->rb_node);
772                 if (next_node && start < end && prealloc && !need_resched()) {
773                         state = rb_entry(next_node, struct extent_state,
774                                          rb_node);
775                         if (state->start == start)
776                                 goto hit_next;
777                 }
778                 goto search_again;
779         }
780
781         /*
782          *     | ---- desired range ---- |
783          * | state |
784          *   or
785          * | ------------- state -------------- |
786          *
787          * We need to split the extent we found, and may flip bits on
788          * second half.
789          *
790          * If the extent we found extends past our
791          * range, we just split and search again.  It'll get split
792          * again the next time though.
793          *
794          * If the extent we found is inside our range, we set the
795          * desired bit on it.
796          */
797         if (state->start < start) {
798                 if (state->state & exclusive_bits) {
799                         *failed_start = start;
800                         err = -EEXIST;
801                         goto out;
802                 }
803
804                 prealloc = alloc_extent_state_atomic(prealloc);
805                 BUG_ON(!prealloc);
806                 err = split_state(tree, state, prealloc, start);
807                 BUG_ON(err == -EEXIST);
808                 prealloc = NULL;
809                 if (err)
810                         goto out;
811                 if (state->end <= end) {
812                         set_state_bits(tree, state, &bits);
813                         cache_state(state, cached_state);
814                         merge_state(tree, state);
815                         if (last_end == (u64)-1)
816                                 goto out;
817                         start = last_end + 1;
818                 }
819                 goto search_again;
820         }
821         /*
822          * | ---- desired range ---- |
823          *     | state | or               | state |
824          *
825          * There's a hole, we need to insert something in it and
826          * ignore the extent we found.
827          */
828         if (state->start > start) {
829                 u64 this_end;
830                 if (end < last_start)
831                         this_end = end;
832                 else
833                         this_end = last_start - 1;
834
835                 prealloc = alloc_extent_state_atomic(prealloc);
836                 BUG_ON(!prealloc);
837
838                 /*
839                  * Avoid to free 'prealloc' if it can be merged with
840                  * the later extent.
841                  */
842                 err = insert_state(tree, prealloc, start, this_end,
843                                    &bits);
844                 BUG_ON(err == -EEXIST);
845                 if (err) {
846                         free_extent_state(prealloc);
847                         prealloc = NULL;
848                         goto out;
849                 }
850                 cache_state(prealloc, cached_state);
851                 prealloc = NULL;
852                 start = this_end + 1;
853                 goto search_again;
854         }
855         /*
856          * | ---- desired range ---- |
857          *                        | state |
858          * We need to split the extent, and set the bit
859          * on the first half
860          */
861         if (state->start <= end && state->end > end) {
862                 if (state->state & exclusive_bits) {
863                         *failed_start = start;
864                         err = -EEXIST;
865                         goto out;
866                 }
867
868                 prealloc = alloc_extent_state_atomic(prealloc);
869                 BUG_ON(!prealloc);
870                 err = split_state(tree, state, prealloc, end + 1);
871                 BUG_ON(err == -EEXIST);
872
873                 set_state_bits(tree, prealloc, &bits);
874                 cache_state(prealloc, cached_state);
875                 merge_state(tree, prealloc);
876                 prealloc = NULL;
877                 goto out;
878         }
879
880         goto search_again;
881
882 out:
883         spin_unlock(&tree->lock);
884         if (prealloc)
885                 free_extent_state(prealloc);
886
887         return err;
888
889 search_again:
890         if (start > end)
891                 goto out;
892         spin_unlock(&tree->lock);
893         if (mask & __GFP_WAIT)
894                 cond_resched();
895         goto again;
896 }
897
898 /**
899  * convert_extent - convert all bits in a given range from one bit to another
900  * @tree:       the io tree to search
901  * @start:      the start offset in bytes
902  * @end:        the end offset in bytes (inclusive)
903  * @bits:       the bits to set in this range
904  * @clear_bits: the bits to clear in this range
905  * @mask:       the allocation mask
906  *
907  * This will go through and set bits for the given range.  If any states exist
908  * already in this range they are set with the given bit and cleared of the
909  * clear_bits.  This is only meant to be used by things that are mergeable, ie
910  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
911  * boundary bits like LOCK.
912  */
913 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
914                        int bits, int clear_bits, gfp_t mask)
915 {
916         struct extent_state *state;
917         struct extent_state *prealloc = NULL;
918         struct rb_node *node;
919         int err = 0;
920         u64 last_start;
921         u64 last_end;
922
923 again:
924         if (!prealloc && (mask & __GFP_WAIT)) {
925                 prealloc = alloc_extent_state(mask);
926                 if (!prealloc)
927                         return -ENOMEM;
928         }
929
930         spin_lock(&tree->lock);
931         /*
932          * this search will find all the extents that end after
933          * our range starts.
934          */
935         node = tree_search(tree, start);
936         if (!node) {
937                 prealloc = alloc_extent_state_atomic(prealloc);
938                 if (!prealloc)
939                         return -ENOMEM;
940                 err = insert_state(tree, prealloc, start, end, &bits);
941                 prealloc = NULL;
942                 BUG_ON(err == -EEXIST);
943                 goto out;
944         }
945         state = rb_entry(node, struct extent_state, rb_node);
946 hit_next:
947         last_start = state->start;
948         last_end = state->end;
949
950         /*
951          * | ---- desired range ---- |
952          * | state |
953          *
954          * Just lock what we found and keep going
955          */
956         if (state->start == start && state->end <= end) {
957                 struct rb_node *next_node;
958
959                 set_state_bits(tree, state, &bits);
960                 clear_state_bit(tree, state, &clear_bits, 0);
961
962                 merge_state(tree, state);
963                 if (last_end == (u64)-1)
964                         goto out;
965
966                 start = last_end + 1;
967                 next_node = rb_next(&state->rb_node);
968                 if (next_node && start < end && prealloc && !need_resched()) {
969                         state = rb_entry(next_node, struct extent_state,
970                                          rb_node);
971                         if (state->start == start)
972                                 goto hit_next;
973                 }
974                 goto search_again;
975         }
976
977         /*
978          *     | ---- desired range ---- |
979          * | state |
980          *   or
981          * | ------------- state -------------- |
982          *
983          * We need to split the extent we found, and may flip bits on
984          * second half.
985          *
986          * If the extent we found extends past our
987          * range, we just split and search again.  It'll get split
988          * again the next time though.
989          *
990          * If the extent we found is inside our range, we set the
991          * desired bit on it.
992          */
993         if (state->start < start) {
994                 prealloc = alloc_extent_state_atomic(prealloc);
995                 if (!prealloc)
996                         return -ENOMEM;
997                 err = split_state(tree, state, prealloc, start);
998                 BUG_ON(err == -EEXIST);
999                 prealloc = NULL;
1000                 if (err)
1001                         goto out;
1002                 if (state->end <= end) {
1003                         set_state_bits(tree, state, &bits);
1004                         clear_state_bit(tree, state, &clear_bits, 0);
1005                         merge_state(tree, state);
1006                         if (last_end == (u64)-1)
1007                                 goto out;
1008                         start = last_end + 1;
1009                 }
1010                 goto search_again;
1011         }
1012         /*
1013          * | ---- desired range ---- |
1014          *     | state | or               | state |
1015          *
1016          * There's a hole, we need to insert something in it and
1017          * ignore the extent we found.
1018          */
1019         if (state->start > start) {
1020                 u64 this_end;
1021                 if (end < last_start)
1022                         this_end = end;
1023                 else
1024                         this_end = last_start - 1;
1025
1026                 prealloc = alloc_extent_state_atomic(prealloc);
1027                 if (!prealloc)
1028                         return -ENOMEM;
1029
1030                 /*
1031                  * Avoid to free 'prealloc' if it can be merged with
1032                  * the later extent.
1033                  */
1034                 err = insert_state(tree, prealloc, start, this_end,
1035                                    &bits);
1036                 BUG_ON(err == -EEXIST);
1037                 if (err) {
1038                         free_extent_state(prealloc);
1039                         prealloc = NULL;
1040                         goto out;
1041                 }
1042                 prealloc = NULL;
1043                 start = this_end + 1;
1044                 goto search_again;
1045         }
1046         /*
1047          * | ---- desired range ---- |
1048          *                        | state |
1049          * We need to split the extent, and set the bit
1050          * on the first half
1051          */
1052         if (state->start <= end && state->end > end) {
1053                 prealloc = alloc_extent_state_atomic(prealloc);
1054                 if (!prealloc)
1055                         return -ENOMEM;
1056
1057                 err = split_state(tree, state, prealloc, end + 1);
1058                 BUG_ON(err == -EEXIST);
1059
1060                 set_state_bits(tree, prealloc, &bits);
1061                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1062
1063                 merge_state(tree, prealloc);
1064                 prealloc = NULL;
1065                 goto out;
1066         }
1067
1068         goto search_again;
1069
1070 out:
1071         spin_unlock(&tree->lock);
1072         if (prealloc)
1073                 free_extent_state(prealloc);
1074
1075         return err;
1076
1077 search_again:
1078         if (start > end)
1079                 goto out;
1080         spin_unlock(&tree->lock);
1081         if (mask & __GFP_WAIT)
1082                 cond_resched();
1083         goto again;
1084 }
1085
1086 /* wrappers around set/clear extent bit */
1087 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1088                      gfp_t mask)
1089 {
1090         return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
1091                               NULL, mask);
1092 }
1093
1094 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1095                     int bits, gfp_t mask)
1096 {
1097         return set_extent_bit(tree, start, end, bits, 0, NULL,
1098                               NULL, mask);
1099 }
1100
1101 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1102                       int bits, gfp_t mask)
1103 {
1104         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1105 }
1106
1107 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1108                         struct extent_state **cached_state, gfp_t mask)
1109 {
1110         return set_extent_bit(tree, start, end,
1111                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1112                               0, NULL, cached_state, mask);
1113 }
1114
1115 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1116                        gfp_t mask)
1117 {
1118         return clear_extent_bit(tree, start, end,
1119                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1120                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1121 }
1122
1123 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1124                      gfp_t mask)
1125 {
1126         return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
1127                               NULL, mask);
1128 }
1129
1130 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1131                         struct extent_state **cached_state, gfp_t mask)
1132 {
1133         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1134                               NULL, cached_state, mask);
1135 }
1136
1137 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
1138                                  u64 end, struct extent_state **cached_state,
1139                                  gfp_t mask)
1140 {
1141         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1142                                 cached_state, mask);
1143 }
1144
1145 /*
1146  * either insert or lock state struct between start and end use mask to tell
1147  * us if waiting is desired.
1148  */
1149 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1150                      int bits, struct extent_state **cached_state, gfp_t mask)
1151 {
1152         int err;
1153         u64 failed_start;
1154         while (1) {
1155                 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1156                                      EXTENT_LOCKED, &failed_start,
1157                                      cached_state, mask);
1158                 if (err == -EEXIST && (mask & __GFP_WAIT)) {
1159                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1160                         start = failed_start;
1161                 } else {
1162                         break;
1163                 }
1164                 WARN_ON(start > end);
1165         }
1166         return err;
1167 }
1168
1169 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1170 {
1171         return lock_extent_bits(tree, start, end, 0, NULL, mask);
1172 }
1173
1174 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1175                     gfp_t mask)
1176 {
1177         int err;
1178         u64 failed_start;
1179
1180         err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1181                              &failed_start, NULL, mask);
1182         if (err == -EEXIST) {
1183                 if (failed_start > start)
1184                         clear_extent_bit(tree, start, failed_start - 1,
1185                                          EXTENT_LOCKED, 1, 0, NULL, mask);
1186                 return 0;
1187         }
1188         return 1;
1189 }
1190
1191 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1192                          struct extent_state **cached, gfp_t mask)
1193 {
1194         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1195                                 mask);
1196 }
1197
1198 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1199 {
1200         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1201                                 mask);
1202 }
1203
1204 /*
1205  * helper function to set both pages and extents in the tree writeback
1206  */
1207 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1208 {
1209         unsigned long index = start >> PAGE_CACHE_SHIFT;
1210         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1211         struct page *page;
1212
1213         while (index <= end_index) {
1214                 page = find_get_page(tree->mapping, index);
1215                 BUG_ON(!page);
1216                 set_page_writeback(page);
1217                 page_cache_release(page);
1218                 index++;
1219         }
1220         return 0;
1221 }
1222
1223 /* find the first state struct with 'bits' set after 'start', and
1224  * return it.  tree->lock must be held.  NULL will returned if
1225  * nothing was found after 'start'
1226  */
1227 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1228                                                  u64 start, int bits)
1229 {
1230         struct rb_node *node;
1231         struct extent_state *state;
1232
1233         /*
1234          * this search will find all the extents that end after
1235          * our range starts.
1236          */
1237         node = tree_search(tree, start);
1238         if (!node)
1239                 goto out;
1240
1241         while (1) {
1242                 state = rb_entry(node, struct extent_state, rb_node);
1243                 if (state->end >= start && (state->state & bits))
1244                         return state;
1245
1246                 node = rb_next(node);
1247                 if (!node)
1248                         break;
1249         }
1250 out:
1251         return NULL;
1252 }
1253
1254 /*
1255  * find the first offset in the io tree with 'bits' set. zero is
1256  * returned if we find something, and *start_ret and *end_ret are
1257  * set to reflect the state struct that was found.
1258  *
1259  * If nothing was found, 1 is returned, < 0 on error
1260  */
1261 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1262                           u64 *start_ret, u64 *end_ret, int bits)
1263 {
1264         struct extent_state *state;
1265         int ret = 1;
1266
1267         spin_lock(&tree->lock);
1268         state = find_first_extent_bit_state(tree, start, bits);
1269         if (state) {
1270                 *start_ret = state->start;
1271                 *end_ret = state->end;
1272                 ret = 0;
1273         }
1274         spin_unlock(&tree->lock);
1275         return ret;
1276 }
1277
1278 /*
1279  * find a contiguous range of bytes in the file marked as delalloc, not
1280  * more than 'max_bytes'.  start and end are used to return the range,
1281  *
1282  * 1 is returned if we find something, 0 if nothing was in the tree
1283  */
1284 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1285                                         u64 *start, u64 *end, u64 max_bytes,
1286                                         struct extent_state **cached_state)
1287 {
1288         struct rb_node *node;
1289         struct extent_state *state;
1290         u64 cur_start = *start;
1291         u64 found = 0;
1292         u64 total_bytes = 0;
1293
1294         spin_lock(&tree->lock);
1295
1296         /*
1297          * this search will find all the extents that end after
1298          * our range starts.
1299          */
1300         node = tree_search(tree, cur_start);
1301         if (!node) {
1302                 if (!found)
1303                         *end = (u64)-1;
1304                 goto out;
1305         }
1306
1307         while (1) {
1308                 state = rb_entry(node, struct extent_state, rb_node);
1309                 if (found && (state->start != cur_start ||
1310                               (state->state & EXTENT_BOUNDARY))) {
1311                         goto out;
1312                 }
1313                 if (!(state->state & EXTENT_DELALLOC)) {
1314                         if (!found)
1315                                 *end = state->end;
1316                         goto out;
1317                 }
1318                 if (!found) {
1319                         *start = state->start;
1320                         *cached_state = state;
1321                         atomic_inc(&state->refs);
1322                 }
1323                 found++;
1324                 *end = state->end;
1325                 cur_start = state->end + 1;
1326                 node = rb_next(node);
1327                 if (!node)
1328                         break;
1329                 total_bytes += state->end - state->start + 1;
1330                 if (total_bytes >= max_bytes)
1331                         break;
1332         }
1333 out:
1334         spin_unlock(&tree->lock);
1335         return found;
1336 }
1337
1338 static noinline int __unlock_for_delalloc(struct inode *inode,
1339                                           struct page *locked_page,
1340                                           u64 start, u64 end)
1341 {
1342         int ret;
1343         struct page *pages[16];
1344         unsigned long index = start >> PAGE_CACHE_SHIFT;
1345         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1346         unsigned long nr_pages = end_index - index + 1;
1347         int i;
1348
1349         if (index == locked_page->index && end_index == index)
1350                 return 0;
1351
1352         while (nr_pages > 0) {
1353                 ret = find_get_pages_contig(inode->i_mapping, index,
1354                                      min_t(unsigned long, nr_pages,
1355                                      ARRAY_SIZE(pages)), pages);
1356                 for (i = 0; i < ret; i++) {
1357                         if (pages[i] != locked_page)
1358                                 unlock_page(pages[i]);
1359                         page_cache_release(pages[i]);
1360                 }
1361                 nr_pages -= ret;
1362                 index += ret;
1363                 cond_resched();
1364         }
1365         return 0;
1366 }
1367
1368 static noinline int lock_delalloc_pages(struct inode *inode,
1369                                         struct page *locked_page,
1370                                         u64 delalloc_start,
1371                                         u64 delalloc_end)
1372 {
1373         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1374         unsigned long start_index = index;
1375         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1376         unsigned long pages_locked = 0;
1377         struct page *pages[16];
1378         unsigned long nrpages;
1379         int ret;
1380         int i;
1381
1382         /* the caller is responsible for locking the start index */
1383         if (index == locked_page->index && index == end_index)
1384                 return 0;
1385
1386         /* skip the page at the start index */
1387         nrpages = end_index - index + 1;
1388         while (nrpages > 0) {
1389                 ret = find_get_pages_contig(inode->i_mapping, index,
1390                                      min_t(unsigned long,
1391                                      nrpages, ARRAY_SIZE(pages)), pages);
1392                 if (ret == 0) {
1393                         ret = -EAGAIN;
1394                         goto done;
1395                 }
1396                 /* now we have an array of pages, lock them all */
1397                 for (i = 0; i < ret; i++) {
1398                         /*
1399                          * the caller is taking responsibility for
1400                          * locked_page
1401                          */
1402                         if (pages[i] != locked_page) {
1403                                 lock_page(pages[i]);
1404                                 if (!PageDirty(pages[i]) ||
1405                                     pages[i]->mapping != inode->i_mapping) {
1406                                         ret = -EAGAIN;
1407                                         unlock_page(pages[i]);
1408                                         page_cache_release(pages[i]);
1409                                         goto done;
1410                                 }
1411                         }
1412                         page_cache_release(pages[i]);
1413                         pages_locked++;
1414                 }
1415                 nrpages -= ret;
1416                 index += ret;
1417                 cond_resched();
1418         }
1419         ret = 0;
1420 done:
1421         if (ret && pages_locked) {
1422                 __unlock_for_delalloc(inode, locked_page,
1423                               delalloc_start,
1424                               ((u64)(start_index + pages_locked - 1)) <<
1425                               PAGE_CACHE_SHIFT);
1426         }
1427         return ret;
1428 }
1429
1430 /*
1431  * find a contiguous range of bytes in the file marked as delalloc, not
1432  * more than 'max_bytes'.  start and end are used to return the range,
1433  *
1434  * 1 is returned if we find something, 0 if nothing was in the tree
1435  */
1436 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1437                                              struct extent_io_tree *tree,
1438                                              struct page *locked_page,
1439                                              u64 *start, u64 *end,
1440                                              u64 max_bytes)
1441 {
1442         u64 delalloc_start;
1443         u64 delalloc_end;
1444         u64 found;
1445         struct extent_state *cached_state = NULL;
1446         int ret;
1447         int loops = 0;
1448
1449 again:
1450         /* step one, find a bunch of delalloc bytes starting at start */
1451         delalloc_start = *start;
1452         delalloc_end = 0;
1453         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1454                                     max_bytes, &cached_state);
1455         if (!found || delalloc_end <= *start) {
1456                 *start = delalloc_start;
1457                 *end = delalloc_end;
1458                 free_extent_state(cached_state);
1459                 return found;
1460         }
1461
1462         /*
1463          * start comes from the offset of locked_page.  We have to lock
1464          * pages in order, so we can't process delalloc bytes before
1465          * locked_page
1466          */
1467         if (delalloc_start < *start)
1468                 delalloc_start = *start;
1469
1470         /*
1471          * make sure to limit the number of pages we try to lock down
1472          * if we're looping.
1473          */
1474         if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1475                 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1476
1477         /* step two, lock all the pages after the page that has start */
1478         ret = lock_delalloc_pages(inode, locked_page,
1479                                   delalloc_start, delalloc_end);
1480         if (ret == -EAGAIN) {
1481                 /* some of the pages are gone, lets avoid looping by
1482                  * shortening the size of the delalloc range we're searching
1483                  */
1484                 free_extent_state(cached_state);
1485                 if (!loops) {
1486                         unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1487                         max_bytes = PAGE_CACHE_SIZE - offset;
1488                         loops = 1;
1489                         goto again;
1490                 } else {
1491                         found = 0;
1492                         goto out_failed;
1493                 }
1494         }
1495         BUG_ON(ret);
1496
1497         /* step three, lock the state bits for the whole range */
1498         lock_extent_bits(tree, delalloc_start, delalloc_end,
1499                          0, &cached_state, GFP_NOFS);
1500
1501         /* then test to make sure it is all still delalloc */
1502         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1503                              EXTENT_DELALLOC, 1, cached_state);
1504         if (!ret) {
1505                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1506                                      &cached_state, GFP_NOFS);
1507                 __unlock_for_delalloc(inode, locked_page,
1508                               delalloc_start, delalloc_end);
1509                 cond_resched();
1510                 goto again;
1511         }
1512         free_extent_state(cached_state);
1513         *start = delalloc_start;
1514         *end = delalloc_end;
1515 out_failed:
1516         return found;
1517 }
1518
1519 int extent_clear_unlock_delalloc(struct inode *inode,
1520                                 struct extent_io_tree *tree,
1521                                 u64 start, u64 end, struct page *locked_page,
1522                                 unsigned long op)
1523 {
1524         int ret;
1525         struct page *pages[16];
1526         unsigned long index = start >> PAGE_CACHE_SHIFT;
1527         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1528         unsigned long nr_pages = end_index - index + 1;
1529         int i;
1530         int clear_bits = 0;
1531
1532         if (op & EXTENT_CLEAR_UNLOCK)
1533                 clear_bits |= EXTENT_LOCKED;
1534         if (op & EXTENT_CLEAR_DIRTY)
1535                 clear_bits |= EXTENT_DIRTY;
1536
1537         if (op & EXTENT_CLEAR_DELALLOC)
1538                 clear_bits |= EXTENT_DELALLOC;
1539
1540         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1541         if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1542                     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1543                     EXTENT_SET_PRIVATE2)))
1544                 return 0;
1545
1546         while (nr_pages > 0) {
1547                 ret = find_get_pages_contig(inode->i_mapping, index,
1548                                      min_t(unsigned long,
1549                                      nr_pages, ARRAY_SIZE(pages)), pages);
1550                 for (i = 0; i < ret; i++) {
1551
1552                         if (op & EXTENT_SET_PRIVATE2)
1553                                 SetPagePrivate2(pages[i]);
1554
1555                         if (pages[i] == locked_page) {
1556                                 page_cache_release(pages[i]);
1557                                 continue;
1558                         }
1559                         if (op & EXTENT_CLEAR_DIRTY)
1560                                 clear_page_dirty_for_io(pages[i]);
1561                         if (op & EXTENT_SET_WRITEBACK)
1562                                 set_page_writeback(pages[i]);
1563                         if (op & EXTENT_END_WRITEBACK)
1564                                 end_page_writeback(pages[i]);
1565                         if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1566                                 unlock_page(pages[i]);
1567                         page_cache_release(pages[i]);
1568                 }
1569                 nr_pages -= ret;
1570                 index += ret;
1571                 cond_resched();
1572         }
1573         return 0;
1574 }
1575
1576 /*
1577  * count the number of bytes in the tree that have a given bit(s)
1578  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1579  * cached.  The total number found is returned.
1580  */
1581 u64 count_range_bits(struct extent_io_tree *tree,
1582                      u64 *start, u64 search_end, u64 max_bytes,
1583                      unsigned long bits, int contig)
1584 {
1585         struct rb_node *node;
1586         struct extent_state *state;
1587         u64 cur_start = *start;
1588         u64 total_bytes = 0;
1589         u64 last = 0;
1590         int found = 0;
1591
1592         if (search_end <= cur_start) {
1593                 WARN_ON(1);
1594                 return 0;
1595         }
1596
1597         spin_lock(&tree->lock);
1598         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1599                 total_bytes = tree->dirty_bytes;
1600                 goto out;
1601         }
1602         /*
1603          * this search will find all the extents that end after
1604          * our range starts.
1605          */
1606         node = tree_search(tree, cur_start);
1607         if (!node)
1608                 goto out;
1609
1610         while (1) {
1611                 state = rb_entry(node, struct extent_state, rb_node);
1612                 if (state->start > search_end)
1613                         break;
1614                 if (contig && found && state->start > last + 1)
1615                         break;
1616                 if (state->end >= cur_start && (state->state & bits) == bits) {
1617                         total_bytes += min(search_end, state->end) + 1 -
1618                                        max(cur_start, state->start);
1619                         if (total_bytes >= max_bytes)
1620                                 break;
1621                         if (!found) {
1622                                 *start = max(cur_start, state->start);
1623                                 found = 1;
1624                         }
1625                         last = state->end;
1626                 } else if (contig && found) {
1627                         break;
1628                 }
1629                 node = rb_next(node);
1630                 if (!node)
1631                         break;
1632         }
1633 out:
1634         spin_unlock(&tree->lock);
1635         return total_bytes;
1636 }
1637
1638 /*
1639  * set the private field for a given byte offset in the tree.  If there isn't
1640  * an extent_state there already, this does nothing.
1641  */
1642 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1643 {
1644         struct rb_node *node;
1645         struct extent_state *state;
1646         int ret = 0;
1647
1648         spin_lock(&tree->lock);
1649         /*
1650          * this search will find all the extents that end after
1651          * our range starts.
1652          */
1653         node = tree_search(tree, start);
1654         if (!node) {
1655                 ret = -ENOENT;
1656                 goto out;
1657         }
1658         state = rb_entry(node, struct extent_state, rb_node);
1659         if (state->start != start) {
1660                 ret = -ENOENT;
1661                 goto out;
1662         }
1663         state->private = private;
1664 out:
1665         spin_unlock(&tree->lock);
1666         return ret;
1667 }
1668
1669 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1670 {
1671         struct rb_node *node;
1672         struct extent_state *state;
1673         int ret = 0;
1674
1675         spin_lock(&tree->lock);
1676         /*
1677          * this search will find all the extents that end after
1678          * our range starts.
1679          */
1680         node = tree_search(tree, start);
1681         if (!node) {
1682                 ret = -ENOENT;
1683                 goto out;
1684         }
1685         state = rb_entry(node, struct extent_state, rb_node);
1686         if (state->start != start) {
1687                 ret = -ENOENT;
1688                 goto out;
1689         }
1690         *private = state->private;
1691 out:
1692         spin_unlock(&tree->lock);
1693         return ret;
1694 }
1695
1696 /*
1697  * searches a range in the state tree for a given mask.
1698  * If 'filled' == 1, this returns 1 only if every extent in the tree
1699  * has the bits set.  Otherwise, 1 is returned if any bit in the
1700  * range is found set.
1701  */
1702 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1703                    int bits, int filled, struct extent_state *cached)
1704 {
1705         struct extent_state *state = NULL;
1706         struct rb_node *node;
1707         int bitset = 0;
1708
1709         spin_lock(&tree->lock);
1710         if (cached && cached->tree && cached->start <= start &&
1711             cached->end > start)
1712                 node = &cached->rb_node;
1713         else
1714                 node = tree_search(tree, start);
1715         while (node && start <= end) {
1716                 state = rb_entry(node, struct extent_state, rb_node);
1717
1718                 if (filled && state->start > start) {
1719                         bitset = 0;
1720                         break;
1721                 }
1722
1723                 if (state->start > end)
1724                         break;
1725
1726                 if (state->state & bits) {
1727                         bitset = 1;
1728                         if (!filled)
1729                                 break;
1730                 } else if (filled) {
1731                         bitset = 0;
1732                         break;
1733                 }
1734
1735                 if (state->end == (u64)-1)
1736                         break;
1737
1738                 start = state->end + 1;
1739                 if (start > end)
1740                         break;
1741                 node = rb_next(node);
1742                 if (!node) {
1743                         if (filled)
1744                                 bitset = 0;
1745                         break;
1746                 }
1747         }
1748         spin_unlock(&tree->lock);
1749         return bitset;
1750 }
1751
1752 /*
1753  * helper function to set a given page up to date if all the
1754  * extents in the tree for that page are up to date
1755  */
1756 static int check_page_uptodate(struct extent_io_tree *tree,
1757                                struct page *page)
1758 {
1759         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1760         u64 end = start + PAGE_CACHE_SIZE - 1;
1761         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1762                 SetPageUptodate(page);
1763         return 0;
1764 }
1765
1766 /*
1767  * helper function to unlock a page if all the extents in the tree
1768  * for that page are unlocked
1769  */
1770 static int check_page_locked(struct extent_io_tree *tree,
1771                              struct page *page)
1772 {
1773         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1774         u64 end = start + PAGE_CACHE_SIZE - 1;
1775         if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1776                 unlock_page(page);
1777         return 0;
1778 }
1779
1780 /*
1781  * helper function to end page writeback if all the extents
1782  * in the tree for that page are done with writeback
1783  */
1784 static int check_page_writeback(struct extent_io_tree *tree,
1785                              struct page *page)
1786 {
1787         end_page_writeback(page);
1788         return 0;
1789 }
1790
1791 /*
1792  * When IO fails, either with EIO or csum verification fails, we
1793  * try other mirrors that might have a good copy of the data.  This
1794  * io_failure_record is used to record state as we go through all the
1795  * mirrors.  If another mirror has good data, the page is set up to date
1796  * and things continue.  If a good mirror can't be found, the original
1797  * bio end_io callback is called to indicate things have failed.
1798  */
1799 struct io_failure_record {
1800         struct page *page;
1801         u64 start;
1802         u64 len;
1803         u64 logical;
1804         unsigned long bio_flags;
1805         int this_mirror;
1806         int failed_mirror;
1807         int in_validation;
1808 };
1809
1810 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1811                                 int did_repair)
1812 {
1813         int ret;
1814         int err = 0;
1815         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1816
1817         set_state_private(failure_tree, rec->start, 0);
1818         ret = clear_extent_bits(failure_tree, rec->start,
1819                                 rec->start + rec->len - 1,
1820                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1821         if (ret)
1822                 err = ret;
1823
1824         if (did_repair) {
1825                 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1826                                         rec->start + rec->len - 1,
1827                                         EXTENT_DAMAGED, GFP_NOFS);
1828                 if (ret && !err)
1829                         err = ret;
1830         }
1831
1832         kfree(rec);
1833         return err;
1834 }
1835
1836 static void repair_io_failure_callback(struct bio *bio, int err)
1837 {
1838         complete(bio->bi_private);
1839 }
1840
1841 /*
1842  * this bypasses the standard btrfs submit functions deliberately, as
1843  * the standard behavior is to write all copies in a raid setup. here we only
1844  * want to write the one bad copy. so we do the mapping for ourselves and issue
1845  * submit_bio directly.
1846  * to avoid any synchonization issues, wait for the data after writing, which
1847  * actually prevents the read that triggered the error from finishing.
1848  * currently, there can be no more than two copies of every data bit. thus,
1849  * exactly one rewrite is required.
1850  */
1851 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1852                         u64 length, u64 logical, struct page *page,
1853                         int mirror_num)
1854 {
1855         struct bio *bio;
1856         struct btrfs_device *dev;
1857         DECLARE_COMPLETION_ONSTACK(compl);
1858         u64 map_length = 0;
1859         u64 sector;
1860         struct btrfs_bio *bbio = NULL;
1861         int ret;
1862
1863         BUG_ON(!mirror_num);
1864
1865         bio = bio_alloc(GFP_NOFS, 1);
1866         if (!bio)
1867                 return -EIO;
1868         bio->bi_private = &compl;
1869         bio->bi_end_io = repair_io_failure_callback;
1870         bio->bi_size = 0;
1871         map_length = length;
1872
1873         ret = btrfs_map_block(map_tree, WRITE, logical,
1874                               &map_length, &bbio, mirror_num);
1875         if (ret) {
1876                 bio_put(bio);
1877                 return -EIO;
1878         }
1879         BUG_ON(mirror_num != bbio->mirror_num);
1880         sector = bbio->stripes[mirror_num-1].physical >> 9;
1881         bio->bi_sector = sector;
1882         dev = bbio->stripes[mirror_num-1].dev;
1883         kfree(bbio);
1884         if (!dev || !dev->bdev || !dev->writeable) {
1885                 bio_put(bio);
1886                 return -EIO;
1887         }
1888         bio->bi_bdev = dev->bdev;
1889         bio_add_page(bio, page, length, start-page_offset(page));
1890         submit_bio(WRITE_SYNC, bio);
1891         wait_for_completion(&compl);
1892
1893         if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1894                 /* try to remap that extent elsewhere? */
1895                 bio_put(bio);
1896                 return -EIO;
1897         }
1898
1899         printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s "
1900                         "sector %llu)\n", page->mapping->host->i_ino, start,
1901                         dev->name, sector);
1902
1903         bio_put(bio);
1904         return 0;
1905 }
1906
1907 /*
1908  * each time an IO finishes, we do a fast check in the IO failure tree
1909  * to see if we need to process or clean up an io_failure_record
1910  */
1911 static int clean_io_failure(u64 start, struct page *page)
1912 {
1913         u64 private;
1914         u64 private_failure;
1915         struct io_failure_record *failrec;
1916         struct btrfs_mapping_tree *map_tree;
1917         struct extent_state *state;
1918         int num_copies;
1919         int did_repair = 0;
1920         int ret;
1921         struct inode *inode = page->mapping->host;
1922
1923         private = 0;
1924         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1925                                 (u64)-1, 1, EXTENT_DIRTY, 0);
1926         if (!ret)
1927                 return 0;
1928
1929         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1930                                 &private_failure);
1931         if (ret)
1932                 return 0;
1933
1934         failrec = (struct io_failure_record *)(unsigned long) private_failure;
1935         BUG_ON(!failrec->this_mirror);
1936
1937         if (failrec->in_validation) {
1938                 /* there was no real error, just free the record */
1939                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1940                          failrec->start);
1941                 did_repair = 1;
1942                 goto out;
1943         }
1944
1945         spin_lock(&BTRFS_I(inode)->io_tree.lock);
1946         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1947                                             failrec->start,
1948                                             EXTENT_LOCKED);
1949         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1950
1951         if (state && state->start == failrec->start) {
1952                 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
1953                 num_copies = btrfs_num_copies(map_tree, failrec->logical,
1954                                                 failrec->len);
1955                 if (num_copies > 1)  {
1956                         ret = repair_io_failure(map_tree, start, failrec->len,
1957                                                 failrec->logical, page,
1958                                                 failrec->failed_mirror);
1959                         did_repair = !ret;
1960                 }
1961         }
1962
1963 out:
1964         if (!ret)
1965                 ret = free_io_failure(inode, failrec, did_repair);
1966
1967         return ret;
1968 }
1969
1970 /*
1971  * this is a generic handler for readpage errors (default
1972  * readpage_io_failed_hook). if other copies exist, read those and write back
1973  * good data to the failed position. does not investigate in remapping the
1974  * failed extent elsewhere, hoping the device will be smart enough to do this as
1975  * needed
1976  */
1977
1978 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
1979                                 u64 start, u64 end, int failed_mirror,
1980                                 struct extent_state *state)
1981 {
1982         struct io_failure_record *failrec = NULL;
1983         u64 private;
1984         struct extent_map *em;
1985         struct inode *inode = page->mapping->host;
1986         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1987         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1988         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1989         struct bio *bio;
1990         int num_copies;
1991         int ret;
1992         int read_mode;
1993         u64 logical;
1994
1995         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
1996
1997         ret = get_state_private(failure_tree, start, &private);
1998         if (ret) {
1999                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2000                 if (!failrec)
2001                         return -ENOMEM;
2002                 failrec->start = start;
2003                 failrec->len = end - start + 1;
2004                 failrec->this_mirror = 0;
2005                 failrec->bio_flags = 0;
2006                 failrec->in_validation = 0;
2007
2008                 read_lock(&em_tree->lock);
2009                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2010                 if (!em) {
2011                         read_unlock(&em_tree->lock);
2012                         kfree(failrec);
2013                         return -EIO;
2014                 }
2015
2016                 if (em->start > start || em->start + em->len < start) {
2017                         free_extent_map(em);
2018                         em = NULL;
2019                 }
2020                 read_unlock(&em_tree->lock);
2021
2022                 if (!em || IS_ERR(em)) {
2023                         kfree(failrec);
2024                         return -EIO;
2025                 }
2026                 logical = start - em->start;
2027                 logical = em->block_start + logical;
2028                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2029                         logical = em->block_start;
2030                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2031                         extent_set_compress_type(&failrec->bio_flags,
2032                                                  em->compress_type);
2033                 }
2034                 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2035                          "len=%llu\n", logical, start, failrec->len);
2036                 failrec->logical = logical;
2037                 free_extent_map(em);
2038
2039                 /* set the bits in the private failure tree */
2040                 ret = set_extent_bits(failure_tree, start, end,
2041                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2042                 if (ret >= 0)
2043                         ret = set_state_private(failure_tree, start,
2044                                                 (u64)(unsigned long)failrec);
2045                 /* set the bits in the inode's tree */
2046                 if (ret >= 0)
2047                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2048                                                 GFP_NOFS);
2049                 if (ret < 0) {
2050                         kfree(failrec);
2051                         return ret;
2052                 }
2053         } else {
2054                 failrec = (struct io_failure_record *)(unsigned long)private;
2055                 pr_debug("bio_readpage_error: (found) logical=%llu, "
2056                          "start=%llu, len=%llu, validation=%d\n",
2057                          failrec->logical, failrec->start, failrec->len,
2058                          failrec->in_validation);
2059                 /*
2060                  * when data can be on disk more than twice, add to failrec here
2061                  * (e.g. with a list for failed_mirror) to make
2062                  * clean_io_failure() clean all those errors at once.
2063                  */
2064         }
2065         num_copies = btrfs_num_copies(
2066                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
2067                               failrec->logical, failrec->len);
2068         if (num_copies == 1) {
2069                 /*
2070                  * we only have a single copy of the data, so don't bother with
2071                  * all the retry and error correction code that follows. no
2072                  * matter what the error is, it is very likely to persist.
2073                  */
2074                 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2075                          "state=%p, num_copies=%d, next_mirror %d, "
2076                          "failed_mirror %d\n", state, num_copies,
2077                          failrec->this_mirror, failed_mirror);
2078                 free_io_failure(inode, failrec, 0);
2079                 return -EIO;
2080         }
2081
2082         if (!state) {
2083                 spin_lock(&tree->lock);
2084                 state = find_first_extent_bit_state(tree, failrec->start,
2085                                                     EXTENT_LOCKED);
2086                 if (state && state->start != failrec->start)
2087                         state = NULL;
2088                 spin_unlock(&tree->lock);
2089         }
2090
2091         /*
2092          * there are two premises:
2093          *      a) deliver good data to the caller
2094          *      b) correct the bad sectors on disk
2095          */
2096         if (failed_bio->bi_vcnt > 1) {
2097                 /*
2098                  * to fulfill b), we need to know the exact failing sectors, as
2099                  * we don't want to rewrite any more than the failed ones. thus,
2100                  * we need separate read requests for the failed bio
2101                  *
2102                  * if the following BUG_ON triggers, our validation request got
2103                  * merged. we need separate requests for our algorithm to work.
2104                  */
2105                 BUG_ON(failrec->in_validation);
2106                 failrec->in_validation = 1;
2107                 failrec->this_mirror = failed_mirror;
2108                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2109         } else {
2110                 /*
2111                  * we're ready to fulfill a) and b) alongside. get a good copy
2112                  * of the failed sector and if we succeed, we have setup
2113                  * everything for repair_io_failure to do the rest for us.
2114                  */
2115                 if (failrec->in_validation) {
2116                         BUG_ON(failrec->this_mirror != failed_mirror);
2117                         failrec->in_validation = 0;
2118                         failrec->this_mirror = 0;
2119                 }
2120                 failrec->failed_mirror = failed_mirror;
2121                 failrec->this_mirror++;
2122                 if (failrec->this_mirror == failed_mirror)
2123                         failrec->this_mirror++;
2124                 read_mode = READ_SYNC;
2125         }
2126
2127         if (!state || failrec->this_mirror > num_copies) {
2128                 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2129                          "next_mirror %d, failed_mirror %d\n", state,
2130                          num_copies, failrec->this_mirror, failed_mirror);
2131                 free_io_failure(inode, failrec, 0);
2132                 return -EIO;
2133         }
2134
2135         bio = bio_alloc(GFP_NOFS, 1);
2136         bio->bi_private = state;
2137         bio->bi_end_io = failed_bio->bi_end_io;
2138         bio->bi_sector = failrec->logical >> 9;
2139         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2140         bio->bi_size = 0;
2141
2142         bio_add_page(bio, page, failrec->len, start - page_offset(page));
2143
2144         pr_debug("bio_readpage_error: submitting new read[%#x] to "
2145                  "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2146                  failrec->this_mirror, num_copies, failrec->in_validation);
2147
2148         tree->ops->submit_bio_hook(inode, read_mode, bio, failrec->this_mirror,
2149                                         failrec->bio_flags, 0);
2150         return 0;
2151 }
2152
2153 /* lots and lots of room for performance fixes in the end_bio funcs */
2154
2155 /*
2156  * after a writepage IO is done, we need to:
2157  * clear the uptodate bits on error
2158  * clear the writeback bits in the extent tree for this IO
2159  * end_page_writeback if the page has no more pending IO
2160  *
2161  * Scheduling is not allowed, so the extent state tree is expected
2162  * to have one and only one object corresponding to this IO.
2163  */
2164 static void end_bio_extent_writepage(struct bio *bio, int err)
2165 {
2166         int uptodate = err == 0;
2167         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2168         struct extent_io_tree *tree;
2169         u64 start;
2170         u64 end;
2171         int whole_page;
2172         int ret;
2173
2174         do {
2175                 struct page *page = bvec->bv_page;
2176                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2177
2178                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2179                          bvec->bv_offset;
2180                 end = start + bvec->bv_len - 1;
2181
2182                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2183                         whole_page = 1;
2184                 else
2185                         whole_page = 0;
2186
2187                 if (--bvec >= bio->bi_io_vec)
2188                         prefetchw(&bvec->bv_page->flags);
2189                 if (tree->ops && tree->ops->writepage_end_io_hook) {
2190                         ret = tree->ops->writepage_end_io_hook(page, start,
2191                                                        end, NULL, uptodate);
2192                         if (ret)
2193                                 uptodate = 0;
2194                 }
2195
2196                 if (!uptodate && tree->ops &&
2197                     tree->ops->writepage_io_failed_hook) {
2198                         ret = tree->ops->writepage_io_failed_hook(bio, page,
2199                                                          start, end, NULL);
2200                         if (ret == 0) {
2201                                 uptodate = (err == 0);
2202                                 continue;
2203                         }
2204                 }
2205
2206                 if (!uptodate) {
2207                         clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
2208                         ClearPageUptodate(page);
2209                         SetPageError(page);
2210                 }
2211
2212                 if (whole_page)
2213                         end_page_writeback(page);
2214                 else
2215                         check_page_writeback(tree, page);
2216         } while (bvec >= bio->bi_io_vec);
2217
2218         bio_put(bio);
2219 }
2220
2221 /*
2222  * after a readpage IO is done, we need to:
2223  * clear the uptodate bits on error
2224  * set the uptodate bits if things worked
2225  * set the page up to date if all extents in the tree are uptodate
2226  * clear the lock bit in the extent tree
2227  * unlock the page if there are no other extents locked for it
2228  *
2229  * Scheduling is not allowed, so the extent state tree is expected
2230  * to have one and only one object corresponding to this IO.
2231  */
2232 static void end_bio_extent_readpage(struct bio *bio, int err)
2233 {
2234         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2235         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2236         struct bio_vec *bvec = bio->bi_io_vec;
2237         struct extent_io_tree *tree;
2238         u64 start;
2239         u64 end;
2240         int whole_page;
2241         int ret;
2242
2243         if (err)
2244                 uptodate = 0;
2245
2246         do {
2247                 struct page *page = bvec->bv_page;
2248                 struct extent_state *cached = NULL;
2249                 struct extent_state *state;
2250
2251                 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2252                          "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2253                          (long int)bio->bi_bdev);
2254                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2255
2256                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2257                         bvec->bv_offset;
2258                 end = start + bvec->bv_len - 1;
2259
2260                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2261                         whole_page = 1;
2262                 else
2263                         whole_page = 0;
2264
2265                 if (++bvec <= bvec_end)
2266                         prefetchw(&bvec->bv_page->flags);
2267
2268                 spin_lock(&tree->lock);
2269                 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2270                 if (state && state->start == start) {
2271                         /*
2272                          * take a reference on the state, unlock will drop
2273                          * the ref
2274                          */
2275                         cache_state(state, &cached);
2276                 }
2277                 spin_unlock(&tree->lock);
2278
2279                 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2280                         ret = tree->ops->readpage_end_io_hook(page, start, end,
2281                                                               state);
2282                         if (ret)
2283                                 uptodate = 0;
2284                         else
2285                                 clean_io_failure(start, page);
2286                 }
2287                 if (!uptodate) {
2288                         int failed_mirror;
2289                         failed_mirror = (int)(unsigned long)bio->bi_bdev;
2290                         /*
2291                          * The generic bio_readpage_error handles errors the
2292                          * following way: If possible, new read requests are
2293                          * created and submitted and will end up in
2294                          * end_bio_extent_readpage as well (if we're lucky, not
2295                          * in the !uptodate case). In that case it returns 0 and
2296                          * we just go on with the next page in our bio. If it
2297                          * can't handle the error it will return -EIO and we
2298                          * remain responsible for that page.
2299                          */
2300                         ret = bio_readpage_error(bio, page, start, end,
2301                                                         failed_mirror, NULL);
2302                         if (ret == 0) {
2303 error_handled:
2304                                 uptodate =
2305                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
2306                                 if (err)
2307                                         uptodate = 0;
2308                                 uncache_state(&cached);
2309                                 continue;
2310                         }
2311                         if (tree->ops && tree->ops->readpage_io_failed_hook) {
2312                                 ret = tree->ops->readpage_io_failed_hook(
2313                                                         bio, page, start, end,
2314                                                         failed_mirror, state);
2315                                 if (ret == 0)
2316                                         goto error_handled;
2317                         }
2318                 }
2319
2320                 if (uptodate) {
2321                         set_extent_uptodate(tree, start, end, &cached,
2322                                             GFP_ATOMIC);
2323                 }
2324                 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2325
2326                 if (whole_page) {
2327                         if (uptodate) {
2328                                 SetPageUptodate(page);
2329                         } else {
2330                                 ClearPageUptodate(page);
2331                                 SetPageError(page);
2332                         }
2333                         unlock_page(page);
2334                 } else {
2335                         if (uptodate) {
2336                                 check_page_uptodate(tree, page);
2337                         } else {
2338                                 ClearPageUptodate(page);
2339                                 SetPageError(page);
2340                         }
2341                         check_page_locked(tree, page);
2342                 }
2343         } while (bvec <= bvec_end);
2344
2345         bio_put(bio);
2346 }
2347
2348 struct bio *
2349 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2350                 gfp_t gfp_flags)
2351 {
2352         struct bio *bio;
2353
2354         bio = bio_alloc(gfp_flags, nr_vecs);
2355
2356         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2357                 while (!bio && (nr_vecs /= 2))
2358                         bio = bio_alloc(gfp_flags, nr_vecs);
2359         }
2360
2361         if (bio) {
2362                 bio->bi_size = 0;
2363                 bio->bi_bdev = bdev;
2364                 bio->bi_sector = first_sector;
2365         }
2366         return bio;
2367 }
2368
2369 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
2370                           unsigned long bio_flags)
2371 {
2372         int ret = 0;
2373         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2374         struct page *page = bvec->bv_page;
2375         struct extent_io_tree *tree = bio->bi_private;
2376         u64 start;
2377
2378         start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2379
2380         bio->bi_private = NULL;
2381
2382         bio_get(bio);
2383
2384         if (tree->ops && tree->ops->submit_bio_hook)
2385                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2386                                            mirror_num, bio_flags, start);
2387         else
2388                 submit_bio(rw, bio);
2389
2390         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2391                 ret = -EOPNOTSUPP;
2392         bio_put(bio);
2393         return ret;
2394 }
2395
2396 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2397                               struct page *page, sector_t sector,
2398                               size_t size, unsigned long offset,
2399                               struct block_device *bdev,
2400                               struct bio **bio_ret,
2401                               unsigned long max_pages,
2402                               bio_end_io_t end_io_func,
2403                               int mirror_num,
2404                               unsigned long prev_bio_flags,
2405                               unsigned long bio_flags)
2406 {
2407         int ret = 0;
2408         struct bio *bio;
2409         int nr;
2410         int contig = 0;
2411         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2412         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2413         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2414
2415         if (bio_ret && *bio_ret) {
2416                 bio = *bio_ret;
2417                 if (old_compressed)
2418                         contig = bio->bi_sector == sector;
2419                 else
2420                         contig = bio->bi_sector + (bio->bi_size >> 9) ==
2421                                 sector;
2422
2423                 if (prev_bio_flags != bio_flags || !contig ||
2424                     (tree->ops && tree->ops->merge_bio_hook &&
2425                      tree->ops->merge_bio_hook(page, offset, page_size, bio,
2426                                                bio_flags)) ||
2427                     bio_add_page(bio, page, page_size, offset) < page_size) {
2428                         ret = submit_one_bio(rw, bio, mirror_num,
2429                                              prev_bio_flags);
2430                         bio = NULL;
2431                 } else {
2432                         return 0;
2433                 }
2434         }
2435         if (this_compressed)
2436                 nr = BIO_MAX_PAGES;
2437         else
2438                 nr = bio_get_nr_vecs(bdev);
2439
2440         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2441         if (!bio)
2442                 return -ENOMEM;
2443
2444         bio_add_page(bio, page, page_size, offset);
2445         bio->bi_end_io = end_io_func;
2446         bio->bi_private = tree;
2447
2448         if (bio_ret)
2449                 *bio_ret = bio;
2450         else
2451                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2452
2453         return ret;
2454 }
2455
2456 void set_page_extent_mapped(struct page *page)
2457 {
2458         if (!PagePrivate(page)) {
2459                 SetPagePrivate(page);
2460                 page_cache_get(page);
2461                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2462         }
2463 }
2464
2465 static void set_page_extent_head(struct page *page, unsigned long len)
2466 {
2467         WARN_ON(!PagePrivate(page));
2468         set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
2469 }
2470
2471 /*
2472  * basic readpage implementation.  Locked extent state structs are inserted
2473  * into the tree that are removed when the IO is done (by the end_io
2474  * handlers)
2475  */
2476 static int __extent_read_full_page(struct extent_io_tree *tree,
2477                                    struct page *page,
2478                                    get_extent_t *get_extent,
2479                                    struct bio **bio, int mirror_num,
2480                                    unsigned long *bio_flags)
2481 {
2482         struct inode *inode = page->mapping->host;
2483         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2484         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2485         u64 end;
2486         u64 cur = start;
2487         u64 extent_offset;
2488         u64 last_byte = i_size_read(inode);
2489         u64 block_start;
2490         u64 cur_end;
2491         sector_t sector;
2492         struct extent_map *em;
2493         struct block_device *bdev;
2494         struct btrfs_ordered_extent *ordered;
2495         int ret;
2496         int nr = 0;
2497         size_t pg_offset = 0;
2498         size_t iosize;
2499         size_t disk_io_size;
2500         size_t blocksize = inode->i_sb->s_blocksize;
2501         unsigned long this_bio_flag = 0;
2502
2503         set_page_extent_mapped(page);
2504
2505         if (!PageUptodate(page)) {
2506                 if (cleancache_get_page(page) == 0) {
2507                         BUG_ON(blocksize != PAGE_SIZE);
2508                         goto out;
2509                 }
2510         }
2511
2512         end = page_end;
2513         while (1) {
2514                 lock_extent(tree, start, end, GFP_NOFS);
2515                 ordered = btrfs_lookup_ordered_extent(inode, start);
2516                 if (!ordered)
2517                         break;
2518                 unlock_extent(tree, start, end, GFP_NOFS);
2519                 btrfs_start_ordered_extent(inode, ordered, 1);
2520                 btrfs_put_ordered_extent(ordered);
2521         }
2522
2523         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2524                 char *userpage;
2525                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2526
2527                 if (zero_offset) {
2528                         iosize = PAGE_CACHE_SIZE - zero_offset;
2529                         userpage = kmap_atomic(page, KM_USER0);
2530                         memset(userpage + zero_offset, 0, iosize);
2531                         flush_dcache_page(page);
2532                         kunmap_atomic(userpage, KM_USER0);
2533                 }
2534         }
2535         while (cur <= end) {
2536                 if (cur >= last_byte) {
2537                         char *userpage;
2538                         struct extent_state *cached = NULL;
2539
2540                         iosize = PAGE_CACHE_SIZE - pg_offset;
2541                         userpage = kmap_atomic(page, KM_USER0);
2542                         memset(userpage + pg_offset, 0, iosize);
2543                         flush_dcache_page(page);
2544                         kunmap_atomic(userpage, KM_USER0);
2545                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2546                                             &cached, GFP_NOFS);
2547                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2548                                              &cached, GFP_NOFS);
2549                         break;
2550                 }
2551                 em = get_extent(inode, page, pg_offset, cur,
2552                                 end - cur + 1, 0);
2553                 if (IS_ERR_OR_NULL(em)) {
2554                         SetPageError(page);
2555                         unlock_extent(tree, cur, end, GFP_NOFS);
2556                         break;
2557                 }
2558                 extent_offset = cur - em->start;
2559                 BUG_ON(extent_map_end(em) <= cur);
2560                 BUG_ON(end < cur);
2561
2562                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2563                         this_bio_flag = EXTENT_BIO_COMPRESSED;
2564                         extent_set_compress_type(&this_bio_flag,
2565                                                  em->compress_type);
2566                 }
2567
2568                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2569                 cur_end = min(extent_map_end(em) - 1, end);
2570                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2571                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2572                         disk_io_size = em->block_len;
2573                         sector = em->block_start >> 9;
2574                 } else {
2575                         sector = (em->block_start + extent_offset) >> 9;
2576                         disk_io_size = iosize;
2577                 }
2578                 bdev = em->bdev;
2579                 block_start = em->block_start;
2580                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2581                         block_start = EXTENT_MAP_HOLE;
2582                 free_extent_map(em);
2583                 em = NULL;
2584
2585                 /* we've found a hole, just zero and go on */
2586                 if (block_start == EXTENT_MAP_HOLE) {
2587                         char *userpage;
2588                         struct extent_state *cached = NULL;
2589
2590                         userpage = kmap_atomic(page, KM_USER0);
2591                         memset(userpage + pg_offset, 0, iosize);
2592                         flush_dcache_page(page);
2593                         kunmap_atomic(userpage, KM_USER0);
2594
2595                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2596                                             &cached, GFP_NOFS);
2597                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2598                                              &cached, GFP_NOFS);
2599                         cur = cur + iosize;
2600                         pg_offset += iosize;
2601                         continue;
2602                 }
2603                 /* the get_extent function already copied into the page */
2604                 if (test_range_bit(tree, cur, cur_end,
2605                                    EXTENT_UPTODATE, 1, NULL)) {
2606                         check_page_uptodate(tree, page);
2607                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2608                         cur = cur + iosize;
2609                         pg_offset += iosize;
2610                         continue;
2611                 }
2612                 /* we have an inline extent but it didn't get marked up
2613                  * to date.  Error out
2614                  */
2615                 if (block_start == EXTENT_MAP_INLINE) {
2616                         SetPageError(page);
2617                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2618                         cur = cur + iosize;
2619                         pg_offset += iosize;
2620                         continue;
2621                 }
2622
2623                 ret = 0;
2624                 if (tree->ops && tree->ops->readpage_io_hook) {
2625                         ret = tree->ops->readpage_io_hook(page, cur,
2626                                                           cur + iosize - 1);
2627                 }
2628                 if (!ret) {
2629                         unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2630                         pnr -= page->index;
2631                         ret = submit_extent_page(READ, tree, page,
2632                                          sector, disk_io_size, pg_offset,
2633                                          bdev, bio, pnr,
2634                                          end_bio_extent_readpage, mirror_num,
2635                                          *bio_flags,
2636                                          this_bio_flag);
2637                         nr++;
2638                         *bio_flags = this_bio_flag;
2639                 }
2640                 if (ret)
2641                         SetPageError(page);
2642                 cur = cur + iosize;
2643                 pg_offset += iosize;
2644         }
2645 out:
2646         if (!nr) {
2647                 if (!PageError(page))
2648                         SetPageUptodate(page);
2649                 unlock_page(page);
2650         }
2651         return 0;
2652 }
2653
2654 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2655                             get_extent_t *get_extent, int mirror_num)
2656 {
2657         struct bio *bio = NULL;
2658         unsigned long bio_flags = 0;
2659         int ret;
2660
2661         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2662                                       &bio_flags);
2663         if (bio)
2664                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2665         return ret;
2666 }
2667
2668 static noinline void update_nr_written(struct page *page,
2669                                       struct writeback_control *wbc,
2670                                       unsigned long nr_written)
2671 {
2672         wbc->nr_to_write -= nr_written;
2673         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2674             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2675                 page->mapping->writeback_index = page->index + nr_written;
2676 }
2677
2678 /*
2679  * the writepage semantics are similar to regular writepage.  extent
2680  * records are inserted to lock ranges in the tree, and as dirty areas
2681  * are found, they are marked writeback.  Then the lock bits are removed
2682  * and the end_io handler clears the writeback ranges
2683  */
2684 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2685                               void *data)
2686 {
2687         struct inode *inode = page->mapping->host;
2688         struct extent_page_data *epd = data;
2689         struct extent_io_tree *tree = epd->tree;
2690         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2691         u64 delalloc_start;
2692         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2693         u64 end;
2694         u64 cur = start;
2695         u64 extent_offset;
2696         u64 last_byte = i_size_read(inode);
2697         u64 block_start;
2698         u64 iosize;
2699         sector_t sector;
2700         struct extent_state *cached_state = NULL;
2701         struct extent_map *em;
2702         struct block_device *bdev;
2703         int ret;
2704         int nr = 0;
2705         size_t pg_offset = 0;
2706         size_t blocksize;
2707         loff_t i_size = i_size_read(inode);
2708         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2709         u64 nr_delalloc;
2710         u64 delalloc_end;
2711         int page_started;
2712         int compressed;
2713         int write_flags;
2714         unsigned long nr_written = 0;
2715         bool fill_delalloc = true;
2716
2717         if (wbc->sync_mode == WB_SYNC_ALL)
2718                 write_flags = WRITE_SYNC;
2719         else
2720                 write_flags = WRITE;
2721
2722         trace___extent_writepage(page, inode, wbc);
2723
2724         WARN_ON(!PageLocked(page));
2725
2726         ClearPageError(page);
2727
2728         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2729         if (page->index > end_index ||
2730            (page->index == end_index && !pg_offset)) {
2731                 page->mapping->a_ops->invalidatepage(page, 0);
2732                 unlock_page(page);
2733                 return 0;
2734         }
2735
2736         if (page->index == end_index) {
2737                 char *userpage;
2738
2739                 userpage = kmap_atomic(page, KM_USER0);
2740                 memset(userpage + pg_offset, 0,
2741                        PAGE_CACHE_SIZE - pg_offset);
2742                 kunmap_atomic(userpage, KM_USER0);
2743                 flush_dcache_page(page);
2744         }
2745         pg_offset = 0;
2746
2747         set_page_extent_mapped(page);
2748
2749         if (!tree->ops || !tree->ops->fill_delalloc)
2750                 fill_delalloc = false;
2751
2752         delalloc_start = start;
2753         delalloc_end = 0;
2754         page_started = 0;
2755         if (!epd->extent_locked && fill_delalloc) {
2756                 u64 delalloc_to_write = 0;
2757                 /*
2758                  * make sure the wbc mapping index is at least updated
2759                  * to this page.
2760                  */
2761                 update_nr_written(page, wbc, 0);
2762
2763                 while (delalloc_end < page_end) {
2764                         nr_delalloc = find_lock_delalloc_range(inode, tree,
2765                                                        page,
2766                                                        &delalloc_start,
2767                                                        &delalloc_end,
2768                                                        128 * 1024 * 1024);
2769                         if (nr_delalloc == 0) {
2770                                 delalloc_start = delalloc_end + 1;
2771                                 continue;
2772                         }
2773                         tree->ops->fill_delalloc(inode, page, delalloc_start,
2774                                                  delalloc_end, &page_started,
2775                                                  &nr_written);
2776                         /*
2777                          * delalloc_end is already one less than the total
2778                          * length, so we don't subtract one from
2779                          * PAGE_CACHE_SIZE
2780                          */
2781                         delalloc_to_write += (delalloc_end - delalloc_start +
2782                                               PAGE_CACHE_SIZE) >>
2783                                               PAGE_CACHE_SHIFT;
2784                         delalloc_start = delalloc_end + 1;
2785                 }
2786                 if (wbc->nr_to_write < delalloc_to_write) {
2787                         int thresh = 8192;
2788
2789                         if (delalloc_to_write < thresh * 2)
2790                                 thresh = delalloc_to_write;
2791                         wbc->nr_to_write = min_t(u64, delalloc_to_write,
2792                                                  thresh);
2793                 }
2794
2795                 /* did the fill delalloc function already unlock and start
2796                  * the IO?
2797                  */
2798                 if (page_started) {
2799                         ret = 0;
2800                         /*
2801                          * we've unlocked the page, so we can't update
2802                          * the mapping's writeback index, just update
2803                          * nr_to_write.
2804                          */
2805                         wbc->nr_to_write -= nr_written;
2806                         goto done_unlocked;
2807                 }
2808         }
2809         if (tree->ops && tree->ops->writepage_start_hook) {
2810                 ret = tree->ops->writepage_start_hook(page, start,
2811                                                       page_end);
2812                 if (ret == -EAGAIN) {
2813                         redirty_page_for_writepage(wbc, page);
2814                         update_nr_written(page, wbc, nr_written);
2815                         unlock_page(page);
2816                         ret = 0;
2817                         goto done_unlocked;
2818                 }
2819         }
2820
2821         /*
2822          * we don't want to touch the inode after unlocking the page,
2823          * so we update the mapping writeback index now
2824          */
2825         update_nr_written(page, wbc, nr_written + 1);
2826
2827         end = page_end;
2828         if (last_byte <= start) {
2829                 if (tree->ops && tree->ops->writepage_end_io_hook)
2830                         tree->ops->writepage_end_io_hook(page, start,
2831                                                          page_end, NULL, 1);
2832                 goto done;
2833         }
2834
2835         blocksize = inode->i_sb->s_blocksize;
2836
2837         while (cur <= end) {
2838                 if (cur >= last_byte) {
2839                         if (tree->ops && tree->ops->writepage_end_io_hook)
2840                                 tree->ops->writepage_end_io_hook(page, cur,
2841                                                          page_end, NULL, 1);
2842                         break;
2843                 }
2844                 em = epd->get_extent(inode, page, pg_offset, cur,
2845                                      end - cur + 1, 1);
2846                 if (IS_ERR_OR_NULL(em)) {
2847                         SetPageError(page);
2848                         break;
2849                 }
2850
2851                 extent_offset = cur - em->start;
2852                 BUG_ON(extent_map_end(em) <= cur);
2853                 BUG_ON(end < cur);
2854                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2855                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2856                 sector = (em->block_start + extent_offset) >> 9;
2857                 bdev = em->bdev;
2858                 block_start = em->block_start;
2859                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2860                 free_extent_map(em);
2861                 em = NULL;
2862
2863                 /*
2864                  * compressed and inline extents are written through other
2865                  * paths in the FS
2866                  */
2867                 if (compressed || block_start == EXTENT_MAP_HOLE ||
2868                     block_start == EXTENT_MAP_INLINE) {
2869                         /*
2870                          * end_io notification does not happen here for
2871                          * compressed extents
2872                          */
2873                         if (!compressed && tree->ops &&
2874                             tree->ops->writepage_end_io_hook)
2875                                 tree->ops->writepage_end_io_hook(page, cur,
2876                                                          cur + iosize - 1,
2877                                                          NULL, 1);
2878                         else if (compressed) {
2879                                 /* we don't want to end_page_writeback on
2880                                  * a compressed extent.  this happens
2881                                  * elsewhere
2882                                  */
2883                                 nr++;
2884                         }
2885
2886                         cur += iosize;
2887                         pg_offset += iosize;
2888                         continue;
2889                 }
2890                 /* leave this out until we have a page_mkwrite call */
2891                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2892                                    EXTENT_DIRTY, 0, NULL)) {
2893                         cur = cur + iosize;
2894                         pg_offset += iosize;
2895                         continue;
2896                 }
2897
2898                 if (tree->ops && tree->ops->writepage_io_hook) {
2899                         ret = tree->ops->writepage_io_hook(page, cur,
2900                                                 cur + iosize - 1);
2901                 } else {
2902                         ret = 0;
2903                 }
2904                 if (ret) {
2905                         SetPageError(page);
2906                 } else {
2907                         unsigned long max_nr = end_index + 1;
2908
2909                         set_range_writeback(tree, cur, cur + iosize - 1);
2910                         if (!PageWriteback(page)) {
2911                                 printk(KERN_ERR "btrfs warning page %lu not "
2912                                        "writeback, cur %llu end %llu\n",
2913                                        page->index, (unsigned long long)cur,
2914                                        (unsigned long long)end);
2915                         }
2916
2917                         ret = submit_extent_page(write_flags, tree, page,
2918                                                  sector, iosize, pg_offset,
2919                                                  bdev, &epd->bio, max_nr,
2920                                                  end_bio_extent_writepage,
2921                                                  0, 0, 0);
2922                         if (ret)
2923                                 SetPageError(page);
2924                 }
2925                 cur = cur + iosize;
2926                 pg_offset += iosize;
2927                 nr++;
2928         }
2929 done:
2930         if (nr == 0) {
2931                 /* make sure the mapping tag for page dirty gets cleared */
2932                 set_page_writeback(page);
2933                 end_page_writeback(page);
2934         }
2935         unlock_page(page);
2936
2937 done_unlocked:
2938
2939         /* drop our reference on any cached states */
2940         free_extent_state(cached_state);
2941         return 0;
2942 }
2943
2944 /**
2945  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2946  * @mapping: address space structure to write
2947  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2948  * @writepage: function called for each page
2949  * @data: data passed to writepage function
2950  *
2951  * If a page is already under I/O, write_cache_pages() skips it, even
2952  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2953  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2954  * and msync() need to guarantee that all the data which was dirty at the time
2955  * the call was made get new I/O started against them.  If wbc->sync_mode is
2956  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2957  * existing IO to complete.
2958  */
2959 static int extent_write_cache_pages(struct extent_io_tree *tree,
2960                              struct address_space *mapping,
2961                              struct writeback_control *wbc,
2962                              writepage_t writepage, void *data,
2963                              void (*flush_fn)(void *))
2964 {
2965         int ret = 0;
2966         int done = 0;
2967         int nr_to_write_done = 0;
2968         struct pagevec pvec;
2969         int nr_pages;
2970         pgoff_t index;
2971         pgoff_t end;            /* Inclusive */
2972         int scanned = 0;
2973         int tag;
2974
2975         pagevec_init(&pvec, 0);
2976         if (wbc->range_cyclic) {
2977                 index = mapping->writeback_index; /* Start from prev offset */
2978                 end = -1;
2979         } else {
2980                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2981                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2982                 scanned = 1;
2983         }
2984         if (wbc->sync_mode == WB_SYNC_ALL)
2985                 tag = PAGECACHE_TAG_TOWRITE;
2986         else
2987                 tag = PAGECACHE_TAG_DIRTY;
2988 retry:
2989         if (wbc->sync_mode == WB_SYNC_ALL)
2990                 tag_pages_for_writeback(mapping, index, end);
2991         while (!done && !nr_to_write_done && (index <= end) &&
2992                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2993                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2994                 unsigned i;
2995
2996                 scanned = 1;
2997                 for (i = 0; i < nr_pages; i++) {
2998                         struct page *page = pvec.pages[i];
2999
3000                         /*
3001                          * At this point we hold neither mapping->tree_lock nor
3002                          * lock on the page itself: the page may be truncated or
3003                          * invalidated (changing page->mapping to NULL), or even
3004                          * swizzled back from swapper_space to tmpfs file
3005                          * mapping
3006                          */
3007                         if (tree->ops &&
3008                             tree->ops->write_cache_pages_lock_hook) {
3009                                 tree->ops->write_cache_pages_lock_hook(page,
3010                                                                data, flush_fn);
3011                         } else {
3012                                 if (!trylock_page(page)) {
3013                                         flush_fn(data);
3014                                         lock_page(page);
3015                                 }
3016                         }
3017
3018                         if (unlikely(page->mapping != mapping)) {
3019                                 unlock_page(page);
3020                                 continue;
3021                         }
3022
3023                         if (!wbc->range_cyclic && page->index > end) {
3024                                 done = 1;
3025                                 unlock_page(page);
3026                                 continue;
3027                         }
3028
3029                         if (wbc->sync_mode != WB_SYNC_NONE) {
3030                                 if (PageWriteback(page))
3031                                         flush_fn(data);
3032                                 wait_on_page_writeback(page);
3033                         }
3034
3035                         if (PageWriteback(page) ||
3036                             !clear_page_dirty_for_io(page)) {
3037                                 unlock_page(page);
3038                                 continue;
3039                         }
3040
3041                         ret = (*writepage)(page, wbc, data);
3042
3043                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3044                                 unlock_page(page);
3045                                 ret = 0;
3046                         }
3047                         if (ret)
3048                                 done = 1;
3049
3050                         /*
3051                          * the filesystem may choose to bump up nr_to_write.
3052                          * We have to make sure to honor the new nr_to_write
3053                          * at any time
3054                          */
3055                         nr_to_write_done = wbc->nr_to_write <= 0;
3056                 }
3057                 pagevec_release(&pvec);
3058                 cond_resched();
3059         }
3060         if (!scanned && !done) {
3061                 /*
3062                  * We hit the last page and there is more work to be done: wrap
3063                  * back to the start of the file
3064                  */
3065                 scanned = 1;
3066                 index = 0;
3067                 goto retry;
3068         }
3069         return ret;
3070 }
3071
3072 static void flush_epd_write_bio(struct extent_page_data *epd)
3073 {
3074         if (epd->bio) {
3075                 if (epd->sync_io)
3076                         submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
3077                 else
3078                         submit_one_bio(WRITE, epd->bio, 0, 0);
3079                 epd->bio = NULL;
3080         }
3081 }
3082
3083 static noinline void flush_write_bio(void *data)
3084 {
3085         struct extent_page_data *epd = data;
3086         flush_epd_write_bio(epd);
3087 }
3088
3089 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3090                           get_extent_t *get_extent,
3091                           struct writeback_control *wbc)
3092 {
3093         int ret;
3094         struct extent_page_data epd = {
3095                 .bio = NULL,
3096                 .tree = tree,
3097                 .get_extent = get_extent,
3098                 .extent_locked = 0,
3099                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3100         };
3101
3102         ret = __extent_writepage(page, wbc, &epd);
3103
3104         flush_epd_write_bio(&epd);
3105         return ret;
3106 }
3107
3108 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3109                               u64 start, u64 end, get_extent_t *get_extent,
3110                               int mode)
3111 {
3112         int ret = 0;
3113         struct address_space *mapping = inode->i_mapping;
3114         struct page *page;
3115         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3116                 PAGE_CACHE_SHIFT;
3117
3118         struct extent_page_data epd = {
3119                 .bio = NULL,
3120                 .tree = tree,
3121                 .get_extent = get_extent,
3122                 .extent_locked = 1,
3123                 .sync_io = mode == WB_SYNC_ALL,
3124         };
3125         struct writeback_control wbc_writepages = {
3126                 .sync_mode      = mode,
3127                 .nr_to_write    = nr_pages * 2,
3128                 .range_start    = start,
3129                 .range_end      = end + 1,
3130         };
3131
3132         while (start <= end) {
3133                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3134                 if (clear_page_dirty_for_io(page))
3135                         ret = __extent_writepage(page, &wbc_writepages, &epd);
3136                 else {
3137                         if (tree->ops && tree->ops->writepage_end_io_hook)
3138                                 tree->ops->writepage_end_io_hook(page, start,
3139                                                  start + PAGE_CACHE_SIZE - 1,
3140                                                  NULL, 1);
3141                         unlock_page(page);
3142                 }
3143                 page_cache_release(page);
3144                 start += PAGE_CACHE_SIZE;
3145         }
3146
3147         flush_epd_write_bio(&epd);
3148         return ret;
3149 }
3150
3151 int extent_writepages(struct extent_io_tree *tree,
3152                       struct address_space *mapping,
3153                       get_extent_t *get_extent,
3154                       struct writeback_control *wbc)
3155 {
3156         int ret = 0;
3157         struct extent_page_data epd = {
3158                 .bio = NULL,
3159                 .tree = tree,
3160                 .get_extent = get_extent,
3161                 .extent_locked = 0,
3162                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3163         };
3164
3165         ret = extent_write_cache_pages(tree, mapping, wbc,
3166                                        __extent_writepage, &epd,
3167                                        flush_write_bio);
3168         flush_epd_write_bio(&epd);
3169         return ret;
3170 }
3171
3172 int extent_readpages(struct extent_io_tree *tree,
3173                      struct address_space *mapping,
3174                      struct list_head *pages, unsigned nr_pages,
3175                      get_extent_t get_extent)
3176 {
3177         struct bio *bio = NULL;
3178         unsigned page_idx;
3179         unsigned long bio_flags = 0;
3180
3181         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3182                 struct page *page = list_entry(pages->prev, struct page, lru);
3183
3184                 prefetchw(&page->flags);
3185                 list_del(&page->lru);
3186                 if (!add_to_page_cache_lru(page, mapping,
3187                                         page->index, GFP_NOFS)) {
3188                         __extent_read_full_page(tree, page, get_extent,
3189                                                 &bio, 0, &bio_flags);
3190                 }
3191                 page_cache_release(page);
3192         }
3193         BUG_ON(!list_empty(pages));
3194         if (bio)
3195                 submit_one_bio(READ, bio, 0, bio_flags);
3196         return 0;
3197 }
3198
3199 /*
3200  * basic invalidatepage code, this waits on any locked or writeback
3201  * ranges corresponding to the page, and then deletes any extent state
3202  * records from the tree
3203  */
3204 int extent_invalidatepage(struct extent_io_tree *tree,
3205                           struct page *page, unsigned long offset)
3206 {
3207         struct extent_state *cached_state = NULL;
3208         u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3209         u64 end = start + PAGE_CACHE_SIZE - 1;
3210         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3211
3212         start += (offset + blocksize - 1) & ~(blocksize - 1);
3213         if (start > end)
3214                 return 0;
3215
3216         lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
3217         wait_on_page_writeback(page);
3218         clear_extent_bit(tree, start, end,
3219                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3220                          EXTENT_DO_ACCOUNTING,
3221                          1, 1, &cached_state, GFP_NOFS);
3222         return 0;
3223 }
3224
3225 /*
3226  * a helper for releasepage, this tests for areas of the page that
3227  * are locked or under IO and drops the related state bits if it is safe
3228  * to drop the page.
3229  */
3230 int try_release_extent_state(struct extent_map_tree *map,
3231                              struct extent_io_tree *tree, struct page *page,
3232                              gfp_t mask)
3233 {
3234         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3235         u64 end = start + PAGE_CACHE_SIZE - 1;
3236         int ret = 1;
3237
3238         if (test_range_bit(tree, start, end,
3239                            EXTENT_IOBITS, 0, NULL))
3240                 ret = 0;
3241         else {
3242                 if ((mask & GFP_NOFS) == GFP_NOFS)
3243                         mask = GFP_NOFS;
3244                 /*
3245                  * at this point we can safely clear everything except the
3246                  * locked bit and the nodatasum bit
3247                  */
3248                 ret = clear_extent_bit(tree, start, end,
3249                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3250                                  0, 0, NULL, mask);
3251
3252                 /* if clear_extent_bit failed for enomem reasons,
3253                  * we can't allow the release to continue.
3254                  */
3255                 if (ret < 0)
3256                         ret = 0;
3257                 else
3258                         ret = 1;
3259         }
3260         return ret;
3261 }
3262
3263 /*
3264  * a helper for releasepage.  As long as there are no locked extents
3265  * in the range corresponding to the page, both state records and extent
3266  * map records are removed
3267  */
3268 int try_release_extent_mapping(struct extent_map_tree *map,
3269                                struct extent_io_tree *tree, struct page *page,
3270                                gfp_t mask)
3271 {
3272         struct extent_map *em;
3273         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3274         u64 end = start + PAGE_CACHE_SIZE - 1;
3275
3276         if ((mask & __GFP_WAIT) &&
3277             page->mapping->host->i_size > 16 * 1024 * 1024) {
3278                 u64 len;
3279                 while (start <= end) {
3280                         len = end - start + 1;
3281                         write_lock(&map->lock);
3282                         em = lookup_extent_mapping(map, start, len);
3283                         if (IS_ERR_OR_NULL(em)) {
3284                                 write_unlock(&map->lock);
3285                                 break;
3286                         }
3287                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3288                             em->start != start) {
3289                                 write_unlock(&map->lock);
3290                                 free_extent_map(em);
3291                                 break;
3292                         }
3293                         if (!test_range_bit(tree, em->start,
3294                                             extent_map_end(em) - 1,
3295                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
3296                                             0, NULL)) {
3297                                 remove_extent_mapping(map, em);
3298                                 /* once for the rb tree */
3299                                 free_extent_map(em);
3300                         }
3301                         start = extent_map_end(em);
3302                         write_unlock(&map->lock);
3303
3304                         /* once for us */
3305                         free_extent_map(em);
3306                 }
3307         }
3308         return try_release_extent_state(map, tree, page, mask);
3309 }
3310
3311 /*
3312  * helper function for fiemap, which doesn't want to see any holes.
3313  * This maps until we find something past 'last'
3314  */
3315 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3316                                                 u64 offset,
3317                                                 u64 last,
3318                                                 get_extent_t *get_extent)
3319 {
3320         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3321         struct extent_map *em;
3322         u64 len;
3323
3324         if (offset >= last)
3325                 return NULL;
3326
3327         while(1) {
3328                 len = last - offset;
3329                 if (len == 0)
3330                         break;
3331                 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3332                 em = get_extent(inode, NULL, 0, offset, len, 0);
3333                 if (IS_ERR_OR_NULL(em))
3334                         return em;
3335
3336                 /* if this isn't a hole return it */
3337                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3338                     em->block_start != EXTENT_MAP_HOLE) {
3339                         return em;
3340                 }
3341
3342                 /* this is a hole, advance to the next extent */
3343                 offset = extent_map_end(em);
3344                 free_extent_map(em);
3345                 if (offset >= last)
3346                         break;
3347         }
3348         return NULL;
3349 }
3350
3351 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3352                 __u64 start, __u64 len, get_extent_t *get_extent)
3353 {
3354         int ret = 0;
3355         u64 off = start;
3356         u64 max = start + len;
3357         u32 flags = 0;
3358         u32 found_type;
3359         u64 last;
3360         u64 last_for_get_extent = 0;
3361         u64 disko = 0;
3362         u64 isize = i_size_read(inode);
3363         struct btrfs_key found_key;
3364         struct extent_map *em = NULL;
3365         struct extent_state *cached_state = NULL;
3366         struct btrfs_path *path;
3367         struct btrfs_file_extent_item *item;
3368         int end = 0;
3369         u64 em_start = 0;
3370         u64 em_len = 0;
3371         u64 em_end = 0;
3372         unsigned long emflags;
3373
3374         if (len == 0)
3375                 return -EINVAL;
3376
3377         path = btrfs_alloc_path();
3378         if (!path)
3379                 return -ENOMEM;
3380         path->leave_spinning = 1;
3381
3382         start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3383         len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3384
3385         /*
3386          * lookup the last file extent.  We're not using i_size here
3387          * because there might be preallocation past i_size
3388          */
3389         ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3390                                        path, btrfs_ino(inode), -1, 0);
3391         if (ret < 0) {
3392                 btrfs_free_path(path);
3393                 return ret;
3394         }
3395         WARN_ON(!ret);
3396         path->slots[0]--;
3397         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3398                               struct btrfs_file_extent_item);
3399         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3400         found_type = btrfs_key_type(&found_key);
3401
3402         /* No extents, but there might be delalloc bits */
3403         if (found_key.objectid != btrfs_ino(inode) ||
3404             found_type != BTRFS_EXTENT_DATA_KEY) {
3405                 /* have to trust i_size as the end */
3406                 last = (u64)-1;
3407                 last_for_get_extent = isize;
3408         } else {
3409                 /*
3410                  * remember the start of the last extent.  There are a
3411                  * bunch of different factors that go into the length of the
3412                  * extent, so its much less complex to remember where it started
3413                  */
3414                 last = found_key.offset;
3415                 last_for_get_extent = last + 1;
3416         }
3417         btrfs_free_path(path);
3418
3419         /*
3420          * we might have some extents allocated but more delalloc past those
3421          * extents.  so, we trust isize unless the start of the last extent is
3422          * beyond isize
3423          */
3424         if (last < isize) {
3425                 last = (u64)-1;
3426                 last_for_get_extent = isize;
3427         }
3428
3429         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3430                          &cached_state, GFP_NOFS);
3431
3432         em = get_extent_skip_holes(inode, start, last_for_get_extent,
3433                                    get_extent);
3434         if (!em)
3435                 goto out;
3436         if (IS_ERR(em)) {
3437                 ret = PTR_ERR(em);
3438                 goto out;
3439         }
3440
3441         while (!end) {
3442                 u64 offset_in_extent;
3443
3444                 /* break if the extent we found is outside the range */
3445                 if (em->start >= max || extent_map_end(em) < off)
3446                         break;
3447
3448                 /*
3449                  * get_extent may return an extent that starts before our
3450                  * requested range.  We have to make sure the ranges
3451                  * we return to fiemap always move forward and don't
3452                  * overlap, so adjust the offsets here
3453                  */
3454                 em_start = max(em->start, off);
3455
3456                 /*
3457                  * record the offset from the start of the extent
3458                  * for adjusting the disk offset below
3459                  */
3460                 offset_in_extent = em_start - em->start;
3461                 em_end = extent_map_end(em);
3462                 em_len = em_end - em_start;
3463                 emflags = em->flags;
3464                 disko = 0;
3465                 flags = 0;
3466
3467                 /*
3468                  * bump off for our next call to get_extent
3469                  */
3470                 off = extent_map_end(em);
3471                 if (off >= max)
3472                         end = 1;
3473
3474                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3475                         end = 1;
3476                         flags |= FIEMAP_EXTENT_LAST;
3477                 } else if (em->block_start == EXTENT_MAP_INLINE) {
3478                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
3479                                   FIEMAP_EXTENT_NOT_ALIGNED);
3480                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3481                         flags |= (FIEMAP_EXTENT_DELALLOC |
3482                                   FIEMAP_EXTENT_UNKNOWN);
3483                 } else {
3484                         disko = em->block_start + offset_in_extent;
3485                 }
3486                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3487                         flags |= FIEMAP_EXTENT_ENCODED;
3488
3489                 free_extent_map(em);
3490                 em = NULL;
3491                 if ((em_start >= last) || em_len == (u64)-1 ||
3492                    (last == (u64)-1 && isize <= em_end)) {
3493                         flags |= FIEMAP_EXTENT_LAST;
3494                         end = 1;
3495                 }
3496
3497                 /* now scan forward to see if this is really the last extent. */
3498                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3499                                            get_extent);
3500                 if (IS_ERR(em)) {
3501                         ret = PTR_ERR(em);
3502                         goto out;
3503                 }
3504                 if (!em) {
3505                         flags |= FIEMAP_EXTENT_LAST;
3506                         end = 1;
3507                 }
3508                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3509                                               em_len, flags);
3510                 if (ret)
3511                         goto out_free;
3512         }
3513 out_free:
3514         free_extent_map(em);
3515 out:
3516         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3517                              &cached_state, GFP_NOFS);
3518         return ret;
3519 }
3520
3521 inline struct page *extent_buffer_page(struct extent_buffer *eb,
3522                                               unsigned long i)
3523 {
3524         struct page *p;
3525         struct address_space *mapping;
3526
3527         if (i == 0)
3528                 return eb->first_page;
3529         i += eb->start >> PAGE_CACHE_SHIFT;
3530         mapping = eb->first_page->mapping;
3531         if (!mapping)
3532                 return NULL;
3533
3534         /*
3535          * extent_buffer_page is only called after pinning the page
3536          * by increasing the reference count.  So we know the page must
3537          * be in the radix tree.
3538          */
3539         rcu_read_lock();
3540         p = radix_tree_lookup(&mapping->page_tree, i);
3541         rcu_read_unlock();
3542
3543         return p;
3544 }
3545
3546 inline unsigned long num_extent_pages(u64 start, u64 len)
3547 {
3548         return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3549                 (start >> PAGE_CACHE_SHIFT);
3550 }
3551
3552 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3553                                                    u64 start,
3554                                                    unsigned long len,
3555                                                    gfp_t mask)
3556 {
3557         struct extent_buffer *eb = NULL;
3558 #if LEAK_DEBUG
3559         unsigned long flags;
3560 #endif
3561
3562         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3563         if (eb == NULL)
3564                 return NULL;
3565         eb->start = start;
3566         eb->len = len;
3567         rwlock_init(&eb->lock);
3568         atomic_set(&eb->write_locks, 0);
3569         atomic_set(&eb->read_locks, 0);
3570         atomic_set(&eb->blocking_readers, 0);
3571         atomic_set(&eb->blocking_writers, 0);
3572         atomic_set(&eb->spinning_readers, 0);
3573         atomic_set(&eb->spinning_writers, 0);
3574         init_waitqueue_head(&eb->write_lock_wq);
3575         init_waitqueue_head(&eb->read_lock_wq);
3576
3577 #if LEAK_DEBUG
3578         spin_lock_irqsave(&leak_lock, flags);
3579         list_add(&eb->leak_list, &buffers);
3580         spin_unlock_irqrestore(&leak_lock, flags);
3581 #endif
3582         atomic_set(&eb->refs, 1);
3583
3584         return eb;
3585 }
3586
3587 static void __free_extent_buffer(struct extent_buffer *eb)
3588 {
3589 #if LEAK_DEBUG
3590         unsigned long flags;
3591         spin_lock_irqsave(&leak_lock, flags);
3592         list_del(&eb->leak_list);
3593         spin_unlock_irqrestore(&leak_lock, flags);
3594 #endif
3595         kmem_cache_free(extent_buffer_cache, eb);
3596 }
3597
3598 /*
3599  * Helper for releasing extent buffer page.
3600  */
3601 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3602                                                 unsigned long start_idx)
3603 {
3604         unsigned long index;
3605         struct page *page;
3606
3607         if (!eb->first_page)
3608                 return;
3609
3610         index = num_extent_pages(eb->start, eb->len);
3611         if (start_idx >= index)
3612                 return;
3613
3614         do {
3615                 index--;
3616                 page = extent_buffer_page(eb, index);
3617                 if (page)
3618                         page_cache_release(page);
3619         } while (index != start_idx);
3620 }
3621
3622 /*
3623  * Helper for releasing the extent buffer.
3624  */
3625 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3626 {
3627         btrfs_release_extent_buffer_page(eb, 0);
3628         __free_extent_buffer(eb);
3629 }
3630
3631 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3632                                           u64 start, unsigned long len,
3633                                           struct page *page0)
3634 {
3635         unsigned long num_pages = num_extent_pages(start, len);
3636         unsigned long i;
3637         unsigned long index = start >> PAGE_CACHE_SHIFT;
3638         struct extent_buffer *eb;
3639         struct extent_buffer *exists = NULL;
3640         struct page *p;
3641         struct address_space *mapping = tree->mapping;
3642         int uptodate = 1;
3643         int ret;
3644
3645         rcu_read_lock();
3646         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3647         if (eb && atomic_inc_not_zero(&eb->refs)) {
3648                 rcu_read_unlock();
3649                 mark_page_accessed(eb->first_page);
3650                 return eb;
3651         }
3652         rcu_read_unlock();
3653
3654         eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
3655         if (!eb)
3656                 return NULL;
3657
3658         if (page0) {
3659                 eb->first_page = page0;
3660                 i = 1;
3661                 index++;
3662                 page_cache_get(page0);
3663                 mark_page_accessed(page0);
3664                 set_page_extent_mapped(page0);
3665                 set_page_extent_head(page0, len);
3666                 uptodate = PageUptodate(page0);
3667         } else {
3668                 i = 0;
3669         }
3670         for (; i < num_pages; i++, index++) {
3671                 p = find_or_create_page(mapping, index, GFP_NOFS);
3672                 if (!p) {
3673                         WARN_ON(1);
3674                         goto free_eb;
3675                 }
3676                 set_page_extent_mapped(p);
3677                 mark_page_accessed(p);
3678                 if (i == 0) {
3679                         eb->first_page = p;
3680                         set_page_extent_head(p, len);
3681                 } else {
3682                         set_page_private(p, EXTENT_PAGE_PRIVATE);
3683                 }
3684                 if (!PageUptodate(p))
3685                         uptodate = 0;
3686
3687                 /*
3688                  * see below about how we avoid a nasty race with release page
3689                  * and why we unlock later
3690                  */
3691                 if (i != 0)
3692                         unlock_page(p);
3693         }
3694         if (uptodate)
3695                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3696
3697         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
3698         if (ret)
3699                 goto free_eb;
3700
3701         spin_lock(&tree->buffer_lock);
3702         ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
3703         if (ret == -EEXIST) {
3704                 exists = radix_tree_lookup(&tree->buffer,
3705                                                 start >> PAGE_CACHE_SHIFT);
3706                 /* add one reference for the caller */
3707                 atomic_inc(&exists->refs);
3708                 spin_unlock(&tree->buffer_lock);
3709                 radix_tree_preload_end();
3710                 goto free_eb;
3711         }
3712         /* add one reference for the tree */
3713         atomic_inc(&eb->refs);
3714         spin_unlock(&tree->buffer_lock);
3715         radix_tree_preload_end();
3716
3717         /*
3718          * there is a race where release page may have
3719          * tried to find this extent buffer in the radix
3720          * but failed.  It will tell the VM it is safe to
3721          * reclaim the, and it will clear the page private bit.
3722          * We must make sure to set the page private bit properly
3723          * after the extent buffer is in the radix tree so
3724          * it doesn't get lost
3725          */
3726         set_page_extent_mapped(eb->first_page);
3727         set_page_extent_head(eb->first_page, eb->len);
3728         if (!page0)
3729                 unlock_page(eb->first_page);
3730         return eb;
3731
3732 free_eb:
3733         if (eb->first_page && !page0)
3734                 unlock_page(eb->first_page);
3735
3736         if (!atomic_dec_and_test(&eb->refs))
3737                 return exists;
3738         btrfs_release_extent_buffer(eb);
3739         return exists;
3740 }
3741
3742 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3743                                          u64 start, unsigned long len)
3744 {
3745         struct extent_buffer *eb;
3746
3747         rcu_read_lock();
3748         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3749         if (eb && atomic_inc_not_zero(&eb->refs)) {
3750                 rcu_read_unlock();
3751                 mark_page_accessed(eb->first_page);
3752                 return eb;
3753         }
3754         rcu_read_unlock();
3755
3756         return NULL;
3757 }
3758
3759 void free_extent_buffer(struct extent_buffer *eb)
3760 {
3761         if (!eb)
3762                 return;
3763
3764         if (!atomic_dec_and_test(&eb->refs))
3765                 return;
3766
3767         WARN_ON(1);
3768 }
3769
3770 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3771                               struct extent_buffer *eb)
3772 {
3773         unsigned long i;
3774         unsigned long num_pages;
3775         struct page *page;
3776
3777         num_pages = num_extent_pages(eb->start, eb->len);
3778
3779         for (i = 0; i < num_pages; i++) {
3780                 page = extent_buffer_page(eb, i);
3781                 if (!PageDirty(page))
3782                         continue;
3783
3784                 lock_page(page);
3785                 WARN_ON(!PagePrivate(page));
3786
3787                 set_page_extent_mapped(page);
3788                 if (i == 0)
3789                         set_page_extent_head(page, eb->len);
3790
3791                 clear_page_dirty_for_io(page);
3792                 spin_lock_irq(&page->mapping->tree_lock);
3793                 if (!PageDirty(page)) {
3794                         radix_tree_tag_clear(&page->mapping->page_tree,
3795                                                 page_index(page),
3796                                                 PAGECACHE_TAG_DIRTY);
3797                 }
3798                 spin_unlock_irq(&page->mapping->tree_lock);
3799                 ClearPageError(page);
3800                 unlock_page(page);
3801         }
3802         return 0;
3803 }
3804
3805 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3806                              struct extent_buffer *eb)
3807 {
3808         unsigned long i;
3809         unsigned long num_pages;
3810         int was_dirty = 0;
3811
3812         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3813         num_pages = num_extent_pages(eb->start, eb->len);
3814         for (i = 0; i < num_pages; i++)
3815                 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3816         return was_dirty;
3817 }
3818
3819 static int __eb_straddles_pages(u64 start, u64 len)
3820 {
3821         if (len < PAGE_CACHE_SIZE)
3822                 return 1;
3823         if (start & (PAGE_CACHE_SIZE - 1))
3824                 return 1;
3825         if ((start + len) & (PAGE_CACHE_SIZE - 1))
3826                 return 1;
3827         return 0;
3828 }
3829
3830 static int eb_straddles_pages(struct extent_buffer *eb)
3831 {
3832         return __eb_straddles_pages(eb->start, eb->len);
3833 }
3834
3835 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3836                                 struct extent_buffer *eb,
3837                                 struct extent_state **cached_state)
3838 {
3839         unsigned long i;
3840         struct page *page;
3841         unsigned long num_pages;
3842
3843         num_pages = num_extent_pages(eb->start, eb->len);
3844         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3845
3846         if (eb_straddles_pages(eb)) {
3847                 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3848                                       cached_state, GFP_NOFS);
3849         }
3850         for (i = 0; i < num_pages; i++) {
3851                 page = extent_buffer_page(eb, i);
3852                 if (page)
3853                         ClearPageUptodate(page);
3854         }
3855         return 0;
3856 }
3857
3858 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3859                                 struct extent_buffer *eb)
3860 {
3861         unsigned long i;
3862         struct page *page;
3863         unsigned long num_pages;
3864
3865         num_pages = num_extent_pages(eb->start, eb->len);
3866
3867         if (eb_straddles_pages(eb)) {
3868                 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3869                                     NULL, GFP_NOFS);
3870         }
3871         for (i = 0; i < num_pages; i++) {
3872                 page = extent_buffer_page(eb, i);
3873                 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3874                     ((i == num_pages - 1) &&
3875                      ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3876                         check_page_uptodate(tree, page);
3877                         continue;
3878                 }
3879                 SetPageUptodate(page);
3880         }
3881         return 0;
3882 }
3883
3884 int extent_range_uptodate(struct extent_io_tree *tree,
3885                           u64 start, u64 end)
3886 {
3887         struct page *page;
3888         int ret;
3889         int pg_uptodate = 1;
3890         int uptodate;
3891         unsigned long index;
3892
3893         if (__eb_straddles_pages(start, end - start + 1)) {
3894                 ret = test_range_bit(tree, start, end,
3895                                      EXTENT_UPTODATE, 1, NULL);
3896                 if (ret)
3897                         return 1;
3898         }
3899         while (start <= end) {
3900                 index = start >> PAGE_CACHE_SHIFT;
3901                 page = find_get_page(tree->mapping, index);
3902                 uptodate = PageUptodate(page);
3903                 page_cache_release(page);
3904                 if (!uptodate) {
3905                         pg_uptodate = 0;
3906                         break;
3907                 }
3908                 start += PAGE_CACHE_SIZE;
3909         }
3910         return pg_uptodate;
3911 }
3912
3913 int extent_buffer_uptodate(struct extent_io_tree *tree,
3914                            struct extent_buffer *eb,
3915                            struct extent_state *cached_state)
3916 {
3917         int ret = 0;
3918         unsigned long num_pages;
3919         unsigned long i;
3920         struct page *page;
3921         int pg_uptodate = 1;
3922
3923         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3924                 return 1;
3925
3926         if (eb_straddles_pages(eb)) {
3927                 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3928                                    EXTENT_UPTODATE, 1, cached_state);
3929                 if (ret)
3930                         return ret;
3931         }
3932
3933         num_pages = num_extent_pages(eb->start, eb->len);
3934         for (i = 0; i < num_pages; i++) {
3935                 page = extent_buffer_page(eb, i);
3936                 if (!PageUptodate(page)) {
3937                         pg_uptodate = 0;
3938                         break;
3939                 }
3940         }
3941         return pg_uptodate;
3942 }
3943
3944 int read_extent_buffer_pages(struct extent_io_tree *tree,
3945                              struct extent_buffer *eb, u64 start, int wait,
3946                              get_extent_t *get_extent, int mirror_num)
3947 {
3948         unsigned long i;
3949         unsigned long start_i;
3950         struct page *page;
3951         int err;
3952         int ret = 0;
3953         int locked_pages = 0;
3954         int all_uptodate = 1;
3955         int inc_all_pages = 0;
3956         unsigned long num_pages;
3957         struct bio *bio = NULL;
3958         unsigned long bio_flags = 0;
3959
3960         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3961                 return 0;
3962
3963         if (eb_straddles_pages(eb)) {
3964                 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3965                                    EXTENT_UPTODATE, 1, NULL)) {
3966                         return 0;
3967                 }
3968         }
3969
3970         if (start) {
3971                 WARN_ON(start < eb->start);
3972                 start_i = (start >> PAGE_CACHE_SHIFT) -
3973                         (eb->start >> PAGE_CACHE_SHIFT);
3974         } else {
3975                 start_i = 0;
3976         }
3977
3978         num_pages = num_extent_pages(eb->start, eb->len);
3979         for (i = start_i; i < num_pages; i++) {
3980                 page = extent_buffer_page(eb, i);
3981                 if (wait == WAIT_NONE) {
3982                         if (!trylock_page(page))
3983                                 goto unlock_exit;
3984                 } else {
3985                         lock_page(page);
3986                 }
3987                 locked_pages++;
3988                 if (!PageUptodate(page))
3989                         all_uptodate = 0;
3990         }
3991         if (all_uptodate) {
3992                 if (start_i == 0)
3993                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3994                 goto unlock_exit;
3995         }
3996
3997         for (i = start_i; i < num_pages; i++) {
3998                 page = extent_buffer_page(eb, i);
3999
4000                 WARN_ON(!PagePrivate(page));
4001
4002                 set_page_extent_mapped(page);
4003                 if (i == 0)
4004                         set_page_extent_head(page, eb->len);
4005
4006                 if (inc_all_pages)
4007                         page_cache_get(page);
4008                 if (!PageUptodate(page)) {
4009                         if (start_i == 0)
4010                                 inc_all_pages = 1;
4011                         ClearPageError(page);
4012                         err = __extent_read_full_page(tree, page,
4013                                                       get_extent, &bio,
4014                                                       mirror_num, &bio_flags);
4015                         if (err)
4016                                 ret = err;
4017                 } else {
4018                         unlock_page(page);
4019                 }
4020         }
4021
4022         if (bio)
4023                 submit_one_bio(READ, bio, mirror_num, bio_flags);
4024
4025         if (ret || wait != WAIT_COMPLETE)
4026                 return ret;
4027
4028         for (i = start_i; i < num_pages; i++) {
4029                 page = extent_buffer_page(eb, i);
4030                 wait_on_page_locked(page);
4031                 if (!PageUptodate(page))
4032                         ret = -EIO;
4033         }
4034
4035         if (!ret)
4036                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4037         return ret;
4038
4039 unlock_exit:
4040         i = start_i;
4041         while (locked_pages > 0) {
4042                 page = extent_buffer_page(eb, i);
4043                 i++;
4044                 unlock_page(page);
4045                 locked_pages--;
4046         }
4047         return ret;
4048 }
4049
4050 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4051                         unsigned long start,
4052                         unsigned long len)
4053 {
4054         size_t cur;
4055         size_t offset;
4056         struct page *page;
4057         char *kaddr;
4058         char *dst = (char *)dstv;
4059         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4060         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4061
4062         WARN_ON(start > eb->len);
4063         WARN_ON(start + len > eb->start + eb->len);
4064
4065         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4066
4067         while (len > 0) {
4068                 page = extent_buffer_page(eb, i);
4069
4070                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4071                 kaddr = page_address(page);
4072                 memcpy(dst, kaddr + offset, cur);
4073
4074                 dst += cur;
4075                 len -= cur;
4076                 offset = 0;
4077                 i++;
4078         }
4079 }
4080
4081 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4082                                unsigned long min_len, char **map,
4083                                unsigned long *map_start,
4084                                unsigned long *map_len)
4085 {
4086         size_t offset = start & (PAGE_CACHE_SIZE - 1);
4087         char *kaddr;
4088         struct page *p;
4089         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4090         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4091         unsigned long end_i = (start_offset + start + min_len - 1) >>
4092                 PAGE_CACHE_SHIFT;
4093
4094         if (i != end_i)
4095                 return -EINVAL;
4096
4097         if (i == 0) {
4098                 offset = start_offset;
4099                 *map_start = 0;
4100         } else {
4101                 offset = 0;
4102                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4103         }
4104
4105         if (start + min_len > eb->len) {
4106                 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4107                        "wanted %lu %lu\n", (unsigned long long)eb->start,
4108                        eb->len, start, min_len);
4109                 WARN_ON(1);
4110                 return -EINVAL;
4111         }
4112
4113         p = extent_buffer_page(eb, i);
4114         kaddr = page_address(p);
4115         *map = kaddr + offset;
4116         *map_len = PAGE_CACHE_SIZE - offset;
4117         return 0;
4118 }
4119
4120 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4121                           unsigned long start,
4122                           unsigned long len)
4123 {
4124         size_t cur;
4125         size_t offset;
4126         struct page *page;
4127         char *kaddr;
4128         char *ptr = (char *)ptrv;
4129         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4130         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4131         int ret = 0;
4132
4133         WARN_ON(start > eb->len);
4134         WARN_ON(start + len > eb->start + eb->len);
4135
4136         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4137
4138         while (len > 0) {
4139                 page = extent_buffer_page(eb, i);
4140
4141                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4142
4143                 kaddr = page_address(page);
4144                 ret = memcmp(ptr, kaddr + offset, cur);
4145                 if (ret)
4146                         break;
4147
4148                 ptr += cur;
4149                 len -= cur;
4150                 offset = 0;
4151                 i++;
4152         }
4153         return ret;
4154 }
4155
4156 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4157                          unsigned long start, unsigned long len)
4158 {
4159         size_t cur;
4160         size_t offset;
4161         struct page *page;
4162         char *kaddr;
4163         char *src = (char *)srcv;
4164         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4165         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4166
4167         WARN_ON(start > eb->len);
4168         WARN_ON(start + len > eb->start + eb->len);
4169
4170         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4171
4172         while (len > 0) {
4173                 page = extent_buffer_page(eb, i);
4174                 WARN_ON(!PageUptodate(page));
4175
4176                 cur = min(len, PAGE_CACHE_SIZE - offset);
4177                 kaddr = page_address(page);
4178                 memcpy(kaddr + offset, src, cur);
4179
4180                 src += cur;
4181                 len -= cur;
4182                 offset = 0;
4183                 i++;
4184         }
4185 }
4186
4187 void memset_extent_buffer(struct extent_buffer *eb, char c,
4188                           unsigned long start, unsigned long len)
4189 {
4190         size_t cur;
4191         size_t offset;
4192         struct page *page;
4193         char *kaddr;
4194         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4195         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4196
4197         WARN_ON(start > eb->len);
4198         WARN_ON(start + len > eb->start + eb->len);
4199
4200         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4201
4202         while (len > 0) {
4203                 page = extent_buffer_page(eb, i);
4204                 WARN_ON(!PageUptodate(page));
4205
4206                 cur = min(len, PAGE_CACHE_SIZE - offset);
4207                 kaddr = page_address(page);
4208                 memset(kaddr + offset, c, cur);
4209
4210                 len -= cur;
4211                 offset = 0;
4212                 i++;
4213         }
4214 }
4215
4216 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4217                         unsigned long dst_offset, unsigned long src_offset,
4218                         unsigned long len)
4219 {
4220         u64 dst_len = dst->len;
4221         size_t cur;
4222         size_t offset;
4223         struct page *page;
4224         char *kaddr;
4225         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4226         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4227
4228         WARN_ON(src->len != dst_len);
4229
4230         offset = (start_offset + dst_offset) &
4231                 ((unsigned long)PAGE_CACHE_SIZE - 1);
4232
4233         while (len > 0) {
4234                 page = extent_buffer_page(dst, i);
4235                 WARN_ON(!PageUptodate(page));
4236
4237                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4238
4239                 kaddr = page_address(page);
4240                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4241
4242                 src_offset += cur;
4243                 len -= cur;
4244                 offset = 0;
4245                 i++;
4246         }
4247 }
4248
4249 static void move_pages(struct page *dst_page, struct page *src_page,
4250                        unsigned long dst_off, unsigned long src_off,
4251                        unsigned long len)
4252 {
4253         char *dst_kaddr = page_address(dst_page);
4254         if (dst_page == src_page) {
4255                 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4256         } else {
4257                 char *src_kaddr = page_address(src_page);
4258                 char *p = dst_kaddr + dst_off + len;
4259                 char *s = src_kaddr + src_off + len;
4260
4261                 while (len--)
4262                         *--p = *--s;
4263         }
4264 }
4265
4266 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4267 {
4268         unsigned long distance = (src > dst) ? src - dst : dst - src;
4269         return distance < len;
4270 }
4271
4272 static void copy_pages(struct page *dst_page, struct page *src_page,
4273                        unsigned long dst_off, unsigned long src_off,
4274                        unsigned long len)
4275 {
4276         char *dst_kaddr = page_address(dst_page);
4277         char *src_kaddr;
4278
4279         if (dst_page != src_page) {
4280                 src_kaddr = page_address(src_page);
4281         } else {
4282                 src_kaddr = dst_kaddr;
4283                 BUG_ON(areas_overlap(src_off, dst_off, len));
4284         }
4285
4286         memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4287 }
4288
4289 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4290                            unsigned long src_offset, unsigned long len)
4291 {
4292         size_t cur;
4293         size_t dst_off_in_page;
4294         size_t src_off_in_page;
4295         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4296         unsigned long dst_i;
4297         unsigned long src_i;
4298
4299         if (src_offset + len > dst->len) {
4300                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4301                        "len %lu dst len %lu\n", src_offset, len, dst->len);
4302                 BUG_ON(1);
4303         }
4304         if (dst_offset + len > dst->len) {
4305                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4306                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
4307                 BUG_ON(1);
4308         }
4309
4310         while (len > 0) {
4311                 dst_off_in_page = (start_offset + dst_offset) &
4312                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4313                 src_off_in_page = (start_offset + src_offset) &
4314                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4315
4316                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4317                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4318
4319                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4320                                                src_off_in_page));
4321                 cur = min_t(unsigned long, cur,
4322                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4323
4324                 copy_pages(extent_buffer_page(dst, dst_i),
4325                            extent_buffer_page(dst, src_i),
4326                            dst_off_in_page, src_off_in_page, cur);
4327
4328                 src_offset += cur;
4329                 dst_offset += cur;
4330                 len -= cur;
4331         }
4332 }
4333
4334 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4335                            unsigned long src_offset, unsigned long len)
4336 {
4337         size_t cur;
4338         size_t dst_off_in_page;
4339         size_t src_off_in_page;
4340         unsigned long dst_end = dst_offset + len - 1;
4341         unsigned long src_end = src_offset + len - 1;
4342         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4343         unsigned long dst_i;
4344         unsigned long src_i;
4345
4346         if (src_offset + len > dst->len) {
4347                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4348                        "len %lu len %lu\n", src_offset, len, dst->len);
4349                 BUG_ON(1);
4350         }
4351         if (dst_offset + len > dst->len) {
4352                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4353                        "len %lu len %lu\n", dst_offset, len, dst->len);
4354                 BUG_ON(1);
4355         }
4356         if (!areas_overlap(src_offset, dst_offset, len)) {
4357                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4358                 return;
4359         }
4360         while (len > 0) {
4361                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4362                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4363
4364                 dst_off_in_page = (start_offset + dst_end) &
4365                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4366                 src_off_in_page = (start_offset + src_end) &
4367                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4368
4369                 cur = min_t(unsigned long, len, src_off_in_page + 1);
4370                 cur = min(cur, dst_off_in_page + 1);
4371                 move_pages(extent_buffer_page(dst, dst_i),
4372                            extent_buffer_page(dst, src_i),
4373                            dst_off_in_page - cur + 1,
4374                            src_off_in_page - cur + 1, cur);
4375
4376                 dst_end -= cur;
4377                 src_end -= cur;
4378                 len -= cur;
4379         }
4380 }
4381
4382 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4383 {
4384         struct extent_buffer *eb =
4385                         container_of(head, struct extent_buffer, rcu_head);
4386
4387         btrfs_release_extent_buffer(eb);
4388 }
4389
4390 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
4391 {
4392         u64 start = page_offset(page);
4393         struct extent_buffer *eb;
4394         int ret = 1;
4395
4396         spin_lock(&tree->buffer_lock);
4397         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4398         if (!eb) {
4399                 spin_unlock(&tree->buffer_lock);
4400                 return ret;
4401         }
4402
4403         if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4404                 ret = 0;
4405                 goto out;
4406         }
4407
4408         /*
4409          * set @eb->refs to 0 if it is already 1, and then release the @eb.
4410          * Or go back.
4411          */
4412         if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
4413                 ret = 0;
4414                 goto out;
4415         }
4416
4417         radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4418 out:
4419         spin_unlock(&tree->buffer_lock);
4420
4421         /* at this point we can safely release the extent buffer */
4422         if (atomic_read(&eb->refs) == 0)
4423                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4424         return ret;
4425 }