Merge branch 'slab/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg...
[pandora-kernel.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52 #include "qgroup.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 static struct extent_io_ops btree_extent_io_ops;
59 static void end_workqueue_fn(struct btrfs_work *work);
60 static void free_fs_root(struct btrfs_root *root);
61 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
62                                     int read_only);
63 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
64                                              struct btrfs_root *root);
65 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
66 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
67                                       struct btrfs_root *root);
68 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
69 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
70                                         struct extent_io_tree *dirty_pages,
71                                         int mark);
72 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
73                                        struct extent_io_tree *pinned_extents);
74 static int btrfs_cleanup_transaction(struct btrfs_root *root);
75 static void btrfs_error_commit_super(struct btrfs_root *root);
76
77 /*
78  * end_io_wq structs are used to do processing in task context when an IO is
79  * complete.  This is used during reads to verify checksums, and it is used
80  * by writes to insert metadata for new file extents after IO is complete.
81  */
82 struct end_io_wq {
83         struct bio *bio;
84         bio_end_io_t *end_io;
85         void *private;
86         struct btrfs_fs_info *info;
87         int error;
88         int metadata;
89         struct list_head list;
90         struct btrfs_work work;
91 };
92
93 /*
94  * async submit bios are used to offload expensive checksumming
95  * onto the worker threads.  They checksum file and metadata bios
96  * just before they are sent down the IO stack.
97  */
98 struct async_submit_bio {
99         struct inode *inode;
100         struct bio *bio;
101         struct list_head list;
102         extent_submit_bio_hook_t *submit_bio_start;
103         extent_submit_bio_hook_t *submit_bio_done;
104         int rw;
105         int mirror_num;
106         unsigned long bio_flags;
107         /*
108          * bio_offset is optional, can be used if the pages in the bio
109          * can't tell us where in the file the bio should go
110          */
111         u64 bio_offset;
112         struct btrfs_work work;
113         int error;
114 };
115
116 /*
117  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
118  * eb, the lockdep key is determined by the btrfs_root it belongs to and
119  * the level the eb occupies in the tree.
120  *
121  * Different roots are used for different purposes and may nest inside each
122  * other and they require separate keysets.  As lockdep keys should be
123  * static, assign keysets according to the purpose of the root as indicated
124  * by btrfs_root->objectid.  This ensures that all special purpose roots
125  * have separate keysets.
126  *
127  * Lock-nesting across peer nodes is always done with the immediate parent
128  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
129  * subclass to avoid triggering lockdep warning in such cases.
130  *
131  * The key is set by the readpage_end_io_hook after the buffer has passed
132  * csum validation but before the pages are unlocked.  It is also set by
133  * btrfs_init_new_buffer on freshly allocated blocks.
134  *
135  * We also add a check to make sure the highest level of the tree is the
136  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
137  * needs update as well.
138  */
139 #ifdef CONFIG_DEBUG_LOCK_ALLOC
140 # if BTRFS_MAX_LEVEL != 8
141 #  error
142 # endif
143
144 static struct btrfs_lockdep_keyset {
145         u64                     id;             /* root objectid */
146         const char              *name_stem;     /* lock name stem */
147         char                    names[BTRFS_MAX_LEVEL + 1][20];
148         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
149 } btrfs_lockdep_keysets[] = {
150         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
151         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
152         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
153         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
154         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
155         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
156         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
157         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
158         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
159         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
160         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
161         { .id = 0,                              .name_stem = "tree"     },
162 };
163
164 void __init btrfs_init_lockdep(void)
165 {
166         int i, j;
167
168         /* initialize lockdep class names */
169         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
170                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
171
172                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
173                         snprintf(ks->names[j], sizeof(ks->names[j]),
174                                  "btrfs-%s-%02d", ks->name_stem, j);
175         }
176 }
177
178 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
179                                     int level)
180 {
181         struct btrfs_lockdep_keyset *ks;
182
183         BUG_ON(level >= ARRAY_SIZE(ks->keys));
184
185         /* find the matching keyset, id 0 is the default entry */
186         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
187                 if (ks->id == objectid)
188                         break;
189
190         lockdep_set_class_and_name(&eb->lock,
191                                    &ks->keys[level], ks->names[level]);
192 }
193
194 #endif
195
196 /*
197  * extents on the btree inode are pretty simple, there's one extent
198  * that covers the entire device
199  */
200 static struct extent_map *btree_get_extent(struct inode *inode,
201                 struct page *page, size_t pg_offset, u64 start, u64 len,
202                 int create)
203 {
204         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
205         struct extent_map *em;
206         int ret;
207
208         read_lock(&em_tree->lock);
209         em = lookup_extent_mapping(em_tree, start, len);
210         if (em) {
211                 em->bdev =
212                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
213                 read_unlock(&em_tree->lock);
214                 goto out;
215         }
216         read_unlock(&em_tree->lock);
217
218         em = alloc_extent_map();
219         if (!em) {
220                 em = ERR_PTR(-ENOMEM);
221                 goto out;
222         }
223         em->start = 0;
224         em->len = (u64)-1;
225         em->block_len = (u64)-1;
226         em->block_start = 0;
227         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
228
229         write_lock(&em_tree->lock);
230         ret = add_extent_mapping(em_tree, em, 0);
231         if (ret == -EEXIST) {
232                 free_extent_map(em);
233                 em = lookup_extent_mapping(em_tree, start, len);
234                 if (!em)
235                         em = ERR_PTR(-EIO);
236         } else if (ret) {
237                 free_extent_map(em);
238                 em = ERR_PTR(ret);
239         }
240         write_unlock(&em_tree->lock);
241
242 out:
243         return em;
244 }
245
246 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
247 {
248         return btrfs_crc32c(seed, data, len);
249 }
250
251 void btrfs_csum_final(u32 crc, char *result)
252 {
253         put_unaligned_le32(~crc, result);
254 }
255
256 /*
257  * compute the csum for a btree block, and either verify it or write it
258  * into the csum field of the block.
259  */
260 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
261                            int verify)
262 {
263         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
264         char *result = NULL;
265         unsigned long len;
266         unsigned long cur_len;
267         unsigned long offset = BTRFS_CSUM_SIZE;
268         char *kaddr;
269         unsigned long map_start;
270         unsigned long map_len;
271         int err;
272         u32 crc = ~(u32)0;
273         unsigned long inline_result;
274
275         len = buf->len - offset;
276         while (len > 0) {
277                 err = map_private_extent_buffer(buf, offset, 32,
278                                         &kaddr, &map_start, &map_len);
279                 if (err)
280                         return 1;
281                 cur_len = min(len, map_len - (offset - map_start));
282                 crc = btrfs_csum_data(kaddr + offset - map_start,
283                                       crc, cur_len);
284                 len -= cur_len;
285                 offset += cur_len;
286         }
287         if (csum_size > sizeof(inline_result)) {
288                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
289                 if (!result)
290                         return 1;
291         } else {
292                 result = (char *)&inline_result;
293         }
294
295         btrfs_csum_final(crc, result);
296
297         if (verify) {
298                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
299                         u32 val;
300                         u32 found = 0;
301                         memcpy(&found, result, csum_size);
302
303                         read_extent_buffer(buf, &val, 0, csum_size);
304                         printk_ratelimited(KERN_INFO
305                                 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
306                                 "level %d\n",
307                                 root->fs_info->sb->s_id, buf->start,
308                                 val, found, btrfs_header_level(buf));
309                         if (result != (char *)&inline_result)
310                                 kfree(result);
311                         return 1;
312                 }
313         } else {
314                 write_extent_buffer(buf, result, 0, csum_size);
315         }
316         if (result != (char *)&inline_result)
317                 kfree(result);
318         return 0;
319 }
320
321 /*
322  * we can't consider a given block up to date unless the transid of the
323  * block matches the transid in the parent node's pointer.  This is how we
324  * detect blocks that either didn't get written at all or got written
325  * in the wrong place.
326  */
327 static int verify_parent_transid(struct extent_io_tree *io_tree,
328                                  struct extent_buffer *eb, u64 parent_transid,
329                                  int atomic)
330 {
331         struct extent_state *cached_state = NULL;
332         int ret;
333         bool need_lock = (current->journal_info ==
334                           (void *)BTRFS_SEND_TRANS_STUB);
335
336         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
337                 return 0;
338
339         if (atomic)
340                 return -EAGAIN;
341
342         if (need_lock) {
343                 btrfs_tree_read_lock(eb);
344                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
345         }
346
347         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
348                          0, &cached_state);
349         if (extent_buffer_uptodate(eb) &&
350             btrfs_header_generation(eb) == parent_transid) {
351                 ret = 0;
352                 goto out;
353         }
354         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
355                        "found %llu\n",
356                        eb->start, parent_transid, btrfs_header_generation(eb));
357         ret = 1;
358
359         /*
360          * Things reading via commit roots that don't have normal protection,
361          * like send, can have a really old block in cache that may point at a
362          * block that has been free'd and re-allocated.  So don't clear uptodate
363          * if we find an eb that is under IO (dirty/writeback) because we could
364          * end up reading in the stale data and then writing it back out and
365          * making everybody very sad.
366          */
367         if (!extent_buffer_under_io(eb))
368                 clear_extent_buffer_uptodate(eb);
369 out:
370         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
371                              &cached_state, GFP_NOFS);
372         btrfs_tree_read_unlock_blocking(eb);
373         return ret;
374 }
375
376 /*
377  * Return 0 if the superblock checksum type matches the checksum value of that
378  * algorithm. Pass the raw disk superblock data.
379  */
380 static int btrfs_check_super_csum(char *raw_disk_sb)
381 {
382         struct btrfs_super_block *disk_sb =
383                 (struct btrfs_super_block *)raw_disk_sb;
384         u16 csum_type = btrfs_super_csum_type(disk_sb);
385         int ret = 0;
386
387         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
388                 u32 crc = ~(u32)0;
389                 const int csum_size = sizeof(crc);
390                 char result[csum_size];
391
392                 /*
393                  * The super_block structure does not span the whole
394                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
395                  * is filled with zeros and is included in the checkum.
396                  */
397                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
398                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
399                 btrfs_csum_final(crc, result);
400
401                 if (memcmp(raw_disk_sb, result, csum_size))
402                         ret = 1;
403
404                 if (ret && btrfs_super_generation(disk_sb) < 10) {
405                         printk(KERN_WARNING
406                                 "BTRFS: super block crcs don't match, older mkfs detected\n");
407                         ret = 0;
408                 }
409         }
410
411         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
412                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
413                                 csum_type);
414                 ret = 1;
415         }
416
417         return ret;
418 }
419
420 /*
421  * helper to read a given tree block, doing retries as required when
422  * the checksums don't match and we have alternate mirrors to try.
423  */
424 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
425                                           struct extent_buffer *eb,
426                                           u64 start, u64 parent_transid)
427 {
428         struct extent_io_tree *io_tree;
429         int failed = 0;
430         int ret;
431         int num_copies = 0;
432         int mirror_num = 0;
433         int failed_mirror = 0;
434
435         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
436         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
437         while (1) {
438                 ret = read_extent_buffer_pages(io_tree, eb, start,
439                                                WAIT_COMPLETE,
440                                                btree_get_extent, mirror_num);
441                 if (!ret) {
442                         if (!verify_parent_transid(io_tree, eb,
443                                                    parent_transid, 0))
444                                 break;
445                         else
446                                 ret = -EIO;
447                 }
448
449                 /*
450                  * This buffer's crc is fine, but its contents are corrupted, so
451                  * there is no reason to read the other copies, they won't be
452                  * any less wrong.
453                  */
454                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
455                         break;
456
457                 num_copies = btrfs_num_copies(root->fs_info,
458                                               eb->start, eb->len);
459                 if (num_copies == 1)
460                         break;
461
462                 if (!failed_mirror) {
463                         failed = 1;
464                         failed_mirror = eb->read_mirror;
465                 }
466
467                 mirror_num++;
468                 if (mirror_num == failed_mirror)
469                         mirror_num++;
470
471                 if (mirror_num > num_copies)
472                         break;
473         }
474
475         if (failed && !ret && failed_mirror)
476                 repair_eb_io_failure(root, eb, failed_mirror);
477
478         return ret;
479 }
480
481 /*
482  * checksum a dirty tree block before IO.  This has extra checks to make sure
483  * we only fill in the checksum field in the first page of a multi-page block
484  */
485
486 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
487 {
488         u64 start = page_offset(page);
489         u64 found_start;
490         struct extent_buffer *eb;
491
492         eb = (struct extent_buffer *)page->private;
493         if (page != eb->pages[0])
494                 return 0;
495         found_start = btrfs_header_bytenr(eb);
496         if (WARN_ON(found_start != start || !PageUptodate(page)))
497                 return 0;
498         csum_tree_block(root, eb, 0);
499         return 0;
500 }
501
502 static int check_tree_block_fsid(struct btrfs_root *root,
503                                  struct extent_buffer *eb)
504 {
505         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
506         u8 fsid[BTRFS_UUID_SIZE];
507         int ret = 1;
508
509         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
510         while (fs_devices) {
511                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
512                         ret = 0;
513                         break;
514                 }
515                 fs_devices = fs_devices->seed;
516         }
517         return ret;
518 }
519
520 #define CORRUPT(reason, eb, root, slot)                         \
521         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
522                    "root=%llu, slot=%d", reason,                        \
523                btrfs_header_bytenr(eb), root->objectid, slot)
524
525 static noinline int check_leaf(struct btrfs_root *root,
526                                struct extent_buffer *leaf)
527 {
528         struct btrfs_key key;
529         struct btrfs_key leaf_key;
530         u32 nritems = btrfs_header_nritems(leaf);
531         int slot;
532
533         if (nritems == 0)
534                 return 0;
535
536         /* Check the 0 item */
537         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
538             BTRFS_LEAF_DATA_SIZE(root)) {
539                 CORRUPT("invalid item offset size pair", leaf, root, 0);
540                 return -EIO;
541         }
542
543         /*
544          * Check to make sure each items keys are in the correct order and their
545          * offsets make sense.  We only have to loop through nritems-1 because
546          * we check the current slot against the next slot, which verifies the
547          * next slot's offset+size makes sense and that the current's slot
548          * offset is correct.
549          */
550         for (slot = 0; slot < nritems - 1; slot++) {
551                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
552                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
553
554                 /* Make sure the keys are in the right order */
555                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
556                         CORRUPT("bad key order", leaf, root, slot);
557                         return -EIO;
558                 }
559
560                 /*
561                  * Make sure the offset and ends are right, remember that the
562                  * item data starts at the end of the leaf and grows towards the
563                  * front.
564                  */
565                 if (btrfs_item_offset_nr(leaf, slot) !=
566                         btrfs_item_end_nr(leaf, slot + 1)) {
567                         CORRUPT("slot offset bad", leaf, root, slot);
568                         return -EIO;
569                 }
570
571                 /*
572                  * Check to make sure that we don't point outside of the leaf,
573                  * just incase all the items are consistent to eachother, but
574                  * all point outside of the leaf.
575                  */
576                 if (btrfs_item_end_nr(leaf, slot) >
577                     BTRFS_LEAF_DATA_SIZE(root)) {
578                         CORRUPT("slot end outside of leaf", leaf, root, slot);
579                         return -EIO;
580                 }
581         }
582
583         return 0;
584 }
585
586 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
587                                       u64 phy_offset, struct page *page,
588                                       u64 start, u64 end, int mirror)
589 {
590         u64 found_start;
591         int found_level;
592         struct extent_buffer *eb;
593         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
594         int ret = 0;
595         int reads_done;
596
597         if (!page->private)
598                 goto out;
599
600         eb = (struct extent_buffer *)page->private;
601
602         /* the pending IO might have been the only thing that kept this buffer
603          * in memory.  Make sure we have a ref for all this other checks
604          */
605         extent_buffer_get(eb);
606
607         reads_done = atomic_dec_and_test(&eb->io_pages);
608         if (!reads_done)
609                 goto err;
610
611         eb->read_mirror = mirror;
612         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
613                 ret = -EIO;
614                 goto err;
615         }
616
617         found_start = btrfs_header_bytenr(eb);
618         if (found_start != eb->start) {
619                 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
620                                "%llu %llu\n",
621                                found_start, eb->start);
622                 ret = -EIO;
623                 goto err;
624         }
625         if (check_tree_block_fsid(root, eb)) {
626                 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
627                                eb->start);
628                 ret = -EIO;
629                 goto err;
630         }
631         found_level = btrfs_header_level(eb);
632         if (found_level >= BTRFS_MAX_LEVEL) {
633                 btrfs_info(root->fs_info, "bad tree block level %d",
634                            (int)btrfs_header_level(eb));
635                 ret = -EIO;
636                 goto err;
637         }
638
639         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
640                                        eb, found_level);
641
642         ret = csum_tree_block(root, eb, 1);
643         if (ret) {
644                 ret = -EIO;
645                 goto err;
646         }
647
648         /*
649          * If this is a leaf block and it is corrupt, set the corrupt bit so
650          * that we don't try and read the other copies of this block, just
651          * return -EIO.
652          */
653         if (found_level == 0 && check_leaf(root, eb)) {
654                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
655                 ret = -EIO;
656         }
657
658         if (!ret)
659                 set_extent_buffer_uptodate(eb);
660 err:
661         if (reads_done &&
662             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
663                 btree_readahead_hook(root, eb, eb->start, ret);
664
665         if (ret) {
666                 /*
667                  * our io error hook is going to dec the io pages
668                  * again, we have to make sure it has something
669                  * to decrement
670                  */
671                 atomic_inc(&eb->io_pages);
672                 clear_extent_buffer_uptodate(eb);
673         }
674         free_extent_buffer(eb);
675 out:
676         return ret;
677 }
678
679 static int btree_io_failed_hook(struct page *page, int failed_mirror)
680 {
681         struct extent_buffer *eb;
682         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
683
684         eb = (struct extent_buffer *)page->private;
685         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
686         eb->read_mirror = failed_mirror;
687         atomic_dec(&eb->io_pages);
688         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
689                 btree_readahead_hook(root, eb, eb->start, -EIO);
690         return -EIO;    /* we fixed nothing */
691 }
692
693 static void end_workqueue_bio(struct bio *bio, int err)
694 {
695         struct end_io_wq *end_io_wq = bio->bi_private;
696         struct btrfs_fs_info *fs_info;
697
698         fs_info = end_io_wq->info;
699         end_io_wq->error = err;
700         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
701
702         if (bio->bi_rw & REQ_WRITE) {
703                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
704                         btrfs_queue_work(fs_info->endio_meta_write_workers,
705                                          &end_io_wq->work);
706                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
707                         btrfs_queue_work(fs_info->endio_freespace_worker,
708                                          &end_io_wq->work);
709                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
710                         btrfs_queue_work(fs_info->endio_raid56_workers,
711                                          &end_io_wq->work);
712                 else
713                         btrfs_queue_work(fs_info->endio_write_workers,
714                                          &end_io_wq->work);
715         } else {
716                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
717                         btrfs_queue_work(fs_info->endio_raid56_workers,
718                                          &end_io_wq->work);
719                 else if (end_io_wq->metadata)
720                         btrfs_queue_work(fs_info->endio_meta_workers,
721                                          &end_io_wq->work);
722                 else
723                         btrfs_queue_work(fs_info->endio_workers,
724                                          &end_io_wq->work);
725         }
726 }
727
728 /*
729  * For the metadata arg you want
730  *
731  * 0 - if data
732  * 1 - if normal metadta
733  * 2 - if writing to the free space cache area
734  * 3 - raid parity work
735  */
736 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
737                         int metadata)
738 {
739         struct end_io_wq *end_io_wq;
740         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
741         if (!end_io_wq)
742                 return -ENOMEM;
743
744         end_io_wq->private = bio->bi_private;
745         end_io_wq->end_io = bio->bi_end_io;
746         end_io_wq->info = info;
747         end_io_wq->error = 0;
748         end_io_wq->bio = bio;
749         end_io_wq->metadata = metadata;
750
751         bio->bi_private = end_io_wq;
752         bio->bi_end_io = end_workqueue_bio;
753         return 0;
754 }
755
756 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
757 {
758         unsigned long limit = min_t(unsigned long,
759                                     info->thread_pool_size,
760                                     info->fs_devices->open_devices);
761         return 256 * limit;
762 }
763
764 static void run_one_async_start(struct btrfs_work *work)
765 {
766         struct async_submit_bio *async;
767         int ret;
768
769         async = container_of(work, struct  async_submit_bio, work);
770         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
771                                       async->mirror_num, async->bio_flags,
772                                       async->bio_offset);
773         if (ret)
774                 async->error = ret;
775 }
776
777 static void run_one_async_done(struct btrfs_work *work)
778 {
779         struct btrfs_fs_info *fs_info;
780         struct async_submit_bio *async;
781         int limit;
782
783         async = container_of(work, struct  async_submit_bio, work);
784         fs_info = BTRFS_I(async->inode)->root->fs_info;
785
786         limit = btrfs_async_submit_limit(fs_info);
787         limit = limit * 2 / 3;
788
789         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
790             waitqueue_active(&fs_info->async_submit_wait))
791                 wake_up(&fs_info->async_submit_wait);
792
793         /* If an error occured we just want to clean up the bio and move on */
794         if (async->error) {
795                 bio_endio(async->bio, async->error);
796                 return;
797         }
798
799         async->submit_bio_done(async->inode, async->rw, async->bio,
800                                async->mirror_num, async->bio_flags,
801                                async->bio_offset);
802 }
803
804 static void run_one_async_free(struct btrfs_work *work)
805 {
806         struct async_submit_bio *async;
807
808         async = container_of(work, struct  async_submit_bio, work);
809         kfree(async);
810 }
811
812 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
813                         int rw, struct bio *bio, int mirror_num,
814                         unsigned long bio_flags,
815                         u64 bio_offset,
816                         extent_submit_bio_hook_t *submit_bio_start,
817                         extent_submit_bio_hook_t *submit_bio_done)
818 {
819         struct async_submit_bio *async;
820
821         async = kmalloc(sizeof(*async), GFP_NOFS);
822         if (!async)
823                 return -ENOMEM;
824
825         async->inode = inode;
826         async->rw = rw;
827         async->bio = bio;
828         async->mirror_num = mirror_num;
829         async->submit_bio_start = submit_bio_start;
830         async->submit_bio_done = submit_bio_done;
831
832         btrfs_init_work(&async->work, run_one_async_start,
833                         run_one_async_done, run_one_async_free);
834
835         async->bio_flags = bio_flags;
836         async->bio_offset = bio_offset;
837
838         async->error = 0;
839
840         atomic_inc(&fs_info->nr_async_submits);
841
842         if (rw & REQ_SYNC)
843                 btrfs_set_work_high_priority(&async->work);
844
845         btrfs_queue_work(fs_info->workers, &async->work);
846
847         while (atomic_read(&fs_info->async_submit_draining) &&
848               atomic_read(&fs_info->nr_async_submits)) {
849                 wait_event(fs_info->async_submit_wait,
850                            (atomic_read(&fs_info->nr_async_submits) == 0));
851         }
852
853         return 0;
854 }
855
856 static int btree_csum_one_bio(struct bio *bio)
857 {
858         struct bio_vec *bvec;
859         struct btrfs_root *root;
860         int i, ret = 0;
861
862         bio_for_each_segment_all(bvec, bio, i) {
863                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
864                 ret = csum_dirty_buffer(root, bvec->bv_page);
865                 if (ret)
866                         break;
867         }
868
869         return ret;
870 }
871
872 static int __btree_submit_bio_start(struct inode *inode, int rw,
873                                     struct bio *bio, int mirror_num,
874                                     unsigned long bio_flags,
875                                     u64 bio_offset)
876 {
877         /*
878          * when we're called for a write, we're already in the async
879          * submission context.  Just jump into btrfs_map_bio
880          */
881         return btree_csum_one_bio(bio);
882 }
883
884 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
885                                  int mirror_num, unsigned long bio_flags,
886                                  u64 bio_offset)
887 {
888         int ret;
889
890         /*
891          * when we're called for a write, we're already in the async
892          * submission context.  Just jump into btrfs_map_bio
893          */
894         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
895         if (ret)
896                 bio_endio(bio, ret);
897         return ret;
898 }
899
900 static int check_async_write(struct inode *inode, unsigned long bio_flags)
901 {
902         if (bio_flags & EXTENT_BIO_TREE_LOG)
903                 return 0;
904 #ifdef CONFIG_X86
905         if (cpu_has_xmm4_2)
906                 return 0;
907 #endif
908         return 1;
909 }
910
911 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
912                                  int mirror_num, unsigned long bio_flags,
913                                  u64 bio_offset)
914 {
915         int async = check_async_write(inode, bio_flags);
916         int ret;
917
918         if (!(rw & REQ_WRITE)) {
919                 /*
920                  * called for a read, do the setup so that checksum validation
921                  * can happen in the async kernel threads
922                  */
923                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
924                                           bio, 1);
925                 if (ret)
926                         goto out_w_error;
927                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
928                                     mirror_num, 0);
929         } else if (!async) {
930                 ret = btree_csum_one_bio(bio);
931                 if (ret)
932                         goto out_w_error;
933                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
934                                     mirror_num, 0);
935         } else {
936                 /*
937                  * kthread helpers are used to submit writes so that
938                  * checksumming can happen in parallel across all CPUs
939                  */
940                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
941                                           inode, rw, bio, mirror_num, 0,
942                                           bio_offset,
943                                           __btree_submit_bio_start,
944                                           __btree_submit_bio_done);
945         }
946
947         if (ret) {
948 out_w_error:
949                 bio_endio(bio, ret);
950         }
951         return ret;
952 }
953
954 #ifdef CONFIG_MIGRATION
955 static int btree_migratepage(struct address_space *mapping,
956                         struct page *newpage, struct page *page,
957                         enum migrate_mode mode)
958 {
959         /*
960          * we can't safely write a btree page from here,
961          * we haven't done the locking hook
962          */
963         if (PageDirty(page))
964                 return -EAGAIN;
965         /*
966          * Buffers may be managed in a filesystem specific way.
967          * We must have no buffers or drop them.
968          */
969         if (page_has_private(page) &&
970             !try_to_release_page(page, GFP_KERNEL))
971                 return -EAGAIN;
972         return migrate_page(mapping, newpage, page, mode);
973 }
974 #endif
975
976
977 static int btree_writepages(struct address_space *mapping,
978                             struct writeback_control *wbc)
979 {
980         struct btrfs_fs_info *fs_info;
981         int ret;
982
983         if (wbc->sync_mode == WB_SYNC_NONE) {
984
985                 if (wbc->for_kupdate)
986                         return 0;
987
988                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
989                 /* this is a bit racy, but that's ok */
990                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
991                                              BTRFS_DIRTY_METADATA_THRESH);
992                 if (ret < 0)
993                         return 0;
994         }
995         return btree_write_cache_pages(mapping, wbc);
996 }
997
998 static int btree_readpage(struct file *file, struct page *page)
999 {
1000         struct extent_io_tree *tree;
1001         tree = &BTRFS_I(page->mapping->host)->io_tree;
1002         return extent_read_full_page(tree, page, btree_get_extent, 0);
1003 }
1004
1005 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1006 {
1007         if (PageWriteback(page) || PageDirty(page))
1008                 return 0;
1009
1010         return try_release_extent_buffer(page);
1011 }
1012
1013 static void btree_invalidatepage(struct page *page, unsigned int offset,
1014                                  unsigned int length)
1015 {
1016         struct extent_io_tree *tree;
1017         tree = &BTRFS_I(page->mapping->host)->io_tree;
1018         extent_invalidatepage(tree, page, offset);
1019         btree_releasepage(page, GFP_NOFS);
1020         if (PagePrivate(page)) {
1021                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1022                            "page private not zero on page %llu",
1023                            (unsigned long long)page_offset(page));
1024                 ClearPagePrivate(page);
1025                 set_page_private(page, 0);
1026                 page_cache_release(page);
1027         }
1028 }
1029
1030 static int btree_set_page_dirty(struct page *page)
1031 {
1032 #ifdef DEBUG
1033         struct extent_buffer *eb;
1034
1035         BUG_ON(!PagePrivate(page));
1036         eb = (struct extent_buffer *)page->private;
1037         BUG_ON(!eb);
1038         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1039         BUG_ON(!atomic_read(&eb->refs));
1040         btrfs_assert_tree_locked(eb);
1041 #endif
1042         return __set_page_dirty_nobuffers(page);
1043 }
1044
1045 static const struct address_space_operations btree_aops = {
1046         .readpage       = btree_readpage,
1047         .writepages     = btree_writepages,
1048         .releasepage    = btree_releasepage,
1049         .invalidatepage = btree_invalidatepage,
1050 #ifdef CONFIG_MIGRATION
1051         .migratepage    = btree_migratepage,
1052 #endif
1053         .set_page_dirty = btree_set_page_dirty,
1054 };
1055
1056 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1057                          u64 parent_transid)
1058 {
1059         struct extent_buffer *buf = NULL;
1060         struct inode *btree_inode = root->fs_info->btree_inode;
1061         int ret = 0;
1062
1063         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1064         if (!buf)
1065                 return 0;
1066         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1067                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1068         free_extent_buffer(buf);
1069         return ret;
1070 }
1071
1072 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1073                          int mirror_num, struct extent_buffer **eb)
1074 {
1075         struct extent_buffer *buf = NULL;
1076         struct inode *btree_inode = root->fs_info->btree_inode;
1077         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1078         int ret;
1079
1080         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1081         if (!buf)
1082                 return 0;
1083
1084         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1085
1086         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1087                                        btree_get_extent, mirror_num);
1088         if (ret) {
1089                 free_extent_buffer(buf);
1090                 return ret;
1091         }
1092
1093         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1094                 free_extent_buffer(buf);
1095                 return -EIO;
1096         } else if (extent_buffer_uptodate(buf)) {
1097                 *eb = buf;
1098         } else {
1099                 free_extent_buffer(buf);
1100         }
1101         return 0;
1102 }
1103
1104 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1105                                             u64 bytenr, u32 blocksize)
1106 {
1107         return find_extent_buffer(root->fs_info, bytenr);
1108 }
1109
1110 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1111                                                  u64 bytenr, u32 blocksize)
1112 {
1113 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1114         if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1115                 return alloc_test_extent_buffer(root->fs_info, bytenr,
1116                                                 blocksize);
1117 #endif
1118         return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1119 }
1120
1121
1122 int btrfs_write_tree_block(struct extent_buffer *buf)
1123 {
1124         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1125                                         buf->start + buf->len - 1);
1126 }
1127
1128 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1129 {
1130         return filemap_fdatawait_range(buf->pages[0]->mapping,
1131                                        buf->start, buf->start + buf->len - 1);
1132 }
1133
1134 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1135                                       u32 blocksize, u64 parent_transid)
1136 {
1137         struct extent_buffer *buf = NULL;
1138         int ret;
1139
1140         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1141         if (!buf)
1142                 return NULL;
1143
1144         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1145         if (ret) {
1146                 free_extent_buffer(buf);
1147                 return NULL;
1148         }
1149         return buf;
1150
1151 }
1152
1153 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1154                       struct extent_buffer *buf)
1155 {
1156         struct btrfs_fs_info *fs_info = root->fs_info;
1157
1158         if (btrfs_header_generation(buf) ==
1159             fs_info->running_transaction->transid) {
1160                 btrfs_assert_tree_locked(buf);
1161
1162                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1163                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1164                                              -buf->len,
1165                                              fs_info->dirty_metadata_batch);
1166                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1167                         btrfs_set_lock_blocking(buf);
1168                         clear_extent_buffer_dirty(buf);
1169                 }
1170         }
1171 }
1172
1173 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1174 {
1175         struct btrfs_subvolume_writers *writers;
1176         int ret;
1177
1178         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1179         if (!writers)
1180                 return ERR_PTR(-ENOMEM);
1181
1182         ret = percpu_counter_init(&writers->counter, 0);
1183         if (ret < 0) {
1184                 kfree(writers);
1185                 return ERR_PTR(ret);
1186         }
1187
1188         init_waitqueue_head(&writers->wait);
1189         return writers;
1190 }
1191
1192 static void
1193 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1194 {
1195         percpu_counter_destroy(&writers->counter);
1196         kfree(writers);
1197 }
1198
1199 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1200                          u32 stripesize, struct btrfs_root *root,
1201                          struct btrfs_fs_info *fs_info,
1202                          u64 objectid)
1203 {
1204         root->node = NULL;
1205         root->commit_root = NULL;
1206         root->sectorsize = sectorsize;
1207         root->nodesize = nodesize;
1208         root->leafsize = leafsize;
1209         root->stripesize = stripesize;
1210         root->state = 0;
1211         root->orphan_cleanup_state = 0;
1212
1213         root->objectid = objectid;
1214         root->last_trans = 0;
1215         root->highest_objectid = 0;
1216         root->nr_delalloc_inodes = 0;
1217         root->nr_ordered_extents = 0;
1218         root->name = NULL;
1219         root->inode_tree = RB_ROOT;
1220         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1221         root->block_rsv = NULL;
1222         root->orphan_block_rsv = NULL;
1223
1224         INIT_LIST_HEAD(&root->dirty_list);
1225         INIT_LIST_HEAD(&root->root_list);
1226         INIT_LIST_HEAD(&root->delalloc_inodes);
1227         INIT_LIST_HEAD(&root->delalloc_root);
1228         INIT_LIST_HEAD(&root->ordered_extents);
1229         INIT_LIST_HEAD(&root->ordered_root);
1230         INIT_LIST_HEAD(&root->logged_list[0]);
1231         INIT_LIST_HEAD(&root->logged_list[1]);
1232         spin_lock_init(&root->orphan_lock);
1233         spin_lock_init(&root->inode_lock);
1234         spin_lock_init(&root->delalloc_lock);
1235         spin_lock_init(&root->ordered_extent_lock);
1236         spin_lock_init(&root->accounting_lock);
1237         spin_lock_init(&root->log_extents_lock[0]);
1238         spin_lock_init(&root->log_extents_lock[1]);
1239         mutex_init(&root->objectid_mutex);
1240         mutex_init(&root->log_mutex);
1241         mutex_init(&root->ordered_extent_mutex);
1242         mutex_init(&root->delalloc_mutex);
1243         init_waitqueue_head(&root->log_writer_wait);
1244         init_waitqueue_head(&root->log_commit_wait[0]);
1245         init_waitqueue_head(&root->log_commit_wait[1]);
1246         INIT_LIST_HEAD(&root->log_ctxs[0]);
1247         INIT_LIST_HEAD(&root->log_ctxs[1]);
1248         atomic_set(&root->log_commit[0], 0);
1249         atomic_set(&root->log_commit[1], 0);
1250         atomic_set(&root->log_writers, 0);
1251         atomic_set(&root->log_batch, 0);
1252         atomic_set(&root->orphan_inodes, 0);
1253         atomic_set(&root->refs, 1);
1254         atomic_set(&root->will_be_snapshoted, 0);
1255         root->log_transid = 0;
1256         root->log_transid_committed = -1;
1257         root->last_log_commit = 0;
1258         if (fs_info)
1259                 extent_io_tree_init(&root->dirty_log_pages,
1260                                      fs_info->btree_inode->i_mapping);
1261
1262         memset(&root->root_key, 0, sizeof(root->root_key));
1263         memset(&root->root_item, 0, sizeof(root->root_item));
1264         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1265         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1266         if (fs_info)
1267                 root->defrag_trans_start = fs_info->generation;
1268         else
1269                 root->defrag_trans_start = 0;
1270         init_completion(&root->kobj_unregister);
1271         root->root_key.objectid = objectid;
1272         root->anon_dev = 0;
1273
1274         spin_lock_init(&root->root_item_lock);
1275 }
1276
1277 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1278 {
1279         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1280         if (root)
1281                 root->fs_info = fs_info;
1282         return root;
1283 }
1284
1285 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1286 /* Should only be used by the testing infrastructure */
1287 struct btrfs_root *btrfs_alloc_dummy_root(void)
1288 {
1289         struct btrfs_root *root;
1290
1291         root = btrfs_alloc_root(NULL);
1292         if (!root)
1293                 return ERR_PTR(-ENOMEM);
1294         __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1295         set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1296         root->alloc_bytenr = 0;
1297
1298         return root;
1299 }
1300 #endif
1301
1302 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1303                                      struct btrfs_fs_info *fs_info,
1304                                      u64 objectid)
1305 {
1306         struct extent_buffer *leaf;
1307         struct btrfs_root *tree_root = fs_info->tree_root;
1308         struct btrfs_root *root;
1309         struct btrfs_key key;
1310         int ret = 0;
1311         uuid_le uuid;
1312
1313         root = btrfs_alloc_root(fs_info);
1314         if (!root)
1315                 return ERR_PTR(-ENOMEM);
1316
1317         __setup_root(tree_root->nodesize, tree_root->leafsize,
1318                      tree_root->sectorsize, tree_root->stripesize,
1319                      root, fs_info, objectid);
1320         root->root_key.objectid = objectid;
1321         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1322         root->root_key.offset = 0;
1323
1324         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1325                                       0, objectid, NULL, 0, 0, 0);
1326         if (IS_ERR(leaf)) {
1327                 ret = PTR_ERR(leaf);
1328                 leaf = NULL;
1329                 goto fail;
1330         }
1331
1332         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1333         btrfs_set_header_bytenr(leaf, leaf->start);
1334         btrfs_set_header_generation(leaf, trans->transid);
1335         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1336         btrfs_set_header_owner(leaf, objectid);
1337         root->node = leaf;
1338
1339         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1340                             BTRFS_FSID_SIZE);
1341         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1342                             btrfs_header_chunk_tree_uuid(leaf),
1343                             BTRFS_UUID_SIZE);
1344         btrfs_mark_buffer_dirty(leaf);
1345
1346         root->commit_root = btrfs_root_node(root);
1347         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1348
1349         root->root_item.flags = 0;
1350         root->root_item.byte_limit = 0;
1351         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1352         btrfs_set_root_generation(&root->root_item, trans->transid);
1353         btrfs_set_root_level(&root->root_item, 0);
1354         btrfs_set_root_refs(&root->root_item, 1);
1355         btrfs_set_root_used(&root->root_item, leaf->len);
1356         btrfs_set_root_last_snapshot(&root->root_item, 0);
1357         btrfs_set_root_dirid(&root->root_item, 0);
1358         uuid_le_gen(&uuid);
1359         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1360         root->root_item.drop_level = 0;
1361
1362         key.objectid = objectid;
1363         key.type = BTRFS_ROOT_ITEM_KEY;
1364         key.offset = 0;
1365         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1366         if (ret)
1367                 goto fail;
1368
1369         btrfs_tree_unlock(leaf);
1370
1371         return root;
1372
1373 fail:
1374         if (leaf) {
1375                 btrfs_tree_unlock(leaf);
1376                 free_extent_buffer(root->commit_root);
1377                 free_extent_buffer(leaf);
1378         }
1379         kfree(root);
1380
1381         return ERR_PTR(ret);
1382 }
1383
1384 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1385                                          struct btrfs_fs_info *fs_info)
1386 {
1387         struct btrfs_root *root;
1388         struct btrfs_root *tree_root = fs_info->tree_root;
1389         struct extent_buffer *leaf;
1390
1391         root = btrfs_alloc_root(fs_info);
1392         if (!root)
1393                 return ERR_PTR(-ENOMEM);
1394
1395         __setup_root(tree_root->nodesize, tree_root->leafsize,
1396                      tree_root->sectorsize, tree_root->stripesize,
1397                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1398
1399         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1400         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1401         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1402
1403         /*
1404          * DON'T set REF_COWS for log trees
1405          *
1406          * log trees do not get reference counted because they go away
1407          * before a real commit is actually done.  They do store pointers
1408          * to file data extents, and those reference counts still get
1409          * updated (along with back refs to the log tree).
1410          */
1411
1412         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1413                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1414                                       0, 0, 0);
1415         if (IS_ERR(leaf)) {
1416                 kfree(root);
1417                 return ERR_CAST(leaf);
1418         }
1419
1420         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1421         btrfs_set_header_bytenr(leaf, leaf->start);
1422         btrfs_set_header_generation(leaf, trans->transid);
1423         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1424         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1425         root->node = leaf;
1426
1427         write_extent_buffer(root->node, root->fs_info->fsid,
1428                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1429         btrfs_mark_buffer_dirty(root->node);
1430         btrfs_tree_unlock(root->node);
1431         return root;
1432 }
1433
1434 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1435                              struct btrfs_fs_info *fs_info)
1436 {
1437         struct btrfs_root *log_root;
1438
1439         log_root = alloc_log_tree(trans, fs_info);
1440         if (IS_ERR(log_root))
1441                 return PTR_ERR(log_root);
1442         WARN_ON(fs_info->log_root_tree);
1443         fs_info->log_root_tree = log_root;
1444         return 0;
1445 }
1446
1447 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1448                        struct btrfs_root *root)
1449 {
1450         struct btrfs_root *log_root;
1451         struct btrfs_inode_item *inode_item;
1452
1453         log_root = alloc_log_tree(trans, root->fs_info);
1454         if (IS_ERR(log_root))
1455                 return PTR_ERR(log_root);
1456
1457         log_root->last_trans = trans->transid;
1458         log_root->root_key.offset = root->root_key.objectid;
1459
1460         inode_item = &log_root->root_item.inode;
1461         btrfs_set_stack_inode_generation(inode_item, 1);
1462         btrfs_set_stack_inode_size(inode_item, 3);
1463         btrfs_set_stack_inode_nlink(inode_item, 1);
1464         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1465         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1466
1467         btrfs_set_root_node(&log_root->root_item, log_root->node);
1468
1469         WARN_ON(root->log_root);
1470         root->log_root = log_root;
1471         root->log_transid = 0;
1472         root->log_transid_committed = -1;
1473         root->last_log_commit = 0;
1474         return 0;
1475 }
1476
1477 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1478                                                struct btrfs_key *key)
1479 {
1480         struct btrfs_root *root;
1481         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1482         struct btrfs_path *path;
1483         u64 generation;
1484         u32 blocksize;
1485         int ret;
1486
1487         path = btrfs_alloc_path();
1488         if (!path)
1489                 return ERR_PTR(-ENOMEM);
1490
1491         root = btrfs_alloc_root(fs_info);
1492         if (!root) {
1493                 ret = -ENOMEM;
1494                 goto alloc_fail;
1495         }
1496
1497         __setup_root(tree_root->nodesize, tree_root->leafsize,
1498                      tree_root->sectorsize, tree_root->stripesize,
1499                      root, fs_info, key->objectid);
1500
1501         ret = btrfs_find_root(tree_root, key, path,
1502                               &root->root_item, &root->root_key);
1503         if (ret) {
1504                 if (ret > 0)
1505                         ret = -ENOENT;
1506                 goto find_fail;
1507         }
1508
1509         generation = btrfs_root_generation(&root->root_item);
1510         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1511         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1512                                      blocksize, generation);
1513         if (!root->node) {
1514                 ret = -ENOMEM;
1515                 goto find_fail;
1516         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1517                 ret = -EIO;
1518                 goto read_fail;
1519         }
1520         root->commit_root = btrfs_root_node(root);
1521 out:
1522         btrfs_free_path(path);
1523         return root;
1524
1525 read_fail:
1526         free_extent_buffer(root->node);
1527 find_fail:
1528         kfree(root);
1529 alloc_fail:
1530         root = ERR_PTR(ret);
1531         goto out;
1532 }
1533
1534 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1535                                       struct btrfs_key *location)
1536 {
1537         struct btrfs_root *root;
1538
1539         root = btrfs_read_tree_root(tree_root, location);
1540         if (IS_ERR(root))
1541                 return root;
1542
1543         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1544                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1545                 btrfs_check_and_init_root_item(&root->root_item);
1546         }
1547
1548         return root;
1549 }
1550
1551 int btrfs_init_fs_root(struct btrfs_root *root)
1552 {
1553         int ret;
1554         struct btrfs_subvolume_writers *writers;
1555
1556         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1557         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1558                                         GFP_NOFS);
1559         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1560                 ret = -ENOMEM;
1561                 goto fail;
1562         }
1563
1564         writers = btrfs_alloc_subvolume_writers();
1565         if (IS_ERR(writers)) {
1566                 ret = PTR_ERR(writers);
1567                 goto fail;
1568         }
1569         root->subv_writers = writers;
1570
1571         btrfs_init_free_ino_ctl(root);
1572         spin_lock_init(&root->cache_lock);
1573         init_waitqueue_head(&root->cache_wait);
1574
1575         ret = get_anon_bdev(&root->anon_dev);
1576         if (ret)
1577                 goto free_writers;
1578         return 0;
1579
1580 free_writers:
1581         btrfs_free_subvolume_writers(root->subv_writers);
1582 fail:
1583         kfree(root->free_ino_ctl);
1584         kfree(root->free_ino_pinned);
1585         return ret;
1586 }
1587
1588 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1589                                                u64 root_id)
1590 {
1591         struct btrfs_root *root;
1592
1593         spin_lock(&fs_info->fs_roots_radix_lock);
1594         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1595                                  (unsigned long)root_id);
1596         spin_unlock(&fs_info->fs_roots_radix_lock);
1597         return root;
1598 }
1599
1600 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1601                          struct btrfs_root *root)
1602 {
1603         int ret;
1604
1605         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1606         if (ret)
1607                 return ret;
1608
1609         spin_lock(&fs_info->fs_roots_radix_lock);
1610         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1611                                 (unsigned long)root->root_key.objectid,
1612                                 root);
1613         if (ret == 0)
1614                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1615         spin_unlock(&fs_info->fs_roots_radix_lock);
1616         radix_tree_preload_end();
1617
1618         return ret;
1619 }
1620
1621 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1622                                      struct btrfs_key *location,
1623                                      bool check_ref)
1624 {
1625         struct btrfs_root *root;
1626         int ret;
1627
1628         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1629                 return fs_info->tree_root;
1630         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1631                 return fs_info->extent_root;
1632         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1633                 return fs_info->chunk_root;
1634         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1635                 return fs_info->dev_root;
1636         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1637                 return fs_info->csum_root;
1638         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1639                 return fs_info->quota_root ? fs_info->quota_root :
1640                                              ERR_PTR(-ENOENT);
1641         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1642                 return fs_info->uuid_root ? fs_info->uuid_root :
1643                                             ERR_PTR(-ENOENT);
1644 again:
1645         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1646         if (root) {
1647                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1648                         return ERR_PTR(-ENOENT);
1649                 return root;
1650         }
1651
1652         root = btrfs_read_fs_root(fs_info->tree_root, location);
1653         if (IS_ERR(root))
1654                 return root;
1655
1656         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1657                 ret = -ENOENT;
1658                 goto fail;
1659         }
1660
1661         ret = btrfs_init_fs_root(root);
1662         if (ret)
1663                 goto fail;
1664
1665         ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1666                         location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1667         if (ret < 0)
1668                 goto fail;
1669         if (ret == 0)
1670                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1671
1672         ret = btrfs_insert_fs_root(fs_info, root);
1673         if (ret) {
1674                 if (ret == -EEXIST) {
1675                         free_fs_root(root);
1676                         goto again;
1677                 }
1678                 goto fail;
1679         }
1680         return root;
1681 fail:
1682         free_fs_root(root);
1683         return ERR_PTR(ret);
1684 }
1685
1686 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1687 {
1688         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1689         int ret = 0;
1690         struct btrfs_device *device;
1691         struct backing_dev_info *bdi;
1692
1693         rcu_read_lock();
1694         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1695                 if (!device->bdev)
1696                         continue;
1697                 bdi = blk_get_backing_dev_info(device->bdev);
1698                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1699                         ret = 1;
1700                         break;
1701                 }
1702         }
1703         rcu_read_unlock();
1704         return ret;
1705 }
1706
1707 /*
1708  * If this fails, caller must call bdi_destroy() to get rid of the
1709  * bdi again.
1710  */
1711 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1712 {
1713         int err;
1714
1715         bdi->capabilities = BDI_CAP_MAP_COPY;
1716         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1717         if (err)
1718                 return err;
1719
1720         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1721         bdi->congested_fn       = btrfs_congested_fn;
1722         bdi->congested_data     = info;
1723         return 0;
1724 }
1725
1726 /*
1727  * called by the kthread helper functions to finally call the bio end_io
1728  * functions.  This is where read checksum verification actually happens
1729  */
1730 static void end_workqueue_fn(struct btrfs_work *work)
1731 {
1732         struct bio *bio;
1733         struct end_io_wq *end_io_wq;
1734         int error;
1735
1736         end_io_wq = container_of(work, struct end_io_wq, work);
1737         bio = end_io_wq->bio;
1738
1739         error = end_io_wq->error;
1740         bio->bi_private = end_io_wq->private;
1741         bio->bi_end_io = end_io_wq->end_io;
1742         kfree(end_io_wq);
1743         bio_endio_nodec(bio, error);
1744 }
1745
1746 static int cleaner_kthread(void *arg)
1747 {
1748         struct btrfs_root *root = arg;
1749         int again;
1750
1751         do {
1752                 again = 0;
1753
1754                 /* Make the cleaner go to sleep early. */
1755                 if (btrfs_need_cleaner_sleep(root))
1756                         goto sleep;
1757
1758                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1759                         goto sleep;
1760
1761                 /*
1762                  * Avoid the problem that we change the status of the fs
1763                  * during the above check and trylock.
1764                  */
1765                 if (btrfs_need_cleaner_sleep(root)) {
1766                         mutex_unlock(&root->fs_info->cleaner_mutex);
1767                         goto sleep;
1768                 }
1769
1770                 btrfs_run_delayed_iputs(root);
1771                 again = btrfs_clean_one_deleted_snapshot(root);
1772                 mutex_unlock(&root->fs_info->cleaner_mutex);
1773
1774                 /*
1775                  * The defragger has dealt with the R/O remount and umount,
1776                  * needn't do anything special here.
1777                  */
1778                 btrfs_run_defrag_inodes(root->fs_info);
1779 sleep:
1780                 if (!try_to_freeze() && !again) {
1781                         set_current_state(TASK_INTERRUPTIBLE);
1782                         if (!kthread_should_stop())
1783                                 schedule();
1784                         __set_current_state(TASK_RUNNING);
1785                 }
1786         } while (!kthread_should_stop());
1787         return 0;
1788 }
1789
1790 static int transaction_kthread(void *arg)
1791 {
1792         struct btrfs_root *root = arg;
1793         struct btrfs_trans_handle *trans;
1794         struct btrfs_transaction *cur;
1795         u64 transid;
1796         unsigned long now;
1797         unsigned long delay;
1798         bool cannot_commit;
1799
1800         do {
1801                 cannot_commit = false;
1802                 delay = HZ * root->fs_info->commit_interval;
1803                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1804
1805                 spin_lock(&root->fs_info->trans_lock);
1806                 cur = root->fs_info->running_transaction;
1807                 if (!cur) {
1808                         spin_unlock(&root->fs_info->trans_lock);
1809                         goto sleep;
1810                 }
1811
1812                 now = get_seconds();
1813                 if (cur->state < TRANS_STATE_BLOCKED &&
1814                     (now < cur->start_time ||
1815                      now - cur->start_time < root->fs_info->commit_interval)) {
1816                         spin_unlock(&root->fs_info->trans_lock);
1817                         delay = HZ * 5;
1818                         goto sleep;
1819                 }
1820                 transid = cur->transid;
1821                 spin_unlock(&root->fs_info->trans_lock);
1822
1823                 /* If the file system is aborted, this will always fail. */
1824                 trans = btrfs_attach_transaction(root);
1825                 if (IS_ERR(trans)) {
1826                         if (PTR_ERR(trans) != -ENOENT)
1827                                 cannot_commit = true;
1828                         goto sleep;
1829                 }
1830                 if (transid == trans->transid) {
1831                         btrfs_commit_transaction(trans, root);
1832                 } else {
1833                         btrfs_end_transaction(trans, root);
1834                 }
1835 sleep:
1836                 wake_up_process(root->fs_info->cleaner_kthread);
1837                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1838
1839                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1840                                       &root->fs_info->fs_state)))
1841                         btrfs_cleanup_transaction(root);
1842                 if (!try_to_freeze()) {
1843                         set_current_state(TASK_INTERRUPTIBLE);
1844                         if (!kthread_should_stop() &&
1845                             (!btrfs_transaction_blocked(root->fs_info) ||
1846                              cannot_commit))
1847                                 schedule_timeout(delay);
1848                         __set_current_state(TASK_RUNNING);
1849                 }
1850         } while (!kthread_should_stop());
1851         return 0;
1852 }
1853
1854 /*
1855  * this will find the highest generation in the array of
1856  * root backups.  The index of the highest array is returned,
1857  * or -1 if we can't find anything.
1858  *
1859  * We check to make sure the array is valid by comparing the
1860  * generation of the latest  root in the array with the generation
1861  * in the super block.  If they don't match we pitch it.
1862  */
1863 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1864 {
1865         u64 cur;
1866         int newest_index = -1;
1867         struct btrfs_root_backup *root_backup;
1868         int i;
1869
1870         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1871                 root_backup = info->super_copy->super_roots + i;
1872                 cur = btrfs_backup_tree_root_gen(root_backup);
1873                 if (cur == newest_gen)
1874                         newest_index = i;
1875         }
1876
1877         /* check to see if we actually wrapped around */
1878         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1879                 root_backup = info->super_copy->super_roots;
1880                 cur = btrfs_backup_tree_root_gen(root_backup);
1881                 if (cur == newest_gen)
1882                         newest_index = 0;
1883         }
1884         return newest_index;
1885 }
1886
1887
1888 /*
1889  * find the oldest backup so we know where to store new entries
1890  * in the backup array.  This will set the backup_root_index
1891  * field in the fs_info struct
1892  */
1893 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1894                                      u64 newest_gen)
1895 {
1896         int newest_index = -1;
1897
1898         newest_index = find_newest_super_backup(info, newest_gen);
1899         /* if there was garbage in there, just move along */
1900         if (newest_index == -1) {
1901                 info->backup_root_index = 0;
1902         } else {
1903                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1904         }
1905 }
1906
1907 /*
1908  * copy all the root pointers into the super backup array.
1909  * this will bump the backup pointer by one when it is
1910  * done
1911  */
1912 static void backup_super_roots(struct btrfs_fs_info *info)
1913 {
1914         int next_backup;
1915         struct btrfs_root_backup *root_backup;
1916         int last_backup;
1917
1918         next_backup = info->backup_root_index;
1919         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1920                 BTRFS_NUM_BACKUP_ROOTS;
1921
1922         /*
1923          * just overwrite the last backup if we're at the same generation
1924          * this happens only at umount
1925          */
1926         root_backup = info->super_for_commit->super_roots + last_backup;
1927         if (btrfs_backup_tree_root_gen(root_backup) ==
1928             btrfs_header_generation(info->tree_root->node))
1929                 next_backup = last_backup;
1930
1931         root_backup = info->super_for_commit->super_roots + next_backup;
1932
1933         /*
1934          * make sure all of our padding and empty slots get zero filled
1935          * regardless of which ones we use today
1936          */
1937         memset(root_backup, 0, sizeof(*root_backup));
1938
1939         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1940
1941         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1942         btrfs_set_backup_tree_root_gen(root_backup,
1943                                btrfs_header_generation(info->tree_root->node));
1944
1945         btrfs_set_backup_tree_root_level(root_backup,
1946                                btrfs_header_level(info->tree_root->node));
1947
1948         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1949         btrfs_set_backup_chunk_root_gen(root_backup,
1950                                btrfs_header_generation(info->chunk_root->node));
1951         btrfs_set_backup_chunk_root_level(root_backup,
1952                                btrfs_header_level(info->chunk_root->node));
1953
1954         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1955         btrfs_set_backup_extent_root_gen(root_backup,
1956                                btrfs_header_generation(info->extent_root->node));
1957         btrfs_set_backup_extent_root_level(root_backup,
1958                                btrfs_header_level(info->extent_root->node));
1959
1960         /*
1961          * we might commit during log recovery, which happens before we set
1962          * the fs_root.  Make sure it is valid before we fill it in.
1963          */
1964         if (info->fs_root && info->fs_root->node) {
1965                 btrfs_set_backup_fs_root(root_backup,
1966                                          info->fs_root->node->start);
1967                 btrfs_set_backup_fs_root_gen(root_backup,
1968                                btrfs_header_generation(info->fs_root->node));
1969                 btrfs_set_backup_fs_root_level(root_backup,
1970                                btrfs_header_level(info->fs_root->node));
1971         }
1972
1973         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1974         btrfs_set_backup_dev_root_gen(root_backup,
1975                                btrfs_header_generation(info->dev_root->node));
1976         btrfs_set_backup_dev_root_level(root_backup,
1977                                        btrfs_header_level(info->dev_root->node));
1978
1979         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1980         btrfs_set_backup_csum_root_gen(root_backup,
1981                                btrfs_header_generation(info->csum_root->node));
1982         btrfs_set_backup_csum_root_level(root_backup,
1983                                btrfs_header_level(info->csum_root->node));
1984
1985         btrfs_set_backup_total_bytes(root_backup,
1986                              btrfs_super_total_bytes(info->super_copy));
1987         btrfs_set_backup_bytes_used(root_backup,
1988                              btrfs_super_bytes_used(info->super_copy));
1989         btrfs_set_backup_num_devices(root_backup,
1990                              btrfs_super_num_devices(info->super_copy));
1991
1992         /*
1993          * if we don't copy this out to the super_copy, it won't get remembered
1994          * for the next commit
1995          */
1996         memcpy(&info->super_copy->super_roots,
1997                &info->super_for_commit->super_roots,
1998                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1999 }
2000
2001 /*
2002  * this copies info out of the root backup array and back into
2003  * the in-memory super block.  It is meant to help iterate through
2004  * the array, so you send it the number of backups you've already
2005  * tried and the last backup index you used.
2006  *
2007  * this returns -1 when it has tried all the backups
2008  */
2009 static noinline int next_root_backup(struct btrfs_fs_info *info,
2010                                      struct btrfs_super_block *super,
2011                                      int *num_backups_tried, int *backup_index)
2012 {
2013         struct btrfs_root_backup *root_backup;
2014         int newest = *backup_index;
2015
2016         if (*num_backups_tried == 0) {
2017                 u64 gen = btrfs_super_generation(super);
2018
2019                 newest = find_newest_super_backup(info, gen);
2020                 if (newest == -1)
2021                         return -1;
2022
2023                 *backup_index = newest;
2024                 *num_backups_tried = 1;
2025         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2026                 /* we've tried all the backups, all done */
2027                 return -1;
2028         } else {
2029                 /* jump to the next oldest backup */
2030                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2031                         BTRFS_NUM_BACKUP_ROOTS;
2032                 *backup_index = newest;
2033                 *num_backups_tried += 1;
2034         }
2035         root_backup = super->super_roots + newest;
2036
2037         btrfs_set_super_generation(super,
2038                                    btrfs_backup_tree_root_gen(root_backup));
2039         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2040         btrfs_set_super_root_level(super,
2041                                    btrfs_backup_tree_root_level(root_backup));
2042         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2043
2044         /*
2045          * fixme: the total bytes and num_devices need to match or we should
2046          * need a fsck
2047          */
2048         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2049         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2050         return 0;
2051 }
2052
2053 /* helper to cleanup workers */
2054 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2055 {
2056         btrfs_destroy_workqueue(fs_info->fixup_workers);
2057         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2058         btrfs_destroy_workqueue(fs_info->workers);
2059         btrfs_destroy_workqueue(fs_info->endio_workers);
2060         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2061         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2062         btrfs_destroy_workqueue(fs_info->rmw_workers);
2063         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2064         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2065         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2066         btrfs_destroy_workqueue(fs_info->submit_workers);
2067         btrfs_destroy_workqueue(fs_info->delayed_workers);
2068         btrfs_destroy_workqueue(fs_info->caching_workers);
2069         btrfs_destroy_workqueue(fs_info->readahead_workers);
2070         btrfs_destroy_workqueue(fs_info->flush_workers);
2071         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2072         btrfs_destroy_workqueue(fs_info->extent_workers);
2073 }
2074
2075 static void free_root_extent_buffers(struct btrfs_root *root)
2076 {
2077         if (root) {
2078                 free_extent_buffer(root->node);
2079                 free_extent_buffer(root->commit_root);
2080                 root->node = NULL;
2081                 root->commit_root = NULL;
2082         }
2083 }
2084
2085 /* helper to cleanup tree roots */
2086 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2087 {
2088         free_root_extent_buffers(info->tree_root);
2089
2090         free_root_extent_buffers(info->dev_root);
2091         free_root_extent_buffers(info->extent_root);
2092         free_root_extent_buffers(info->csum_root);
2093         free_root_extent_buffers(info->quota_root);
2094         free_root_extent_buffers(info->uuid_root);
2095         if (chunk_root)
2096                 free_root_extent_buffers(info->chunk_root);
2097 }
2098
2099 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2100 {
2101         int ret;
2102         struct btrfs_root *gang[8];
2103         int i;
2104
2105         while (!list_empty(&fs_info->dead_roots)) {
2106                 gang[0] = list_entry(fs_info->dead_roots.next,
2107                                      struct btrfs_root, root_list);
2108                 list_del(&gang[0]->root_list);
2109
2110                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2111                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2112                 } else {
2113                         free_extent_buffer(gang[0]->node);
2114                         free_extent_buffer(gang[0]->commit_root);
2115                         btrfs_put_fs_root(gang[0]);
2116                 }
2117         }
2118
2119         while (1) {
2120                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2121                                              (void **)gang, 0,
2122                                              ARRAY_SIZE(gang));
2123                 if (!ret)
2124                         break;
2125                 for (i = 0; i < ret; i++)
2126                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2127         }
2128
2129         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2130                 btrfs_free_log_root_tree(NULL, fs_info);
2131                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2132                                             fs_info->pinned_extents);
2133         }
2134 }
2135
2136 int open_ctree(struct super_block *sb,
2137                struct btrfs_fs_devices *fs_devices,
2138                char *options)
2139 {
2140         u32 sectorsize;
2141         u32 nodesize;
2142         u32 leafsize;
2143         u32 blocksize;
2144         u32 stripesize;
2145         u64 generation;
2146         u64 features;
2147         struct btrfs_key location;
2148         struct buffer_head *bh;
2149         struct btrfs_super_block *disk_super;
2150         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2151         struct btrfs_root *tree_root;
2152         struct btrfs_root *extent_root;
2153         struct btrfs_root *csum_root;
2154         struct btrfs_root *chunk_root;
2155         struct btrfs_root *dev_root;
2156         struct btrfs_root *quota_root;
2157         struct btrfs_root *uuid_root;
2158         struct btrfs_root *log_tree_root;
2159         int ret;
2160         int err = -EINVAL;
2161         int num_backups_tried = 0;
2162         int backup_index = 0;
2163         int max_active;
2164         int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2165         bool create_uuid_tree;
2166         bool check_uuid_tree;
2167
2168         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2169         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2170         if (!tree_root || !chunk_root) {
2171                 err = -ENOMEM;
2172                 goto fail;
2173         }
2174
2175         ret = init_srcu_struct(&fs_info->subvol_srcu);
2176         if (ret) {
2177                 err = ret;
2178                 goto fail;
2179         }
2180
2181         ret = setup_bdi(fs_info, &fs_info->bdi);
2182         if (ret) {
2183                 err = ret;
2184                 goto fail_srcu;
2185         }
2186
2187         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2188         if (ret) {
2189                 err = ret;
2190                 goto fail_bdi;
2191         }
2192         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2193                                         (1 + ilog2(nr_cpu_ids));
2194
2195         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2196         if (ret) {
2197                 err = ret;
2198                 goto fail_dirty_metadata_bytes;
2199         }
2200
2201         ret = percpu_counter_init(&fs_info->bio_counter, 0);
2202         if (ret) {
2203                 err = ret;
2204                 goto fail_delalloc_bytes;
2205         }
2206
2207         fs_info->btree_inode = new_inode(sb);
2208         if (!fs_info->btree_inode) {
2209                 err = -ENOMEM;
2210                 goto fail_bio_counter;
2211         }
2212
2213         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2214
2215         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2216         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2217         INIT_LIST_HEAD(&fs_info->trans_list);
2218         INIT_LIST_HEAD(&fs_info->dead_roots);
2219         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2220         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2221         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2222         spin_lock_init(&fs_info->delalloc_root_lock);
2223         spin_lock_init(&fs_info->trans_lock);
2224         spin_lock_init(&fs_info->fs_roots_radix_lock);
2225         spin_lock_init(&fs_info->delayed_iput_lock);
2226         spin_lock_init(&fs_info->defrag_inodes_lock);
2227         spin_lock_init(&fs_info->free_chunk_lock);
2228         spin_lock_init(&fs_info->tree_mod_seq_lock);
2229         spin_lock_init(&fs_info->super_lock);
2230         spin_lock_init(&fs_info->qgroup_op_lock);
2231         spin_lock_init(&fs_info->buffer_lock);
2232         rwlock_init(&fs_info->tree_mod_log_lock);
2233         mutex_init(&fs_info->reloc_mutex);
2234         mutex_init(&fs_info->delalloc_root_mutex);
2235         seqlock_init(&fs_info->profiles_lock);
2236
2237         init_completion(&fs_info->kobj_unregister);
2238         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2239         INIT_LIST_HEAD(&fs_info->space_info);
2240         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2241         btrfs_mapping_init(&fs_info->mapping_tree);
2242         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2243                              BTRFS_BLOCK_RSV_GLOBAL);
2244         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2245                              BTRFS_BLOCK_RSV_DELALLOC);
2246         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2247         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2248         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2249         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2250                              BTRFS_BLOCK_RSV_DELOPS);
2251         atomic_set(&fs_info->nr_async_submits, 0);
2252         atomic_set(&fs_info->async_delalloc_pages, 0);
2253         atomic_set(&fs_info->async_submit_draining, 0);
2254         atomic_set(&fs_info->nr_async_bios, 0);
2255         atomic_set(&fs_info->defrag_running, 0);
2256         atomic_set(&fs_info->qgroup_op_seq, 0);
2257         atomic64_set(&fs_info->tree_mod_seq, 0);
2258         fs_info->sb = sb;
2259         fs_info->max_inline = 8192 * 1024;
2260         fs_info->metadata_ratio = 0;
2261         fs_info->defrag_inodes = RB_ROOT;
2262         fs_info->free_chunk_space = 0;
2263         fs_info->tree_mod_log = RB_ROOT;
2264         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2265         fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2266         /* readahead state */
2267         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2268         spin_lock_init(&fs_info->reada_lock);
2269
2270         fs_info->thread_pool_size = min_t(unsigned long,
2271                                           num_online_cpus() + 2, 8);
2272
2273         INIT_LIST_HEAD(&fs_info->ordered_roots);
2274         spin_lock_init(&fs_info->ordered_root_lock);
2275         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2276                                         GFP_NOFS);
2277         if (!fs_info->delayed_root) {
2278                 err = -ENOMEM;
2279                 goto fail_iput;
2280         }
2281         btrfs_init_delayed_root(fs_info->delayed_root);
2282
2283         mutex_init(&fs_info->scrub_lock);
2284         atomic_set(&fs_info->scrubs_running, 0);
2285         atomic_set(&fs_info->scrub_pause_req, 0);
2286         atomic_set(&fs_info->scrubs_paused, 0);
2287         atomic_set(&fs_info->scrub_cancel_req, 0);
2288         init_waitqueue_head(&fs_info->replace_wait);
2289         init_waitqueue_head(&fs_info->scrub_pause_wait);
2290         fs_info->scrub_workers_refcnt = 0;
2291 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2292         fs_info->check_integrity_print_mask = 0;
2293 #endif
2294
2295         spin_lock_init(&fs_info->balance_lock);
2296         mutex_init(&fs_info->balance_mutex);
2297         atomic_set(&fs_info->balance_running, 0);
2298         atomic_set(&fs_info->balance_pause_req, 0);
2299         atomic_set(&fs_info->balance_cancel_req, 0);
2300         fs_info->balance_ctl = NULL;
2301         init_waitqueue_head(&fs_info->balance_wait_q);
2302         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2303
2304         sb->s_blocksize = 4096;
2305         sb->s_blocksize_bits = blksize_bits(4096);
2306         sb->s_bdi = &fs_info->bdi;
2307
2308         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2309         set_nlink(fs_info->btree_inode, 1);
2310         /*
2311          * we set the i_size on the btree inode to the max possible int.
2312          * the real end of the address space is determined by all of
2313          * the devices in the system
2314          */
2315         fs_info->btree_inode->i_size = OFFSET_MAX;
2316         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2317         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2318
2319         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2320         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2321                              fs_info->btree_inode->i_mapping);
2322         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2323         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2324
2325         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2326
2327         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2328         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2329                sizeof(struct btrfs_key));
2330         set_bit(BTRFS_INODE_DUMMY,
2331                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2332         btrfs_insert_inode_hash(fs_info->btree_inode);
2333
2334         spin_lock_init(&fs_info->block_group_cache_lock);
2335         fs_info->block_group_cache_tree = RB_ROOT;
2336         fs_info->first_logical_byte = (u64)-1;
2337
2338         extent_io_tree_init(&fs_info->freed_extents[0],
2339                              fs_info->btree_inode->i_mapping);
2340         extent_io_tree_init(&fs_info->freed_extents[1],
2341                              fs_info->btree_inode->i_mapping);
2342         fs_info->pinned_extents = &fs_info->freed_extents[0];
2343         fs_info->do_barriers = 1;
2344
2345
2346         mutex_init(&fs_info->ordered_operations_mutex);
2347         mutex_init(&fs_info->ordered_extent_flush_mutex);
2348         mutex_init(&fs_info->tree_log_mutex);
2349         mutex_init(&fs_info->chunk_mutex);
2350         mutex_init(&fs_info->transaction_kthread_mutex);
2351         mutex_init(&fs_info->cleaner_mutex);
2352         mutex_init(&fs_info->volume_mutex);
2353         init_rwsem(&fs_info->commit_root_sem);
2354         init_rwsem(&fs_info->cleanup_work_sem);
2355         init_rwsem(&fs_info->subvol_sem);
2356         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2357         fs_info->dev_replace.lock_owner = 0;
2358         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2359         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2360         mutex_init(&fs_info->dev_replace.lock_management_lock);
2361         mutex_init(&fs_info->dev_replace.lock);
2362
2363         spin_lock_init(&fs_info->qgroup_lock);
2364         mutex_init(&fs_info->qgroup_ioctl_lock);
2365         fs_info->qgroup_tree = RB_ROOT;
2366         fs_info->qgroup_op_tree = RB_ROOT;
2367         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2368         fs_info->qgroup_seq = 1;
2369         fs_info->quota_enabled = 0;
2370         fs_info->pending_quota_state = 0;
2371         fs_info->qgroup_ulist = NULL;
2372         mutex_init(&fs_info->qgroup_rescan_lock);
2373
2374         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2375         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2376
2377         init_waitqueue_head(&fs_info->transaction_throttle);
2378         init_waitqueue_head(&fs_info->transaction_wait);
2379         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2380         init_waitqueue_head(&fs_info->async_submit_wait);
2381
2382         ret = btrfs_alloc_stripe_hash_table(fs_info);
2383         if (ret) {
2384                 err = ret;
2385                 goto fail_alloc;
2386         }
2387
2388         __setup_root(4096, 4096, 4096, 4096, tree_root,
2389                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2390
2391         invalidate_bdev(fs_devices->latest_bdev);
2392
2393         /*
2394          * Read super block and check the signature bytes only
2395          */
2396         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2397         if (!bh) {
2398                 err = -EINVAL;
2399                 goto fail_alloc;
2400         }
2401
2402         /*
2403          * We want to check superblock checksum, the type is stored inside.
2404          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2405          */
2406         if (btrfs_check_super_csum(bh->b_data)) {
2407                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2408                 err = -EINVAL;
2409                 goto fail_alloc;
2410         }
2411
2412         /*
2413          * super_copy is zeroed at allocation time and we never touch the
2414          * following bytes up to INFO_SIZE, the checksum is calculated from
2415          * the whole block of INFO_SIZE
2416          */
2417         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2418         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2419                sizeof(*fs_info->super_for_commit));
2420         brelse(bh);
2421
2422         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2423
2424         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2425         if (ret) {
2426                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2427                 err = -EINVAL;
2428                 goto fail_alloc;
2429         }
2430
2431         disk_super = fs_info->super_copy;
2432         if (!btrfs_super_root(disk_super))
2433                 goto fail_alloc;
2434
2435         /* check FS state, whether FS is broken. */
2436         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2437                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2438
2439         /*
2440          * run through our array of backup supers and setup
2441          * our ring pointer to the oldest one
2442          */
2443         generation = btrfs_super_generation(disk_super);
2444         find_oldest_super_backup(fs_info, generation);
2445
2446         /*
2447          * In the long term, we'll store the compression type in the super
2448          * block, and it'll be used for per file compression control.
2449          */
2450         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2451
2452         ret = btrfs_parse_options(tree_root, options);
2453         if (ret) {
2454                 err = ret;
2455                 goto fail_alloc;
2456         }
2457
2458         features = btrfs_super_incompat_flags(disk_super) &
2459                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2460         if (features) {
2461                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2462                        "unsupported optional features (%Lx).\n",
2463                        features);
2464                 err = -EINVAL;
2465                 goto fail_alloc;
2466         }
2467
2468         if (btrfs_super_leafsize(disk_super) !=
2469             btrfs_super_nodesize(disk_super)) {
2470                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2471                        "blocksizes don't match.  node %d leaf %d\n",
2472                        btrfs_super_nodesize(disk_super),
2473                        btrfs_super_leafsize(disk_super));
2474                 err = -EINVAL;
2475                 goto fail_alloc;
2476         }
2477         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2478                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2479                        "blocksize (%d) was too large\n",
2480                        btrfs_super_leafsize(disk_super));
2481                 err = -EINVAL;
2482                 goto fail_alloc;
2483         }
2484
2485         features = btrfs_super_incompat_flags(disk_super);
2486         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2487         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2488                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2489
2490         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2491                 printk(KERN_ERR "BTRFS: has skinny extents\n");
2492
2493         /*
2494          * flag our filesystem as having big metadata blocks if
2495          * they are bigger than the page size
2496          */
2497         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2498                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2499                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2500                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2501         }
2502
2503         nodesize = btrfs_super_nodesize(disk_super);
2504         leafsize = btrfs_super_leafsize(disk_super);
2505         sectorsize = btrfs_super_sectorsize(disk_super);
2506         stripesize = btrfs_super_stripesize(disk_super);
2507         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2508         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2509
2510         /*
2511          * mixed block groups end up with duplicate but slightly offset
2512          * extent buffers for the same range.  It leads to corruptions
2513          */
2514         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2515             (sectorsize != leafsize)) {
2516                 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2517                                 "are not allowed for mixed block groups on %s\n",
2518                                 sb->s_id);
2519                 goto fail_alloc;
2520         }
2521
2522         /*
2523          * Needn't use the lock because there is no other task which will
2524          * update the flag.
2525          */
2526         btrfs_set_super_incompat_flags(disk_super, features);
2527
2528         features = btrfs_super_compat_ro_flags(disk_super) &
2529                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2530         if (!(sb->s_flags & MS_RDONLY) && features) {
2531                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2532                        "unsupported option features (%Lx).\n",
2533                        features);
2534                 err = -EINVAL;
2535                 goto fail_alloc;
2536         }
2537
2538         max_active = fs_info->thread_pool_size;
2539
2540         fs_info->workers =
2541                 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2542                                       max_active, 16);
2543
2544         fs_info->delalloc_workers =
2545                 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2546
2547         fs_info->flush_workers =
2548                 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2549
2550         fs_info->caching_workers =
2551                 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2552
2553         /*
2554          * a higher idle thresh on the submit workers makes it much more
2555          * likely that bios will be send down in a sane order to the
2556          * devices
2557          */
2558         fs_info->submit_workers =
2559                 btrfs_alloc_workqueue("submit", flags,
2560                                       min_t(u64, fs_devices->num_devices,
2561                                             max_active), 64);
2562
2563         fs_info->fixup_workers =
2564                 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2565
2566         /*
2567          * endios are largely parallel and should have a very
2568          * low idle thresh
2569          */
2570         fs_info->endio_workers =
2571                 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2572         fs_info->endio_meta_workers =
2573                 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2574         fs_info->endio_meta_write_workers =
2575                 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2576         fs_info->endio_raid56_workers =
2577                 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2578         fs_info->rmw_workers =
2579                 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2580         fs_info->endio_write_workers =
2581                 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2582         fs_info->endio_freespace_worker =
2583                 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2584         fs_info->delayed_workers =
2585                 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2586         fs_info->readahead_workers =
2587                 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2588         fs_info->qgroup_rescan_workers =
2589                 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2590         fs_info->extent_workers =
2591                 btrfs_alloc_workqueue("extent-refs", flags,
2592                                       min_t(u64, fs_devices->num_devices,
2593                                             max_active), 8);
2594
2595         if (!(fs_info->workers && fs_info->delalloc_workers &&
2596               fs_info->submit_workers && fs_info->flush_workers &&
2597               fs_info->endio_workers && fs_info->endio_meta_workers &&
2598               fs_info->endio_meta_write_workers &&
2599               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2600               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2601               fs_info->caching_workers && fs_info->readahead_workers &&
2602               fs_info->fixup_workers && fs_info->delayed_workers &&
2603               fs_info->fixup_workers && fs_info->extent_workers &&
2604               fs_info->qgroup_rescan_workers)) {
2605                 err = -ENOMEM;
2606                 goto fail_sb_buffer;
2607         }
2608
2609         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2610         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2611                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2612
2613         tree_root->nodesize = nodesize;
2614         tree_root->leafsize = leafsize;
2615         tree_root->sectorsize = sectorsize;
2616         tree_root->stripesize = stripesize;
2617
2618         sb->s_blocksize = sectorsize;
2619         sb->s_blocksize_bits = blksize_bits(sectorsize);
2620
2621         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2622                 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2623                 goto fail_sb_buffer;
2624         }
2625
2626         if (sectorsize != PAGE_SIZE) {
2627                 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2628                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2629                 goto fail_sb_buffer;
2630         }
2631
2632         mutex_lock(&fs_info->chunk_mutex);
2633         ret = btrfs_read_sys_array(tree_root);
2634         mutex_unlock(&fs_info->chunk_mutex);
2635         if (ret) {
2636                 printk(KERN_WARNING "BTRFS: failed to read the system "
2637                        "array on %s\n", sb->s_id);
2638                 goto fail_sb_buffer;
2639         }
2640
2641         blocksize = btrfs_level_size(tree_root,
2642                                      btrfs_super_chunk_root_level(disk_super));
2643         generation = btrfs_super_chunk_root_generation(disk_super);
2644
2645         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2646                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2647
2648         chunk_root->node = read_tree_block(chunk_root,
2649                                            btrfs_super_chunk_root(disk_super),
2650                                            blocksize, generation);
2651         if (!chunk_root->node ||
2652             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2653                 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2654                        sb->s_id);
2655                 goto fail_tree_roots;
2656         }
2657         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2658         chunk_root->commit_root = btrfs_root_node(chunk_root);
2659
2660         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2661            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2662
2663         ret = btrfs_read_chunk_tree(chunk_root);
2664         if (ret) {
2665                 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2666                        sb->s_id);
2667                 goto fail_tree_roots;
2668         }
2669
2670         /*
2671          * keep the device that is marked to be the target device for the
2672          * dev_replace procedure
2673          */
2674         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2675
2676         if (!fs_devices->latest_bdev) {
2677                 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2678                        sb->s_id);
2679                 goto fail_tree_roots;
2680         }
2681
2682 retry_root_backup:
2683         blocksize = btrfs_level_size(tree_root,
2684                                      btrfs_super_root_level(disk_super));
2685         generation = btrfs_super_generation(disk_super);
2686
2687         tree_root->node = read_tree_block(tree_root,
2688                                           btrfs_super_root(disk_super),
2689                                           blocksize, generation);
2690         if (!tree_root->node ||
2691             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2692                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2693                        sb->s_id);
2694
2695                 goto recovery_tree_root;
2696         }
2697
2698         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2699         tree_root->commit_root = btrfs_root_node(tree_root);
2700         btrfs_set_root_refs(&tree_root->root_item, 1);
2701
2702         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2703         location.type = BTRFS_ROOT_ITEM_KEY;
2704         location.offset = 0;
2705
2706         extent_root = btrfs_read_tree_root(tree_root, &location);
2707         if (IS_ERR(extent_root)) {
2708                 ret = PTR_ERR(extent_root);
2709                 goto recovery_tree_root;
2710         }
2711         set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
2712         fs_info->extent_root = extent_root;
2713
2714         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2715         dev_root = btrfs_read_tree_root(tree_root, &location);
2716         if (IS_ERR(dev_root)) {
2717                 ret = PTR_ERR(dev_root);
2718                 goto recovery_tree_root;
2719         }
2720         set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
2721         fs_info->dev_root = dev_root;
2722         btrfs_init_devices_late(fs_info);
2723
2724         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2725         csum_root = btrfs_read_tree_root(tree_root, &location);
2726         if (IS_ERR(csum_root)) {
2727                 ret = PTR_ERR(csum_root);
2728                 goto recovery_tree_root;
2729         }
2730         set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
2731         fs_info->csum_root = csum_root;
2732
2733         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2734         quota_root = btrfs_read_tree_root(tree_root, &location);
2735         if (!IS_ERR(quota_root)) {
2736                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
2737                 fs_info->quota_enabled = 1;
2738                 fs_info->pending_quota_state = 1;
2739                 fs_info->quota_root = quota_root;
2740         }
2741
2742         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2743         uuid_root = btrfs_read_tree_root(tree_root, &location);
2744         if (IS_ERR(uuid_root)) {
2745                 ret = PTR_ERR(uuid_root);
2746                 if (ret != -ENOENT)
2747                         goto recovery_tree_root;
2748                 create_uuid_tree = true;
2749                 check_uuid_tree = false;
2750         } else {
2751                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
2752                 fs_info->uuid_root = uuid_root;
2753                 create_uuid_tree = false;
2754                 check_uuid_tree =
2755                     generation != btrfs_super_uuid_tree_generation(disk_super);
2756         }
2757
2758         fs_info->generation = generation;
2759         fs_info->last_trans_committed = generation;
2760
2761         ret = btrfs_recover_balance(fs_info);
2762         if (ret) {
2763                 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2764                 goto fail_block_groups;
2765         }
2766
2767         ret = btrfs_init_dev_stats(fs_info);
2768         if (ret) {
2769                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2770                        ret);
2771                 goto fail_block_groups;
2772         }
2773
2774         ret = btrfs_init_dev_replace(fs_info);
2775         if (ret) {
2776                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2777                 goto fail_block_groups;
2778         }
2779
2780         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2781
2782         ret = btrfs_sysfs_add_one(fs_info);
2783         if (ret) {
2784                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2785                 goto fail_block_groups;
2786         }
2787
2788         ret = btrfs_init_space_info(fs_info);
2789         if (ret) {
2790                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2791                 goto fail_sysfs;
2792         }
2793
2794         ret = btrfs_read_block_groups(extent_root);
2795         if (ret) {
2796                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2797                 goto fail_sysfs;
2798         }
2799         fs_info->num_tolerated_disk_barrier_failures =
2800                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2801         if (fs_info->fs_devices->missing_devices >
2802              fs_info->num_tolerated_disk_barrier_failures &&
2803             !(sb->s_flags & MS_RDONLY)) {
2804                 printk(KERN_WARNING "BTRFS: "
2805                         "too many missing devices, writeable mount is not allowed\n");
2806                 goto fail_sysfs;
2807         }
2808
2809         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2810                                                "btrfs-cleaner");
2811         if (IS_ERR(fs_info->cleaner_kthread))
2812                 goto fail_sysfs;
2813
2814         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2815                                                    tree_root,
2816                                                    "btrfs-transaction");
2817         if (IS_ERR(fs_info->transaction_kthread))
2818                 goto fail_cleaner;
2819
2820         if (!btrfs_test_opt(tree_root, SSD) &&
2821             !btrfs_test_opt(tree_root, NOSSD) &&
2822             !fs_info->fs_devices->rotating) {
2823                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2824                        "mode\n");
2825                 btrfs_set_opt(fs_info->mount_opt, SSD);
2826         }
2827
2828         /* Set the real inode map cache flag */
2829         if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2830                 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2831
2832 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2833         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2834                 ret = btrfsic_mount(tree_root, fs_devices,
2835                                     btrfs_test_opt(tree_root,
2836                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2837                                     1 : 0,
2838                                     fs_info->check_integrity_print_mask);
2839                 if (ret)
2840                         printk(KERN_WARNING "BTRFS: failed to initialize"
2841                                " integrity check module %s\n", sb->s_id);
2842         }
2843 #endif
2844         ret = btrfs_read_qgroup_config(fs_info);
2845         if (ret)
2846                 goto fail_trans_kthread;
2847
2848         /* do not make disk changes in broken FS */
2849         if (btrfs_super_log_root(disk_super) != 0) {
2850                 u64 bytenr = btrfs_super_log_root(disk_super);
2851
2852                 if (fs_devices->rw_devices == 0) {
2853                         printk(KERN_WARNING "BTRFS: log replay required "
2854                                "on RO media\n");
2855                         err = -EIO;
2856                         goto fail_qgroup;
2857                 }
2858                 blocksize =
2859                      btrfs_level_size(tree_root,
2860                                       btrfs_super_log_root_level(disk_super));
2861
2862                 log_tree_root = btrfs_alloc_root(fs_info);
2863                 if (!log_tree_root) {
2864                         err = -ENOMEM;
2865                         goto fail_qgroup;
2866                 }
2867
2868                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2869                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2870
2871                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2872                                                       blocksize,
2873                                                       generation + 1);
2874                 if (!log_tree_root->node ||
2875                     !extent_buffer_uptodate(log_tree_root->node)) {
2876                         printk(KERN_ERR "BTRFS: failed to read log tree\n");
2877                         free_extent_buffer(log_tree_root->node);
2878                         kfree(log_tree_root);
2879                         goto fail_qgroup;
2880                 }
2881                 /* returns with log_tree_root freed on success */
2882                 ret = btrfs_recover_log_trees(log_tree_root);
2883                 if (ret) {
2884                         btrfs_error(tree_root->fs_info, ret,
2885                                     "Failed to recover log tree");
2886                         free_extent_buffer(log_tree_root->node);
2887                         kfree(log_tree_root);
2888                         goto fail_qgroup;
2889                 }
2890
2891                 if (sb->s_flags & MS_RDONLY) {
2892                         ret = btrfs_commit_super(tree_root);
2893                         if (ret)
2894                                 goto fail_qgroup;
2895                 }
2896         }
2897
2898         ret = btrfs_find_orphan_roots(tree_root);
2899         if (ret)
2900                 goto fail_qgroup;
2901
2902         if (!(sb->s_flags & MS_RDONLY)) {
2903                 ret = btrfs_cleanup_fs_roots(fs_info);
2904                 if (ret)
2905                         goto fail_qgroup;
2906
2907                 ret = btrfs_recover_relocation(tree_root);
2908                 if (ret < 0) {
2909                         printk(KERN_WARNING
2910                                "BTRFS: failed to recover relocation\n");
2911                         err = -EINVAL;
2912                         goto fail_qgroup;
2913                 }
2914         }
2915
2916         location.objectid = BTRFS_FS_TREE_OBJECTID;
2917         location.type = BTRFS_ROOT_ITEM_KEY;
2918         location.offset = 0;
2919
2920         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2921         if (IS_ERR(fs_info->fs_root)) {
2922                 err = PTR_ERR(fs_info->fs_root);
2923                 goto fail_qgroup;
2924         }
2925
2926         if (sb->s_flags & MS_RDONLY)
2927                 return 0;
2928
2929         down_read(&fs_info->cleanup_work_sem);
2930         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2931             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2932                 up_read(&fs_info->cleanup_work_sem);
2933                 close_ctree(tree_root);
2934                 return ret;
2935         }
2936         up_read(&fs_info->cleanup_work_sem);
2937
2938         ret = btrfs_resume_balance_async(fs_info);
2939         if (ret) {
2940                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2941                 close_ctree(tree_root);
2942                 return ret;
2943         }
2944
2945         ret = btrfs_resume_dev_replace_async(fs_info);
2946         if (ret) {
2947                 pr_warn("BTRFS: failed to resume dev_replace\n");
2948                 close_ctree(tree_root);
2949                 return ret;
2950         }
2951
2952         btrfs_qgroup_rescan_resume(fs_info);
2953
2954         if (create_uuid_tree) {
2955                 pr_info("BTRFS: creating UUID tree\n");
2956                 ret = btrfs_create_uuid_tree(fs_info);
2957                 if (ret) {
2958                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
2959                                 ret);
2960                         close_ctree(tree_root);
2961                         return ret;
2962                 }
2963         } else if (check_uuid_tree ||
2964                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2965                 pr_info("BTRFS: checking UUID tree\n");
2966                 ret = btrfs_check_uuid_tree(fs_info);
2967                 if (ret) {
2968                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
2969                                 ret);
2970                         close_ctree(tree_root);
2971                         return ret;
2972                 }
2973         } else {
2974                 fs_info->update_uuid_tree_gen = 1;
2975         }
2976
2977         return 0;
2978
2979 fail_qgroup:
2980         btrfs_free_qgroup_config(fs_info);
2981 fail_trans_kthread:
2982         kthread_stop(fs_info->transaction_kthread);
2983         btrfs_cleanup_transaction(fs_info->tree_root);
2984         btrfs_free_fs_roots(fs_info);
2985 fail_cleaner:
2986         kthread_stop(fs_info->cleaner_kthread);
2987
2988         /*
2989          * make sure we're done with the btree inode before we stop our
2990          * kthreads
2991          */
2992         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2993
2994 fail_sysfs:
2995         btrfs_sysfs_remove_one(fs_info);
2996
2997 fail_block_groups:
2998         btrfs_put_block_group_cache(fs_info);
2999         btrfs_free_block_groups(fs_info);
3000
3001 fail_tree_roots:
3002         free_root_pointers(fs_info, 1);
3003         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3004
3005 fail_sb_buffer:
3006         btrfs_stop_all_workers(fs_info);
3007 fail_alloc:
3008 fail_iput:
3009         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3010
3011         iput(fs_info->btree_inode);
3012 fail_bio_counter:
3013         percpu_counter_destroy(&fs_info->bio_counter);
3014 fail_delalloc_bytes:
3015         percpu_counter_destroy(&fs_info->delalloc_bytes);
3016 fail_dirty_metadata_bytes:
3017         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3018 fail_bdi:
3019         bdi_destroy(&fs_info->bdi);
3020 fail_srcu:
3021         cleanup_srcu_struct(&fs_info->subvol_srcu);
3022 fail:
3023         btrfs_free_stripe_hash_table(fs_info);
3024         btrfs_close_devices(fs_info->fs_devices);
3025         return err;
3026
3027 recovery_tree_root:
3028         if (!btrfs_test_opt(tree_root, RECOVERY))
3029                 goto fail_tree_roots;
3030
3031         free_root_pointers(fs_info, 0);
3032
3033         /* don't use the log in recovery mode, it won't be valid */
3034         btrfs_set_super_log_root(disk_super, 0);
3035
3036         /* we can't trust the free space cache either */
3037         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3038
3039         ret = next_root_backup(fs_info, fs_info->super_copy,
3040                                &num_backups_tried, &backup_index);
3041         if (ret == -1)
3042                 goto fail_block_groups;
3043         goto retry_root_backup;
3044 }
3045
3046 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3047 {
3048         if (uptodate) {
3049                 set_buffer_uptodate(bh);
3050         } else {
3051                 struct btrfs_device *device = (struct btrfs_device *)
3052                         bh->b_private;
3053
3054                 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3055                                           "I/O error on %s\n",
3056                                           rcu_str_deref(device->name));
3057                 /* note, we dont' set_buffer_write_io_error because we have
3058                  * our own ways of dealing with the IO errors
3059                  */
3060                 clear_buffer_uptodate(bh);
3061                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3062         }
3063         unlock_buffer(bh);
3064         put_bh(bh);
3065 }
3066
3067 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3068 {
3069         struct buffer_head *bh;
3070         struct buffer_head *latest = NULL;
3071         struct btrfs_super_block *super;
3072         int i;
3073         u64 transid = 0;
3074         u64 bytenr;
3075
3076         /* we would like to check all the supers, but that would make
3077          * a btrfs mount succeed after a mkfs from a different FS.
3078          * So, we need to add a special mount option to scan for
3079          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3080          */
3081         for (i = 0; i < 1; i++) {
3082                 bytenr = btrfs_sb_offset(i);
3083                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3084                                         i_size_read(bdev->bd_inode))
3085                         break;
3086                 bh = __bread(bdev, bytenr / 4096,
3087                                         BTRFS_SUPER_INFO_SIZE);
3088                 if (!bh)
3089                         continue;
3090
3091                 super = (struct btrfs_super_block *)bh->b_data;
3092                 if (btrfs_super_bytenr(super) != bytenr ||
3093                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3094                         brelse(bh);
3095                         continue;
3096                 }
3097
3098                 if (!latest || btrfs_super_generation(super) > transid) {
3099                         brelse(latest);
3100                         latest = bh;
3101                         transid = btrfs_super_generation(super);
3102                 } else {
3103                         brelse(bh);
3104                 }
3105         }
3106         return latest;
3107 }
3108
3109 /*
3110  * this should be called twice, once with wait == 0 and
3111  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3112  * we write are pinned.
3113  *
3114  * They are released when wait == 1 is done.
3115  * max_mirrors must be the same for both runs, and it indicates how
3116  * many supers on this one device should be written.
3117  *
3118  * max_mirrors == 0 means to write them all.
3119  */
3120 static int write_dev_supers(struct btrfs_device *device,
3121                             struct btrfs_super_block *sb,
3122                             int do_barriers, int wait, int max_mirrors)
3123 {
3124         struct buffer_head *bh;
3125         int i;
3126         int ret;
3127         int errors = 0;
3128         u32 crc;
3129         u64 bytenr;
3130
3131         if (max_mirrors == 0)
3132                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3133
3134         for (i = 0; i < max_mirrors; i++) {
3135                 bytenr = btrfs_sb_offset(i);
3136                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3137                         break;
3138
3139                 if (wait) {
3140                         bh = __find_get_block(device->bdev, bytenr / 4096,
3141                                               BTRFS_SUPER_INFO_SIZE);
3142                         if (!bh) {
3143                                 errors++;
3144                                 continue;
3145                         }
3146                         wait_on_buffer(bh);
3147                         if (!buffer_uptodate(bh))
3148                                 errors++;
3149
3150                         /* drop our reference */
3151                         brelse(bh);
3152
3153                         /* drop the reference from the wait == 0 run */
3154                         brelse(bh);
3155                         continue;
3156                 } else {
3157                         btrfs_set_super_bytenr(sb, bytenr);
3158
3159                         crc = ~(u32)0;
3160                         crc = btrfs_csum_data((char *)sb +
3161                                               BTRFS_CSUM_SIZE, crc,
3162                                               BTRFS_SUPER_INFO_SIZE -
3163                                               BTRFS_CSUM_SIZE);
3164                         btrfs_csum_final(crc, sb->csum);
3165
3166                         /*
3167                          * one reference for us, and we leave it for the
3168                          * caller
3169                          */
3170                         bh = __getblk(device->bdev, bytenr / 4096,
3171                                       BTRFS_SUPER_INFO_SIZE);
3172                         if (!bh) {
3173                                 printk(KERN_ERR "BTRFS: couldn't get super "
3174                                        "buffer head for bytenr %Lu\n", bytenr);
3175                                 errors++;
3176                                 continue;
3177                         }
3178
3179                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3180
3181                         /* one reference for submit_bh */
3182                         get_bh(bh);
3183
3184                         set_buffer_uptodate(bh);
3185                         lock_buffer(bh);
3186                         bh->b_end_io = btrfs_end_buffer_write_sync;
3187                         bh->b_private = device;
3188                 }
3189
3190                 /*
3191                  * we fua the first super.  The others we allow
3192                  * to go down lazy.
3193                  */
3194                 if (i == 0)
3195                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3196                 else
3197                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3198                 if (ret)
3199                         errors++;
3200         }
3201         return errors < i ? 0 : -1;
3202 }
3203
3204 /*
3205  * endio for the write_dev_flush, this will wake anyone waiting
3206  * for the barrier when it is done
3207  */
3208 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3209 {
3210         if (err) {
3211                 if (err == -EOPNOTSUPP)
3212                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3213                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3214         }
3215         if (bio->bi_private)
3216                 complete(bio->bi_private);
3217         bio_put(bio);
3218 }
3219
3220 /*
3221  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3222  * sent down.  With wait == 1, it waits for the previous flush.
3223  *
3224  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3225  * capable
3226  */
3227 static int write_dev_flush(struct btrfs_device *device, int wait)
3228 {
3229         struct bio *bio;
3230         int ret = 0;
3231
3232         if (device->nobarriers)
3233                 return 0;
3234
3235         if (wait) {
3236                 bio = device->flush_bio;
3237                 if (!bio)
3238                         return 0;
3239
3240                 wait_for_completion(&device->flush_wait);
3241
3242                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3243                         printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3244                                       rcu_str_deref(device->name));
3245                         device->nobarriers = 1;
3246                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3247                         ret = -EIO;
3248                         btrfs_dev_stat_inc_and_print(device,
3249                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3250                 }
3251
3252                 /* drop the reference from the wait == 0 run */
3253                 bio_put(bio);
3254                 device->flush_bio = NULL;
3255
3256                 return ret;
3257         }
3258
3259         /*
3260          * one reference for us, and we leave it for the
3261          * caller
3262          */
3263         device->flush_bio = NULL;
3264         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3265         if (!bio)
3266                 return -ENOMEM;
3267
3268         bio->bi_end_io = btrfs_end_empty_barrier;
3269         bio->bi_bdev = device->bdev;
3270         init_completion(&device->flush_wait);
3271         bio->bi_private = &device->flush_wait;
3272         device->flush_bio = bio;
3273
3274         bio_get(bio);
3275         btrfsic_submit_bio(WRITE_FLUSH, bio);
3276
3277         return 0;
3278 }
3279
3280 /*
3281  * send an empty flush down to each device in parallel,
3282  * then wait for them
3283  */
3284 static int barrier_all_devices(struct btrfs_fs_info *info)
3285 {
3286         struct list_head *head;
3287         struct btrfs_device *dev;
3288         int errors_send = 0;
3289         int errors_wait = 0;
3290         int ret;
3291
3292         /* send down all the barriers */
3293         head = &info->fs_devices->devices;
3294         list_for_each_entry_rcu(dev, head, dev_list) {
3295                 if (dev->missing)
3296                         continue;
3297                 if (!dev->bdev) {
3298                         errors_send++;
3299                         continue;
3300                 }
3301                 if (!dev->in_fs_metadata || !dev->writeable)
3302                         continue;
3303
3304                 ret = write_dev_flush(dev, 0);
3305                 if (ret)
3306                         errors_send++;
3307         }
3308
3309         /* wait for all the barriers */
3310         list_for_each_entry_rcu(dev, head, dev_list) {
3311                 if (dev->missing)
3312                         continue;
3313                 if (!dev->bdev) {
3314                         errors_wait++;
3315                         continue;
3316                 }
3317                 if (!dev->in_fs_metadata || !dev->writeable)
3318                         continue;
3319
3320                 ret = write_dev_flush(dev, 1);
3321                 if (ret)
3322                         errors_wait++;
3323         }
3324         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3325             errors_wait > info->num_tolerated_disk_barrier_failures)
3326                 return -EIO;
3327         return 0;
3328 }
3329
3330 int btrfs_calc_num_tolerated_disk_barrier_failures(
3331         struct btrfs_fs_info *fs_info)
3332 {
3333         struct btrfs_ioctl_space_info space;
3334         struct btrfs_space_info *sinfo;
3335         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3336                        BTRFS_BLOCK_GROUP_SYSTEM,
3337                        BTRFS_BLOCK_GROUP_METADATA,
3338                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3339         int num_types = 4;
3340         int i;
3341         int c;
3342         int num_tolerated_disk_barrier_failures =
3343                 (int)fs_info->fs_devices->num_devices;
3344
3345         for (i = 0; i < num_types; i++) {
3346                 struct btrfs_space_info *tmp;
3347
3348                 sinfo = NULL;
3349                 rcu_read_lock();
3350                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3351                         if (tmp->flags == types[i]) {
3352                                 sinfo = tmp;
3353                                 break;
3354                         }
3355                 }
3356                 rcu_read_unlock();
3357
3358                 if (!sinfo)
3359                         continue;
3360
3361                 down_read(&sinfo->groups_sem);
3362                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3363                         if (!list_empty(&sinfo->block_groups[c])) {
3364                                 u64 flags;
3365
3366                                 btrfs_get_block_group_info(
3367                                         &sinfo->block_groups[c], &space);
3368                                 if (space.total_bytes == 0 ||
3369                                     space.used_bytes == 0)
3370                                         continue;
3371                                 flags = space.flags;
3372                                 /*
3373                                  * return
3374                                  * 0: if dup, single or RAID0 is configured for
3375                                  *    any of metadata, system or data, else
3376                                  * 1: if RAID5 is configured, or if RAID1 or
3377                                  *    RAID10 is configured and only two mirrors
3378                                  *    are used, else
3379                                  * 2: if RAID6 is configured, else
3380                                  * num_mirrors - 1: if RAID1 or RAID10 is
3381                                  *                  configured and more than
3382                                  *                  2 mirrors are used.
3383                                  */
3384                                 if (num_tolerated_disk_barrier_failures > 0 &&
3385                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3386                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3387                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3388                                       == 0)))
3389                                         num_tolerated_disk_barrier_failures = 0;
3390                                 else if (num_tolerated_disk_barrier_failures > 1) {
3391                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3392                                             BTRFS_BLOCK_GROUP_RAID5 |
3393                                             BTRFS_BLOCK_GROUP_RAID10)) {
3394                                                 num_tolerated_disk_barrier_failures = 1;
3395                                         } else if (flags &
3396                                                    BTRFS_BLOCK_GROUP_RAID6) {
3397                                                 num_tolerated_disk_barrier_failures = 2;
3398                                         }
3399                                 }
3400                         }
3401                 }
3402                 up_read(&sinfo->groups_sem);
3403         }
3404
3405         return num_tolerated_disk_barrier_failures;
3406 }
3407
3408 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3409 {
3410         struct list_head *head;
3411         struct btrfs_device *dev;
3412         struct btrfs_super_block *sb;
3413         struct btrfs_dev_item *dev_item;
3414         int ret;
3415         int do_barriers;
3416         int max_errors;
3417         int total_errors = 0;
3418         u64 flags;
3419
3420         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3421         backup_super_roots(root->fs_info);
3422
3423         sb = root->fs_info->super_for_commit;
3424         dev_item = &sb->dev_item;
3425
3426         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3427         head = &root->fs_info->fs_devices->devices;
3428         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3429
3430         if (do_barriers) {
3431                 ret = barrier_all_devices(root->fs_info);
3432                 if (ret) {
3433                         mutex_unlock(
3434                                 &root->fs_info->fs_devices->device_list_mutex);
3435                         btrfs_error(root->fs_info, ret,
3436                                     "errors while submitting device barriers.");
3437                         return ret;
3438                 }
3439         }
3440
3441         list_for_each_entry_rcu(dev, head, dev_list) {
3442                 if (!dev->bdev) {
3443                         total_errors++;
3444                         continue;
3445                 }
3446                 if (!dev->in_fs_metadata || !dev->writeable)
3447                         continue;
3448
3449                 btrfs_set_stack_device_generation(dev_item, 0);
3450                 btrfs_set_stack_device_type(dev_item, dev->type);
3451                 btrfs_set_stack_device_id(dev_item, dev->devid);
3452                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3453                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3454                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3455                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3456                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3457                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3458                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3459
3460                 flags = btrfs_super_flags(sb);
3461                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3462
3463                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3464                 if (ret)
3465                         total_errors++;
3466         }
3467         if (total_errors > max_errors) {
3468                 btrfs_err(root->fs_info, "%d errors while writing supers",
3469                        total_errors);
3470                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3471
3472                 /* FUA is masked off if unsupported and can't be the reason */
3473                 btrfs_error(root->fs_info, -EIO,
3474                             "%d errors while writing supers", total_errors);
3475                 return -EIO;
3476         }
3477
3478         total_errors = 0;
3479         list_for_each_entry_rcu(dev, head, dev_list) {
3480                 if (!dev->bdev)
3481                         continue;
3482                 if (!dev->in_fs_metadata || !dev->writeable)
3483                         continue;
3484
3485                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3486                 if (ret)
3487                         total_errors++;
3488         }
3489         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3490         if (total_errors > max_errors) {
3491                 btrfs_error(root->fs_info, -EIO,
3492                             "%d errors while writing supers", total_errors);
3493                 return -EIO;
3494         }
3495         return 0;
3496 }
3497
3498 int write_ctree_super(struct btrfs_trans_handle *trans,
3499                       struct btrfs_root *root, int max_mirrors)
3500 {
3501         return write_all_supers(root, max_mirrors);
3502 }
3503
3504 /* Drop a fs root from the radix tree and free it. */
3505 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3506                                   struct btrfs_root *root)
3507 {
3508         spin_lock(&fs_info->fs_roots_radix_lock);
3509         radix_tree_delete(&fs_info->fs_roots_radix,
3510                           (unsigned long)root->root_key.objectid);
3511         spin_unlock(&fs_info->fs_roots_radix_lock);
3512
3513         if (btrfs_root_refs(&root->root_item) == 0)
3514                 synchronize_srcu(&fs_info->subvol_srcu);
3515
3516         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3517                 btrfs_free_log(NULL, root);
3518
3519         if (root->free_ino_pinned)
3520                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3521         if (root->free_ino_ctl)
3522                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3523         free_fs_root(root);
3524 }
3525
3526 static void free_fs_root(struct btrfs_root *root)
3527 {
3528         iput(root->cache_inode);
3529         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3530         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3531         root->orphan_block_rsv = NULL;
3532         if (root->anon_dev)
3533                 free_anon_bdev(root->anon_dev);
3534         if (root->subv_writers)
3535                 btrfs_free_subvolume_writers(root->subv_writers);
3536         free_extent_buffer(root->node);
3537         free_extent_buffer(root->commit_root);
3538         kfree(root->free_ino_ctl);
3539         kfree(root->free_ino_pinned);
3540         kfree(root->name);
3541         btrfs_put_fs_root(root);
3542 }
3543
3544 void btrfs_free_fs_root(struct btrfs_root *root)
3545 {
3546         free_fs_root(root);
3547 }
3548
3549 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3550 {
3551         u64 root_objectid = 0;
3552         struct btrfs_root *gang[8];
3553         int i = 0;
3554         int err = 0;
3555         unsigned int ret = 0;
3556         int index;
3557
3558         while (1) {
3559                 index = srcu_read_lock(&fs_info->subvol_srcu);
3560                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3561                                              (void **)gang, root_objectid,
3562                                              ARRAY_SIZE(gang));
3563                 if (!ret) {
3564                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3565                         break;
3566                 }
3567                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3568
3569                 for (i = 0; i < ret; i++) {
3570                         /* Avoid to grab roots in dead_roots */
3571                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3572                                 gang[i] = NULL;
3573                                 continue;
3574                         }
3575                         /* grab all the search result for later use */
3576                         gang[i] = btrfs_grab_fs_root(gang[i]);
3577                 }
3578                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3579
3580                 for (i = 0; i < ret; i++) {
3581                         if (!gang[i])
3582                                 continue;
3583                         root_objectid = gang[i]->root_key.objectid;
3584                         err = btrfs_orphan_cleanup(gang[i]);
3585                         if (err)
3586                                 break;
3587                         btrfs_put_fs_root(gang[i]);
3588                 }
3589                 root_objectid++;
3590         }
3591
3592         /* release the uncleaned roots due to error */
3593         for (; i < ret; i++) {
3594                 if (gang[i])
3595                         btrfs_put_fs_root(gang[i]);
3596         }
3597         return err;
3598 }
3599
3600 int btrfs_commit_super(struct btrfs_root *root)
3601 {
3602         struct btrfs_trans_handle *trans;
3603
3604         mutex_lock(&root->fs_info->cleaner_mutex);
3605         btrfs_run_delayed_iputs(root);
3606         mutex_unlock(&root->fs_info->cleaner_mutex);
3607         wake_up_process(root->fs_info->cleaner_kthread);
3608
3609         /* wait until ongoing cleanup work done */
3610         down_write(&root->fs_info->cleanup_work_sem);
3611         up_write(&root->fs_info->cleanup_work_sem);
3612
3613         trans = btrfs_join_transaction(root);
3614         if (IS_ERR(trans))
3615                 return PTR_ERR(trans);
3616         return btrfs_commit_transaction(trans, root);
3617 }
3618
3619 int close_ctree(struct btrfs_root *root)
3620 {
3621         struct btrfs_fs_info *fs_info = root->fs_info;
3622         int ret;
3623
3624         fs_info->closing = 1;
3625         smp_mb();
3626
3627         /* wait for the uuid_scan task to finish */
3628         down(&fs_info->uuid_tree_rescan_sem);
3629         /* avoid complains from lockdep et al., set sem back to initial state */
3630         up(&fs_info->uuid_tree_rescan_sem);
3631
3632         /* pause restriper - we want to resume on mount */
3633         btrfs_pause_balance(fs_info);
3634
3635         btrfs_dev_replace_suspend_for_unmount(fs_info);
3636
3637         btrfs_scrub_cancel(fs_info);
3638
3639         /* wait for any defraggers to finish */
3640         wait_event(fs_info->transaction_wait,
3641                    (atomic_read(&fs_info->defrag_running) == 0));
3642
3643         /* clear out the rbtree of defraggable inodes */
3644         btrfs_cleanup_defrag_inodes(fs_info);
3645
3646         cancel_work_sync(&fs_info->async_reclaim_work);
3647
3648         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3649                 ret = btrfs_commit_super(root);
3650                 if (ret)
3651                         btrfs_err(root->fs_info, "commit super ret %d", ret);
3652         }
3653
3654         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3655                 btrfs_error_commit_super(root);
3656
3657         kthread_stop(fs_info->transaction_kthread);
3658         kthread_stop(fs_info->cleaner_kthread);
3659
3660         fs_info->closing = 2;
3661         smp_mb();
3662
3663         btrfs_free_qgroup_config(root->fs_info);
3664
3665         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3666                 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3667                        percpu_counter_sum(&fs_info->delalloc_bytes));
3668         }
3669
3670         btrfs_sysfs_remove_one(fs_info);
3671
3672         btrfs_free_fs_roots(fs_info);
3673
3674         btrfs_put_block_group_cache(fs_info);
3675
3676         btrfs_free_block_groups(fs_info);
3677
3678         /*
3679          * we must make sure there is not any read request to
3680          * submit after we stopping all workers.
3681          */
3682         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3683         btrfs_stop_all_workers(fs_info);
3684
3685         free_root_pointers(fs_info, 1);
3686
3687         iput(fs_info->btree_inode);
3688
3689 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3690         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3691                 btrfsic_unmount(root, fs_info->fs_devices);
3692 #endif
3693
3694         btrfs_close_devices(fs_info->fs_devices);
3695         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3696
3697         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3698         percpu_counter_destroy(&fs_info->delalloc_bytes);
3699         percpu_counter_destroy(&fs_info->bio_counter);
3700         bdi_destroy(&fs_info->bdi);
3701         cleanup_srcu_struct(&fs_info->subvol_srcu);
3702
3703         btrfs_free_stripe_hash_table(fs_info);
3704
3705         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3706         root->orphan_block_rsv = NULL;
3707
3708         return 0;
3709 }
3710
3711 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3712                           int atomic)
3713 {
3714         int ret;
3715         struct inode *btree_inode = buf->pages[0]->mapping->host;
3716
3717         ret = extent_buffer_uptodate(buf);
3718         if (!ret)
3719                 return ret;
3720
3721         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3722                                     parent_transid, atomic);
3723         if (ret == -EAGAIN)
3724                 return ret;
3725         return !ret;
3726 }
3727
3728 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3729 {
3730         return set_extent_buffer_uptodate(buf);
3731 }
3732
3733 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3734 {
3735         struct btrfs_root *root;
3736         u64 transid = btrfs_header_generation(buf);
3737         int was_dirty;
3738
3739 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3740         /*
3741          * This is a fast path so only do this check if we have sanity tests
3742          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3743          * outside of the sanity tests.
3744          */
3745         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3746                 return;
3747 #endif
3748         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3749         btrfs_assert_tree_locked(buf);
3750         if (transid != root->fs_info->generation)
3751                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3752                        "found %llu running %llu\n",
3753                         buf->start, transid, root->fs_info->generation);
3754         was_dirty = set_extent_buffer_dirty(buf);
3755         if (!was_dirty)
3756                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3757                                      buf->len,
3758                                      root->fs_info->dirty_metadata_batch);
3759 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3760         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3761                 btrfs_print_leaf(root, buf);
3762                 ASSERT(0);
3763         }
3764 #endif
3765 }
3766
3767 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3768                                         int flush_delayed)
3769 {
3770         /*
3771          * looks as though older kernels can get into trouble with
3772          * this code, they end up stuck in balance_dirty_pages forever
3773          */
3774         int ret;
3775
3776         if (current->flags & PF_MEMALLOC)
3777                 return;
3778
3779         if (flush_delayed)
3780                 btrfs_balance_delayed_items(root);
3781
3782         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3783                                      BTRFS_DIRTY_METADATA_THRESH);
3784         if (ret > 0) {
3785                 balance_dirty_pages_ratelimited(
3786                                    root->fs_info->btree_inode->i_mapping);
3787         }
3788         return;
3789 }
3790
3791 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3792 {
3793         __btrfs_btree_balance_dirty(root, 1);
3794 }
3795
3796 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3797 {
3798         __btrfs_btree_balance_dirty(root, 0);
3799 }
3800
3801 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3802 {
3803         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3804         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3805 }
3806
3807 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3808                               int read_only)
3809 {
3810         /*
3811          * Placeholder for checks
3812          */
3813         return 0;
3814 }
3815
3816 static void btrfs_error_commit_super(struct btrfs_root *root)
3817 {
3818         mutex_lock(&root->fs_info->cleaner_mutex);
3819         btrfs_run_delayed_iputs(root);
3820         mutex_unlock(&root->fs_info->cleaner_mutex);
3821
3822         down_write(&root->fs_info->cleanup_work_sem);
3823         up_write(&root->fs_info->cleanup_work_sem);
3824
3825         /* cleanup FS via transaction */
3826         btrfs_cleanup_transaction(root);
3827 }
3828
3829 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3830                                              struct btrfs_root *root)
3831 {
3832         struct btrfs_inode *btrfs_inode;
3833         struct list_head splice;
3834
3835         INIT_LIST_HEAD(&splice);
3836
3837         mutex_lock(&root->fs_info->ordered_operations_mutex);
3838         spin_lock(&root->fs_info->ordered_root_lock);
3839
3840         list_splice_init(&t->ordered_operations, &splice);
3841         while (!list_empty(&splice)) {
3842                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3843                                          ordered_operations);
3844
3845                 list_del_init(&btrfs_inode->ordered_operations);
3846                 spin_unlock(&root->fs_info->ordered_root_lock);
3847
3848                 btrfs_invalidate_inodes(btrfs_inode->root);
3849
3850                 spin_lock(&root->fs_info->ordered_root_lock);
3851         }
3852
3853         spin_unlock(&root->fs_info->ordered_root_lock);
3854         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3855 }
3856
3857 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3858 {
3859         struct btrfs_ordered_extent *ordered;
3860
3861         spin_lock(&root->ordered_extent_lock);
3862         /*
3863          * This will just short circuit the ordered completion stuff which will
3864          * make sure the ordered extent gets properly cleaned up.
3865          */
3866         list_for_each_entry(ordered, &root->ordered_extents,
3867                             root_extent_list)
3868                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3869         spin_unlock(&root->ordered_extent_lock);
3870 }
3871
3872 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3873 {
3874         struct btrfs_root *root;
3875         struct list_head splice;
3876
3877         INIT_LIST_HEAD(&splice);
3878
3879         spin_lock(&fs_info->ordered_root_lock);
3880         list_splice_init(&fs_info->ordered_roots, &splice);
3881         while (!list_empty(&splice)) {
3882                 root = list_first_entry(&splice, struct btrfs_root,
3883                                         ordered_root);
3884                 list_move_tail(&root->ordered_root,
3885                                &fs_info->ordered_roots);
3886
3887                 spin_unlock(&fs_info->ordered_root_lock);
3888                 btrfs_destroy_ordered_extents(root);
3889
3890                 cond_resched();
3891                 spin_lock(&fs_info->ordered_root_lock);
3892         }
3893         spin_unlock(&fs_info->ordered_root_lock);
3894 }
3895
3896 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3897                                       struct btrfs_root *root)
3898 {
3899         struct rb_node *node;
3900         struct btrfs_delayed_ref_root *delayed_refs;
3901         struct btrfs_delayed_ref_node *ref;
3902         int ret = 0;
3903
3904         delayed_refs = &trans->delayed_refs;
3905
3906         spin_lock(&delayed_refs->lock);
3907         if (atomic_read(&delayed_refs->num_entries) == 0) {
3908                 spin_unlock(&delayed_refs->lock);
3909                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3910                 return ret;
3911         }
3912
3913         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3914                 struct btrfs_delayed_ref_head *head;
3915                 bool pin_bytes = false;
3916
3917                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3918                                 href_node);
3919                 if (!mutex_trylock(&head->mutex)) {
3920                         atomic_inc(&head->node.refs);
3921                         spin_unlock(&delayed_refs->lock);
3922
3923                         mutex_lock(&head->mutex);
3924                         mutex_unlock(&head->mutex);
3925                         btrfs_put_delayed_ref(&head->node);
3926                         spin_lock(&delayed_refs->lock);
3927                         continue;
3928                 }
3929                 spin_lock(&head->lock);
3930                 while ((node = rb_first(&head->ref_root)) != NULL) {
3931                         ref = rb_entry(node, struct btrfs_delayed_ref_node,
3932                                        rb_node);
3933                         ref->in_tree = 0;
3934                         rb_erase(&ref->rb_node, &head->ref_root);
3935                         atomic_dec(&delayed_refs->num_entries);
3936                         btrfs_put_delayed_ref(ref);
3937                 }
3938                 if (head->must_insert_reserved)
3939                         pin_bytes = true;
3940                 btrfs_free_delayed_extent_op(head->extent_op);
3941                 delayed_refs->num_heads--;
3942                 if (head->processing == 0)
3943                         delayed_refs->num_heads_ready--;
3944                 atomic_dec(&delayed_refs->num_entries);
3945                 head->node.in_tree = 0;
3946                 rb_erase(&head->href_node, &delayed_refs->href_root);
3947                 spin_unlock(&head->lock);
3948                 spin_unlock(&delayed_refs->lock);
3949                 mutex_unlock(&head->mutex);
3950
3951                 if (pin_bytes)
3952                         btrfs_pin_extent(root, head->node.bytenr,
3953                                          head->node.num_bytes, 1);
3954                 btrfs_put_delayed_ref(&head->node);
3955                 cond_resched();
3956                 spin_lock(&delayed_refs->lock);
3957         }
3958
3959         spin_unlock(&delayed_refs->lock);
3960
3961         return ret;
3962 }
3963
3964 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3965 {
3966         struct btrfs_inode *btrfs_inode;
3967         struct list_head splice;
3968
3969         INIT_LIST_HEAD(&splice);
3970
3971         spin_lock(&root->delalloc_lock);
3972         list_splice_init(&root->delalloc_inodes, &splice);
3973
3974         while (!list_empty(&splice)) {
3975                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3976                                                delalloc_inodes);
3977
3978                 list_del_init(&btrfs_inode->delalloc_inodes);
3979                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3980                           &btrfs_inode->runtime_flags);
3981                 spin_unlock(&root->delalloc_lock);
3982
3983                 btrfs_invalidate_inodes(btrfs_inode->root);
3984
3985                 spin_lock(&root->delalloc_lock);
3986         }
3987
3988         spin_unlock(&root->delalloc_lock);
3989 }
3990
3991 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3992 {
3993         struct btrfs_root *root;
3994         struct list_head splice;
3995
3996         INIT_LIST_HEAD(&splice);
3997
3998         spin_lock(&fs_info->delalloc_root_lock);
3999         list_splice_init(&fs_info->delalloc_roots, &splice);
4000         while (!list_empty(&splice)) {
4001                 root = list_first_entry(&splice, struct btrfs_root,
4002                                          delalloc_root);
4003                 list_del_init(&root->delalloc_root);
4004                 root = btrfs_grab_fs_root(root);
4005                 BUG_ON(!root);
4006                 spin_unlock(&fs_info->delalloc_root_lock);
4007
4008                 btrfs_destroy_delalloc_inodes(root);
4009                 btrfs_put_fs_root(root);
4010
4011                 spin_lock(&fs_info->delalloc_root_lock);
4012         }
4013         spin_unlock(&fs_info->delalloc_root_lock);
4014 }
4015
4016 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4017                                         struct extent_io_tree *dirty_pages,
4018                                         int mark)
4019 {
4020         int ret;
4021         struct extent_buffer *eb;
4022         u64 start = 0;
4023         u64 end;
4024
4025         while (1) {
4026                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4027                                             mark, NULL);
4028                 if (ret)
4029                         break;
4030
4031                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4032                 while (start <= end) {
4033                         eb = btrfs_find_tree_block(root, start,
4034                                                    root->leafsize);
4035                         start += root->leafsize;
4036                         if (!eb)
4037                                 continue;
4038                         wait_on_extent_buffer_writeback(eb);
4039
4040                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4041                                                &eb->bflags))
4042                                 clear_extent_buffer_dirty(eb);
4043                         free_extent_buffer_stale(eb);
4044                 }
4045         }
4046
4047         return ret;
4048 }
4049
4050 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4051                                        struct extent_io_tree *pinned_extents)
4052 {
4053         struct extent_io_tree *unpin;
4054         u64 start;
4055         u64 end;
4056         int ret;
4057         bool loop = true;
4058
4059         unpin = pinned_extents;
4060 again:
4061         while (1) {
4062                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4063                                             EXTENT_DIRTY, NULL);
4064                 if (ret)
4065                         break;
4066
4067                 /* opt_discard */
4068                 if (btrfs_test_opt(root, DISCARD))
4069                         ret = btrfs_error_discard_extent(root, start,
4070                                                          end + 1 - start,
4071                                                          NULL);
4072
4073                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4074                 btrfs_error_unpin_extent_range(root, start, end);
4075                 cond_resched();
4076         }
4077
4078         if (loop) {
4079                 if (unpin == &root->fs_info->freed_extents[0])
4080                         unpin = &root->fs_info->freed_extents[1];
4081                 else
4082                         unpin = &root->fs_info->freed_extents[0];
4083                 loop = false;
4084                 goto again;
4085         }
4086
4087         return 0;
4088 }
4089
4090 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4091                                    struct btrfs_root *root)
4092 {
4093         btrfs_destroy_ordered_operations(cur_trans, root);
4094
4095         btrfs_destroy_delayed_refs(cur_trans, root);
4096
4097         cur_trans->state = TRANS_STATE_COMMIT_START;
4098         wake_up(&root->fs_info->transaction_blocked_wait);
4099
4100         cur_trans->state = TRANS_STATE_UNBLOCKED;
4101         wake_up(&root->fs_info->transaction_wait);
4102
4103         btrfs_destroy_delayed_inodes(root);
4104         btrfs_assert_delayed_root_empty(root);
4105
4106         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4107                                      EXTENT_DIRTY);
4108         btrfs_destroy_pinned_extent(root,
4109                                     root->fs_info->pinned_extents);
4110
4111         cur_trans->state =TRANS_STATE_COMPLETED;
4112         wake_up(&cur_trans->commit_wait);
4113
4114         /*
4115         memset(cur_trans, 0, sizeof(*cur_trans));
4116         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4117         */
4118 }
4119
4120 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4121 {
4122         struct btrfs_transaction *t;
4123
4124         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4125
4126         spin_lock(&root->fs_info->trans_lock);
4127         while (!list_empty(&root->fs_info->trans_list)) {
4128                 t = list_first_entry(&root->fs_info->trans_list,
4129                                      struct btrfs_transaction, list);
4130                 if (t->state >= TRANS_STATE_COMMIT_START) {
4131                         atomic_inc(&t->use_count);
4132                         spin_unlock(&root->fs_info->trans_lock);
4133                         btrfs_wait_for_commit(root, t->transid);
4134                         btrfs_put_transaction(t);
4135                         spin_lock(&root->fs_info->trans_lock);
4136                         continue;
4137                 }
4138                 if (t == root->fs_info->running_transaction) {
4139                         t->state = TRANS_STATE_COMMIT_DOING;
4140                         spin_unlock(&root->fs_info->trans_lock);
4141                         /*
4142                          * We wait for 0 num_writers since we don't hold a trans
4143                          * handle open currently for this transaction.
4144                          */
4145                         wait_event(t->writer_wait,
4146                                    atomic_read(&t->num_writers) == 0);
4147                 } else {
4148                         spin_unlock(&root->fs_info->trans_lock);
4149                 }
4150                 btrfs_cleanup_one_transaction(t, root);
4151
4152                 spin_lock(&root->fs_info->trans_lock);
4153                 if (t == root->fs_info->running_transaction)
4154                         root->fs_info->running_transaction = NULL;
4155                 list_del_init(&t->list);
4156                 spin_unlock(&root->fs_info->trans_lock);
4157
4158                 btrfs_put_transaction(t);
4159                 trace_btrfs_transaction_commit(root);
4160                 spin_lock(&root->fs_info->trans_lock);
4161         }
4162         spin_unlock(&root->fs_info->trans_lock);
4163         btrfs_destroy_all_ordered_extents(root->fs_info);
4164         btrfs_destroy_delayed_inodes(root);
4165         btrfs_assert_delayed_root_empty(root);
4166         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4167         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4168         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4169
4170         return 0;
4171 }
4172
4173 static struct extent_io_ops btree_extent_io_ops = {
4174         .readpage_end_io_hook = btree_readpage_end_io_hook,
4175         .readpage_io_failed_hook = btree_io_failed_hook,
4176         .submit_bio_hook = btree_submit_bio_hook,
4177         /* note we're sharing with inode.c for the merge bio hook */
4178         .merge_bio_hook = btrfs_merge_bio_hook,
4179 };