btrfs: ratelimit WARN_ON in use_block_rsv
[pandora-kernel.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20
21 static struct kmem_cache *extent_state_cache;
22 static struct kmem_cache *extent_buffer_cache;
23
24 static LIST_HEAD(buffers);
25 static LIST_HEAD(states);
26
27 #define LEAK_DEBUG 0
28 #if LEAK_DEBUG
29 static DEFINE_SPINLOCK(leak_lock);
30 #endif
31
32 #define BUFFER_LRU_MAX 64
33
34 struct tree_entry {
35         u64 start;
36         u64 end;
37         struct rb_node rb_node;
38 };
39
40 struct extent_page_data {
41         struct bio *bio;
42         struct extent_io_tree *tree;
43         get_extent_t *get_extent;
44
45         /* tells writepage not to lock the state bits for this range
46          * it still does the unlocking
47          */
48         unsigned int extent_locked:1;
49
50         /* tells the submit_bio code to use a WRITE_SYNC */
51         unsigned int sync_io:1;
52 };
53
54 int __init extent_io_init(void)
55 {
56         extent_state_cache = kmem_cache_create("extent_state",
57                         sizeof(struct extent_state), 0,
58                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
59         if (!extent_state_cache)
60                 return -ENOMEM;
61
62         extent_buffer_cache = kmem_cache_create("extent_buffers",
63                         sizeof(struct extent_buffer), 0,
64                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
65         if (!extent_buffer_cache)
66                 goto free_state_cache;
67         return 0;
68
69 free_state_cache:
70         kmem_cache_destroy(extent_state_cache);
71         return -ENOMEM;
72 }
73
74 void extent_io_exit(void)
75 {
76         struct extent_state *state;
77         struct extent_buffer *eb;
78
79         while (!list_empty(&states)) {
80                 state = list_entry(states.next, struct extent_state, leak_list);
81                 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
82                        "state %lu in tree %p refs %d\n",
83                        (unsigned long long)state->start,
84                        (unsigned long long)state->end,
85                        state->state, state->tree, atomic_read(&state->refs));
86                 list_del(&state->leak_list);
87                 kmem_cache_free(extent_state_cache, state);
88
89         }
90
91         while (!list_empty(&buffers)) {
92                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
93                 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
94                        "refs %d\n", (unsigned long long)eb->start,
95                        eb->len, atomic_read(&eb->refs));
96                 list_del(&eb->leak_list);
97                 kmem_cache_free(extent_buffer_cache, eb);
98         }
99         if (extent_state_cache)
100                 kmem_cache_destroy(extent_state_cache);
101         if (extent_buffer_cache)
102                 kmem_cache_destroy(extent_buffer_cache);
103 }
104
105 void extent_io_tree_init(struct extent_io_tree *tree,
106                          struct address_space *mapping)
107 {
108         tree->state = RB_ROOT;
109         INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
110         tree->ops = NULL;
111         tree->dirty_bytes = 0;
112         spin_lock_init(&tree->lock);
113         spin_lock_init(&tree->buffer_lock);
114         tree->mapping = mapping;
115 }
116
117 static struct extent_state *alloc_extent_state(gfp_t mask)
118 {
119         struct extent_state *state;
120 #if LEAK_DEBUG
121         unsigned long flags;
122 #endif
123
124         state = kmem_cache_alloc(extent_state_cache, mask);
125         if (!state)
126                 return state;
127         state->state = 0;
128         state->private = 0;
129         state->tree = NULL;
130 #if LEAK_DEBUG
131         spin_lock_irqsave(&leak_lock, flags);
132         list_add(&state->leak_list, &states);
133         spin_unlock_irqrestore(&leak_lock, flags);
134 #endif
135         atomic_set(&state->refs, 1);
136         init_waitqueue_head(&state->wq);
137         return state;
138 }
139
140 void free_extent_state(struct extent_state *state)
141 {
142         if (!state)
143                 return;
144         if (atomic_dec_and_test(&state->refs)) {
145 #if LEAK_DEBUG
146                 unsigned long flags;
147 #endif
148                 WARN_ON(state->tree);
149 #if LEAK_DEBUG
150                 spin_lock_irqsave(&leak_lock, flags);
151                 list_del(&state->leak_list);
152                 spin_unlock_irqrestore(&leak_lock, flags);
153 #endif
154                 kmem_cache_free(extent_state_cache, state);
155         }
156 }
157
158 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
159                                    struct rb_node *node)
160 {
161         struct rb_node **p = &root->rb_node;
162         struct rb_node *parent = NULL;
163         struct tree_entry *entry;
164
165         while (*p) {
166                 parent = *p;
167                 entry = rb_entry(parent, struct tree_entry, rb_node);
168
169                 if (offset < entry->start)
170                         p = &(*p)->rb_left;
171                 else if (offset > entry->end)
172                         p = &(*p)->rb_right;
173                 else
174                         return parent;
175         }
176
177         entry = rb_entry(node, struct tree_entry, rb_node);
178         rb_link_node(node, parent, p);
179         rb_insert_color(node, root);
180         return NULL;
181 }
182
183 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
184                                      struct rb_node **prev_ret,
185                                      struct rb_node **next_ret)
186 {
187         struct rb_root *root = &tree->state;
188         struct rb_node *n = root->rb_node;
189         struct rb_node *prev = NULL;
190         struct rb_node *orig_prev = NULL;
191         struct tree_entry *entry;
192         struct tree_entry *prev_entry = NULL;
193
194         while (n) {
195                 entry = rb_entry(n, struct tree_entry, rb_node);
196                 prev = n;
197                 prev_entry = entry;
198
199                 if (offset < entry->start)
200                         n = n->rb_left;
201                 else if (offset > entry->end)
202                         n = n->rb_right;
203                 else
204                         return n;
205         }
206
207         if (prev_ret) {
208                 orig_prev = prev;
209                 while (prev && offset > prev_entry->end) {
210                         prev = rb_next(prev);
211                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
212                 }
213                 *prev_ret = prev;
214                 prev = orig_prev;
215         }
216
217         if (next_ret) {
218                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
219                 while (prev && offset < prev_entry->start) {
220                         prev = rb_prev(prev);
221                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
222                 }
223                 *next_ret = prev;
224         }
225         return NULL;
226 }
227
228 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
229                                           u64 offset)
230 {
231         struct rb_node *prev = NULL;
232         struct rb_node *ret;
233
234         ret = __etree_search(tree, offset, &prev, NULL);
235         if (!ret)
236                 return prev;
237         return ret;
238 }
239
240 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
241                      struct extent_state *other)
242 {
243         if (tree->ops && tree->ops->merge_extent_hook)
244                 tree->ops->merge_extent_hook(tree->mapping->host, new,
245                                              other);
246 }
247
248 /*
249  * utility function to look for merge candidates inside a given range.
250  * Any extents with matching state are merged together into a single
251  * extent in the tree.  Extents with EXTENT_IO in their state field
252  * are not merged because the end_io handlers need to be able to do
253  * operations on them without sleeping (or doing allocations/splits).
254  *
255  * This should be called with the tree lock held.
256  */
257 static void merge_state(struct extent_io_tree *tree,
258                         struct extent_state *state)
259 {
260         struct extent_state *other;
261         struct rb_node *other_node;
262
263         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
264                 return;
265
266         other_node = rb_prev(&state->rb_node);
267         if (other_node) {
268                 other = rb_entry(other_node, struct extent_state, rb_node);
269                 if (other->end == state->start - 1 &&
270                     other->state == state->state) {
271                         merge_cb(tree, state, other);
272                         state->start = other->start;
273                         other->tree = NULL;
274                         rb_erase(&other->rb_node, &tree->state);
275                         free_extent_state(other);
276                 }
277         }
278         other_node = rb_next(&state->rb_node);
279         if (other_node) {
280                 other = rb_entry(other_node, struct extent_state, rb_node);
281                 if (other->start == state->end + 1 &&
282                     other->state == state->state) {
283                         merge_cb(tree, state, other);
284                         state->end = other->end;
285                         other->tree = NULL;
286                         rb_erase(&other->rb_node, &tree->state);
287                         free_extent_state(other);
288                 }
289         }
290 }
291
292 static void set_state_cb(struct extent_io_tree *tree,
293                          struct extent_state *state, int *bits)
294 {
295         if (tree->ops && tree->ops->set_bit_hook)
296                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
297 }
298
299 static void clear_state_cb(struct extent_io_tree *tree,
300                            struct extent_state *state, int *bits)
301 {
302         if (tree->ops && tree->ops->clear_bit_hook)
303                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
304 }
305
306 static void set_state_bits(struct extent_io_tree *tree,
307                            struct extent_state *state, int *bits);
308
309 /*
310  * insert an extent_state struct into the tree.  'bits' are set on the
311  * struct before it is inserted.
312  *
313  * This may return -EEXIST if the extent is already there, in which case the
314  * state struct is freed.
315  *
316  * The tree lock is not taken internally.  This is a utility function and
317  * probably isn't what you want to call (see set/clear_extent_bit).
318  */
319 static int insert_state(struct extent_io_tree *tree,
320                         struct extent_state *state, u64 start, u64 end,
321                         int *bits)
322 {
323         struct rb_node *node;
324
325         if (end < start) {
326                 printk(KERN_ERR "btrfs end < start %llu %llu\n",
327                        (unsigned long long)end,
328                        (unsigned long long)start);
329                 WARN_ON(1);
330         }
331         state->start = start;
332         state->end = end;
333
334         set_state_bits(tree, state, bits);
335
336         node = tree_insert(&tree->state, end, &state->rb_node);
337         if (node) {
338                 struct extent_state *found;
339                 found = rb_entry(node, struct extent_state, rb_node);
340                 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
341                        "%llu %llu\n", (unsigned long long)found->start,
342                        (unsigned long long)found->end,
343                        (unsigned long long)start, (unsigned long long)end);
344                 return -EEXIST;
345         }
346         state->tree = tree;
347         merge_state(tree, state);
348         return 0;
349 }
350
351 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
352                      u64 split)
353 {
354         if (tree->ops && tree->ops->split_extent_hook)
355                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
356 }
357
358 /*
359  * split a given extent state struct in two, inserting the preallocated
360  * struct 'prealloc' as the newly created second half.  'split' indicates an
361  * offset inside 'orig' where it should be split.
362  *
363  * Before calling,
364  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
365  * are two extent state structs in the tree:
366  * prealloc: [orig->start, split - 1]
367  * orig: [ split, orig->end ]
368  *
369  * The tree locks are not taken by this function. They need to be held
370  * by the caller.
371  */
372 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
373                        struct extent_state *prealloc, u64 split)
374 {
375         struct rb_node *node;
376
377         split_cb(tree, orig, split);
378
379         prealloc->start = orig->start;
380         prealloc->end = split - 1;
381         prealloc->state = orig->state;
382         orig->start = split;
383
384         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
385         if (node) {
386                 free_extent_state(prealloc);
387                 return -EEXIST;
388         }
389         prealloc->tree = tree;
390         return 0;
391 }
392
393 /*
394  * utility function to clear some bits in an extent state struct.
395  * it will optionally wake up any one waiting on this state (wake == 1), or
396  * forcibly remove the state from the tree (delete == 1).
397  *
398  * If no bits are set on the state struct after clearing things, the
399  * struct is freed and removed from the tree
400  */
401 static int clear_state_bit(struct extent_io_tree *tree,
402                             struct extent_state *state,
403                             int *bits, int wake)
404 {
405         int bits_to_clear = *bits & ~EXTENT_CTLBITS;
406         int ret = state->state & bits_to_clear;
407
408         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
409                 u64 range = state->end - state->start + 1;
410                 WARN_ON(range > tree->dirty_bytes);
411                 tree->dirty_bytes -= range;
412         }
413         clear_state_cb(tree, state, bits);
414         state->state &= ~bits_to_clear;
415         if (wake)
416                 wake_up(&state->wq);
417         if (state->state == 0) {
418                 if (state->tree) {
419                         rb_erase(&state->rb_node, &tree->state);
420                         state->tree = NULL;
421                         free_extent_state(state);
422                 } else {
423                         WARN_ON(1);
424                 }
425         } else {
426                 merge_state(tree, state);
427         }
428         return ret;
429 }
430
431 static struct extent_state *
432 alloc_extent_state_atomic(struct extent_state *prealloc)
433 {
434         if (!prealloc)
435                 prealloc = alloc_extent_state(GFP_ATOMIC);
436
437         return prealloc;
438 }
439
440 /*
441  * clear some bits on a range in the tree.  This may require splitting
442  * or inserting elements in the tree, so the gfp mask is used to
443  * indicate which allocations or sleeping are allowed.
444  *
445  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
446  * the given range from the tree regardless of state (ie for truncate).
447  *
448  * the range [start, end] is inclusive.
449  *
450  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
451  * bits were already set, or zero if none of the bits were already set.
452  */
453 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
454                      int bits, int wake, int delete,
455                      struct extent_state **cached_state,
456                      gfp_t mask)
457 {
458         struct extent_state *state;
459         struct extent_state *cached;
460         struct extent_state *prealloc = NULL;
461         struct rb_node *next_node;
462         struct rb_node *node;
463         u64 last_end;
464         int err;
465         int set = 0;
466         int clear = 0;
467
468         if (delete)
469                 bits |= ~EXTENT_CTLBITS;
470         bits |= EXTENT_FIRST_DELALLOC;
471
472         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
473                 clear = 1;
474 again:
475         if (!prealloc && (mask & __GFP_WAIT)) {
476                 prealloc = alloc_extent_state(mask);
477                 if (!prealloc)
478                         return -ENOMEM;
479         }
480
481         spin_lock(&tree->lock);
482         if (cached_state) {
483                 cached = *cached_state;
484
485                 if (clear) {
486                         *cached_state = NULL;
487                         cached_state = NULL;
488                 }
489
490                 if (cached && cached->tree && cached->start <= start &&
491                     cached->end > start) {
492                         if (clear)
493                                 atomic_dec(&cached->refs);
494                         state = cached;
495                         goto hit_next;
496                 }
497                 if (clear)
498                         free_extent_state(cached);
499         }
500         /*
501          * this search will find the extents that end after
502          * our range starts
503          */
504         node = tree_search(tree, start);
505         if (!node)
506                 goto out;
507         state = rb_entry(node, struct extent_state, rb_node);
508 hit_next:
509         if (state->start > end)
510                 goto out;
511         WARN_ON(state->end < start);
512         last_end = state->end;
513
514         /*
515          *     | ---- desired range ---- |
516          *  | state | or
517          *  | ------------- state -------------- |
518          *
519          * We need to split the extent we found, and may flip
520          * bits on second half.
521          *
522          * If the extent we found extends past our range, we
523          * just split and search again.  It'll get split again
524          * the next time though.
525          *
526          * If the extent we found is inside our range, we clear
527          * the desired bit on it.
528          */
529
530         if (state->start < start) {
531                 prealloc = alloc_extent_state_atomic(prealloc);
532                 BUG_ON(!prealloc);
533                 err = split_state(tree, state, prealloc, start);
534                 BUG_ON(err == -EEXIST);
535                 prealloc = NULL;
536                 if (err)
537                         goto out;
538                 if (state->end <= end) {
539                         set |= clear_state_bit(tree, state, &bits, wake);
540                         if (last_end == (u64)-1)
541                                 goto out;
542                         start = last_end + 1;
543                 }
544                 goto search_again;
545         }
546         /*
547          * | ---- desired range ---- |
548          *                        | state |
549          * We need to split the extent, and clear the bit
550          * on the first half
551          */
552         if (state->start <= end && state->end > end) {
553                 prealloc = alloc_extent_state_atomic(prealloc);
554                 BUG_ON(!prealloc);
555                 err = split_state(tree, state, prealloc, end + 1);
556                 BUG_ON(err == -EEXIST);
557                 if (wake)
558                         wake_up(&state->wq);
559
560                 set |= clear_state_bit(tree, prealloc, &bits, wake);
561
562                 prealloc = NULL;
563                 goto out;
564         }
565
566         if (state->end < end && prealloc && !need_resched())
567                 next_node = rb_next(&state->rb_node);
568         else
569                 next_node = NULL;
570
571         set |= clear_state_bit(tree, state, &bits, wake);
572         if (last_end == (u64)-1)
573                 goto out;
574         start = last_end + 1;
575         if (start <= end && next_node) {
576                 state = rb_entry(next_node, struct extent_state,
577                                  rb_node);
578                 if (state->start == start)
579                         goto hit_next;
580         }
581         goto search_again;
582
583 out:
584         spin_unlock(&tree->lock);
585         if (prealloc)
586                 free_extent_state(prealloc);
587
588         return set;
589
590 search_again:
591         if (start > end)
592                 goto out;
593         spin_unlock(&tree->lock);
594         if (mask & __GFP_WAIT)
595                 cond_resched();
596         goto again;
597 }
598
599 static int wait_on_state(struct extent_io_tree *tree,
600                          struct extent_state *state)
601                 __releases(tree->lock)
602                 __acquires(tree->lock)
603 {
604         DEFINE_WAIT(wait);
605         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
606         spin_unlock(&tree->lock);
607         schedule();
608         spin_lock(&tree->lock);
609         finish_wait(&state->wq, &wait);
610         return 0;
611 }
612
613 /*
614  * waits for one or more bits to clear on a range in the state tree.
615  * The range [start, end] is inclusive.
616  * The tree lock is taken by this function
617  */
618 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
619 {
620         struct extent_state *state;
621         struct rb_node *node;
622
623         spin_lock(&tree->lock);
624 again:
625         while (1) {
626                 /*
627                  * this search will find all the extents that end after
628                  * our range starts
629                  */
630                 node = tree_search(tree, start);
631                 if (!node)
632                         break;
633
634                 state = rb_entry(node, struct extent_state, rb_node);
635
636                 if (state->start > end)
637                         goto out;
638
639                 if (state->state & bits) {
640                         start = state->start;
641                         atomic_inc(&state->refs);
642                         wait_on_state(tree, state);
643                         free_extent_state(state);
644                         goto again;
645                 }
646                 start = state->end + 1;
647
648                 if (start > end)
649                         break;
650
651                 cond_resched_lock(&tree->lock);
652         }
653 out:
654         spin_unlock(&tree->lock);
655         return 0;
656 }
657
658 static void set_state_bits(struct extent_io_tree *tree,
659                            struct extent_state *state,
660                            int *bits)
661 {
662         int bits_to_set = *bits & ~EXTENT_CTLBITS;
663
664         set_state_cb(tree, state, bits);
665         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
666                 u64 range = state->end - state->start + 1;
667                 tree->dirty_bytes += range;
668         }
669         state->state |= bits_to_set;
670 }
671
672 static void cache_state(struct extent_state *state,
673                         struct extent_state **cached_ptr)
674 {
675         if (cached_ptr && !(*cached_ptr)) {
676                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
677                         *cached_ptr = state;
678                         atomic_inc(&state->refs);
679                 }
680         }
681 }
682
683 static void uncache_state(struct extent_state **cached_ptr)
684 {
685         if (cached_ptr && (*cached_ptr)) {
686                 struct extent_state *state = *cached_ptr;
687                 *cached_ptr = NULL;
688                 free_extent_state(state);
689         }
690 }
691
692 /*
693  * set some bits on a range in the tree.  This may require allocations or
694  * sleeping, so the gfp mask is used to indicate what is allowed.
695  *
696  * If any of the exclusive bits are set, this will fail with -EEXIST if some
697  * part of the range already has the desired bits set.  The start of the
698  * existing range is returned in failed_start in this case.
699  *
700  * [start, end] is inclusive This takes the tree lock.
701  */
702
703 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
704                    int bits, int exclusive_bits, u64 *failed_start,
705                    struct extent_state **cached_state, gfp_t mask)
706 {
707         struct extent_state *state;
708         struct extent_state *prealloc = NULL;
709         struct rb_node *node;
710         int err = 0;
711         u64 last_start;
712         u64 last_end;
713
714         bits |= EXTENT_FIRST_DELALLOC;
715 again:
716         if (!prealloc && (mask & __GFP_WAIT)) {
717                 prealloc = alloc_extent_state(mask);
718                 BUG_ON(!prealloc);
719         }
720
721         spin_lock(&tree->lock);
722         if (cached_state && *cached_state) {
723                 state = *cached_state;
724                 if (state->start <= start && state->end > start &&
725                     state->tree) {
726                         node = &state->rb_node;
727                         goto hit_next;
728                 }
729         }
730         /*
731          * this search will find all the extents that end after
732          * our range starts.
733          */
734         node = tree_search(tree, start);
735         if (!node) {
736                 prealloc = alloc_extent_state_atomic(prealloc);
737                 BUG_ON(!prealloc);
738                 err = insert_state(tree, prealloc, start, end, &bits);
739                 prealloc = NULL;
740                 BUG_ON(err == -EEXIST);
741                 goto out;
742         }
743         state = rb_entry(node, struct extent_state, rb_node);
744 hit_next:
745         last_start = state->start;
746         last_end = state->end;
747
748         /*
749          * | ---- desired range ---- |
750          * | state |
751          *
752          * Just lock what we found and keep going
753          */
754         if (state->start == start && state->end <= end) {
755                 struct rb_node *next_node;
756                 if (state->state & exclusive_bits) {
757                         *failed_start = state->start;
758                         err = -EEXIST;
759                         goto out;
760                 }
761
762                 set_state_bits(tree, state, &bits);
763
764                 cache_state(state, cached_state);
765                 merge_state(tree, state);
766                 if (last_end == (u64)-1)
767                         goto out;
768
769                 start = last_end + 1;
770                 next_node = rb_next(&state->rb_node);
771                 if (next_node && start < end && prealloc && !need_resched()) {
772                         state = rb_entry(next_node, struct extent_state,
773                                          rb_node);
774                         if (state->start == start)
775                                 goto hit_next;
776                 }
777                 goto search_again;
778         }
779
780         /*
781          *     | ---- desired range ---- |
782          * | state |
783          *   or
784          * | ------------- state -------------- |
785          *
786          * We need to split the extent we found, and may flip bits on
787          * second half.
788          *
789          * If the extent we found extends past our
790          * range, we just split and search again.  It'll get split
791          * again the next time though.
792          *
793          * If the extent we found is inside our range, we set the
794          * desired bit on it.
795          */
796         if (state->start < start) {
797                 if (state->state & exclusive_bits) {
798                         *failed_start = start;
799                         err = -EEXIST;
800                         goto out;
801                 }
802
803                 prealloc = alloc_extent_state_atomic(prealloc);
804                 BUG_ON(!prealloc);
805                 err = split_state(tree, state, prealloc, start);
806                 BUG_ON(err == -EEXIST);
807                 prealloc = NULL;
808                 if (err)
809                         goto out;
810                 if (state->end <= end) {
811                         set_state_bits(tree, state, &bits);
812                         cache_state(state, cached_state);
813                         merge_state(tree, state);
814                         if (last_end == (u64)-1)
815                                 goto out;
816                         start = last_end + 1;
817                 }
818                 goto search_again;
819         }
820         /*
821          * | ---- desired range ---- |
822          *     | state | or               | state |
823          *
824          * There's a hole, we need to insert something in it and
825          * ignore the extent we found.
826          */
827         if (state->start > start) {
828                 u64 this_end;
829                 if (end < last_start)
830                         this_end = end;
831                 else
832                         this_end = last_start - 1;
833
834                 prealloc = alloc_extent_state_atomic(prealloc);
835                 BUG_ON(!prealloc);
836
837                 /*
838                  * Avoid to free 'prealloc' if it can be merged with
839                  * the later extent.
840                  */
841                 err = insert_state(tree, prealloc, start, this_end,
842                                    &bits);
843                 BUG_ON(err == -EEXIST);
844                 if (err) {
845                         free_extent_state(prealloc);
846                         prealloc = NULL;
847                         goto out;
848                 }
849                 cache_state(prealloc, cached_state);
850                 prealloc = NULL;
851                 start = this_end + 1;
852                 goto search_again;
853         }
854         /*
855          * | ---- desired range ---- |
856          *                        | state |
857          * We need to split the extent, and set the bit
858          * on the first half
859          */
860         if (state->start <= end && state->end > end) {
861                 if (state->state & exclusive_bits) {
862                         *failed_start = start;
863                         err = -EEXIST;
864                         goto out;
865                 }
866
867                 prealloc = alloc_extent_state_atomic(prealloc);
868                 BUG_ON(!prealloc);
869                 err = split_state(tree, state, prealloc, end + 1);
870                 BUG_ON(err == -EEXIST);
871
872                 set_state_bits(tree, prealloc, &bits);
873                 cache_state(prealloc, cached_state);
874                 merge_state(tree, prealloc);
875                 prealloc = NULL;
876                 goto out;
877         }
878
879         goto search_again;
880
881 out:
882         spin_unlock(&tree->lock);
883         if (prealloc)
884                 free_extent_state(prealloc);
885
886         return err;
887
888 search_again:
889         if (start > end)
890                 goto out;
891         spin_unlock(&tree->lock);
892         if (mask & __GFP_WAIT)
893                 cond_resched();
894         goto again;
895 }
896
897 /**
898  * convert_extent - convert all bits in a given range from one bit to another
899  * @tree:       the io tree to search
900  * @start:      the start offset in bytes
901  * @end:        the end offset in bytes (inclusive)
902  * @bits:       the bits to set in this range
903  * @clear_bits: the bits to clear in this range
904  * @mask:       the allocation mask
905  *
906  * This will go through and set bits for the given range.  If any states exist
907  * already in this range they are set with the given bit and cleared of the
908  * clear_bits.  This is only meant to be used by things that are mergeable, ie
909  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
910  * boundary bits like LOCK.
911  */
912 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
913                        int bits, int clear_bits, gfp_t mask)
914 {
915         struct extent_state *state;
916         struct extent_state *prealloc = NULL;
917         struct rb_node *node;
918         int err = 0;
919         u64 last_start;
920         u64 last_end;
921
922 again:
923         if (!prealloc && (mask & __GFP_WAIT)) {
924                 prealloc = alloc_extent_state(mask);
925                 if (!prealloc)
926                         return -ENOMEM;
927         }
928
929         spin_lock(&tree->lock);
930         /*
931          * this search will find all the extents that end after
932          * our range starts.
933          */
934         node = tree_search(tree, start);
935         if (!node) {
936                 prealloc = alloc_extent_state_atomic(prealloc);
937                 if (!prealloc)
938                         return -ENOMEM;
939                 err = insert_state(tree, prealloc, start, end, &bits);
940                 prealloc = NULL;
941                 BUG_ON(err == -EEXIST);
942                 goto out;
943         }
944         state = rb_entry(node, struct extent_state, rb_node);
945 hit_next:
946         last_start = state->start;
947         last_end = state->end;
948
949         /*
950          * | ---- desired range ---- |
951          * | state |
952          *
953          * Just lock what we found and keep going
954          */
955         if (state->start == start && state->end <= end) {
956                 struct rb_node *next_node;
957
958                 set_state_bits(tree, state, &bits);
959                 clear_state_bit(tree, state, &clear_bits, 0);
960
961                 merge_state(tree, state);
962                 if (last_end == (u64)-1)
963                         goto out;
964
965                 start = last_end + 1;
966                 next_node = rb_next(&state->rb_node);
967                 if (next_node && start < end && prealloc && !need_resched()) {
968                         state = rb_entry(next_node, struct extent_state,
969                                          rb_node);
970                         if (state->start == start)
971                                 goto hit_next;
972                 }
973                 goto search_again;
974         }
975
976         /*
977          *     | ---- desired range ---- |
978          * | state |
979          *   or
980          * | ------------- state -------------- |
981          *
982          * We need to split the extent we found, and may flip bits on
983          * second half.
984          *
985          * If the extent we found extends past our
986          * range, we just split and search again.  It'll get split
987          * again the next time though.
988          *
989          * If the extent we found is inside our range, we set the
990          * desired bit on it.
991          */
992         if (state->start < start) {
993                 prealloc = alloc_extent_state_atomic(prealloc);
994                 if (!prealloc)
995                         return -ENOMEM;
996                 err = split_state(tree, state, prealloc, start);
997                 BUG_ON(err == -EEXIST);
998                 prealloc = NULL;
999                 if (err)
1000                         goto out;
1001                 if (state->end <= end) {
1002                         set_state_bits(tree, state, &bits);
1003                         clear_state_bit(tree, state, &clear_bits, 0);
1004                         merge_state(tree, state);
1005                         if (last_end == (u64)-1)
1006                                 goto out;
1007                         start = last_end + 1;
1008                 }
1009                 goto search_again;
1010         }
1011         /*
1012          * | ---- desired range ---- |
1013          *     | state | or               | state |
1014          *
1015          * There's a hole, we need to insert something in it and
1016          * ignore the extent we found.
1017          */
1018         if (state->start > start) {
1019                 u64 this_end;
1020                 if (end < last_start)
1021                         this_end = end;
1022                 else
1023                         this_end = last_start - 1;
1024
1025                 prealloc = alloc_extent_state_atomic(prealloc);
1026                 if (!prealloc)
1027                         return -ENOMEM;
1028
1029                 /*
1030                  * Avoid to free 'prealloc' if it can be merged with
1031                  * the later extent.
1032                  */
1033                 err = insert_state(tree, prealloc, start, this_end,
1034                                    &bits);
1035                 BUG_ON(err == -EEXIST);
1036                 if (err) {
1037                         free_extent_state(prealloc);
1038                         prealloc = NULL;
1039                         goto out;
1040                 }
1041                 prealloc = NULL;
1042                 start = this_end + 1;
1043                 goto search_again;
1044         }
1045         /*
1046          * | ---- desired range ---- |
1047          *                        | state |
1048          * We need to split the extent, and set the bit
1049          * on the first half
1050          */
1051         if (state->start <= end && state->end > end) {
1052                 prealloc = alloc_extent_state_atomic(prealloc);
1053                 if (!prealloc)
1054                         return -ENOMEM;
1055
1056                 err = split_state(tree, state, prealloc, end + 1);
1057                 BUG_ON(err == -EEXIST);
1058
1059                 set_state_bits(tree, prealloc, &bits);
1060                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1061
1062                 merge_state(tree, prealloc);
1063                 prealloc = NULL;
1064                 goto out;
1065         }
1066
1067         goto search_again;
1068
1069 out:
1070         spin_unlock(&tree->lock);
1071         if (prealloc)
1072                 free_extent_state(prealloc);
1073
1074         return err;
1075
1076 search_again:
1077         if (start > end)
1078                 goto out;
1079         spin_unlock(&tree->lock);
1080         if (mask & __GFP_WAIT)
1081                 cond_resched();
1082         goto again;
1083 }
1084
1085 /* wrappers around set/clear extent bit */
1086 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1087                      gfp_t mask)
1088 {
1089         return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
1090                               NULL, mask);
1091 }
1092
1093 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1094                     int bits, gfp_t mask)
1095 {
1096         return set_extent_bit(tree, start, end, bits, 0, NULL,
1097                               NULL, mask);
1098 }
1099
1100 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1101                       int bits, gfp_t mask)
1102 {
1103         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1104 }
1105
1106 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1107                         struct extent_state **cached_state, gfp_t mask)
1108 {
1109         return set_extent_bit(tree, start, end,
1110                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1111                               0, NULL, cached_state, mask);
1112 }
1113
1114 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1115                        gfp_t mask)
1116 {
1117         return clear_extent_bit(tree, start, end,
1118                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1119                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1120 }
1121
1122 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1123                      gfp_t mask)
1124 {
1125         return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
1126                               NULL, mask);
1127 }
1128
1129 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1130                         struct extent_state **cached_state, gfp_t mask)
1131 {
1132         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1133                               NULL, cached_state, mask);
1134 }
1135
1136 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
1137                                  u64 end, struct extent_state **cached_state,
1138                                  gfp_t mask)
1139 {
1140         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1141                                 cached_state, mask);
1142 }
1143
1144 /*
1145  * either insert or lock state struct between start and end use mask to tell
1146  * us if waiting is desired.
1147  */
1148 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1149                      int bits, struct extent_state **cached_state, gfp_t mask)
1150 {
1151         int err;
1152         u64 failed_start;
1153         while (1) {
1154                 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1155                                      EXTENT_LOCKED, &failed_start,
1156                                      cached_state, mask);
1157                 if (err == -EEXIST && (mask & __GFP_WAIT)) {
1158                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1159                         start = failed_start;
1160                 } else {
1161                         break;
1162                 }
1163                 WARN_ON(start > end);
1164         }
1165         return err;
1166 }
1167
1168 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1169 {
1170         return lock_extent_bits(tree, start, end, 0, NULL, mask);
1171 }
1172
1173 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1174                     gfp_t mask)
1175 {
1176         int err;
1177         u64 failed_start;
1178
1179         err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1180                              &failed_start, NULL, mask);
1181         if (err == -EEXIST) {
1182                 if (failed_start > start)
1183                         clear_extent_bit(tree, start, failed_start - 1,
1184                                          EXTENT_LOCKED, 1, 0, NULL, mask);
1185                 return 0;
1186         }
1187         return 1;
1188 }
1189
1190 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1191                          struct extent_state **cached, gfp_t mask)
1192 {
1193         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1194                                 mask);
1195 }
1196
1197 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1198 {
1199         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1200                                 mask);
1201 }
1202
1203 /*
1204  * helper function to set both pages and extents in the tree writeback
1205  */
1206 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1207 {
1208         unsigned long index = start >> PAGE_CACHE_SHIFT;
1209         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1210         struct page *page;
1211
1212         while (index <= end_index) {
1213                 page = find_get_page(tree->mapping, index);
1214                 BUG_ON(!page);
1215                 set_page_writeback(page);
1216                 page_cache_release(page);
1217                 index++;
1218         }
1219         return 0;
1220 }
1221
1222 /* find the first state struct with 'bits' set after 'start', and
1223  * return it.  tree->lock must be held.  NULL will returned if
1224  * nothing was found after 'start'
1225  */
1226 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1227                                                  u64 start, int bits)
1228 {
1229         struct rb_node *node;
1230         struct extent_state *state;
1231
1232         /*
1233          * this search will find all the extents that end after
1234          * our range starts.
1235          */
1236         node = tree_search(tree, start);
1237         if (!node)
1238                 goto out;
1239
1240         while (1) {
1241                 state = rb_entry(node, struct extent_state, rb_node);
1242                 if (state->end >= start && (state->state & bits))
1243                         return state;
1244
1245                 node = rb_next(node);
1246                 if (!node)
1247                         break;
1248         }
1249 out:
1250         return NULL;
1251 }
1252
1253 /*
1254  * find the first offset in the io tree with 'bits' set. zero is
1255  * returned if we find something, and *start_ret and *end_ret are
1256  * set to reflect the state struct that was found.
1257  *
1258  * If nothing was found, 1 is returned, < 0 on error
1259  */
1260 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1261                           u64 *start_ret, u64 *end_ret, int bits)
1262 {
1263         struct extent_state *state;
1264         int ret = 1;
1265
1266         spin_lock(&tree->lock);
1267         state = find_first_extent_bit_state(tree, start, bits);
1268         if (state) {
1269                 *start_ret = state->start;
1270                 *end_ret = state->end;
1271                 ret = 0;
1272         }
1273         spin_unlock(&tree->lock);
1274         return ret;
1275 }
1276
1277 /*
1278  * find a contiguous range of bytes in the file marked as delalloc, not
1279  * more than 'max_bytes'.  start and end are used to return the range,
1280  *
1281  * 1 is returned if we find something, 0 if nothing was in the tree
1282  */
1283 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1284                                         u64 *start, u64 *end, u64 max_bytes,
1285                                         struct extent_state **cached_state)
1286 {
1287         struct rb_node *node;
1288         struct extent_state *state;
1289         u64 cur_start = *start;
1290         u64 found = 0;
1291         u64 total_bytes = 0;
1292
1293         spin_lock(&tree->lock);
1294
1295         /*
1296          * this search will find all the extents that end after
1297          * our range starts.
1298          */
1299         node = tree_search(tree, cur_start);
1300         if (!node) {
1301                 if (!found)
1302                         *end = (u64)-1;
1303                 goto out;
1304         }
1305
1306         while (1) {
1307                 state = rb_entry(node, struct extent_state, rb_node);
1308                 if (found && (state->start != cur_start ||
1309                               (state->state & EXTENT_BOUNDARY))) {
1310                         goto out;
1311                 }
1312                 if (!(state->state & EXTENT_DELALLOC)) {
1313                         if (!found)
1314                                 *end = state->end;
1315                         goto out;
1316                 }
1317                 if (!found) {
1318                         *start = state->start;
1319                         *cached_state = state;
1320                         atomic_inc(&state->refs);
1321                 }
1322                 found++;
1323                 *end = state->end;
1324                 cur_start = state->end + 1;
1325                 node = rb_next(node);
1326                 if (!node)
1327                         break;
1328                 total_bytes += state->end - state->start + 1;
1329                 if (total_bytes >= max_bytes)
1330                         break;
1331         }
1332 out:
1333         spin_unlock(&tree->lock);
1334         return found;
1335 }
1336
1337 static noinline int __unlock_for_delalloc(struct inode *inode,
1338                                           struct page *locked_page,
1339                                           u64 start, u64 end)
1340 {
1341         int ret;
1342         struct page *pages[16];
1343         unsigned long index = start >> PAGE_CACHE_SHIFT;
1344         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1345         unsigned long nr_pages = end_index - index + 1;
1346         int i;
1347
1348         if (index == locked_page->index && end_index == index)
1349                 return 0;
1350
1351         while (nr_pages > 0) {
1352                 ret = find_get_pages_contig(inode->i_mapping, index,
1353                                      min_t(unsigned long, nr_pages,
1354                                      ARRAY_SIZE(pages)), pages);
1355                 for (i = 0; i < ret; i++) {
1356                         if (pages[i] != locked_page)
1357                                 unlock_page(pages[i]);
1358                         page_cache_release(pages[i]);
1359                 }
1360                 nr_pages -= ret;
1361                 index += ret;
1362                 cond_resched();
1363         }
1364         return 0;
1365 }
1366
1367 static noinline int lock_delalloc_pages(struct inode *inode,
1368                                         struct page *locked_page,
1369                                         u64 delalloc_start,
1370                                         u64 delalloc_end)
1371 {
1372         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1373         unsigned long start_index = index;
1374         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1375         unsigned long pages_locked = 0;
1376         struct page *pages[16];
1377         unsigned long nrpages;
1378         int ret;
1379         int i;
1380
1381         /* the caller is responsible for locking the start index */
1382         if (index == locked_page->index && index == end_index)
1383                 return 0;
1384
1385         /* skip the page at the start index */
1386         nrpages = end_index - index + 1;
1387         while (nrpages > 0) {
1388                 ret = find_get_pages_contig(inode->i_mapping, index,
1389                                      min_t(unsigned long,
1390                                      nrpages, ARRAY_SIZE(pages)), pages);
1391                 if (ret == 0) {
1392                         ret = -EAGAIN;
1393                         goto done;
1394                 }
1395                 /* now we have an array of pages, lock them all */
1396                 for (i = 0; i < ret; i++) {
1397                         /*
1398                          * the caller is taking responsibility for
1399                          * locked_page
1400                          */
1401                         if (pages[i] != locked_page) {
1402                                 lock_page(pages[i]);
1403                                 if (!PageDirty(pages[i]) ||
1404                                     pages[i]->mapping != inode->i_mapping) {
1405                                         ret = -EAGAIN;
1406                                         unlock_page(pages[i]);
1407                                         page_cache_release(pages[i]);
1408                                         goto done;
1409                                 }
1410                         }
1411                         page_cache_release(pages[i]);
1412                         pages_locked++;
1413                 }
1414                 nrpages -= ret;
1415                 index += ret;
1416                 cond_resched();
1417         }
1418         ret = 0;
1419 done:
1420         if (ret && pages_locked) {
1421                 __unlock_for_delalloc(inode, locked_page,
1422                               delalloc_start,
1423                               ((u64)(start_index + pages_locked - 1)) <<
1424                               PAGE_CACHE_SHIFT);
1425         }
1426         return ret;
1427 }
1428
1429 /*
1430  * find a contiguous range of bytes in the file marked as delalloc, not
1431  * more than 'max_bytes'.  start and end are used to return the range,
1432  *
1433  * 1 is returned if we find something, 0 if nothing was in the tree
1434  */
1435 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1436                                              struct extent_io_tree *tree,
1437                                              struct page *locked_page,
1438                                              u64 *start, u64 *end,
1439                                              u64 max_bytes)
1440 {
1441         u64 delalloc_start;
1442         u64 delalloc_end;
1443         u64 found;
1444         struct extent_state *cached_state = NULL;
1445         int ret;
1446         int loops = 0;
1447
1448 again:
1449         /* step one, find a bunch of delalloc bytes starting at start */
1450         delalloc_start = *start;
1451         delalloc_end = 0;
1452         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1453                                     max_bytes, &cached_state);
1454         if (!found || delalloc_end <= *start) {
1455                 *start = delalloc_start;
1456                 *end = delalloc_end;
1457                 free_extent_state(cached_state);
1458                 return found;
1459         }
1460
1461         /*
1462          * start comes from the offset of locked_page.  We have to lock
1463          * pages in order, so we can't process delalloc bytes before
1464          * locked_page
1465          */
1466         if (delalloc_start < *start)
1467                 delalloc_start = *start;
1468
1469         /*
1470          * make sure to limit the number of pages we try to lock down
1471          * if we're looping.
1472          */
1473         if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1474                 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1475
1476         /* step two, lock all the pages after the page that has start */
1477         ret = lock_delalloc_pages(inode, locked_page,
1478                                   delalloc_start, delalloc_end);
1479         if (ret == -EAGAIN) {
1480                 /* some of the pages are gone, lets avoid looping by
1481                  * shortening the size of the delalloc range we're searching
1482                  */
1483                 free_extent_state(cached_state);
1484                 if (!loops) {
1485                         unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1486                         max_bytes = PAGE_CACHE_SIZE - offset;
1487                         loops = 1;
1488                         goto again;
1489                 } else {
1490                         found = 0;
1491                         goto out_failed;
1492                 }
1493         }
1494         BUG_ON(ret);
1495
1496         /* step three, lock the state bits for the whole range */
1497         lock_extent_bits(tree, delalloc_start, delalloc_end,
1498                          0, &cached_state, GFP_NOFS);
1499
1500         /* then test to make sure it is all still delalloc */
1501         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1502                              EXTENT_DELALLOC, 1, cached_state);
1503         if (!ret) {
1504                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1505                                      &cached_state, GFP_NOFS);
1506                 __unlock_for_delalloc(inode, locked_page,
1507                               delalloc_start, delalloc_end);
1508                 cond_resched();
1509                 goto again;
1510         }
1511         free_extent_state(cached_state);
1512         *start = delalloc_start;
1513         *end = delalloc_end;
1514 out_failed:
1515         return found;
1516 }
1517
1518 int extent_clear_unlock_delalloc(struct inode *inode,
1519                                 struct extent_io_tree *tree,
1520                                 u64 start, u64 end, struct page *locked_page,
1521                                 unsigned long op)
1522 {
1523         int ret;
1524         struct page *pages[16];
1525         unsigned long index = start >> PAGE_CACHE_SHIFT;
1526         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1527         unsigned long nr_pages = end_index - index + 1;
1528         int i;
1529         int clear_bits = 0;
1530
1531         if (op & EXTENT_CLEAR_UNLOCK)
1532                 clear_bits |= EXTENT_LOCKED;
1533         if (op & EXTENT_CLEAR_DIRTY)
1534                 clear_bits |= EXTENT_DIRTY;
1535
1536         if (op & EXTENT_CLEAR_DELALLOC)
1537                 clear_bits |= EXTENT_DELALLOC;
1538
1539         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1540         if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1541                     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1542                     EXTENT_SET_PRIVATE2)))
1543                 return 0;
1544
1545         while (nr_pages > 0) {
1546                 ret = find_get_pages_contig(inode->i_mapping, index,
1547                                      min_t(unsigned long,
1548                                      nr_pages, ARRAY_SIZE(pages)), pages);
1549                 for (i = 0; i < ret; i++) {
1550
1551                         if (op & EXTENT_SET_PRIVATE2)
1552                                 SetPagePrivate2(pages[i]);
1553
1554                         if (pages[i] == locked_page) {
1555                                 page_cache_release(pages[i]);
1556                                 continue;
1557                         }
1558                         if (op & EXTENT_CLEAR_DIRTY)
1559                                 clear_page_dirty_for_io(pages[i]);
1560                         if (op & EXTENT_SET_WRITEBACK)
1561                                 set_page_writeback(pages[i]);
1562                         if (op & EXTENT_END_WRITEBACK)
1563                                 end_page_writeback(pages[i]);
1564                         if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1565                                 unlock_page(pages[i]);
1566                         page_cache_release(pages[i]);
1567                 }
1568                 nr_pages -= ret;
1569                 index += ret;
1570                 cond_resched();
1571         }
1572         return 0;
1573 }
1574
1575 /*
1576  * count the number of bytes in the tree that have a given bit(s)
1577  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1578  * cached.  The total number found is returned.
1579  */
1580 u64 count_range_bits(struct extent_io_tree *tree,
1581                      u64 *start, u64 search_end, u64 max_bytes,
1582                      unsigned long bits, int contig)
1583 {
1584         struct rb_node *node;
1585         struct extent_state *state;
1586         u64 cur_start = *start;
1587         u64 total_bytes = 0;
1588         u64 last = 0;
1589         int found = 0;
1590
1591         if (search_end <= cur_start) {
1592                 WARN_ON(1);
1593                 return 0;
1594         }
1595
1596         spin_lock(&tree->lock);
1597         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1598                 total_bytes = tree->dirty_bytes;
1599                 goto out;
1600         }
1601         /*
1602          * this search will find all the extents that end after
1603          * our range starts.
1604          */
1605         node = tree_search(tree, cur_start);
1606         if (!node)
1607                 goto out;
1608
1609         while (1) {
1610                 state = rb_entry(node, struct extent_state, rb_node);
1611                 if (state->start > search_end)
1612                         break;
1613                 if (contig && found && state->start > last + 1)
1614                         break;
1615                 if (state->end >= cur_start && (state->state & bits) == bits) {
1616                         total_bytes += min(search_end, state->end) + 1 -
1617                                        max(cur_start, state->start);
1618                         if (total_bytes >= max_bytes)
1619                                 break;
1620                         if (!found) {
1621                                 *start = max(cur_start, state->start);
1622                                 found = 1;
1623                         }
1624                         last = state->end;
1625                 } else if (contig && found) {
1626                         break;
1627                 }
1628                 node = rb_next(node);
1629                 if (!node)
1630                         break;
1631         }
1632 out:
1633         spin_unlock(&tree->lock);
1634         return total_bytes;
1635 }
1636
1637 /*
1638  * set the private field for a given byte offset in the tree.  If there isn't
1639  * an extent_state there already, this does nothing.
1640  */
1641 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1642 {
1643         struct rb_node *node;
1644         struct extent_state *state;
1645         int ret = 0;
1646
1647         spin_lock(&tree->lock);
1648         /*
1649          * this search will find all the extents that end after
1650          * our range starts.
1651          */
1652         node = tree_search(tree, start);
1653         if (!node) {
1654                 ret = -ENOENT;
1655                 goto out;
1656         }
1657         state = rb_entry(node, struct extent_state, rb_node);
1658         if (state->start != start) {
1659                 ret = -ENOENT;
1660                 goto out;
1661         }
1662         state->private = private;
1663 out:
1664         spin_unlock(&tree->lock);
1665         return ret;
1666 }
1667
1668 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1669 {
1670         struct rb_node *node;
1671         struct extent_state *state;
1672         int ret = 0;
1673
1674         spin_lock(&tree->lock);
1675         /*
1676          * this search will find all the extents that end after
1677          * our range starts.
1678          */
1679         node = tree_search(tree, start);
1680         if (!node) {
1681                 ret = -ENOENT;
1682                 goto out;
1683         }
1684         state = rb_entry(node, struct extent_state, rb_node);
1685         if (state->start != start) {
1686                 ret = -ENOENT;
1687                 goto out;
1688         }
1689         *private = state->private;
1690 out:
1691         spin_unlock(&tree->lock);
1692         return ret;
1693 }
1694
1695 /*
1696  * searches a range in the state tree for a given mask.
1697  * If 'filled' == 1, this returns 1 only if every extent in the tree
1698  * has the bits set.  Otherwise, 1 is returned if any bit in the
1699  * range is found set.
1700  */
1701 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1702                    int bits, int filled, struct extent_state *cached)
1703 {
1704         struct extent_state *state = NULL;
1705         struct rb_node *node;
1706         int bitset = 0;
1707
1708         spin_lock(&tree->lock);
1709         if (cached && cached->tree && cached->start <= start &&
1710             cached->end > start)
1711                 node = &cached->rb_node;
1712         else
1713                 node = tree_search(tree, start);
1714         while (node && start <= end) {
1715                 state = rb_entry(node, struct extent_state, rb_node);
1716
1717                 if (filled && state->start > start) {
1718                         bitset = 0;
1719                         break;
1720                 }
1721
1722                 if (state->start > end)
1723                         break;
1724
1725                 if (state->state & bits) {
1726                         bitset = 1;
1727                         if (!filled)
1728                                 break;
1729                 } else if (filled) {
1730                         bitset = 0;
1731                         break;
1732                 }
1733
1734                 if (state->end == (u64)-1)
1735                         break;
1736
1737                 start = state->end + 1;
1738                 if (start > end)
1739                         break;
1740                 node = rb_next(node);
1741                 if (!node) {
1742                         if (filled)
1743                                 bitset = 0;
1744                         break;
1745                 }
1746         }
1747         spin_unlock(&tree->lock);
1748         return bitset;
1749 }
1750
1751 /*
1752  * helper function to set a given page up to date if all the
1753  * extents in the tree for that page are up to date
1754  */
1755 static int check_page_uptodate(struct extent_io_tree *tree,
1756                                struct page *page)
1757 {
1758         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1759         u64 end = start + PAGE_CACHE_SIZE - 1;
1760         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1761                 SetPageUptodate(page);
1762         return 0;
1763 }
1764
1765 /*
1766  * helper function to unlock a page if all the extents in the tree
1767  * for that page are unlocked
1768  */
1769 static int check_page_locked(struct extent_io_tree *tree,
1770                              struct page *page)
1771 {
1772         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1773         u64 end = start + PAGE_CACHE_SIZE - 1;
1774         if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1775                 unlock_page(page);
1776         return 0;
1777 }
1778
1779 /*
1780  * helper function to end page writeback if all the extents
1781  * in the tree for that page are done with writeback
1782  */
1783 static int check_page_writeback(struct extent_io_tree *tree,
1784                              struct page *page)
1785 {
1786         end_page_writeback(page);
1787         return 0;
1788 }
1789
1790 /* lots and lots of room for performance fixes in the end_bio funcs */
1791
1792 /*
1793  * after a writepage IO is done, we need to:
1794  * clear the uptodate bits on error
1795  * clear the writeback bits in the extent tree for this IO
1796  * end_page_writeback if the page has no more pending IO
1797  *
1798  * Scheduling is not allowed, so the extent state tree is expected
1799  * to have one and only one object corresponding to this IO.
1800  */
1801 static void end_bio_extent_writepage(struct bio *bio, int err)
1802 {
1803         int uptodate = err == 0;
1804         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1805         struct extent_io_tree *tree;
1806         u64 start;
1807         u64 end;
1808         int whole_page;
1809         int ret;
1810
1811         do {
1812                 struct page *page = bvec->bv_page;
1813                 tree = &BTRFS_I(page->mapping->host)->io_tree;
1814
1815                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1816                          bvec->bv_offset;
1817                 end = start + bvec->bv_len - 1;
1818
1819                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1820                         whole_page = 1;
1821                 else
1822                         whole_page = 0;
1823
1824                 if (--bvec >= bio->bi_io_vec)
1825                         prefetchw(&bvec->bv_page->flags);
1826                 if (tree->ops && tree->ops->writepage_end_io_hook) {
1827                         ret = tree->ops->writepage_end_io_hook(page, start,
1828                                                        end, NULL, uptodate);
1829                         if (ret)
1830                                 uptodate = 0;
1831                 }
1832
1833                 if (!uptodate && tree->ops &&
1834                     tree->ops->writepage_io_failed_hook) {
1835                         ret = tree->ops->writepage_io_failed_hook(bio, page,
1836                                                          start, end, NULL);
1837                         if (ret == 0) {
1838                                 uptodate = (err == 0);
1839                                 continue;
1840                         }
1841                 }
1842
1843                 if (!uptodate) {
1844                         clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
1845                         ClearPageUptodate(page);
1846                         SetPageError(page);
1847                 }
1848
1849                 if (whole_page)
1850                         end_page_writeback(page);
1851                 else
1852                         check_page_writeback(tree, page);
1853         } while (bvec >= bio->bi_io_vec);
1854
1855         bio_put(bio);
1856 }
1857
1858 /*
1859  * after a readpage IO is done, we need to:
1860  * clear the uptodate bits on error
1861  * set the uptodate bits if things worked
1862  * set the page up to date if all extents in the tree are uptodate
1863  * clear the lock bit in the extent tree
1864  * unlock the page if there are no other extents locked for it
1865  *
1866  * Scheduling is not allowed, so the extent state tree is expected
1867  * to have one and only one object corresponding to this IO.
1868  */
1869 static void end_bio_extent_readpage(struct bio *bio, int err)
1870 {
1871         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1872         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
1873         struct bio_vec *bvec = bio->bi_io_vec;
1874         struct extent_io_tree *tree;
1875         u64 start;
1876         u64 end;
1877         int whole_page;
1878         int ret;
1879
1880         if (err)
1881                 uptodate = 0;
1882
1883         do {
1884                 struct page *page = bvec->bv_page;
1885                 struct extent_state *cached = NULL;
1886                 struct extent_state *state;
1887
1888                 tree = &BTRFS_I(page->mapping->host)->io_tree;
1889
1890                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1891                         bvec->bv_offset;
1892                 end = start + bvec->bv_len - 1;
1893
1894                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1895                         whole_page = 1;
1896                 else
1897                         whole_page = 0;
1898
1899                 if (++bvec <= bvec_end)
1900                         prefetchw(&bvec->bv_page->flags);
1901
1902                 spin_lock(&tree->lock);
1903                 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
1904                 if (state && state->start == start) {
1905                         /*
1906                          * take a reference on the state, unlock will drop
1907                          * the ref
1908                          */
1909                         cache_state(state, &cached);
1910                 }
1911                 spin_unlock(&tree->lock);
1912
1913                 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1914                         ret = tree->ops->readpage_end_io_hook(page, start, end,
1915                                                               state);
1916                         if (ret)
1917                                 uptodate = 0;
1918                 }
1919                 if (!uptodate && tree->ops &&
1920                     tree->ops->readpage_io_failed_hook) {
1921                         ret = tree->ops->readpage_io_failed_hook(bio, page,
1922                                                          start, end, NULL);
1923                         if (ret == 0) {
1924                                 uptodate =
1925                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
1926                                 if (err)
1927                                         uptodate = 0;
1928                                 uncache_state(&cached);
1929                                 continue;
1930                         }
1931                 }
1932
1933                 if (uptodate) {
1934                         set_extent_uptodate(tree, start, end, &cached,
1935                                             GFP_ATOMIC);
1936                 }
1937                 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
1938
1939                 if (whole_page) {
1940                         if (uptodate) {
1941                                 SetPageUptodate(page);
1942                         } else {
1943                                 ClearPageUptodate(page);
1944                                 SetPageError(page);
1945                         }
1946                         unlock_page(page);
1947                 } else {
1948                         if (uptodate) {
1949                                 check_page_uptodate(tree, page);
1950                         } else {
1951                                 ClearPageUptodate(page);
1952                                 SetPageError(page);
1953                         }
1954                         check_page_locked(tree, page);
1955                 }
1956         } while (bvec <= bvec_end);
1957
1958         bio_put(bio);
1959 }
1960
1961 struct bio *
1962 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1963                 gfp_t gfp_flags)
1964 {
1965         struct bio *bio;
1966
1967         bio = bio_alloc(gfp_flags, nr_vecs);
1968
1969         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1970                 while (!bio && (nr_vecs /= 2))
1971                         bio = bio_alloc(gfp_flags, nr_vecs);
1972         }
1973
1974         if (bio) {
1975                 bio->bi_size = 0;
1976                 bio->bi_bdev = bdev;
1977                 bio->bi_sector = first_sector;
1978         }
1979         return bio;
1980 }
1981
1982 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1983                           unsigned long bio_flags)
1984 {
1985         int ret = 0;
1986         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1987         struct page *page = bvec->bv_page;
1988         struct extent_io_tree *tree = bio->bi_private;
1989         u64 start;
1990
1991         start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1992
1993         bio->bi_private = NULL;
1994
1995         bio_get(bio);
1996
1997         if (tree->ops && tree->ops->submit_bio_hook)
1998                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1999                                            mirror_num, bio_flags, start);
2000         else
2001                 submit_bio(rw, bio);
2002         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2003                 ret = -EOPNOTSUPP;
2004         bio_put(bio);
2005         return ret;
2006 }
2007
2008 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2009                               struct page *page, sector_t sector,
2010                               size_t size, unsigned long offset,
2011                               struct block_device *bdev,
2012                               struct bio **bio_ret,
2013                               unsigned long max_pages,
2014                               bio_end_io_t end_io_func,
2015                               int mirror_num,
2016                               unsigned long prev_bio_flags,
2017                               unsigned long bio_flags)
2018 {
2019         int ret = 0;
2020         struct bio *bio;
2021         int nr;
2022         int contig = 0;
2023         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2024         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2025         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2026
2027         if (bio_ret && *bio_ret) {
2028                 bio = *bio_ret;
2029                 if (old_compressed)
2030                         contig = bio->bi_sector == sector;
2031                 else
2032                         contig = bio->bi_sector + (bio->bi_size >> 9) ==
2033                                 sector;
2034
2035                 if (prev_bio_flags != bio_flags || !contig ||
2036                     (tree->ops && tree->ops->merge_bio_hook &&
2037                      tree->ops->merge_bio_hook(page, offset, page_size, bio,
2038                                                bio_flags)) ||
2039                     bio_add_page(bio, page, page_size, offset) < page_size) {
2040                         ret = submit_one_bio(rw, bio, mirror_num,
2041                                              prev_bio_flags);
2042                         bio = NULL;
2043                 } else {
2044                         return 0;
2045                 }
2046         }
2047         if (this_compressed)
2048                 nr = BIO_MAX_PAGES;
2049         else
2050                 nr = bio_get_nr_vecs(bdev);
2051
2052         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2053         if (!bio)
2054                 return -ENOMEM;
2055
2056         bio_add_page(bio, page, page_size, offset);
2057         bio->bi_end_io = end_io_func;
2058         bio->bi_private = tree;
2059
2060         if (bio_ret)
2061                 *bio_ret = bio;
2062         else
2063                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2064
2065         return ret;
2066 }
2067
2068 void set_page_extent_mapped(struct page *page)
2069 {
2070         if (!PagePrivate(page)) {
2071                 SetPagePrivate(page);
2072                 page_cache_get(page);
2073                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2074         }
2075 }
2076
2077 static void set_page_extent_head(struct page *page, unsigned long len)
2078 {
2079         WARN_ON(!PagePrivate(page));
2080         set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
2081 }
2082
2083 /*
2084  * basic readpage implementation.  Locked extent state structs are inserted
2085  * into the tree that are removed when the IO is done (by the end_io
2086  * handlers)
2087  */
2088 static int __extent_read_full_page(struct extent_io_tree *tree,
2089                                    struct page *page,
2090                                    get_extent_t *get_extent,
2091                                    struct bio **bio, int mirror_num,
2092                                    unsigned long *bio_flags)
2093 {
2094         struct inode *inode = page->mapping->host;
2095         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2096         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2097         u64 end;
2098         u64 cur = start;
2099         u64 extent_offset;
2100         u64 last_byte = i_size_read(inode);
2101         u64 block_start;
2102         u64 cur_end;
2103         sector_t sector;
2104         struct extent_map *em;
2105         struct block_device *bdev;
2106         struct btrfs_ordered_extent *ordered;
2107         int ret;
2108         int nr = 0;
2109         size_t pg_offset = 0;
2110         size_t iosize;
2111         size_t disk_io_size;
2112         size_t blocksize = inode->i_sb->s_blocksize;
2113         unsigned long this_bio_flag = 0;
2114
2115         set_page_extent_mapped(page);
2116
2117         if (!PageUptodate(page)) {
2118                 if (cleancache_get_page(page) == 0) {
2119                         BUG_ON(blocksize != PAGE_SIZE);
2120                         goto out;
2121                 }
2122         }
2123
2124         end = page_end;
2125         while (1) {
2126                 lock_extent(tree, start, end, GFP_NOFS);
2127                 ordered = btrfs_lookup_ordered_extent(inode, start);
2128                 if (!ordered)
2129                         break;
2130                 unlock_extent(tree, start, end, GFP_NOFS);
2131                 btrfs_start_ordered_extent(inode, ordered, 1);
2132                 btrfs_put_ordered_extent(ordered);
2133         }
2134
2135         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2136                 char *userpage;
2137                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2138
2139                 if (zero_offset) {
2140                         iosize = PAGE_CACHE_SIZE - zero_offset;
2141                         userpage = kmap_atomic(page, KM_USER0);
2142                         memset(userpage + zero_offset, 0, iosize);
2143                         flush_dcache_page(page);
2144                         kunmap_atomic(userpage, KM_USER0);
2145                 }
2146         }
2147         while (cur <= end) {
2148                 if (cur >= last_byte) {
2149                         char *userpage;
2150                         struct extent_state *cached = NULL;
2151
2152                         iosize = PAGE_CACHE_SIZE - pg_offset;
2153                         userpage = kmap_atomic(page, KM_USER0);
2154                         memset(userpage + pg_offset, 0, iosize);
2155                         flush_dcache_page(page);
2156                         kunmap_atomic(userpage, KM_USER0);
2157                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2158                                             &cached, GFP_NOFS);
2159                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2160                                              &cached, GFP_NOFS);
2161                         break;
2162                 }
2163                 em = get_extent(inode, page, pg_offset, cur,
2164                                 end - cur + 1, 0);
2165                 if (IS_ERR_OR_NULL(em)) {
2166                         SetPageError(page);
2167                         unlock_extent(tree, cur, end, GFP_NOFS);
2168                         break;
2169                 }
2170                 extent_offset = cur - em->start;
2171                 BUG_ON(extent_map_end(em) <= cur);
2172                 BUG_ON(end < cur);
2173
2174                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2175                         this_bio_flag = EXTENT_BIO_COMPRESSED;
2176                         extent_set_compress_type(&this_bio_flag,
2177                                                  em->compress_type);
2178                 }
2179
2180                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2181                 cur_end = min(extent_map_end(em) - 1, end);
2182                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2183                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2184                         disk_io_size = em->block_len;
2185                         sector = em->block_start >> 9;
2186                 } else {
2187                         sector = (em->block_start + extent_offset) >> 9;
2188                         disk_io_size = iosize;
2189                 }
2190                 bdev = em->bdev;
2191                 block_start = em->block_start;
2192                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2193                         block_start = EXTENT_MAP_HOLE;
2194                 free_extent_map(em);
2195                 em = NULL;
2196
2197                 /* we've found a hole, just zero and go on */
2198                 if (block_start == EXTENT_MAP_HOLE) {
2199                         char *userpage;
2200                         struct extent_state *cached = NULL;
2201
2202                         userpage = kmap_atomic(page, KM_USER0);
2203                         memset(userpage + pg_offset, 0, iosize);
2204                         flush_dcache_page(page);
2205                         kunmap_atomic(userpage, KM_USER0);
2206
2207                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2208                                             &cached, GFP_NOFS);
2209                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2210                                              &cached, GFP_NOFS);
2211                         cur = cur + iosize;
2212                         pg_offset += iosize;
2213                         continue;
2214                 }
2215                 /* the get_extent function already copied into the page */
2216                 if (test_range_bit(tree, cur, cur_end,
2217                                    EXTENT_UPTODATE, 1, NULL)) {
2218                         check_page_uptodate(tree, page);
2219                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2220                         cur = cur + iosize;
2221                         pg_offset += iosize;
2222                         continue;
2223                 }
2224                 /* we have an inline extent but it didn't get marked up
2225                  * to date.  Error out
2226                  */
2227                 if (block_start == EXTENT_MAP_INLINE) {
2228                         SetPageError(page);
2229                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2230                         cur = cur + iosize;
2231                         pg_offset += iosize;
2232                         continue;
2233                 }
2234
2235                 ret = 0;
2236                 if (tree->ops && tree->ops->readpage_io_hook) {
2237                         ret = tree->ops->readpage_io_hook(page, cur,
2238                                                           cur + iosize - 1);
2239                 }
2240                 if (!ret) {
2241                         unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2242                         pnr -= page->index;
2243                         ret = submit_extent_page(READ, tree, page,
2244                                          sector, disk_io_size, pg_offset,
2245                                          bdev, bio, pnr,
2246                                          end_bio_extent_readpage, mirror_num,
2247                                          *bio_flags,
2248                                          this_bio_flag);
2249                         nr++;
2250                         *bio_flags = this_bio_flag;
2251                 }
2252                 if (ret)
2253                         SetPageError(page);
2254                 cur = cur + iosize;
2255                 pg_offset += iosize;
2256         }
2257 out:
2258         if (!nr) {
2259                 if (!PageError(page))
2260                         SetPageUptodate(page);
2261                 unlock_page(page);
2262         }
2263         return 0;
2264 }
2265
2266 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2267                             get_extent_t *get_extent)
2268 {
2269         struct bio *bio = NULL;
2270         unsigned long bio_flags = 0;
2271         int ret;
2272
2273         ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2274                                       &bio_flags);
2275         if (bio)
2276                 ret = submit_one_bio(READ, bio, 0, bio_flags);
2277         return ret;
2278 }
2279
2280 static noinline void update_nr_written(struct page *page,
2281                                       struct writeback_control *wbc,
2282                                       unsigned long nr_written)
2283 {
2284         wbc->nr_to_write -= nr_written;
2285         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2286             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2287                 page->mapping->writeback_index = page->index + nr_written;
2288 }
2289
2290 /*
2291  * the writepage semantics are similar to regular writepage.  extent
2292  * records are inserted to lock ranges in the tree, and as dirty areas
2293  * are found, they are marked writeback.  Then the lock bits are removed
2294  * and the end_io handler clears the writeback ranges
2295  */
2296 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2297                               void *data)
2298 {
2299         struct inode *inode = page->mapping->host;
2300         struct extent_page_data *epd = data;
2301         struct extent_io_tree *tree = epd->tree;
2302         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2303         u64 delalloc_start;
2304         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2305         u64 end;
2306         u64 cur = start;
2307         u64 extent_offset;
2308         u64 last_byte = i_size_read(inode);
2309         u64 block_start;
2310         u64 iosize;
2311         sector_t sector;
2312         struct extent_state *cached_state = NULL;
2313         struct extent_map *em;
2314         struct block_device *bdev;
2315         int ret;
2316         int nr = 0;
2317         size_t pg_offset = 0;
2318         size_t blocksize;
2319         loff_t i_size = i_size_read(inode);
2320         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2321         u64 nr_delalloc;
2322         u64 delalloc_end;
2323         int page_started;
2324         int compressed;
2325         int write_flags;
2326         unsigned long nr_written = 0;
2327         bool fill_delalloc = true;
2328
2329         if (wbc->sync_mode == WB_SYNC_ALL)
2330                 write_flags = WRITE_SYNC;
2331         else
2332                 write_flags = WRITE;
2333
2334         trace___extent_writepage(page, inode, wbc);
2335
2336         WARN_ON(!PageLocked(page));
2337         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2338         if (page->index > end_index ||
2339            (page->index == end_index && !pg_offset)) {
2340                 page->mapping->a_ops->invalidatepage(page, 0);
2341                 unlock_page(page);
2342                 return 0;
2343         }
2344
2345         if (page->index == end_index) {
2346                 char *userpage;
2347
2348                 userpage = kmap_atomic(page, KM_USER0);
2349                 memset(userpage + pg_offset, 0,
2350                        PAGE_CACHE_SIZE - pg_offset);
2351                 kunmap_atomic(userpage, KM_USER0);
2352                 flush_dcache_page(page);
2353         }
2354         pg_offset = 0;
2355
2356         set_page_extent_mapped(page);
2357
2358         if (!tree->ops || !tree->ops->fill_delalloc)
2359                 fill_delalloc = false;
2360
2361         delalloc_start = start;
2362         delalloc_end = 0;
2363         page_started = 0;
2364         if (!epd->extent_locked && fill_delalloc) {
2365                 u64 delalloc_to_write = 0;
2366                 /*
2367                  * make sure the wbc mapping index is at least updated
2368                  * to this page.
2369                  */
2370                 update_nr_written(page, wbc, 0);
2371
2372                 while (delalloc_end < page_end) {
2373                         nr_delalloc = find_lock_delalloc_range(inode, tree,
2374                                                        page,
2375                                                        &delalloc_start,
2376                                                        &delalloc_end,
2377                                                        128 * 1024 * 1024);
2378                         if (nr_delalloc == 0) {
2379                                 delalloc_start = delalloc_end + 1;
2380                                 continue;
2381                         }
2382                         tree->ops->fill_delalloc(inode, page, delalloc_start,
2383                                                  delalloc_end, &page_started,
2384                                                  &nr_written);
2385                         /*
2386                          * delalloc_end is already one less than the total
2387                          * length, so we don't subtract one from
2388                          * PAGE_CACHE_SIZE
2389                          */
2390                         delalloc_to_write += (delalloc_end - delalloc_start +
2391                                               PAGE_CACHE_SIZE) >>
2392                                               PAGE_CACHE_SHIFT;
2393                         delalloc_start = delalloc_end + 1;
2394                 }
2395                 if (wbc->nr_to_write < delalloc_to_write) {
2396                         int thresh = 8192;
2397
2398                         if (delalloc_to_write < thresh * 2)
2399                                 thresh = delalloc_to_write;
2400                         wbc->nr_to_write = min_t(u64, delalloc_to_write,
2401                                                  thresh);
2402                 }
2403
2404                 /* did the fill delalloc function already unlock and start
2405                  * the IO?
2406                  */
2407                 if (page_started) {
2408                         ret = 0;
2409                         /*
2410                          * we've unlocked the page, so we can't update
2411                          * the mapping's writeback index, just update
2412                          * nr_to_write.
2413                          */
2414                         wbc->nr_to_write -= nr_written;
2415                         goto done_unlocked;
2416                 }
2417         }
2418         if (tree->ops && tree->ops->writepage_start_hook) {
2419                 ret = tree->ops->writepage_start_hook(page, start,
2420                                                       page_end);
2421                 if (ret == -EAGAIN) {
2422                         redirty_page_for_writepage(wbc, page);
2423                         update_nr_written(page, wbc, nr_written);
2424                         unlock_page(page);
2425                         ret = 0;
2426                         goto done_unlocked;
2427                 }
2428         }
2429
2430         /*
2431          * we don't want to touch the inode after unlocking the page,
2432          * so we update the mapping writeback index now
2433          */
2434         update_nr_written(page, wbc, nr_written + 1);
2435
2436         end = page_end;
2437         if (last_byte <= start) {
2438                 if (tree->ops && tree->ops->writepage_end_io_hook)
2439                         tree->ops->writepage_end_io_hook(page, start,
2440                                                          page_end, NULL, 1);
2441                 goto done;
2442         }
2443
2444         blocksize = inode->i_sb->s_blocksize;
2445
2446         while (cur <= end) {
2447                 if (cur >= last_byte) {
2448                         if (tree->ops && tree->ops->writepage_end_io_hook)
2449                                 tree->ops->writepage_end_io_hook(page, cur,
2450                                                          page_end, NULL, 1);
2451                         break;
2452                 }
2453                 em = epd->get_extent(inode, page, pg_offset, cur,
2454                                      end - cur + 1, 1);
2455                 if (IS_ERR_OR_NULL(em)) {
2456                         SetPageError(page);
2457                         break;
2458                 }
2459
2460                 extent_offset = cur - em->start;
2461                 BUG_ON(extent_map_end(em) <= cur);
2462                 BUG_ON(end < cur);
2463                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2464                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2465                 sector = (em->block_start + extent_offset) >> 9;
2466                 bdev = em->bdev;
2467                 block_start = em->block_start;
2468                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2469                 free_extent_map(em);
2470                 em = NULL;
2471
2472                 /*
2473                  * compressed and inline extents are written through other
2474                  * paths in the FS
2475                  */
2476                 if (compressed || block_start == EXTENT_MAP_HOLE ||
2477                     block_start == EXTENT_MAP_INLINE) {
2478                         /*
2479                          * end_io notification does not happen here for
2480                          * compressed extents
2481                          */
2482                         if (!compressed && tree->ops &&
2483                             tree->ops->writepage_end_io_hook)
2484                                 tree->ops->writepage_end_io_hook(page, cur,
2485                                                          cur + iosize - 1,
2486                                                          NULL, 1);
2487                         else if (compressed) {
2488                                 /* we don't want to end_page_writeback on
2489                                  * a compressed extent.  this happens
2490                                  * elsewhere
2491                                  */
2492                                 nr++;
2493                         }
2494
2495                         cur += iosize;
2496                         pg_offset += iosize;
2497                         continue;
2498                 }
2499                 /* leave this out until we have a page_mkwrite call */
2500                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2501                                    EXTENT_DIRTY, 0, NULL)) {
2502                         cur = cur + iosize;
2503                         pg_offset += iosize;
2504                         continue;
2505                 }
2506
2507                 if (tree->ops && tree->ops->writepage_io_hook) {
2508                         ret = tree->ops->writepage_io_hook(page, cur,
2509                                                 cur + iosize - 1);
2510                 } else {
2511                         ret = 0;
2512                 }
2513                 if (ret) {
2514                         SetPageError(page);
2515                 } else {
2516                         unsigned long max_nr = end_index + 1;
2517
2518                         set_range_writeback(tree, cur, cur + iosize - 1);
2519                         if (!PageWriteback(page)) {
2520                                 printk(KERN_ERR "btrfs warning page %lu not "
2521                                        "writeback, cur %llu end %llu\n",
2522                                        page->index, (unsigned long long)cur,
2523                                        (unsigned long long)end);
2524                         }
2525
2526                         ret = submit_extent_page(write_flags, tree, page,
2527                                                  sector, iosize, pg_offset,
2528                                                  bdev, &epd->bio, max_nr,
2529                                                  end_bio_extent_writepage,
2530                                                  0, 0, 0);
2531                         if (ret)
2532                                 SetPageError(page);
2533                 }
2534                 cur = cur + iosize;
2535                 pg_offset += iosize;
2536                 nr++;
2537         }
2538 done:
2539         if (nr == 0) {
2540                 /* make sure the mapping tag for page dirty gets cleared */
2541                 set_page_writeback(page);
2542                 end_page_writeback(page);
2543         }
2544         unlock_page(page);
2545
2546 done_unlocked:
2547
2548         /* drop our reference on any cached states */
2549         free_extent_state(cached_state);
2550         return 0;
2551 }
2552
2553 /**
2554  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2555  * @mapping: address space structure to write
2556  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2557  * @writepage: function called for each page
2558  * @data: data passed to writepage function
2559  *
2560  * If a page is already under I/O, write_cache_pages() skips it, even
2561  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2562  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2563  * and msync() need to guarantee that all the data which was dirty at the time
2564  * the call was made get new I/O started against them.  If wbc->sync_mode is
2565  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2566  * existing IO to complete.
2567  */
2568 static int extent_write_cache_pages(struct extent_io_tree *tree,
2569                              struct address_space *mapping,
2570                              struct writeback_control *wbc,
2571                              writepage_t writepage, void *data,
2572                              void (*flush_fn)(void *))
2573 {
2574         int ret = 0;
2575         int done = 0;
2576         int nr_to_write_done = 0;
2577         struct pagevec pvec;
2578         int nr_pages;
2579         pgoff_t index;
2580         pgoff_t end;            /* Inclusive */
2581         int scanned = 0;
2582         int tag;
2583
2584         pagevec_init(&pvec, 0);
2585         if (wbc->range_cyclic) {
2586                 index = mapping->writeback_index; /* Start from prev offset */
2587                 end = -1;
2588         } else {
2589                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2590                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2591                 scanned = 1;
2592         }
2593         if (wbc->sync_mode == WB_SYNC_ALL)
2594                 tag = PAGECACHE_TAG_TOWRITE;
2595         else
2596                 tag = PAGECACHE_TAG_DIRTY;
2597 retry:
2598         if (wbc->sync_mode == WB_SYNC_ALL)
2599                 tag_pages_for_writeback(mapping, index, end);
2600         while (!done && !nr_to_write_done && (index <= end) &&
2601                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2602                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2603                 unsigned i;
2604
2605                 scanned = 1;
2606                 for (i = 0; i < nr_pages; i++) {
2607                         struct page *page = pvec.pages[i];
2608
2609                         /*
2610                          * At this point we hold neither mapping->tree_lock nor
2611                          * lock on the page itself: the page may be truncated or
2612                          * invalidated (changing page->mapping to NULL), or even
2613                          * swizzled back from swapper_space to tmpfs file
2614                          * mapping
2615                          */
2616                         if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2617                                 tree->ops->write_cache_pages_lock_hook(page);
2618                         else
2619                                 lock_page(page);
2620
2621                         if (unlikely(page->mapping != mapping)) {
2622                                 unlock_page(page);
2623                                 continue;
2624                         }
2625
2626                         if (!wbc->range_cyclic && page->index > end) {
2627                                 done = 1;
2628                                 unlock_page(page);
2629                                 continue;
2630                         }
2631
2632                         if (wbc->sync_mode != WB_SYNC_NONE) {
2633                                 if (PageWriteback(page))
2634                                         flush_fn(data);
2635                                 wait_on_page_writeback(page);
2636                         }
2637
2638                         if (PageWriteback(page) ||
2639                             !clear_page_dirty_for_io(page)) {
2640                                 unlock_page(page);
2641                                 continue;
2642                         }
2643
2644                         ret = (*writepage)(page, wbc, data);
2645
2646                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2647                                 unlock_page(page);
2648                                 ret = 0;
2649                         }
2650                         if (ret)
2651                                 done = 1;
2652
2653                         /*
2654                          * the filesystem may choose to bump up nr_to_write.
2655                          * We have to make sure to honor the new nr_to_write
2656                          * at any time
2657                          */
2658                         nr_to_write_done = wbc->nr_to_write <= 0;
2659                 }
2660                 pagevec_release(&pvec);
2661                 cond_resched();
2662         }
2663         if (!scanned && !done) {
2664                 /*
2665                  * We hit the last page and there is more work to be done: wrap
2666                  * back to the start of the file
2667                  */
2668                 scanned = 1;
2669                 index = 0;
2670                 goto retry;
2671         }
2672         return ret;
2673 }
2674
2675 static void flush_epd_write_bio(struct extent_page_data *epd)
2676 {
2677         if (epd->bio) {
2678                 if (epd->sync_io)
2679                         submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2680                 else
2681                         submit_one_bio(WRITE, epd->bio, 0, 0);
2682                 epd->bio = NULL;
2683         }
2684 }
2685
2686 static noinline void flush_write_bio(void *data)
2687 {
2688         struct extent_page_data *epd = data;
2689         flush_epd_write_bio(epd);
2690 }
2691
2692 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2693                           get_extent_t *get_extent,
2694                           struct writeback_control *wbc)
2695 {
2696         int ret;
2697         struct extent_page_data epd = {
2698                 .bio = NULL,
2699                 .tree = tree,
2700                 .get_extent = get_extent,
2701                 .extent_locked = 0,
2702                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2703         };
2704
2705         ret = __extent_writepage(page, wbc, &epd);
2706
2707         flush_epd_write_bio(&epd);
2708         return ret;
2709 }
2710
2711 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2712                               u64 start, u64 end, get_extent_t *get_extent,
2713                               int mode)
2714 {
2715         int ret = 0;
2716         struct address_space *mapping = inode->i_mapping;
2717         struct page *page;
2718         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2719                 PAGE_CACHE_SHIFT;
2720
2721         struct extent_page_data epd = {
2722                 .bio = NULL,
2723                 .tree = tree,
2724                 .get_extent = get_extent,
2725                 .extent_locked = 1,
2726                 .sync_io = mode == WB_SYNC_ALL,
2727         };
2728         struct writeback_control wbc_writepages = {
2729                 .sync_mode      = mode,
2730                 .nr_to_write    = nr_pages * 2,
2731                 .range_start    = start,
2732                 .range_end      = end + 1,
2733         };
2734
2735         while (start <= end) {
2736                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2737                 if (clear_page_dirty_for_io(page))
2738                         ret = __extent_writepage(page, &wbc_writepages, &epd);
2739                 else {
2740                         if (tree->ops && tree->ops->writepage_end_io_hook)
2741                                 tree->ops->writepage_end_io_hook(page, start,
2742                                                  start + PAGE_CACHE_SIZE - 1,
2743                                                  NULL, 1);
2744                         unlock_page(page);
2745                 }
2746                 page_cache_release(page);
2747                 start += PAGE_CACHE_SIZE;
2748         }
2749
2750         flush_epd_write_bio(&epd);
2751         return ret;
2752 }
2753
2754 int extent_writepages(struct extent_io_tree *tree,
2755                       struct address_space *mapping,
2756                       get_extent_t *get_extent,
2757                       struct writeback_control *wbc)
2758 {
2759         int ret = 0;
2760         struct extent_page_data epd = {
2761                 .bio = NULL,
2762                 .tree = tree,
2763                 .get_extent = get_extent,
2764                 .extent_locked = 0,
2765                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2766         };
2767
2768         ret = extent_write_cache_pages(tree, mapping, wbc,
2769                                        __extent_writepage, &epd,
2770                                        flush_write_bio);
2771         flush_epd_write_bio(&epd);
2772         return ret;
2773 }
2774
2775 int extent_readpages(struct extent_io_tree *tree,
2776                      struct address_space *mapping,
2777                      struct list_head *pages, unsigned nr_pages,
2778                      get_extent_t get_extent)
2779 {
2780         struct bio *bio = NULL;
2781         unsigned page_idx;
2782         unsigned long bio_flags = 0;
2783
2784         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2785                 struct page *page = list_entry(pages->prev, struct page, lru);
2786
2787                 prefetchw(&page->flags);
2788                 list_del(&page->lru);
2789                 if (!add_to_page_cache_lru(page, mapping,
2790                                         page->index, GFP_NOFS)) {
2791                         __extent_read_full_page(tree, page, get_extent,
2792                                                 &bio, 0, &bio_flags);
2793                 }
2794                 page_cache_release(page);
2795         }
2796         BUG_ON(!list_empty(pages));
2797         if (bio)
2798                 submit_one_bio(READ, bio, 0, bio_flags);
2799         return 0;
2800 }
2801
2802 /*
2803  * basic invalidatepage code, this waits on any locked or writeback
2804  * ranges corresponding to the page, and then deletes any extent state
2805  * records from the tree
2806  */
2807 int extent_invalidatepage(struct extent_io_tree *tree,
2808                           struct page *page, unsigned long offset)
2809 {
2810         struct extent_state *cached_state = NULL;
2811         u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2812         u64 end = start + PAGE_CACHE_SIZE - 1;
2813         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2814
2815         start += (offset + blocksize - 1) & ~(blocksize - 1);
2816         if (start > end)
2817                 return 0;
2818
2819         lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
2820         wait_on_page_writeback(page);
2821         clear_extent_bit(tree, start, end,
2822                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2823                          EXTENT_DO_ACCOUNTING,
2824                          1, 1, &cached_state, GFP_NOFS);
2825         return 0;
2826 }
2827
2828 /*
2829  * a helper for releasepage, this tests for areas of the page that
2830  * are locked or under IO and drops the related state bits if it is safe
2831  * to drop the page.
2832  */
2833 int try_release_extent_state(struct extent_map_tree *map,
2834                              struct extent_io_tree *tree, struct page *page,
2835                              gfp_t mask)
2836 {
2837         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2838         u64 end = start + PAGE_CACHE_SIZE - 1;
2839         int ret = 1;
2840
2841         if (test_range_bit(tree, start, end,
2842                            EXTENT_IOBITS, 0, NULL))
2843                 ret = 0;
2844         else {
2845                 if ((mask & GFP_NOFS) == GFP_NOFS)
2846                         mask = GFP_NOFS;
2847                 /*
2848                  * at this point we can safely clear everything except the
2849                  * locked bit and the nodatasum bit
2850                  */
2851                 ret = clear_extent_bit(tree, start, end,
2852                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
2853                                  0, 0, NULL, mask);
2854
2855                 /* if clear_extent_bit failed for enomem reasons,
2856                  * we can't allow the release to continue.
2857                  */
2858                 if (ret < 0)
2859                         ret = 0;
2860                 else
2861                         ret = 1;
2862         }
2863         return ret;
2864 }
2865
2866 /*
2867  * a helper for releasepage.  As long as there are no locked extents
2868  * in the range corresponding to the page, both state records and extent
2869  * map records are removed
2870  */
2871 int try_release_extent_mapping(struct extent_map_tree *map,
2872                                struct extent_io_tree *tree, struct page *page,
2873                                gfp_t mask)
2874 {
2875         struct extent_map *em;
2876         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2877         u64 end = start + PAGE_CACHE_SIZE - 1;
2878
2879         if ((mask & __GFP_WAIT) &&
2880             page->mapping->host->i_size > 16 * 1024 * 1024) {
2881                 u64 len;
2882                 while (start <= end) {
2883                         len = end - start + 1;
2884                         write_lock(&map->lock);
2885                         em = lookup_extent_mapping(map, start, len);
2886                         if (IS_ERR_OR_NULL(em)) {
2887                                 write_unlock(&map->lock);
2888                                 break;
2889                         }
2890                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2891                             em->start != start) {
2892                                 write_unlock(&map->lock);
2893                                 free_extent_map(em);
2894                                 break;
2895                         }
2896                         if (!test_range_bit(tree, em->start,
2897                                             extent_map_end(em) - 1,
2898                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
2899                                             0, NULL)) {
2900                                 remove_extent_mapping(map, em);
2901                                 /* once for the rb tree */
2902                                 free_extent_map(em);
2903                         }
2904                         start = extent_map_end(em);
2905                         write_unlock(&map->lock);
2906
2907                         /* once for us */
2908                         free_extent_map(em);
2909                 }
2910         }
2911         return try_release_extent_state(map, tree, page, mask);
2912 }
2913
2914 /*
2915  * helper function for fiemap, which doesn't want to see any holes.
2916  * This maps until we find something past 'last'
2917  */
2918 static struct extent_map *get_extent_skip_holes(struct inode *inode,
2919                                                 u64 offset,
2920                                                 u64 last,
2921                                                 get_extent_t *get_extent)
2922 {
2923         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
2924         struct extent_map *em;
2925         u64 len;
2926
2927         if (offset >= last)
2928                 return NULL;
2929
2930         while(1) {
2931                 len = last - offset;
2932                 if (len == 0)
2933                         break;
2934                 len = (len + sectorsize - 1) & ~(sectorsize - 1);
2935                 em = get_extent(inode, NULL, 0, offset, len, 0);
2936                 if (IS_ERR_OR_NULL(em))
2937                         return em;
2938
2939                 /* if this isn't a hole return it */
2940                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
2941                     em->block_start != EXTENT_MAP_HOLE) {
2942                         return em;
2943                 }
2944
2945                 /* this is a hole, advance to the next extent */
2946                 offset = extent_map_end(em);
2947                 free_extent_map(em);
2948                 if (offset >= last)
2949                         break;
2950         }
2951         return NULL;
2952 }
2953
2954 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2955                 __u64 start, __u64 len, get_extent_t *get_extent)
2956 {
2957         int ret = 0;
2958         u64 off = start;
2959         u64 max = start + len;
2960         u32 flags = 0;
2961         u32 found_type;
2962         u64 last;
2963         u64 last_for_get_extent = 0;
2964         u64 disko = 0;
2965         u64 isize = i_size_read(inode);
2966         struct btrfs_key found_key;
2967         struct extent_map *em = NULL;
2968         struct extent_state *cached_state = NULL;
2969         struct btrfs_path *path;
2970         struct btrfs_file_extent_item *item;
2971         int end = 0;
2972         u64 em_start = 0;
2973         u64 em_len = 0;
2974         u64 em_end = 0;
2975         unsigned long emflags;
2976
2977         if (len == 0)
2978                 return -EINVAL;
2979
2980         path = btrfs_alloc_path();
2981         if (!path)
2982                 return -ENOMEM;
2983         path->leave_spinning = 1;
2984
2985         /*
2986          * lookup the last file extent.  We're not using i_size here
2987          * because there might be preallocation past i_size
2988          */
2989         ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
2990                                        path, btrfs_ino(inode), -1, 0);
2991         if (ret < 0) {
2992                 btrfs_free_path(path);
2993                 return ret;
2994         }
2995         WARN_ON(!ret);
2996         path->slots[0]--;
2997         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2998                               struct btrfs_file_extent_item);
2999         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3000         found_type = btrfs_key_type(&found_key);
3001
3002         /* No extents, but there might be delalloc bits */
3003         if (found_key.objectid != btrfs_ino(inode) ||
3004             found_type != BTRFS_EXTENT_DATA_KEY) {
3005                 /* have to trust i_size as the end */
3006                 last = (u64)-1;
3007                 last_for_get_extent = isize;
3008         } else {
3009                 /*
3010                  * remember the start of the last extent.  There are a
3011                  * bunch of different factors that go into the length of the
3012                  * extent, so its much less complex to remember where it started
3013                  */
3014                 last = found_key.offset;
3015                 last_for_get_extent = last + 1;
3016         }
3017         btrfs_free_path(path);
3018
3019         /*
3020          * we might have some extents allocated but more delalloc past those
3021          * extents.  so, we trust isize unless the start of the last extent is
3022          * beyond isize
3023          */
3024         if (last < isize) {
3025                 last = (u64)-1;
3026                 last_for_get_extent = isize;
3027         }
3028
3029         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3030                          &cached_state, GFP_NOFS);
3031
3032         em = get_extent_skip_holes(inode, off, last_for_get_extent,
3033                                    get_extent);
3034         if (!em)
3035                 goto out;
3036         if (IS_ERR(em)) {
3037                 ret = PTR_ERR(em);
3038                 goto out;
3039         }
3040
3041         while (!end) {
3042                 u64 offset_in_extent;
3043
3044                 /* break if the extent we found is outside the range */
3045                 if (em->start >= max || extent_map_end(em) < off)
3046                         break;
3047
3048                 /*
3049                  * get_extent may return an extent that starts before our
3050                  * requested range.  We have to make sure the ranges
3051                  * we return to fiemap always move forward and don't
3052                  * overlap, so adjust the offsets here
3053                  */
3054                 em_start = max(em->start, off);
3055
3056                 /*
3057                  * record the offset from the start of the extent
3058                  * for adjusting the disk offset below
3059                  */
3060                 offset_in_extent = em_start - em->start;
3061                 em_end = extent_map_end(em);
3062                 em_len = em_end - em_start;
3063                 emflags = em->flags;
3064                 disko = 0;
3065                 flags = 0;
3066
3067                 /*
3068                  * bump off for our next call to get_extent
3069                  */
3070                 off = extent_map_end(em);
3071                 if (off >= max)
3072                         end = 1;
3073
3074                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3075                         end = 1;
3076                         flags |= FIEMAP_EXTENT_LAST;
3077                 } else if (em->block_start == EXTENT_MAP_INLINE) {
3078                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
3079                                   FIEMAP_EXTENT_NOT_ALIGNED);
3080                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3081                         flags |= (FIEMAP_EXTENT_DELALLOC |
3082                                   FIEMAP_EXTENT_UNKNOWN);
3083                 } else {
3084                         disko = em->block_start + offset_in_extent;
3085                 }
3086                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3087                         flags |= FIEMAP_EXTENT_ENCODED;
3088
3089                 free_extent_map(em);
3090                 em = NULL;
3091                 if ((em_start >= last) || em_len == (u64)-1 ||
3092                    (last == (u64)-1 && isize <= em_end)) {
3093                         flags |= FIEMAP_EXTENT_LAST;
3094                         end = 1;
3095                 }
3096
3097                 /* now scan forward to see if this is really the last extent. */
3098                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3099                                            get_extent);
3100                 if (IS_ERR(em)) {
3101                         ret = PTR_ERR(em);
3102                         goto out;
3103                 }
3104                 if (!em) {
3105                         flags |= FIEMAP_EXTENT_LAST;
3106                         end = 1;
3107                 }
3108                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3109                                               em_len, flags);
3110                 if (ret)
3111                         goto out_free;
3112         }
3113 out_free:
3114         free_extent_map(em);
3115 out:
3116         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3117                              &cached_state, GFP_NOFS);
3118         return ret;
3119 }
3120
3121 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
3122                                               unsigned long i)
3123 {
3124         struct page *p;
3125         struct address_space *mapping;
3126
3127         if (i == 0)
3128                 return eb->first_page;
3129         i += eb->start >> PAGE_CACHE_SHIFT;
3130         mapping = eb->first_page->mapping;
3131         if (!mapping)
3132                 return NULL;
3133
3134         /*
3135          * extent_buffer_page is only called after pinning the page
3136          * by increasing the reference count.  So we know the page must
3137          * be in the radix tree.
3138          */
3139         rcu_read_lock();
3140         p = radix_tree_lookup(&mapping->page_tree, i);
3141         rcu_read_unlock();
3142
3143         return p;
3144 }
3145
3146 static inline unsigned long num_extent_pages(u64 start, u64 len)
3147 {
3148         return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3149                 (start >> PAGE_CACHE_SHIFT);
3150 }
3151
3152 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3153                                                    u64 start,
3154                                                    unsigned long len,
3155                                                    gfp_t mask)
3156 {
3157         struct extent_buffer *eb = NULL;
3158 #if LEAK_DEBUG
3159         unsigned long flags;
3160 #endif
3161
3162         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3163         if (eb == NULL)
3164                 return NULL;
3165         eb->start = start;
3166         eb->len = len;
3167         rwlock_init(&eb->lock);
3168         atomic_set(&eb->write_locks, 0);
3169         atomic_set(&eb->read_locks, 0);
3170         atomic_set(&eb->blocking_readers, 0);
3171         atomic_set(&eb->blocking_writers, 0);
3172         atomic_set(&eb->spinning_readers, 0);
3173         atomic_set(&eb->spinning_writers, 0);
3174         init_waitqueue_head(&eb->write_lock_wq);
3175         init_waitqueue_head(&eb->read_lock_wq);
3176
3177 #if LEAK_DEBUG
3178         spin_lock_irqsave(&leak_lock, flags);
3179         list_add(&eb->leak_list, &buffers);
3180         spin_unlock_irqrestore(&leak_lock, flags);
3181 #endif
3182         atomic_set(&eb->refs, 1);
3183
3184         return eb;
3185 }
3186
3187 static void __free_extent_buffer(struct extent_buffer *eb)
3188 {
3189 #if LEAK_DEBUG
3190         unsigned long flags;
3191         spin_lock_irqsave(&leak_lock, flags);
3192         list_del(&eb->leak_list);
3193         spin_unlock_irqrestore(&leak_lock, flags);
3194 #endif
3195         kmem_cache_free(extent_buffer_cache, eb);
3196 }
3197
3198 /*
3199  * Helper for releasing extent buffer page.
3200  */
3201 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3202                                                 unsigned long start_idx)
3203 {
3204         unsigned long index;
3205         struct page *page;
3206
3207         if (!eb->first_page)
3208                 return;
3209
3210         index = num_extent_pages(eb->start, eb->len);
3211         if (start_idx >= index)
3212                 return;
3213
3214         do {
3215                 index--;
3216                 page = extent_buffer_page(eb, index);
3217                 if (page)
3218                         page_cache_release(page);
3219         } while (index != start_idx);
3220 }
3221
3222 /*
3223  * Helper for releasing the extent buffer.
3224  */
3225 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3226 {
3227         btrfs_release_extent_buffer_page(eb, 0);
3228         __free_extent_buffer(eb);
3229 }
3230
3231 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3232                                           u64 start, unsigned long len,
3233                                           struct page *page0)
3234 {
3235         unsigned long num_pages = num_extent_pages(start, len);
3236         unsigned long i;
3237         unsigned long index = start >> PAGE_CACHE_SHIFT;
3238         struct extent_buffer *eb;
3239         struct extent_buffer *exists = NULL;
3240         struct page *p;
3241         struct address_space *mapping = tree->mapping;
3242         int uptodate = 1;
3243         int ret;
3244
3245         rcu_read_lock();
3246         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3247         if (eb && atomic_inc_not_zero(&eb->refs)) {
3248                 rcu_read_unlock();
3249                 mark_page_accessed(eb->first_page);
3250                 return eb;
3251         }
3252         rcu_read_unlock();
3253
3254         eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
3255         if (!eb)
3256                 return NULL;
3257
3258         if (page0) {
3259                 eb->first_page = page0;
3260                 i = 1;
3261                 index++;
3262                 page_cache_get(page0);
3263                 mark_page_accessed(page0);
3264                 set_page_extent_mapped(page0);
3265                 set_page_extent_head(page0, len);
3266                 uptodate = PageUptodate(page0);
3267         } else {
3268                 i = 0;
3269         }
3270         for (; i < num_pages; i++, index++) {
3271                 p = find_or_create_page(mapping, index, GFP_NOFS);
3272                 if (!p) {
3273                         WARN_ON(1);
3274                         goto free_eb;
3275                 }
3276                 set_page_extent_mapped(p);
3277                 mark_page_accessed(p);
3278                 if (i == 0) {
3279                         eb->first_page = p;
3280                         set_page_extent_head(p, len);
3281                 } else {
3282                         set_page_private(p, EXTENT_PAGE_PRIVATE);
3283                 }
3284                 if (!PageUptodate(p))
3285                         uptodate = 0;
3286
3287                 /*
3288                  * see below about how we avoid a nasty race with release page
3289                  * and why we unlock later
3290                  */
3291                 if (i != 0)
3292                         unlock_page(p);
3293         }
3294         if (uptodate)
3295                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3296
3297         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
3298         if (ret)
3299                 goto free_eb;
3300
3301         spin_lock(&tree->buffer_lock);
3302         ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
3303         if (ret == -EEXIST) {
3304                 exists = radix_tree_lookup(&tree->buffer,
3305                                                 start >> PAGE_CACHE_SHIFT);
3306                 /* add one reference for the caller */
3307                 atomic_inc(&exists->refs);
3308                 spin_unlock(&tree->buffer_lock);
3309                 radix_tree_preload_end();
3310                 goto free_eb;
3311         }
3312         /* add one reference for the tree */
3313         atomic_inc(&eb->refs);
3314         spin_unlock(&tree->buffer_lock);
3315         radix_tree_preload_end();
3316
3317         /*
3318          * there is a race where release page may have
3319          * tried to find this extent buffer in the radix
3320          * but failed.  It will tell the VM it is safe to
3321          * reclaim the, and it will clear the page private bit.
3322          * We must make sure to set the page private bit properly
3323          * after the extent buffer is in the radix tree so
3324          * it doesn't get lost
3325          */
3326         set_page_extent_mapped(eb->first_page);
3327         set_page_extent_head(eb->first_page, eb->len);
3328         if (!page0)
3329                 unlock_page(eb->first_page);
3330         return eb;
3331
3332 free_eb:
3333         if (eb->first_page && !page0)
3334                 unlock_page(eb->first_page);
3335
3336         if (!atomic_dec_and_test(&eb->refs))
3337                 return exists;
3338         btrfs_release_extent_buffer(eb);
3339         return exists;
3340 }
3341
3342 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3343                                          u64 start, unsigned long len)
3344 {
3345         struct extent_buffer *eb;
3346
3347         rcu_read_lock();
3348         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3349         if (eb && atomic_inc_not_zero(&eb->refs)) {
3350                 rcu_read_unlock();
3351                 mark_page_accessed(eb->first_page);
3352                 return eb;
3353         }
3354         rcu_read_unlock();
3355
3356         return NULL;
3357 }
3358
3359 void free_extent_buffer(struct extent_buffer *eb)
3360 {
3361         if (!eb)
3362                 return;
3363
3364         if (!atomic_dec_and_test(&eb->refs))
3365                 return;
3366
3367         WARN_ON(1);
3368 }
3369
3370 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3371                               struct extent_buffer *eb)
3372 {
3373         unsigned long i;
3374         unsigned long num_pages;
3375         struct page *page;
3376
3377         num_pages = num_extent_pages(eb->start, eb->len);
3378
3379         for (i = 0; i < num_pages; i++) {
3380                 page = extent_buffer_page(eb, i);
3381                 if (!PageDirty(page))
3382                         continue;
3383
3384                 lock_page(page);
3385                 WARN_ON(!PagePrivate(page));
3386
3387                 set_page_extent_mapped(page);
3388                 if (i == 0)
3389                         set_page_extent_head(page, eb->len);
3390
3391                 clear_page_dirty_for_io(page);
3392                 spin_lock_irq(&page->mapping->tree_lock);
3393                 if (!PageDirty(page)) {
3394                         radix_tree_tag_clear(&page->mapping->page_tree,
3395                                                 page_index(page),
3396                                                 PAGECACHE_TAG_DIRTY);
3397                 }
3398                 spin_unlock_irq(&page->mapping->tree_lock);
3399                 unlock_page(page);
3400         }
3401         return 0;
3402 }
3403
3404 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3405                              struct extent_buffer *eb)
3406 {
3407         unsigned long i;
3408         unsigned long num_pages;
3409         int was_dirty = 0;
3410
3411         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3412         num_pages = num_extent_pages(eb->start, eb->len);
3413         for (i = 0; i < num_pages; i++)
3414                 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3415         return was_dirty;
3416 }
3417
3418 static int __eb_straddles_pages(u64 start, u64 len)
3419 {
3420         if (len < PAGE_CACHE_SIZE)
3421                 return 1;
3422         if (start & (PAGE_CACHE_SIZE - 1))
3423                 return 1;
3424         if ((start + len) & (PAGE_CACHE_SIZE - 1))
3425                 return 1;
3426         return 0;
3427 }
3428
3429 static int eb_straddles_pages(struct extent_buffer *eb)
3430 {
3431         return __eb_straddles_pages(eb->start, eb->len);
3432 }
3433
3434 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3435                                 struct extent_buffer *eb,
3436                                 struct extent_state **cached_state)
3437 {
3438         unsigned long i;
3439         struct page *page;
3440         unsigned long num_pages;
3441
3442         num_pages = num_extent_pages(eb->start, eb->len);
3443         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3444
3445         if (eb_straddles_pages(eb)) {
3446                 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3447                                       cached_state, GFP_NOFS);
3448         }
3449         for (i = 0; i < num_pages; i++) {
3450                 page = extent_buffer_page(eb, i);
3451                 if (page)
3452                         ClearPageUptodate(page);
3453         }
3454         return 0;
3455 }
3456
3457 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3458                                 struct extent_buffer *eb)
3459 {
3460         unsigned long i;
3461         struct page *page;
3462         unsigned long num_pages;
3463
3464         num_pages = num_extent_pages(eb->start, eb->len);
3465
3466         if (eb_straddles_pages(eb)) {
3467                 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3468                                     NULL, GFP_NOFS);
3469         }
3470         for (i = 0; i < num_pages; i++) {
3471                 page = extent_buffer_page(eb, i);
3472                 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3473                     ((i == num_pages - 1) &&
3474                      ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3475                         check_page_uptodate(tree, page);
3476                         continue;
3477                 }
3478                 SetPageUptodate(page);
3479         }
3480         return 0;
3481 }
3482
3483 int extent_range_uptodate(struct extent_io_tree *tree,
3484                           u64 start, u64 end)
3485 {
3486         struct page *page;
3487         int ret;
3488         int pg_uptodate = 1;
3489         int uptodate;
3490         unsigned long index;
3491
3492         if (__eb_straddles_pages(start, end - start + 1)) {
3493                 ret = test_range_bit(tree, start, end,
3494                                      EXTENT_UPTODATE, 1, NULL);
3495                 if (ret)
3496                         return 1;
3497         }
3498         while (start <= end) {
3499                 index = start >> PAGE_CACHE_SHIFT;
3500                 page = find_get_page(tree->mapping, index);
3501                 uptodate = PageUptodate(page);
3502                 page_cache_release(page);
3503                 if (!uptodate) {
3504                         pg_uptodate = 0;
3505                         break;
3506                 }
3507                 start += PAGE_CACHE_SIZE;
3508         }
3509         return pg_uptodate;
3510 }
3511
3512 int extent_buffer_uptodate(struct extent_io_tree *tree,
3513                            struct extent_buffer *eb,
3514                            struct extent_state *cached_state)
3515 {
3516         int ret = 0;
3517         unsigned long num_pages;
3518         unsigned long i;
3519         struct page *page;
3520         int pg_uptodate = 1;
3521
3522         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3523                 return 1;
3524
3525         if (eb_straddles_pages(eb)) {
3526                 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3527                                    EXTENT_UPTODATE, 1, cached_state);
3528                 if (ret)
3529                         return ret;
3530         }
3531
3532         num_pages = num_extent_pages(eb->start, eb->len);
3533         for (i = 0; i < num_pages; i++) {
3534                 page = extent_buffer_page(eb, i);
3535                 if (!PageUptodate(page)) {
3536                         pg_uptodate = 0;
3537                         break;
3538                 }
3539         }
3540         return pg_uptodate;
3541 }
3542
3543 int read_extent_buffer_pages(struct extent_io_tree *tree,
3544                              struct extent_buffer *eb,
3545                              u64 start, int wait,
3546                              get_extent_t *get_extent, int mirror_num)
3547 {
3548         unsigned long i;
3549         unsigned long start_i;
3550         struct page *page;
3551         int err;
3552         int ret = 0;
3553         int locked_pages = 0;
3554         int all_uptodate = 1;
3555         int inc_all_pages = 0;
3556         unsigned long num_pages;
3557         struct bio *bio = NULL;
3558         unsigned long bio_flags = 0;
3559
3560         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3561                 return 0;
3562
3563         if (eb_straddles_pages(eb)) {
3564                 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3565                                    EXTENT_UPTODATE, 1, NULL)) {
3566                         return 0;
3567                 }
3568         }
3569
3570         if (start) {
3571                 WARN_ON(start < eb->start);
3572                 start_i = (start >> PAGE_CACHE_SHIFT) -
3573                         (eb->start >> PAGE_CACHE_SHIFT);
3574         } else {
3575                 start_i = 0;
3576         }
3577
3578         num_pages = num_extent_pages(eb->start, eb->len);
3579         for (i = start_i; i < num_pages; i++) {
3580                 page = extent_buffer_page(eb, i);
3581                 if (!wait) {
3582                         if (!trylock_page(page))
3583                                 goto unlock_exit;
3584                 } else {
3585                         lock_page(page);
3586                 }
3587                 locked_pages++;
3588                 if (!PageUptodate(page))
3589                         all_uptodate = 0;
3590         }
3591         if (all_uptodate) {
3592                 if (start_i == 0)
3593                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3594                 goto unlock_exit;
3595         }
3596
3597         for (i = start_i; i < num_pages; i++) {
3598                 page = extent_buffer_page(eb, i);
3599
3600                 WARN_ON(!PagePrivate(page));
3601
3602                 set_page_extent_mapped(page);
3603                 if (i == 0)
3604                         set_page_extent_head(page, eb->len);
3605
3606                 if (inc_all_pages)
3607                         page_cache_get(page);
3608                 if (!PageUptodate(page)) {
3609                         if (start_i == 0)
3610                                 inc_all_pages = 1;
3611                         ClearPageError(page);
3612                         err = __extent_read_full_page(tree, page,
3613                                                       get_extent, &bio,
3614                                                       mirror_num, &bio_flags);
3615                         if (err)
3616                                 ret = err;
3617                 } else {
3618                         unlock_page(page);
3619                 }
3620         }
3621
3622         if (bio)
3623                 submit_one_bio(READ, bio, mirror_num, bio_flags);
3624
3625         if (ret || !wait)
3626                 return ret;
3627
3628         for (i = start_i; i < num_pages; i++) {
3629                 page = extent_buffer_page(eb, i);
3630                 wait_on_page_locked(page);
3631                 if (!PageUptodate(page))
3632                         ret = -EIO;
3633         }
3634
3635         if (!ret)
3636                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3637         return ret;
3638
3639 unlock_exit:
3640         i = start_i;
3641         while (locked_pages > 0) {
3642                 page = extent_buffer_page(eb, i);
3643                 i++;
3644                 unlock_page(page);
3645                 locked_pages--;
3646         }
3647         return ret;
3648 }
3649
3650 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3651                         unsigned long start,
3652                         unsigned long len)
3653 {
3654         size_t cur;
3655         size_t offset;
3656         struct page *page;
3657         char *kaddr;
3658         char *dst = (char *)dstv;
3659         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3660         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3661
3662         WARN_ON(start > eb->len);
3663         WARN_ON(start + len > eb->start + eb->len);
3664
3665         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3666
3667         while (len > 0) {
3668                 page = extent_buffer_page(eb, i);
3669
3670                 cur = min(len, (PAGE_CACHE_SIZE - offset));
3671                 kaddr = page_address(page);
3672                 memcpy(dst, kaddr + offset, cur);
3673
3674                 dst += cur;
3675                 len -= cur;
3676                 offset = 0;
3677                 i++;
3678         }
3679 }
3680
3681 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3682                                unsigned long min_len, char **map,
3683                                unsigned long *map_start,
3684                                unsigned long *map_len)
3685 {
3686         size_t offset = start & (PAGE_CACHE_SIZE - 1);
3687         char *kaddr;
3688         struct page *p;
3689         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3690         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3691         unsigned long end_i = (start_offset + start + min_len - 1) >>
3692                 PAGE_CACHE_SHIFT;
3693
3694         if (i != end_i)
3695                 return -EINVAL;
3696
3697         if (i == 0) {
3698                 offset = start_offset;
3699                 *map_start = 0;
3700         } else {
3701                 offset = 0;
3702                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3703         }
3704
3705         if (start + min_len > eb->len) {
3706                 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3707                        "wanted %lu %lu\n", (unsigned long long)eb->start,
3708                        eb->len, start, min_len);
3709                 WARN_ON(1);
3710                 return -EINVAL;
3711         }
3712
3713         p = extent_buffer_page(eb, i);
3714         kaddr = page_address(p);
3715         *map = kaddr + offset;
3716         *map_len = PAGE_CACHE_SIZE - offset;
3717         return 0;
3718 }
3719
3720 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3721                           unsigned long start,
3722                           unsigned long len)
3723 {
3724         size_t cur;
3725         size_t offset;
3726         struct page *page;
3727         char *kaddr;
3728         char *ptr = (char *)ptrv;
3729         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3730         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3731         int ret = 0;
3732
3733         WARN_ON(start > eb->len);
3734         WARN_ON(start + len > eb->start + eb->len);
3735
3736         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3737
3738         while (len > 0) {
3739                 page = extent_buffer_page(eb, i);
3740
3741                 cur = min(len, (PAGE_CACHE_SIZE - offset));
3742
3743                 kaddr = page_address(page);
3744                 ret = memcmp(ptr, kaddr + offset, cur);
3745                 if (ret)
3746                         break;
3747
3748                 ptr += cur;
3749                 len -= cur;
3750                 offset = 0;
3751                 i++;
3752         }
3753         return ret;
3754 }
3755
3756 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3757                          unsigned long start, unsigned long len)
3758 {
3759         size_t cur;
3760         size_t offset;
3761         struct page *page;
3762         char *kaddr;
3763         char *src = (char *)srcv;
3764         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3765         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3766
3767         WARN_ON(start > eb->len);
3768         WARN_ON(start + len > eb->start + eb->len);
3769
3770         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3771
3772         while (len > 0) {
3773                 page = extent_buffer_page(eb, i);
3774                 WARN_ON(!PageUptodate(page));
3775
3776                 cur = min(len, PAGE_CACHE_SIZE - offset);
3777                 kaddr = page_address(page);
3778                 memcpy(kaddr + offset, src, cur);
3779
3780                 src += cur;
3781                 len -= cur;
3782                 offset = 0;
3783                 i++;
3784         }
3785 }
3786
3787 void memset_extent_buffer(struct extent_buffer *eb, char c,
3788                           unsigned long start, unsigned long len)
3789 {
3790         size_t cur;
3791         size_t offset;
3792         struct page *page;
3793         char *kaddr;
3794         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3795         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3796
3797         WARN_ON(start > eb->len);
3798         WARN_ON(start + len > eb->start + eb->len);
3799
3800         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3801
3802         while (len > 0) {
3803                 page = extent_buffer_page(eb, i);
3804                 WARN_ON(!PageUptodate(page));
3805
3806                 cur = min(len, PAGE_CACHE_SIZE - offset);
3807                 kaddr = page_address(page);
3808                 memset(kaddr + offset, c, cur);
3809
3810                 len -= cur;
3811                 offset = 0;
3812                 i++;
3813         }
3814 }
3815
3816 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3817                         unsigned long dst_offset, unsigned long src_offset,
3818                         unsigned long len)
3819 {
3820         u64 dst_len = dst->len;
3821         size_t cur;
3822         size_t offset;
3823         struct page *page;
3824         char *kaddr;
3825         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3826         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3827
3828         WARN_ON(src->len != dst_len);
3829
3830         offset = (start_offset + dst_offset) &
3831                 ((unsigned long)PAGE_CACHE_SIZE - 1);
3832
3833         while (len > 0) {
3834                 page = extent_buffer_page(dst, i);
3835                 WARN_ON(!PageUptodate(page));
3836
3837                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3838
3839                 kaddr = page_address(page);
3840                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3841
3842                 src_offset += cur;
3843                 len -= cur;
3844                 offset = 0;
3845                 i++;
3846         }
3847 }
3848
3849 static void move_pages(struct page *dst_page, struct page *src_page,
3850                        unsigned long dst_off, unsigned long src_off,
3851                        unsigned long len)
3852 {
3853         char *dst_kaddr = page_address(dst_page);
3854         if (dst_page == src_page) {
3855                 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3856         } else {
3857                 char *src_kaddr = page_address(src_page);
3858                 char *p = dst_kaddr + dst_off + len;
3859                 char *s = src_kaddr + src_off + len;
3860
3861                 while (len--)
3862                         *--p = *--s;
3863         }
3864 }
3865
3866 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
3867 {
3868         unsigned long distance = (src > dst) ? src - dst : dst - src;
3869         return distance < len;
3870 }
3871
3872 static void copy_pages(struct page *dst_page, struct page *src_page,
3873                        unsigned long dst_off, unsigned long src_off,
3874                        unsigned long len)
3875 {
3876         char *dst_kaddr = page_address(dst_page);
3877         char *src_kaddr;
3878
3879         if (dst_page != src_page) {
3880                 src_kaddr = page_address(src_page);
3881         } else {
3882                 src_kaddr = dst_kaddr;
3883                 BUG_ON(areas_overlap(src_off, dst_off, len));
3884         }
3885
3886         memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3887 }
3888
3889 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3890                            unsigned long src_offset, unsigned long len)
3891 {
3892         size_t cur;
3893         size_t dst_off_in_page;
3894         size_t src_off_in_page;
3895         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3896         unsigned long dst_i;
3897         unsigned long src_i;
3898
3899         if (src_offset + len > dst->len) {
3900                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3901                        "len %lu dst len %lu\n", src_offset, len, dst->len);
3902                 BUG_ON(1);
3903         }
3904         if (dst_offset + len > dst->len) {
3905                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3906                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
3907                 BUG_ON(1);
3908         }
3909
3910         while (len > 0) {
3911                 dst_off_in_page = (start_offset + dst_offset) &
3912                         ((unsigned long)PAGE_CACHE_SIZE - 1);
3913                 src_off_in_page = (start_offset + src_offset) &
3914                         ((unsigned long)PAGE_CACHE_SIZE - 1);
3915
3916                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3917                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3918
3919                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3920                                                src_off_in_page));
3921                 cur = min_t(unsigned long, cur,
3922                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3923
3924                 copy_pages(extent_buffer_page(dst, dst_i),
3925                            extent_buffer_page(dst, src_i),
3926                            dst_off_in_page, src_off_in_page, cur);
3927
3928                 src_offset += cur;
3929                 dst_offset += cur;
3930                 len -= cur;
3931         }
3932 }
3933
3934 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3935                            unsigned long src_offset, unsigned long len)
3936 {
3937         size_t cur;
3938         size_t dst_off_in_page;
3939         size_t src_off_in_page;
3940         unsigned long dst_end = dst_offset + len - 1;
3941         unsigned long src_end = src_offset + len - 1;
3942         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3943         unsigned long dst_i;
3944         unsigned long src_i;
3945
3946         if (src_offset + len > dst->len) {
3947                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3948                        "len %lu len %lu\n", src_offset, len, dst->len);
3949                 BUG_ON(1);
3950         }
3951         if (dst_offset + len > dst->len) {
3952                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3953                        "len %lu len %lu\n", dst_offset, len, dst->len);
3954                 BUG_ON(1);
3955         }
3956         if (!areas_overlap(src_offset, dst_offset, len)) {
3957                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3958                 return;
3959         }
3960         while (len > 0) {
3961                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3962                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3963
3964                 dst_off_in_page = (start_offset + dst_end) &
3965                         ((unsigned long)PAGE_CACHE_SIZE - 1);
3966                 src_off_in_page = (start_offset + src_end) &
3967                         ((unsigned long)PAGE_CACHE_SIZE - 1);
3968
3969                 cur = min_t(unsigned long, len, src_off_in_page + 1);
3970                 cur = min(cur, dst_off_in_page + 1);
3971                 move_pages(extent_buffer_page(dst, dst_i),
3972                            extent_buffer_page(dst, src_i),
3973                            dst_off_in_page - cur + 1,
3974                            src_off_in_page - cur + 1, cur);
3975
3976                 dst_end -= cur;
3977                 src_end -= cur;
3978                 len -= cur;
3979         }
3980 }
3981
3982 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3983 {
3984         struct extent_buffer *eb =
3985                         container_of(head, struct extent_buffer, rcu_head);
3986
3987         btrfs_release_extent_buffer(eb);
3988 }
3989
3990 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3991 {
3992         u64 start = page_offset(page);
3993         struct extent_buffer *eb;
3994         int ret = 1;
3995
3996         spin_lock(&tree->buffer_lock);
3997         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3998         if (!eb) {
3999                 spin_unlock(&tree->buffer_lock);
4000                 return ret;
4001         }
4002
4003         if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4004                 ret = 0;
4005                 goto out;
4006         }
4007
4008         /*
4009          * set @eb->refs to 0 if it is already 1, and then release the @eb.
4010          * Or go back.
4011          */
4012         if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
4013                 ret = 0;
4014                 goto out;
4015         }
4016
4017         radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4018 out:
4019         spin_unlock(&tree->buffer_lock);
4020
4021         /* at this point we can safely release the extent buffer */
4022         if (atomic_read(&eb->refs) == 0)
4023                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4024         return ret;
4025 }