Btrfs: close all bdevs on mount failure
[pandora-kernel.git] / fs / btrfs / compression.c
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
45
46 struct compressed_bio {
47         /* number of bios pending for this compressed extent */
48         atomic_t pending_bios;
49
50         /* the pages with the compressed data on them */
51         struct page **compressed_pages;
52
53         /* inode that owns this data */
54         struct inode *inode;
55
56         /* starting offset in the inode for our pages */
57         u64 start;
58
59         /* number of bytes in the inode we're working on */
60         unsigned long len;
61
62         /* number of bytes on disk */
63         unsigned long compressed_len;
64
65         /* the compression algorithm for this bio */
66         int compress_type;
67
68         /* number of compressed pages in the array */
69         unsigned long nr_pages;
70
71         /* IO errors */
72         int errors;
73         int mirror_num;
74
75         /* for reads, this is the bio we are copying the data into */
76         struct bio *orig_bio;
77
78         /*
79          * the start of a variable length array of checksums only
80          * used by reads
81          */
82         u32 sums;
83 };
84
85 static inline int compressed_bio_size(struct btrfs_root *root,
86                                       unsigned long disk_size)
87 {
88         u16 csum_size = btrfs_super_csum_size(&root->fs_info->super_copy);
89         return sizeof(struct compressed_bio) +
90                 ((disk_size + root->sectorsize - 1) / root->sectorsize) *
91                 csum_size;
92 }
93
94 static struct bio *compressed_bio_alloc(struct block_device *bdev,
95                                         u64 first_byte, gfp_t gfp_flags)
96 {
97         int nr_vecs;
98
99         nr_vecs = bio_get_nr_vecs(bdev);
100         return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
101 }
102
103 static int check_compressed_csum(struct inode *inode,
104                                  struct compressed_bio *cb,
105                                  u64 disk_start)
106 {
107         int ret;
108         struct btrfs_root *root = BTRFS_I(inode)->root;
109         struct page *page;
110         unsigned long i;
111         char *kaddr;
112         u32 csum;
113         u32 *cb_sum = &cb->sums;
114
115         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
116                 return 0;
117
118         for (i = 0; i < cb->nr_pages; i++) {
119                 page = cb->compressed_pages[i];
120                 csum = ~(u32)0;
121
122                 kaddr = kmap_atomic(page, KM_USER0);
123                 csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE);
124                 btrfs_csum_final(csum, (char *)&csum);
125                 kunmap_atomic(kaddr, KM_USER0);
126
127                 if (csum != *cb_sum) {
128                         printk(KERN_INFO "btrfs csum failed ino %llu "
129                                "extent %llu csum %u "
130                                "wanted %u mirror %d\n",
131                                (unsigned long long)btrfs_ino(inode),
132                                (unsigned long long)disk_start,
133                                csum, *cb_sum, cb->mirror_num);
134                         ret = -EIO;
135                         goto fail;
136                 }
137                 cb_sum++;
138
139         }
140         ret = 0;
141 fail:
142         return ret;
143 }
144
145 /* when we finish reading compressed pages from the disk, we
146  * decompress them and then run the bio end_io routines on the
147  * decompressed pages (in the inode address space).
148  *
149  * This allows the checksumming and other IO error handling routines
150  * to work normally
151  *
152  * The compressed pages are freed here, and it must be run
153  * in process context
154  */
155 static void end_compressed_bio_read(struct bio *bio, int err)
156 {
157         struct compressed_bio *cb = bio->bi_private;
158         struct inode *inode;
159         struct page *page;
160         unsigned long index;
161         int ret;
162
163         if (err)
164                 cb->errors = 1;
165
166         /* if there are more bios still pending for this compressed
167          * extent, just exit
168          */
169         if (!atomic_dec_and_test(&cb->pending_bios))
170                 goto out;
171
172         inode = cb->inode;
173         ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
174         if (ret)
175                 goto csum_failed;
176
177         /* ok, we're the last bio for this extent, lets start
178          * the decompression.
179          */
180         ret = btrfs_decompress_biovec(cb->compress_type,
181                                       cb->compressed_pages,
182                                       cb->start,
183                                       cb->orig_bio->bi_io_vec,
184                                       cb->orig_bio->bi_vcnt,
185                                       cb->compressed_len);
186 csum_failed:
187         if (ret)
188                 cb->errors = 1;
189
190         /* release the compressed pages */
191         index = 0;
192         for (index = 0; index < cb->nr_pages; index++) {
193                 page = cb->compressed_pages[index];
194                 page->mapping = NULL;
195                 page_cache_release(page);
196         }
197
198         /* do io completion on the original bio */
199         if (cb->errors) {
200                 bio_io_error(cb->orig_bio);
201         } else {
202                 int bio_index = 0;
203                 struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
204
205                 /*
206                  * we have verified the checksum already, set page
207                  * checked so the end_io handlers know about it
208                  */
209                 while (bio_index < cb->orig_bio->bi_vcnt) {
210                         SetPageChecked(bvec->bv_page);
211                         bvec++;
212                         bio_index++;
213                 }
214                 bio_endio(cb->orig_bio, 0);
215         }
216
217         /* finally free the cb struct */
218         kfree(cb->compressed_pages);
219         kfree(cb);
220 out:
221         bio_put(bio);
222 }
223
224 /*
225  * Clear the writeback bits on all of the file
226  * pages for a compressed write
227  */
228 static noinline int end_compressed_writeback(struct inode *inode, u64 start,
229                                              unsigned long ram_size)
230 {
231         unsigned long index = start >> PAGE_CACHE_SHIFT;
232         unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
233         struct page *pages[16];
234         unsigned long nr_pages = end_index - index + 1;
235         int i;
236         int ret;
237
238         while (nr_pages > 0) {
239                 ret = find_get_pages_contig(inode->i_mapping, index,
240                                      min_t(unsigned long,
241                                      nr_pages, ARRAY_SIZE(pages)), pages);
242                 if (ret == 0) {
243                         nr_pages -= 1;
244                         index += 1;
245                         continue;
246                 }
247                 for (i = 0; i < ret; i++) {
248                         end_page_writeback(pages[i]);
249                         page_cache_release(pages[i]);
250                 }
251                 nr_pages -= ret;
252                 index += ret;
253         }
254         /* the inode may be gone now */
255         return 0;
256 }
257
258 /*
259  * do the cleanup once all the compressed pages hit the disk.
260  * This will clear writeback on the file pages and free the compressed
261  * pages.
262  *
263  * This also calls the writeback end hooks for the file pages so that
264  * metadata and checksums can be updated in the file.
265  */
266 static void end_compressed_bio_write(struct bio *bio, int err)
267 {
268         struct extent_io_tree *tree;
269         struct compressed_bio *cb = bio->bi_private;
270         struct inode *inode;
271         struct page *page;
272         unsigned long index;
273
274         if (err)
275                 cb->errors = 1;
276
277         /* if there are more bios still pending for this compressed
278          * extent, just exit
279          */
280         if (!atomic_dec_and_test(&cb->pending_bios))
281                 goto out;
282
283         /* ok, we're the last bio for this extent, step one is to
284          * call back into the FS and do all the end_io operations
285          */
286         inode = cb->inode;
287         tree = &BTRFS_I(inode)->io_tree;
288         cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
289         tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
290                                          cb->start,
291                                          cb->start + cb->len - 1,
292                                          NULL, 1);
293         cb->compressed_pages[0]->mapping = NULL;
294
295         end_compressed_writeback(inode, cb->start, cb->len);
296         /* note, our inode could be gone now */
297
298         /*
299          * release the compressed pages, these came from alloc_page and
300          * are not attached to the inode at all
301          */
302         index = 0;
303         for (index = 0; index < cb->nr_pages; index++) {
304                 page = cb->compressed_pages[index];
305                 page->mapping = NULL;
306                 page_cache_release(page);
307         }
308
309         /* finally free the cb struct */
310         kfree(cb->compressed_pages);
311         kfree(cb);
312 out:
313         bio_put(bio);
314 }
315
316 /*
317  * worker function to build and submit bios for previously compressed pages.
318  * The corresponding pages in the inode should be marked for writeback
319  * and the compressed pages should have a reference on them for dropping
320  * when the IO is complete.
321  *
322  * This also checksums the file bytes and gets things ready for
323  * the end io hooks.
324  */
325 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
326                                  unsigned long len, u64 disk_start,
327                                  unsigned long compressed_len,
328                                  struct page **compressed_pages,
329                                  unsigned long nr_pages)
330 {
331         struct bio *bio = NULL;
332         struct btrfs_root *root = BTRFS_I(inode)->root;
333         struct compressed_bio *cb;
334         unsigned long bytes_left;
335         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
336         int pg_index = 0;
337         struct page *page;
338         u64 first_byte = disk_start;
339         struct block_device *bdev;
340         int ret;
341         int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
342
343         WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
344         cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
345         if (!cb)
346                 return -ENOMEM;
347         atomic_set(&cb->pending_bios, 0);
348         cb->errors = 0;
349         cb->inode = inode;
350         cb->start = start;
351         cb->len = len;
352         cb->mirror_num = 0;
353         cb->compressed_pages = compressed_pages;
354         cb->compressed_len = compressed_len;
355         cb->orig_bio = NULL;
356         cb->nr_pages = nr_pages;
357
358         bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
359
360         bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
361         if(!bio) {
362                 kfree(cb);
363                 return -ENOMEM;
364         }
365         bio->bi_private = cb;
366         bio->bi_end_io = end_compressed_bio_write;
367         atomic_inc(&cb->pending_bios);
368
369         /* create and submit bios for the compressed pages */
370         bytes_left = compressed_len;
371         for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
372                 page = compressed_pages[pg_index];
373                 page->mapping = inode->i_mapping;
374                 if (bio->bi_size)
375                         ret = io_tree->ops->merge_bio_hook(page, 0,
376                                                            PAGE_CACHE_SIZE,
377                                                            bio, 0);
378                 else
379                         ret = 0;
380
381                 page->mapping = NULL;
382                 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
383                     PAGE_CACHE_SIZE) {
384                         bio_get(bio);
385
386                         /*
387                          * inc the count before we submit the bio so
388                          * we know the end IO handler won't happen before
389                          * we inc the count.  Otherwise, the cb might get
390                          * freed before we're done setting it up
391                          */
392                         atomic_inc(&cb->pending_bios);
393                         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
394                         BUG_ON(ret);
395
396                         if (!skip_sum) {
397                                 ret = btrfs_csum_one_bio(root, inode, bio,
398                                                          start, 1);
399                                 BUG_ON(ret);
400                         }
401
402                         ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
403                         BUG_ON(ret);
404
405                         bio_put(bio);
406
407                         bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
408                         bio->bi_private = cb;
409                         bio->bi_end_io = end_compressed_bio_write;
410                         bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
411                 }
412                 if (bytes_left < PAGE_CACHE_SIZE) {
413                         printk("bytes left %lu compress len %lu nr %lu\n",
414                                bytes_left, cb->compressed_len, cb->nr_pages);
415                 }
416                 bytes_left -= PAGE_CACHE_SIZE;
417                 first_byte += PAGE_CACHE_SIZE;
418                 cond_resched();
419         }
420         bio_get(bio);
421
422         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
423         BUG_ON(ret);
424
425         if (!skip_sum) {
426                 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
427                 BUG_ON(ret);
428         }
429
430         ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
431         BUG_ON(ret);
432
433         bio_put(bio);
434         return 0;
435 }
436
437 static noinline int add_ra_bio_pages(struct inode *inode,
438                                      u64 compressed_end,
439                                      struct compressed_bio *cb)
440 {
441         unsigned long end_index;
442         unsigned long pg_index;
443         u64 last_offset;
444         u64 isize = i_size_read(inode);
445         int ret;
446         struct page *page;
447         unsigned long nr_pages = 0;
448         struct extent_map *em;
449         struct address_space *mapping = inode->i_mapping;
450         struct extent_map_tree *em_tree;
451         struct extent_io_tree *tree;
452         u64 end;
453         int misses = 0;
454
455         page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
456         last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
457         em_tree = &BTRFS_I(inode)->extent_tree;
458         tree = &BTRFS_I(inode)->io_tree;
459
460         if (isize == 0)
461                 return 0;
462
463         end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
464
465         while (last_offset < compressed_end) {
466                 pg_index = last_offset >> PAGE_CACHE_SHIFT;
467
468                 if (pg_index > end_index)
469                         break;
470
471                 rcu_read_lock();
472                 page = radix_tree_lookup(&mapping->page_tree, pg_index);
473                 rcu_read_unlock();
474                 if (page) {
475                         misses++;
476                         if (misses > 4)
477                                 break;
478                         goto next;
479                 }
480
481                 page = __page_cache_alloc(mapping_gfp_mask(mapping) &
482                                                                 ~__GFP_FS);
483                 if (!page)
484                         break;
485
486                 if (add_to_page_cache_lru(page, mapping, pg_index,
487                                                                 GFP_NOFS)) {
488                         page_cache_release(page);
489                         goto next;
490                 }
491
492                 end = last_offset + PAGE_CACHE_SIZE - 1;
493                 /*
494                  * at this point, we have a locked page in the page cache
495                  * for these bytes in the file.  But, we have to make
496                  * sure they map to this compressed extent on disk.
497                  */
498                 set_page_extent_mapped(page);
499                 lock_extent(tree, last_offset, end, GFP_NOFS);
500                 read_lock(&em_tree->lock);
501                 em = lookup_extent_mapping(em_tree, last_offset,
502                                            PAGE_CACHE_SIZE);
503                 read_unlock(&em_tree->lock);
504
505                 if (!em || last_offset < em->start ||
506                     (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
507                     (em->block_start >> 9) != cb->orig_bio->bi_sector) {
508                         free_extent_map(em);
509                         unlock_extent(tree, last_offset, end, GFP_NOFS);
510                         unlock_page(page);
511                         page_cache_release(page);
512                         break;
513                 }
514                 free_extent_map(em);
515
516                 if (page->index == end_index) {
517                         char *userpage;
518                         size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
519
520                         if (zero_offset) {
521                                 int zeros;
522                                 zeros = PAGE_CACHE_SIZE - zero_offset;
523                                 userpage = kmap_atomic(page, KM_USER0);
524                                 memset(userpage + zero_offset, 0, zeros);
525                                 flush_dcache_page(page);
526                                 kunmap_atomic(userpage, KM_USER0);
527                         }
528                 }
529
530                 ret = bio_add_page(cb->orig_bio, page,
531                                    PAGE_CACHE_SIZE, 0);
532
533                 if (ret == PAGE_CACHE_SIZE) {
534                         nr_pages++;
535                         page_cache_release(page);
536                 } else {
537                         unlock_extent(tree, last_offset, end, GFP_NOFS);
538                         unlock_page(page);
539                         page_cache_release(page);
540                         break;
541                 }
542 next:
543                 last_offset += PAGE_CACHE_SIZE;
544         }
545         return 0;
546 }
547
548 /*
549  * for a compressed read, the bio we get passed has all the inode pages
550  * in it.  We don't actually do IO on those pages but allocate new ones
551  * to hold the compressed pages on disk.
552  *
553  * bio->bi_sector points to the compressed extent on disk
554  * bio->bi_io_vec points to all of the inode pages
555  * bio->bi_vcnt is a count of pages
556  *
557  * After the compressed pages are read, we copy the bytes into the
558  * bio we were passed and then call the bio end_io calls
559  */
560 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
561                                  int mirror_num, unsigned long bio_flags)
562 {
563         struct extent_io_tree *tree;
564         struct extent_map_tree *em_tree;
565         struct compressed_bio *cb;
566         struct btrfs_root *root = BTRFS_I(inode)->root;
567         unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
568         unsigned long compressed_len;
569         unsigned long nr_pages;
570         unsigned long pg_index;
571         struct page *page;
572         struct block_device *bdev;
573         struct bio *comp_bio;
574         u64 cur_disk_byte = (u64)bio->bi_sector << 9;
575         u64 em_len;
576         u64 em_start;
577         struct extent_map *em;
578         int ret = -ENOMEM;
579         u32 *sums;
580
581         tree = &BTRFS_I(inode)->io_tree;
582         em_tree = &BTRFS_I(inode)->extent_tree;
583
584         /* we need the actual starting offset of this extent in the file */
585         read_lock(&em_tree->lock);
586         em = lookup_extent_mapping(em_tree,
587                                    page_offset(bio->bi_io_vec->bv_page),
588                                    PAGE_CACHE_SIZE);
589         read_unlock(&em_tree->lock);
590
591         compressed_len = em->block_len;
592         cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
593         if (!cb)
594                 goto out;
595
596         atomic_set(&cb->pending_bios, 0);
597         cb->errors = 0;
598         cb->inode = inode;
599         cb->mirror_num = mirror_num;
600         sums = &cb->sums;
601
602         cb->start = em->orig_start;
603         em_len = em->len;
604         em_start = em->start;
605
606         free_extent_map(em);
607         em = NULL;
608
609         cb->len = uncompressed_len;
610         cb->compressed_len = compressed_len;
611         cb->compress_type = extent_compress_type(bio_flags);
612         cb->orig_bio = bio;
613
614         nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
615                                  PAGE_CACHE_SIZE;
616         cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
617                                        GFP_NOFS);
618         if (!cb->compressed_pages)
619                 goto fail1;
620
621         bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
622
623         for (pg_index = 0; pg_index < nr_pages; pg_index++) {
624                 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
625                                                               __GFP_HIGHMEM);
626                 if (!cb->compressed_pages[pg_index])
627                         goto fail2;
628         }
629         cb->nr_pages = nr_pages;
630
631         add_ra_bio_pages(inode, em_start + em_len, cb);
632
633         /* include any pages we added in add_ra-bio_pages */
634         uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
635         cb->len = uncompressed_len;
636
637         comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
638         if (!comp_bio)
639                 goto fail2;
640         comp_bio->bi_private = cb;
641         comp_bio->bi_end_io = end_compressed_bio_read;
642         atomic_inc(&cb->pending_bios);
643
644         for (pg_index = 0; pg_index < nr_pages; pg_index++) {
645                 page = cb->compressed_pages[pg_index];
646                 page->mapping = inode->i_mapping;
647                 page->index = em_start >> PAGE_CACHE_SHIFT;
648
649                 if (comp_bio->bi_size)
650                         ret = tree->ops->merge_bio_hook(page, 0,
651                                                         PAGE_CACHE_SIZE,
652                                                         comp_bio, 0);
653                 else
654                         ret = 0;
655
656                 page->mapping = NULL;
657                 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
658                     PAGE_CACHE_SIZE) {
659                         bio_get(comp_bio);
660
661                         ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
662                         BUG_ON(ret);
663
664                         /*
665                          * inc the count before we submit the bio so
666                          * we know the end IO handler won't happen before
667                          * we inc the count.  Otherwise, the cb might get
668                          * freed before we're done setting it up
669                          */
670                         atomic_inc(&cb->pending_bios);
671
672                         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
673                                 ret = btrfs_lookup_bio_sums(root, inode,
674                                                         comp_bio, sums);
675                                 BUG_ON(ret);
676                         }
677                         sums += (comp_bio->bi_size + root->sectorsize - 1) /
678                                 root->sectorsize;
679
680                         ret = btrfs_map_bio(root, READ, comp_bio,
681                                             mirror_num, 0);
682                         BUG_ON(ret);
683
684                         bio_put(comp_bio);
685
686                         comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
687                                                         GFP_NOFS);
688                         comp_bio->bi_private = cb;
689                         comp_bio->bi_end_io = end_compressed_bio_read;
690
691                         bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
692                 }
693                 cur_disk_byte += PAGE_CACHE_SIZE;
694         }
695         bio_get(comp_bio);
696
697         ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
698         BUG_ON(ret);
699
700         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
701                 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
702                 BUG_ON(ret);
703         }
704
705         ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
706         BUG_ON(ret);
707
708         bio_put(comp_bio);
709         return 0;
710
711 fail2:
712         for (pg_index = 0; pg_index < nr_pages; pg_index++)
713                 free_page((unsigned long)cb->compressed_pages[pg_index]);
714
715         kfree(cb->compressed_pages);
716 fail1:
717         kfree(cb);
718 out:
719         free_extent_map(em);
720         return ret;
721 }
722
723 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
724 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
725 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
726 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
727 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
728
729 struct btrfs_compress_op *btrfs_compress_op[] = {
730         &btrfs_zlib_compress,
731         &btrfs_lzo_compress,
732 };
733
734 int __init btrfs_init_compress(void)
735 {
736         int i;
737
738         for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
739                 INIT_LIST_HEAD(&comp_idle_workspace[i]);
740                 spin_lock_init(&comp_workspace_lock[i]);
741                 atomic_set(&comp_alloc_workspace[i], 0);
742                 init_waitqueue_head(&comp_workspace_wait[i]);
743         }
744         return 0;
745 }
746
747 /*
748  * this finds an available workspace or allocates a new one
749  * ERR_PTR is returned if things go bad.
750  */
751 static struct list_head *find_workspace(int type)
752 {
753         struct list_head *workspace;
754         int cpus = num_online_cpus();
755         int idx = type - 1;
756
757         struct list_head *idle_workspace        = &comp_idle_workspace[idx];
758         spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
759         atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
760         wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
761         int *num_workspace                      = &comp_num_workspace[idx];
762 again:
763         spin_lock(workspace_lock);
764         if (!list_empty(idle_workspace)) {
765                 workspace = idle_workspace->next;
766                 list_del(workspace);
767                 (*num_workspace)--;
768                 spin_unlock(workspace_lock);
769                 return workspace;
770
771         }
772         if (atomic_read(alloc_workspace) > cpus) {
773                 DEFINE_WAIT(wait);
774
775                 spin_unlock(workspace_lock);
776                 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
777                 if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
778                         schedule();
779                 finish_wait(workspace_wait, &wait);
780                 goto again;
781         }
782         atomic_inc(alloc_workspace);
783         spin_unlock(workspace_lock);
784
785         workspace = btrfs_compress_op[idx]->alloc_workspace();
786         if (IS_ERR(workspace)) {
787                 atomic_dec(alloc_workspace);
788                 wake_up(workspace_wait);
789         }
790         return workspace;
791 }
792
793 /*
794  * put a workspace struct back on the list or free it if we have enough
795  * idle ones sitting around
796  */
797 static void free_workspace(int type, struct list_head *workspace)
798 {
799         int idx = type - 1;
800         struct list_head *idle_workspace        = &comp_idle_workspace[idx];
801         spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
802         atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
803         wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
804         int *num_workspace                      = &comp_num_workspace[idx];
805
806         spin_lock(workspace_lock);
807         if (*num_workspace < num_online_cpus()) {
808                 list_add_tail(workspace, idle_workspace);
809                 (*num_workspace)++;
810                 spin_unlock(workspace_lock);
811                 goto wake;
812         }
813         spin_unlock(workspace_lock);
814
815         btrfs_compress_op[idx]->free_workspace(workspace);
816         atomic_dec(alloc_workspace);
817 wake:
818         if (waitqueue_active(workspace_wait))
819                 wake_up(workspace_wait);
820 }
821
822 /*
823  * cleanup function for module exit
824  */
825 static void free_workspaces(void)
826 {
827         struct list_head *workspace;
828         int i;
829
830         for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
831                 while (!list_empty(&comp_idle_workspace[i])) {
832                         workspace = comp_idle_workspace[i].next;
833                         list_del(workspace);
834                         btrfs_compress_op[i]->free_workspace(workspace);
835                         atomic_dec(&comp_alloc_workspace[i]);
836                 }
837         }
838 }
839
840 /*
841  * given an address space and start/len, compress the bytes.
842  *
843  * pages are allocated to hold the compressed result and stored
844  * in 'pages'
845  *
846  * out_pages is used to return the number of pages allocated.  There
847  * may be pages allocated even if we return an error
848  *
849  * total_in is used to return the number of bytes actually read.  It
850  * may be smaller then len if we had to exit early because we
851  * ran out of room in the pages array or because we cross the
852  * max_out threshold.
853  *
854  * total_out is used to return the total number of compressed bytes
855  *
856  * max_out tells us the max number of bytes that we're allowed to
857  * stuff into pages
858  */
859 int btrfs_compress_pages(int type, struct address_space *mapping,
860                          u64 start, unsigned long len,
861                          struct page **pages,
862                          unsigned long nr_dest_pages,
863                          unsigned long *out_pages,
864                          unsigned long *total_in,
865                          unsigned long *total_out,
866                          unsigned long max_out)
867 {
868         struct list_head *workspace;
869         int ret;
870
871         workspace = find_workspace(type);
872         if (IS_ERR(workspace))
873                 return -1;
874
875         ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
876                                                       start, len, pages,
877                                                       nr_dest_pages, out_pages,
878                                                       total_in, total_out,
879                                                       max_out);
880         free_workspace(type, workspace);
881         return ret;
882 }
883
884 /*
885  * pages_in is an array of pages with compressed data.
886  *
887  * disk_start is the starting logical offset of this array in the file
888  *
889  * bvec is a bio_vec of pages from the file that we want to decompress into
890  *
891  * vcnt is the count of pages in the biovec
892  *
893  * srclen is the number of bytes in pages_in
894  *
895  * The basic idea is that we have a bio that was created by readpages.
896  * The pages in the bio are for the uncompressed data, and they may not
897  * be contiguous.  They all correspond to the range of bytes covered by
898  * the compressed extent.
899  */
900 int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
901                             struct bio_vec *bvec, int vcnt, size_t srclen)
902 {
903         struct list_head *workspace;
904         int ret;
905
906         workspace = find_workspace(type);
907         if (IS_ERR(workspace))
908                 return -ENOMEM;
909
910         ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
911                                                          disk_start,
912                                                          bvec, vcnt, srclen);
913         free_workspace(type, workspace);
914         return ret;
915 }
916
917 /*
918  * a less complex decompression routine.  Our compressed data fits in a
919  * single page, and we want to read a single page out of it.
920  * start_byte tells us the offset into the compressed data we're interested in
921  */
922 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
923                      unsigned long start_byte, size_t srclen, size_t destlen)
924 {
925         struct list_head *workspace;
926         int ret;
927
928         workspace = find_workspace(type);
929         if (IS_ERR(workspace))
930                 return -ENOMEM;
931
932         ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
933                                                   dest_page, start_byte,
934                                                   srclen, destlen);
935
936         free_workspace(type, workspace);
937         return ret;
938 }
939
940 void btrfs_exit_compress(void)
941 {
942         free_workspaces();
943 }
944
945 /*
946  * Copy uncompressed data from working buffer to pages.
947  *
948  * buf_start is the byte offset we're of the start of our workspace buffer.
949  *
950  * total_out is the last byte of the buffer
951  */
952 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
953                               unsigned long total_out, u64 disk_start,
954                               struct bio_vec *bvec, int vcnt,
955                               unsigned long *pg_index,
956                               unsigned long *pg_offset)
957 {
958         unsigned long buf_offset;
959         unsigned long current_buf_start;
960         unsigned long start_byte;
961         unsigned long working_bytes = total_out - buf_start;
962         unsigned long bytes;
963         char *kaddr;
964         struct page *page_out = bvec[*pg_index].bv_page;
965
966         /*
967          * start byte is the first byte of the page we're currently
968          * copying into relative to the start of the compressed data.
969          */
970         start_byte = page_offset(page_out) - disk_start;
971
972         /* we haven't yet hit data corresponding to this page */
973         if (total_out <= start_byte)
974                 return 1;
975
976         /*
977          * the start of the data we care about is offset into
978          * the middle of our working buffer
979          */
980         if (total_out > start_byte && buf_start < start_byte) {
981                 buf_offset = start_byte - buf_start;
982                 working_bytes -= buf_offset;
983         } else {
984                 buf_offset = 0;
985         }
986         current_buf_start = buf_start;
987
988         /* copy bytes from the working buffer into the pages */
989         while (working_bytes > 0) {
990                 bytes = min(PAGE_CACHE_SIZE - *pg_offset,
991                             PAGE_CACHE_SIZE - buf_offset);
992                 bytes = min(bytes, working_bytes);
993                 kaddr = kmap_atomic(page_out, KM_USER0);
994                 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
995                 kunmap_atomic(kaddr, KM_USER0);
996                 flush_dcache_page(page_out);
997
998                 *pg_offset += bytes;
999                 buf_offset += bytes;
1000                 working_bytes -= bytes;
1001                 current_buf_start += bytes;
1002
1003                 /* check if we need to pick another page */
1004                 if (*pg_offset == PAGE_CACHE_SIZE) {
1005                         (*pg_index)++;
1006                         if (*pg_index >= vcnt)
1007                                 return 0;
1008
1009                         page_out = bvec[*pg_index].bv_page;
1010                         *pg_offset = 0;
1011                         start_byte = page_offset(page_out) - disk_start;
1012
1013                         /*
1014                          * make sure our new page is covered by this
1015                          * working buffer
1016                          */
1017                         if (total_out <= start_byte)
1018                                 return 1;
1019
1020                         /*
1021                          * the next page in the biovec might not be adjacent
1022                          * to the last page, but it might still be found
1023                          * inside this working buffer. bump our offset pointer
1024                          */
1025                         if (total_out > start_byte &&
1026                             current_buf_start < start_byte) {
1027                                 buf_offset = start_byte - buf_start;
1028                                 working_bytes = total_out - start_byte;
1029                                 current_buf_start = buf_start + buf_offset;
1030                         }
1031                 }
1032         }
1033
1034         return 1;
1035 }