Btrfs: read lock extent buffer while walking backrefs
[pandora-kernel.git] / fs / btrfs / backref.c
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27
28 struct extent_inode_elem {
29         u64 inum;
30         u64 offset;
31         struct extent_inode_elem *next;
32 };
33
34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35                                 struct btrfs_file_extent_item *fi,
36                                 u64 extent_item_pos,
37                                 struct extent_inode_elem **eie)
38 {
39         u64 offset = 0;
40         struct extent_inode_elem *e;
41
42         if (!btrfs_file_extent_compression(eb, fi) &&
43             !btrfs_file_extent_encryption(eb, fi) &&
44             !btrfs_file_extent_other_encoding(eb, fi)) {
45                 u64 data_offset;
46                 u64 data_len;
47
48                 data_offset = btrfs_file_extent_offset(eb, fi);
49                 data_len = btrfs_file_extent_num_bytes(eb, fi);
50
51                 if (extent_item_pos < data_offset ||
52                     extent_item_pos >= data_offset + data_len)
53                         return 1;
54                 offset = extent_item_pos - data_offset;
55         }
56
57         e = kmalloc(sizeof(*e), GFP_NOFS);
58         if (!e)
59                 return -ENOMEM;
60
61         e->next = *eie;
62         e->inum = key->objectid;
63         e->offset = key->offset + offset;
64         *eie = e;
65
66         return 0;
67 }
68
69 static void free_inode_elem_list(struct extent_inode_elem *eie)
70 {
71         struct extent_inode_elem *eie_next;
72
73         for (; eie; eie = eie_next) {
74                 eie_next = eie->next;
75                 kfree(eie);
76         }
77 }
78
79 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
80                                 u64 extent_item_pos,
81                                 struct extent_inode_elem **eie)
82 {
83         u64 disk_byte;
84         struct btrfs_key key;
85         struct btrfs_file_extent_item *fi;
86         int slot;
87         int nritems;
88         int extent_type;
89         int ret;
90
91         /*
92          * from the shared data ref, we only have the leaf but we need
93          * the key. thus, we must look into all items and see that we
94          * find one (some) with a reference to our extent item.
95          */
96         nritems = btrfs_header_nritems(eb);
97         for (slot = 0; slot < nritems; ++slot) {
98                 btrfs_item_key_to_cpu(eb, &key, slot);
99                 if (key.type != BTRFS_EXTENT_DATA_KEY)
100                         continue;
101                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
102                 extent_type = btrfs_file_extent_type(eb, fi);
103                 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
104                         continue;
105                 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
106                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
107                 if (disk_byte != wanted_disk_byte)
108                         continue;
109
110                 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
111                 if (ret < 0)
112                         return ret;
113         }
114
115         return 0;
116 }
117
118 /*
119  * this structure records all encountered refs on the way up to the root
120  */
121 struct __prelim_ref {
122         struct list_head list;
123         u64 root_id;
124         struct btrfs_key key_for_search;
125         int level;
126         int count;
127         struct extent_inode_elem *inode_list;
128         u64 parent;
129         u64 wanted_disk_byte;
130 };
131
132 static struct kmem_cache *btrfs_prelim_ref_cache;
133
134 int __init btrfs_prelim_ref_init(void)
135 {
136         btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
137                                         sizeof(struct __prelim_ref),
138                                         0,
139                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
140                                         NULL);
141         if (!btrfs_prelim_ref_cache)
142                 return -ENOMEM;
143         return 0;
144 }
145
146 void btrfs_prelim_ref_exit(void)
147 {
148         if (btrfs_prelim_ref_cache)
149                 kmem_cache_destroy(btrfs_prelim_ref_cache);
150 }
151
152 /*
153  * the rules for all callers of this function are:
154  * - obtaining the parent is the goal
155  * - if you add a key, you must know that it is a correct key
156  * - if you cannot add the parent or a correct key, then we will look into the
157  *   block later to set a correct key
158  *
159  * delayed refs
160  * ============
161  *        backref type | shared | indirect | shared | indirect
162  * information         |   tree |     tree |   data |     data
163  * --------------------+--------+----------+--------+----------
164  *      parent logical |    y   |     -    |    -   |     -
165  *      key to resolve |    -   |     y    |    y   |     y
166  *  tree block logical |    -   |     -    |    -   |     -
167  *  root for resolving |    y   |     y    |    y   |     y
168  *
169  * - column 1:       we've the parent -> done
170  * - column 2, 3, 4: we use the key to find the parent
171  *
172  * on disk refs (inline or keyed)
173  * ==============================
174  *        backref type | shared | indirect | shared | indirect
175  * information         |   tree |     tree |   data |     data
176  * --------------------+--------+----------+--------+----------
177  *      parent logical |    y   |     -    |    y   |     -
178  *      key to resolve |    -   |     -    |    -   |     y
179  *  tree block logical |    y   |     y    |    y   |     y
180  *  root for resolving |    -   |     y    |    y   |     y
181  *
182  * - column 1, 3: we've the parent -> done
183  * - column 2:    we take the first key from the block to find the parent
184  *                (see __add_missing_keys)
185  * - column 4:    we use the key to find the parent
186  *
187  * additional information that's available but not required to find the parent
188  * block might help in merging entries to gain some speed.
189  */
190
191 static int __add_prelim_ref(struct list_head *head, u64 root_id,
192                             struct btrfs_key *key, int level,
193                             u64 parent, u64 wanted_disk_byte, int count,
194                             gfp_t gfp_mask)
195 {
196         struct __prelim_ref *ref;
197
198         if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
199                 return 0;
200
201         ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
202         if (!ref)
203                 return -ENOMEM;
204
205         ref->root_id = root_id;
206         if (key)
207                 ref->key_for_search = *key;
208         else
209                 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
210
211         ref->inode_list = NULL;
212         ref->level = level;
213         ref->count = count;
214         ref->parent = parent;
215         ref->wanted_disk_byte = wanted_disk_byte;
216         list_add_tail(&ref->list, head);
217
218         return 0;
219 }
220
221 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
222                            struct ulist *parents, struct __prelim_ref *ref,
223                            int level, u64 time_seq, const u64 *extent_item_pos,
224                            u64 total_refs)
225 {
226         int ret = 0;
227         int slot;
228         struct extent_buffer *eb;
229         struct btrfs_key key;
230         struct btrfs_key *key_for_search = &ref->key_for_search;
231         struct btrfs_file_extent_item *fi;
232         struct extent_inode_elem *eie = NULL, *old = NULL;
233         u64 disk_byte;
234         u64 wanted_disk_byte = ref->wanted_disk_byte;
235         u64 count = 0;
236
237         if (level != 0) {
238                 eb = path->nodes[level];
239                 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
240                 if (ret < 0)
241                         return ret;
242                 return 0;
243         }
244
245         /*
246          * We normally enter this function with the path already pointing to
247          * the first item to check. But sometimes, we may enter it with
248          * slot==nritems. In that case, go to the next leaf before we continue.
249          */
250         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
251                 ret = btrfs_next_old_leaf(root, path, time_seq);
252
253         while (!ret && count < total_refs) {
254                 eb = path->nodes[0];
255                 slot = path->slots[0];
256
257                 btrfs_item_key_to_cpu(eb, &key, slot);
258
259                 if (key.objectid != key_for_search->objectid ||
260                     key.type != BTRFS_EXTENT_DATA_KEY)
261                         break;
262
263                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
264                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
265
266                 if (disk_byte == wanted_disk_byte) {
267                         eie = NULL;
268                         old = NULL;
269                         count++;
270                         if (extent_item_pos) {
271                                 ret = check_extent_in_eb(&key, eb, fi,
272                                                 *extent_item_pos,
273                                                 &eie);
274                                 if (ret < 0)
275                                         break;
276                         }
277                         if (ret > 0)
278                                 goto next;
279                         ret = ulist_add_merge(parents, eb->start,
280                                               (uintptr_t)eie,
281                                               (u64 *)&old, GFP_NOFS);
282                         if (ret < 0)
283                                 break;
284                         if (!ret && extent_item_pos) {
285                                 while (old->next)
286                                         old = old->next;
287                                 old->next = eie;
288                         }
289                         eie = NULL;
290                 }
291 next:
292                 ret = btrfs_next_old_item(root, path, time_seq);
293         }
294
295         if (ret > 0)
296                 ret = 0;
297         else if (ret < 0)
298                 free_inode_elem_list(eie);
299         return ret;
300 }
301
302 /*
303  * resolve an indirect backref in the form (root_id, key, level)
304  * to a logical address
305  */
306 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
307                                   struct btrfs_path *path, u64 time_seq,
308                                   struct __prelim_ref *ref,
309                                   struct ulist *parents,
310                                   const u64 *extent_item_pos, u64 total_refs)
311 {
312         struct btrfs_root *root;
313         struct btrfs_key root_key;
314         struct extent_buffer *eb;
315         int ret = 0;
316         int root_level;
317         int level = ref->level;
318         int index;
319
320         root_key.objectid = ref->root_id;
321         root_key.type = BTRFS_ROOT_ITEM_KEY;
322         root_key.offset = (u64)-1;
323
324         index = srcu_read_lock(&fs_info->subvol_srcu);
325
326         root = btrfs_read_fs_root_no_name(fs_info, &root_key);
327         if (IS_ERR(root)) {
328                 srcu_read_unlock(&fs_info->subvol_srcu, index);
329                 ret = PTR_ERR(root);
330                 goto out;
331         }
332
333         if (path->search_commit_root)
334                 root_level = btrfs_header_level(root->commit_root);
335         else
336                 root_level = btrfs_old_root_level(root, time_seq);
337
338         if (root_level + 1 == level) {
339                 srcu_read_unlock(&fs_info->subvol_srcu, index);
340                 goto out;
341         }
342
343         path->lowest_level = level;
344         ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
345
346         /* root node has been locked, we can release @subvol_srcu safely here */
347         srcu_read_unlock(&fs_info->subvol_srcu, index);
348
349         pr_debug("search slot in root %llu (level %d, ref count %d) returned "
350                  "%d for key (%llu %u %llu)\n",
351                  ref->root_id, level, ref->count, ret,
352                  ref->key_for_search.objectid, ref->key_for_search.type,
353                  ref->key_for_search.offset);
354         if (ret < 0)
355                 goto out;
356
357         eb = path->nodes[level];
358         while (!eb) {
359                 if (WARN_ON(!level)) {
360                         ret = 1;
361                         goto out;
362                 }
363                 level--;
364                 eb = path->nodes[level];
365         }
366
367         ret = add_all_parents(root, path, parents, ref, level, time_seq,
368                               extent_item_pos, total_refs);
369 out:
370         path->lowest_level = 0;
371         btrfs_release_path(path);
372         return ret;
373 }
374
375 /*
376  * resolve all indirect backrefs from the list
377  */
378 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
379                                    struct btrfs_path *path, u64 time_seq,
380                                    struct list_head *head,
381                                    const u64 *extent_item_pos, u64 total_refs)
382 {
383         int err;
384         int ret = 0;
385         struct __prelim_ref *ref;
386         struct __prelim_ref *ref_safe;
387         struct __prelim_ref *new_ref;
388         struct ulist *parents;
389         struct ulist_node *node;
390         struct ulist_iterator uiter;
391
392         parents = ulist_alloc(GFP_NOFS);
393         if (!parents)
394                 return -ENOMEM;
395
396         /*
397          * _safe allows us to insert directly after the current item without
398          * iterating over the newly inserted items.
399          * we're also allowed to re-assign ref during iteration.
400          */
401         list_for_each_entry_safe(ref, ref_safe, head, list) {
402                 if (ref->parent)        /* already direct */
403                         continue;
404                 if (ref->count == 0)
405                         continue;
406                 err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
407                                              parents, extent_item_pos,
408                                              total_refs);
409                 /*
410                  * we can only tolerate ENOENT,otherwise,we should catch error
411                  * and return directly.
412                  */
413                 if (err == -ENOENT) {
414                         continue;
415                 } else if (err) {
416                         ret = err;
417                         goto out;
418                 }
419
420                 /* we put the first parent into the ref at hand */
421                 ULIST_ITER_INIT(&uiter);
422                 node = ulist_next(parents, &uiter);
423                 ref->parent = node ? node->val : 0;
424                 ref->inode_list = node ?
425                         (struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
426
427                 /* additional parents require new refs being added here */
428                 while ((node = ulist_next(parents, &uiter))) {
429                         new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
430                                                    GFP_NOFS);
431                         if (!new_ref) {
432                                 ret = -ENOMEM;
433                                 goto out;
434                         }
435                         memcpy(new_ref, ref, sizeof(*ref));
436                         new_ref->parent = node->val;
437                         new_ref->inode_list = (struct extent_inode_elem *)
438                                                         (uintptr_t)node->aux;
439                         list_add(&new_ref->list, &ref->list);
440                 }
441                 ulist_reinit(parents);
442         }
443 out:
444         ulist_free(parents);
445         return ret;
446 }
447
448 static inline int ref_for_same_block(struct __prelim_ref *ref1,
449                                      struct __prelim_ref *ref2)
450 {
451         if (ref1->level != ref2->level)
452                 return 0;
453         if (ref1->root_id != ref2->root_id)
454                 return 0;
455         if (ref1->key_for_search.type != ref2->key_for_search.type)
456                 return 0;
457         if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
458                 return 0;
459         if (ref1->key_for_search.offset != ref2->key_for_search.offset)
460                 return 0;
461         if (ref1->parent != ref2->parent)
462                 return 0;
463
464         return 1;
465 }
466
467 /*
468  * read tree blocks and add keys where required.
469  */
470 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
471                               struct list_head *head)
472 {
473         struct list_head *pos;
474         struct extent_buffer *eb;
475
476         list_for_each(pos, head) {
477                 struct __prelim_ref *ref;
478                 ref = list_entry(pos, struct __prelim_ref, list);
479
480                 if (ref->parent)
481                         continue;
482                 if (ref->key_for_search.type)
483                         continue;
484                 BUG_ON(!ref->wanted_disk_byte);
485                 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
486                                      fs_info->tree_root->leafsize, 0);
487                 if (!eb || !extent_buffer_uptodate(eb)) {
488                         free_extent_buffer(eb);
489                         return -EIO;
490                 }
491                 btrfs_tree_read_lock(eb);
492                 if (btrfs_header_level(eb) == 0)
493                         btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
494                 else
495                         btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
496                 btrfs_tree_read_unlock(eb);
497                 free_extent_buffer(eb);
498         }
499         return 0;
500 }
501
502 /*
503  * merge two lists of backrefs and adjust counts accordingly
504  *
505  * mode = 1: merge identical keys, if key is set
506  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
507  *           additionally, we could even add a key range for the blocks we
508  *           looked into to merge even more (-> replace unresolved refs by those
509  *           having a parent).
510  * mode = 2: merge identical parents
511  */
512 static void __merge_refs(struct list_head *head, int mode)
513 {
514         struct list_head *pos1;
515
516         list_for_each(pos1, head) {
517                 struct list_head *n2;
518                 struct list_head *pos2;
519                 struct __prelim_ref *ref1;
520
521                 ref1 = list_entry(pos1, struct __prelim_ref, list);
522
523                 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
524                      pos2 = n2, n2 = pos2->next) {
525                         struct __prelim_ref *ref2;
526                         struct __prelim_ref *xchg;
527                         struct extent_inode_elem *eie;
528
529                         ref2 = list_entry(pos2, struct __prelim_ref, list);
530
531                         if (mode == 1) {
532                                 if (!ref_for_same_block(ref1, ref2))
533                                         continue;
534                                 if (!ref1->parent && ref2->parent) {
535                                         xchg = ref1;
536                                         ref1 = ref2;
537                                         ref2 = xchg;
538                                 }
539                         } else {
540                                 if (ref1->parent != ref2->parent)
541                                         continue;
542                         }
543
544                         eie = ref1->inode_list;
545                         while (eie && eie->next)
546                                 eie = eie->next;
547                         if (eie)
548                                 eie->next = ref2->inode_list;
549                         else
550                                 ref1->inode_list = ref2->inode_list;
551                         ref1->count += ref2->count;
552
553                         list_del(&ref2->list);
554                         kmem_cache_free(btrfs_prelim_ref_cache, ref2);
555                 }
556
557         }
558 }
559
560 /*
561  * add all currently queued delayed refs from this head whose seq nr is
562  * smaller or equal that seq to the list
563  */
564 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
565                               struct list_head *prefs, u64 *total_refs)
566 {
567         struct btrfs_delayed_extent_op *extent_op = head->extent_op;
568         struct rb_node *n = &head->node.rb_node;
569         struct btrfs_key key;
570         struct btrfs_key op_key = {0};
571         int sgn;
572         int ret = 0;
573
574         if (extent_op && extent_op->update_key)
575                 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
576
577         spin_lock(&head->lock);
578         n = rb_first(&head->ref_root);
579         while (n) {
580                 struct btrfs_delayed_ref_node *node;
581                 node = rb_entry(n, struct btrfs_delayed_ref_node,
582                                 rb_node);
583                 n = rb_next(n);
584                 if (node->seq > seq)
585                         continue;
586
587                 switch (node->action) {
588                 case BTRFS_ADD_DELAYED_EXTENT:
589                 case BTRFS_UPDATE_DELAYED_HEAD:
590                         WARN_ON(1);
591                         continue;
592                 case BTRFS_ADD_DELAYED_REF:
593                         sgn = 1;
594                         break;
595                 case BTRFS_DROP_DELAYED_REF:
596                         sgn = -1;
597                         break;
598                 default:
599                         BUG_ON(1);
600                 }
601                 *total_refs += (node->ref_mod * sgn);
602                 switch (node->type) {
603                 case BTRFS_TREE_BLOCK_REF_KEY: {
604                         struct btrfs_delayed_tree_ref *ref;
605
606                         ref = btrfs_delayed_node_to_tree_ref(node);
607                         ret = __add_prelim_ref(prefs, ref->root, &op_key,
608                                                ref->level + 1, 0, node->bytenr,
609                                                node->ref_mod * sgn, GFP_ATOMIC);
610                         break;
611                 }
612                 case BTRFS_SHARED_BLOCK_REF_KEY: {
613                         struct btrfs_delayed_tree_ref *ref;
614
615                         ref = btrfs_delayed_node_to_tree_ref(node);
616                         ret = __add_prelim_ref(prefs, ref->root, NULL,
617                                                ref->level + 1, ref->parent,
618                                                node->bytenr,
619                                                node->ref_mod * sgn, GFP_ATOMIC);
620                         break;
621                 }
622                 case BTRFS_EXTENT_DATA_REF_KEY: {
623                         struct btrfs_delayed_data_ref *ref;
624                         ref = btrfs_delayed_node_to_data_ref(node);
625
626                         key.objectid = ref->objectid;
627                         key.type = BTRFS_EXTENT_DATA_KEY;
628                         key.offset = ref->offset;
629                         ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
630                                                node->bytenr,
631                                                node->ref_mod * sgn, GFP_ATOMIC);
632                         break;
633                 }
634                 case BTRFS_SHARED_DATA_REF_KEY: {
635                         struct btrfs_delayed_data_ref *ref;
636
637                         ref = btrfs_delayed_node_to_data_ref(node);
638
639                         key.objectid = ref->objectid;
640                         key.type = BTRFS_EXTENT_DATA_KEY;
641                         key.offset = ref->offset;
642                         ret = __add_prelim_ref(prefs, ref->root, &key, 0,
643                                                ref->parent, node->bytenr,
644                                                node->ref_mod * sgn, GFP_ATOMIC);
645                         break;
646                 }
647                 default:
648                         WARN_ON(1);
649                 }
650                 if (ret)
651                         break;
652         }
653         spin_unlock(&head->lock);
654         return ret;
655 }
656
657 /*
658  * add all inline backrefs for bytenr to the list
659  */
660 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
661                              struct btrfs_path *path, u64 bytenr,
662                              int *info_level, struct list_head *prefs,
663                              u64 *total_refs)
664 {
665         int ret = 0;
666         int slot;
667         struct extent_buffer *leaf;
668         struct btrfs_key key;
669         struct btrfs_key found_key;
670         unsigned long ptr;
671         unsigned long end;
672         struct btrfs_extent_item *ei;
673         u64 flags;
674         u64 item_size;
675
676         /*
677          * enumerate all inline refs
678          */
679         leaf = path->nodes[0];
680         slot = path->slots[0];
681
682         item_size = btrfs_item_size_nr(leaf, slot);
683         BUG_ON(item_size < sizeof(*ei));
684
685         ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
686         flags = btrfs_extent_flags(leaf, ei);
687         *total_refs += btrfs_extent_refs(leaf, ei);
688         btrfs_item_key_to_cpu(leaf, &found_key, slot);
689
690         ptr = (unsigned long)(ei + 1);
691         end = (unsigned long)ei + item_size;
692
693         if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
694             flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
695                 struct btrfs_tree_block_info *info;
696
697                 info = (struct btrfs_tree_block_info *)ptr;
698                 *info_level = btrfs_tree_block_level(leaf, info);
699                 ptr += sizeof(struct btrfs_tree_block_info);
700                 BUG_ON(ptr > end);
701         } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
702                 *info_level = found_key.offset;
703         } else {
704                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
705         }
706
707         while (ptr < end) {
708                 struct btrfs_extent_inline_ref *iref;
709                 u64 offset;
710                 int type;
711
712                 iref = (struct btrfs_extent_inline_ref *)ptr;
713                 type = btrfs_extent_inline_ref_type(leaf, iref);
714                 offset = btrfs_extent_inline_ref_offset(leaf, iref);
715
716                 switch (type) {
717                 case BTRFS_SHARED_BLOCK_REF_KEY:
718                         ret = __add_prelim_ref(prefs, 0, NULL,
719                                                 *info_level + 1, offset,
720                                                 bytenr, 1, GFP_NOFS);
721                         break;
722                 case BTRFS_SHARED_DATA_REF_KEY: {
723                         struct btrfs_shared_data_ref *sdref;
724                         int count;
725
726                         sdref = (struct btrfs_shared_data_ref *)(iref + 1);
727                         count = btrfs_shared_data_ref_count(leaf, sdref);
728                         ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
729                                                bytenr, count, GFP_NOFS);
730                         break;
731                 }
732                 case BTRFS_TREE_BLOCK_REF_KEY:
733                         ret = __add_prelim_ref(prefs, offset, NULL,
734                                                *info_level + 1, 0,
735                                                bytenr, 1, GFP_NOFS);
736                         break;
737                 case BTRFS_EXTENT_DATA_REF_KEY: {
738                         struct btrfs_extent_data_ref *dref;
739                         int count;
740                         u64 root;
741
742                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
743                         count = btrfs_extent_data_ref_count(leaf, dref);
744                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
745                                                                       dref);
746                         key.type = BTRFS_EXTENT_DATA_KEY;
747                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
748                         root = btrfs_extent_data_ref_root(leaf, dref);
749                         ret = __add_prelim_ref(prefs, root, &key, 0, 0,
750                                                bytenr, count, GFP_NOFS);
751                         break;
752                 }
753                 default:
754                         WARN_ON(1);
755                 }
756                 if (ret)
757                         return ret;
758                 ptr += btrfs_extent_inline_ref_size(type);
759         }
760
761         return 0;
762 }
763
764 /*
765  * add all non-inline backrefs for bytenr to the list
766  */
767 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
768                             struct btrfs_path *path, u64 bytenr,
769                             int info_level, struct list_head *prefs)
770 {
771         struct btrfs_root *extent_root = fs_info->extent_root;
772         int ret;
773         int slot;
774         struct extent_buffer *leaf;
775         struct btrfs_key key;
776
777         while (1) {
778                 ret = btrfs_next_item(extent_root, path);
779                 if (ret < 0)
780                         break;
781                 if (ret) {
782                         ret = 0;
783                         break;
784                 }
785
786                 slot = path->slots[0];
787                 leaf = path->nodes[0];
788                 btrfs_item_key_to_cpu(leaf, &key, slot);
789
790                 if (key.objectid != bytenr)
791                         break;
792                 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
793                         continue;
794                 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
795                         break;
796
797                 switch (key.type) {
798                 case BTRFS_SHARED_BLOCK_REF_KEY:
799                         ret = __add_prelim_ref(prefs, 0, NULL,
800                                                 info_level + 1, key.offset,
801                                                 bytenr, 1, GFP_NOFS);
802                         break;
803                 case BTRFS_SHARED_DATA_REF_KEY: {
804                         struct btrfs_shared_data_ref *sdref;
805                         int count;
806
807                         sdref = btrfs_item_ptr(leaf, slot,
808                                               struct btrfs_shared_data_ref);
809                         count = btrfs_shared_data_ref_count(leaf, sdref);
810                         ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
811                                                 bytenr, count, GFP_NOFS);
812                         break;
813                 }
814                 case BTRFS_TREE_BLOCK_REF_KEY:
815                         ret = __add_prelim_ref(prefs, key.offset, NULL,
816                                                info_level + 1, 0,
817                                                bytenr, 1, GFP_NOFS);
818                         break;
819                 case BTRFS_EXTENT_DATA_REF_KEY: {
820                         struct btrfs_extent_data_ref *dref;
821                         int count;
822                         u64 root;
823
824                         dref = btrfs_item_ptr(leaf, slot,
825                                               struct btrfs_extent_data_ref);
826                         count = btrfs_extent_data_ref_count(leaf, dref);
827                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
828                                                                       dref);
829                         key.type = BTRFS_EXTENT_DATA_KEY;
830                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
831                         root = btrfs_extent_data_ref_root(leaf, dref);
832                         ret = __add_prelim_ref(prefs, root, &key, 0, 0,
833                                                bytenr, count, GFP_NOFS);
834                         break;
835                 }
836                 default:
837                         WARN_ON(1);
838                 }
839                 if (ret)
840                         return ret;
841
842         }
843
844         return ret;
845 }
846
847 /*
848  * this adds all existing backrefs (inline backrefs, backrefs and delayed
849  * refs) for the given bytenr to the refs list, merges duplicates and resolves
850  * indirect refs to their parent bytenr.
851  * When roots are found, they're added to the roots list
852  *
853  * FIXME some caching might speed things up
854  */
855 static int find_parent_nodes(struct btrfs_trans_handle *trans,
856                              struct btrfs_fs_info *fs_info, u64 bytenr,
857                              u64 time_seq, struct ulist *refs,
858                              struct ulist *roots, const u64 *extent_item_pos)
859 {
860         struct btrfs_key key;
861         struct btrfs_path *path;
862         struct btrfs_delayed_ref_root *delayed_refs = NULL;
863         struct btrfs_delayed_ref_head *head;
864         int info_level = 0;
865         int ret;
866         struct list_head prefs_delayed;
867         struct list_head prefs;
868         struct __prelim_ref *ref;
869         struct extent_inode_elem *eie = NULL;
870         u64 total_refs = 0;
871
872         INIT_LIST_HEAD(&prefs);
873         INIT_LIST_HEAD(&prefs_delayed);
874
875         key.objectid = bytenr;
876         key.offset = (u64)-1;
877         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
878                 key.type = BTRFS_METADATA_ITEM_KEY;
879         else
880                 key.type = BTRFS_EXTENT_ITEM_KEY;
881
882         path = btrfs_alloc_path();
883         if (!path)
884                 return -ENOMEM;
885         if (!trans) {
886                 path->search_commit_root = 1;
887                 path->skip_locking = 1;
888         }
889
890         /*
891          * grab both a lock on the path and a lock on the delayed ref head.
892          * We need both to get a consistent picture of how the refs look
893          * at a specified point in time
894          */
895 again:
896         head = NULL;
897
898         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
899         if (ret < 0)
900                 goto out;
901         BUG_ON(ret == 0);
902
903 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
904         if (trans && likely(trans->type != __TRANS_DUMMY)) {
905 #else
906         if (trans) {
907 #endif
908                 /*
909                  * look if there are updates for this ref queued and lock the
910                  * head
911                  */
912                 delayed_refs = &trans->transaction->delayed_refs;
913                 spin_lock(&delayed_refs->lock);
914                 head = btrfs_find_delayed_ref_head(trans, bytenr);
915                 if (head) {
916                         if (!mutex_trylock(&head->mutex)) {
917                                 atomic_inc(&head->node.refs);
918                                 spin_unlock(&delayed_refs->lock);
919
920                                 btrfs_release_path(path);
921
922                                 /*
923                                  * Mutex was contended, block until it's
924                                  * released and try again
925                                  */
926                                 mutex_lock(&head->mutex);
927                                 mutex_unlock(&head->mutex);
928                                 btrfs_put_delayed_ref(&head->node);
929                                 goto again;
930                         }
931                         spin_unlock(&delayed_refs->lock);
932                         ret = __add_delayed_refs(head, time_seq,
933                                                  &prefs_delayed, &total_refs);
934                         mutex_unlock(&head->mutex);
935                         if (ret)
936                                 goto out;
937                 } else {
938                         spin_unlock(&delayed_refs->lock);
939                 }
940         }
941
942         if (path->slots[0]) {
943                 struct extent_buffer *leaf;
944                 int slot;
945
946                 path->slots[0]--;
947                 leaf = path->nodes[0];
948                 slot = path->slots[0];
949                 btrfs_item_key_to_cpu(leaf, &key, slot);
950                 if (key.objectid == bytenr &&
951                     (key.type == BTRFS_EXTENT_ITEM_KEY ||
952                      key.type == BTRFS_METADATA_ITEM_KEY)) {
953                         ret = __add_inline_refs(fs_info, path, bytenr,
954                                                 &info_level, &prefs,
955                                                 &total_refs);
956                         if (ret)
957                                 goto out;
958                         ret = __add_keyed_refs(fs_info, path, bytenr,
959                                                info_level, &prefs);
960                         if (ret)
961                                 goto out;
962                 }
963         }
964         btrfs_release_path(path);
965
966         list_splice_init(&prefs_delayed, &prefs);
967
968         ret = __add_missing_keys(fs_info, &prefs);
969         if (ret)
970                 goto out;
971
972         __merge_refs(&prefs, 1);
973
974         ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
975                                       extent_item_pos, total_refs);
976         if (ret)
977                 goto out;
978
979         __merge_refs(&prefs, 2);
980
981         while (!list_empty(&prefs)) {
982                 ref = list_first_entry(&prefs, struct __prelim_ref, list);
983                 WARN_ON(ref->count < 0);
984                 if (roots && ref->count && ref->root_id && ref->parent == 0) {
985                         /* no parent == root of tree */
986                         ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
987                         if (ret < 0)
988                                 goto out;
989                 }
990                 if (ref->count && ref->parent) {
991                         if (extent_item_pos && !ref->inode_list &&
992                             ref->level == 0) {
993                                 u32 bsz;
994                                 struct extent_buffer *eb;
995                                 bsz = btrfs_level_size(fs_info->extent_root,
996                                                         ref->level);
997                                 eb = read_tree_block(fs_info->extent_root,
998                                                            ref->parent, bsz, 0);
999                                 if (!eb || !extent_buffer_uptodate(eb)) {
1000                                         free_extent_buffer(eb);
1001                                         ret = -EIO;
1002                                         goto out;
1003                                 }
1004                                 btrfs_tree_read_lock(eb);
1005                                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1006                                 ret = find_extent_in_eb(eb, bytenr,
1007                                                         *extent_item_pos, &eie);
1008                                 btrfs_tree_read_unlock_blocking(eb);
1009                                 free_extent_buffer(eb);
1010                                 if (ret < 0)
1011                                         goto out;
1012                                 ref->inode_list = eie;
1013                         }
1014                         ret = ulist_add_merge(refs, ref->parent,
1015                                               (uintptr_t)ref->inode_list,
1016                                               (u64 *)&eie, GFP_NOFS);
1017                         if (ret < 0)
1018                                 goto out;
1019                         if (!ret && extent_item_pos) {
1020                                 /*
1021                                  * we've recorded that parent, so we must extend
1022                                  * its inode list here
1023                                  */
1024                                 BUG_ON(!eie);
1025                                 while (eie->next)
1026                                         eie = eie->next;
1027                                 eie->next = ref->inode_list;
1028                         }
1029                         eie = NULL;
1030                 }
1031                 list_del(&ref->list);
1032                 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1033         }
1034
1035 out:
1036         btrfs_free_path(path);
1037         while (!list_empty(&prefs)) {
1038                 ref = list_first_entry(&prefs, struct __prelim_ref, list);
1039                 list_del(&ref->list);
1040                 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1041         }
1042         while (!list_empty(&prefs_delayed)) {
1043                 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1044                                        list);
1045                 list_del(&ref->list);
1046                 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1047         }
1048         if (ret < 0)
1049                 free_inode_elem_list(eie);
1050         return ret;
1051 }
1052
1053 static void free_leaf_list(struct ulist *blocks)
1054 {
1055         struct ulist_node *node = NULL;
1056         struct extent_inode_elem *eie;
1057         struct ulist_iterator uiter;
1058
1059         ULIST_ITER_INIT(&uiter);
1060         while ((node = ulist_next(blocks, &uiter))) {
1061                 if (!node->aux)
1062                         continue;
1063                 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1064                 free_inode_elem_list(eie);
1065                 node->aux = 0;
1066         }
1067
1068         ulist_free(blocks);
1069 }
1070
1071 /*
1072  * Finds all leafs with a reference to the specified combination of bytenr and
1073  * offset. key_list_head will point to a list of corresponding keys (caller must
1074  * free each list element). The leafs will be stored in the leafs ulist, which
1075  * must be freed with ulist_free.
1076  *
1077  * returns 0 on success, <0 on error
1078  */
1079 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1080                                 struct btrfs_fs_info *fs_info, u64 bytenr,
1081                                 u64 time_seq, struct ulist **leafs,
1082                                 const u64 *extent_item_pos)
1083 {
1084         int ret;
1085
1086         *leafs = ulist_alloc(GFP_NOFS);
1087         if (!*leafs)
1088                 return -ENOMEM;
1089
1090         ret = find_parent_nodes(trans, fs_info, bytenr,
1091                                 time_seq, *leafs, NULL, extent_item_pos);
1092         if (ret < 0 && ret != -ENOENT) {
1093                 free_leaf_list(*leafs);
1094                 return ret;
1095         }
1096
1097         return 0;
1098 }
1099
1100 /*
1101  * walk all backrefs for a given extent to find all roots that reference this
1102  * extent. Walking a backref means finding all extents that reference this
1103  * extent and in turn walk the backrefs of those, too. Naturally this is a
1104  * recursive process, but here it is implemented in an iterative fashion: We
1105  * find all referencing extents for the extent in question and put them on a
1106  * list. In turn, we find all referencing extents for those, further appending
1107  * to the list. The way we iterate the list allows adding more elements after
1108  * the current while iterating. The process stops when we reach the end of the
1109  * list. Found roots are added to the roots list.
1110  *
1111  * returns 0 on success, < 0 on error.
1112  */
1113 static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1114                                   struct btrfs_fs_info *fs_info, u64 bytenr,
1115                                   u64 time_seq, struct ulist **roots)
1116 {
1117         struct ulist *tmp;
1118         struct ulist_node *node = NULL;
1119         struct ulist_iterator uiter;
1120         int ret;
1121
1122         tmp = ulist_alloc(GFP_NOFS);
1123         if (!tmp)
1124                 return -ENOMEM;
1125         *roots = ulist_alloc(GFP_NOFS);
1126         if (!*roots) {
1127                 ulist_free(tmp);
1128                 return -ENOMEM;
1129         }
1130
1131         ULIST_ITER_INIT(&uiter);
1132         while (1) {
1133                 ret = find_parent_nodes(trans, fs_info, bytenr,
1134                                         time_seq, tmp, *roots, NULL);
1135                 if (ret < 0 && ret != -ENOENT) {
1136                         ulist_free(tmp);
1137                         ulist_free(*roots);
1138                         return ret;
1139                 }
1140                 node = ulist_next(tmp, &uiter);
1141                 if (!node)
1142                         break;
1143                 bytenr = node->val;
1144                 cond_resched();
1145         }
1146
1147         ulist_free(tmp);
1148         return 0;
1149 }
1150
1151 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1152                          struct btrfs_fs_info *fs_info, u64 bytenr,
1153                          u64 time_seq, struct ulist **roots)
1154 {
1155         int ret;
1156
1157         if (!trans)
1158                 down_read(&fs_info->commit_root_sem);
1159         ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
1160         if (!trans)
1161                 up_read(&fs_info->commit_root_sem);
1162         return ret;
1163 }
1164
1165 /*
1166  * this makes the path point to (inum INODE_ITEM ioff)
1167  */
1168 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1169                         struct btrfs_path *path)
1170 {
1171         struct btrfs_key key;
1172         return btrfs_find_item(fs_root, path, inum, ioff,
1173                         BTRFS_INODE_ITEM_KEY, &key);
1174 }
1175
1176 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1177                                 struct btrfs_path *path,
1178                                 struct btrfs_key *found_key)
1179 {
1180         return btrfs_find_item(fs_root, path, inum, ioff,
1181                         BTRFS_INODE_REF_KEY, found_key);
1182 }
1183
1184 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1185                           u64 start_off, struct btrfs_path *path,
1186                           struct btrfs_inode_extref **ret_extref,
1187                           u64 *found_off)
1188 {
1189         int ret, slot;
1190         struct btrfs_key key;
1191         struct btrfs_key found_key;
1192         struct btrfs_inode_extref *extref;
1193         struct extent_buffer *leaf;
1194         unsigned long ptr;
1195
1196         key.objectid = inode_objectid;
1197         btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1198         key.offset = start_off;
1199
1200         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1201         if (ret < 0)
1202                 return ret;
1203
1204         while (1) {
1205                 leaf = path->nodes[0];
1206                 slot = path->slots[0];
1207                 if (slot >= btrfs_header_nritems(leaf)) {
1208                         /*
1209                          * If the item at offset is not found,
1210                          * btrfs_search_slot will point us to the slot
1211                          * where it should be inserted. In our case
1212                          * that will be the slot directly before the
1213                          * next INODE_REF_KEY_V2 item. In the case
1214                          * that we're pointing to the last slot in a
1215                          * leaf, we must move one leaf over.
1216                          */
1217                         ret = btrfs_next_leaf(root, path);
1218                         if (ret) {
1219                                 if (ret >= 1)
1220                                         ret = -ENOENT;
1221                                 break;
1222                         }
1223                         continue;
1224                 }
1225
1226                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1227
1228                 /*
1229                  * Check that we're still looking at an extended ref key for
1230                  * this particular objectid. If we have different
1231                  * objectid or type then there are no more to be found
1232                  * in the tree and we can exit.
1233                  */
1234                 ret = -ENOENT;
1235                 if (found_key.objectid != inode_objectid)
1236                         break;
1237                 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1238                         break;
1239
1240                 ret = 0;
1241                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1242                 extref = (struct btrfs_inode_extref *)ptr;
1243                 *ret_extref = extref;
1244                 if (found_off)
1245                         *found_off = found_key.offset;
1246                 break;
1247         }
1248
1249         return ret;
1250 }
1251
1252 /*
1253  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1254  * Elements of the path are separated by '/' and the path is guaranteed to be
1255  * 0-terminated. the path is only given within the current file system.
1256  * Therefore, it never starts with a '/'. the caller is responsible to provide
1257  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1258  * the start point of the resulting string is returned. this pointer is within
1259  * dest, normally.
1260  * in case the path buffer would overflow, the pointer is decremented further
1261  * as if output was written to the buffer, though no more output is actually
1262  * generated. that way, the caller can determine how much space would be
1263  * required for the path to fit into the buffer. in that case, the returned
1264  * value will be smaller than dest. callers must check this!
1265  */
1266 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1267                         u32 name_len, unsigned long name_off,
1268                         struct extent_buffer *eb_in, u64 parent,
1269                         char *dest, u32 size)
1270 {
1271         int slot;
1272         u64 next_inum;
1273         int ret;
1274         s64 bytes_left = ((s64)size) - 1;
1275         struct extent_buffer *eb = eb_in;
1276         struct btrfs_key found_key;
1277         int leave_spinning = path->leave_spinning;
1278         struct btrfs_inode_ref *iref;
1279
1280         if (bytes_left >= 0)
1281                 dest[bytes_left] = '\0';
1282
1283         path->leave_spinning = 1;
1284         while (1) {
1285                 bytes_left -= name_len;
1286                 if (bytes_left >= 0)
1287                         read_extent_buffer(eb, dest + bytes_left,
1288                                            name_off, name_len);
1289                 if (eb != eb_in) {
1290                         btrfs_tree_read_unlock_blocking(eb);
1291                         free_extent_buffer(eb);
1292                 }
1293                 ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1294                 if (ret > 0)
1295                         ret = -ENOENT;
1296                 if (ret)
1297                         break;
1298
1299                 next_inum = found_key.offset;
1300
1301                 /* regular exit ahead */
1302                 if (parent == next_inum)
1303                         break;
1304
1305                 slot = path->slots[0];
1306                 eb = path->nodes[0];
1307                 /* make sure we can use eb after releasing the path */
1308                 if (eb != eb_in) {
1309                         atomic_inc(&eb->refs);
1310                         btrfs_tree_read_lock(eb);
1311                         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1312                 }
1313                 btrfs_release_path(path);
1314                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1315
1316                 name_len = btrfs_inode_ref_name_len(eb, iref);
1317                 name_off = (unsigned long)(iref + 1);
1318
1319                 parent = next_inum;
1320                 --bytes_left;
1321                 if (bytes_left >= 0)
1322                         dest[bytes_left] = '/';
1323         }
1324
1325         btrfs_release_path(path);
1326         path->leave_spinning = leave_spinning;
1327
1328         if (ret)
1329                 return ERR_PTR(ret);
1330
1331         return dest + bytes_left;
1332 }
1333
1334 /*
1335  * this makes the path point to (logical EXTENT_ITEM *)
1336  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1337  * tree blocks and <0 on error.
1338  */
1339 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1340                         struct btrfs_path *path, struct btrfs_key *found_key,
1341                         u64 *flags_ret)
1342 {
1343         int ret;
1344         u64 flags;
1345         u64 size = 0;
1346         u32 item_size;
1347         struct extent_buffer *eb;
1348         struct btrfs_extent_item *ei;
1349         struct btrfs_key key;
1350
1351         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1352                 key.type = BTRFS_METADATA_ITEM_KEY;
1353         else
1354                 key.type = BTRFS_EXTENT_ITEM_KEY;
1355         key.objectid = logical;
1356         key.offset = (u64)-1;
1357
1358         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1359         if (ret < 0)
1360                 return ret;
1361
1362         ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1363         if (ret) {
1364                 if (ret > 0)
1365                         ret = -ENOENT;
1366                 return ret;
1367         }
1368         btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1369         if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1370                 size = fs_info->extent_root->leafsize;
1371         else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1372                 size = found_key->offset;
1373
1374         if (found_key->objectid > logical ||
1375             found_key->objectid + size <= logical) {
1376                 pr_debug("logical %llu is not within any extent\n", logical);
1377                 return -ENOENT;
1378         }
1379
1380         eb = path->nodes[0];
1381         item_size = btrfs_item_size_nr(eb, path->slots[0]);
1382         BUG_ON(item_size < sizeof(*ei));
1383
1384         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1385         flags = btrfs_extent_flags(eb, ei);
1386
1387         pr_debug("logical %llu is at position %llu within the extent (%llu "
1388                  "EXTENT_ITEM %llu) flags %#llx size %u\n",
1389                  logical, logical - found_key->objectid, found_key->objectid,
1390                  found_key->offset, flags, item_size);
1391
1392         WARN_ON(!flags_ret);
1393         if (flags_ret) {
1394                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1395                         *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1396                 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1397                         *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1398                 else
1399                         BUG_ON(1);
1400                 return 0;
1401         }
1402
1403         return -EIO;
1404 }
1405
1406 /*
1407  * helper function to iterate extent inline refs. ptr must point to a 0 value
1408  * for the first call and may be modified. it is used to track state.
1409  * if more refs exist, 0 is returned and the next call to
1410  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1411  * next ref. after the last ref was processed, 1 is returned.
1412  * returns <0 on error
1413  */
1414 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1415                                    struct btrfs_key *key,
1416                                    struct btrfs_extent_item *ei, u32 item_size,
1417                                    struct btrfs_extent_inline_ref **out_eiref,
1418                                    int *out_type)
1419 {
1420         unsigned long end;
1421         u64 flags;
1422         struct btrfs_tree_block_info *info;
1423
1424         if (!*ptr) {
1425                 /* first call */
1426                 flags = btrfs_extent_flags(eb, ei);
1427                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1428                         if (key->type == BTRFS_METADATA_ITEM_KEY) {
1429                                 /* a skinny metadata extent */
1430                                 *out_eiref =
1431                                      (struct btrfs_extent_inline_ref *)(ei + 1);
1432                         } else {
1433                                 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1434                                 info = (struct btrfs_tree_block_info *)(ei + 1);
1435                                 *out_eiref =
1436                                    (struct btrfs_extent_inline_ref *)(info + 1);
1437                         }
1438                 } else {
1439                         *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1440                 }
1441                 *ptr = (unsigned long)*out_eiref;
1442                 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1443                         return -ENOENT;
1444         }
1445
1446         end = (unsigned long)ei + item_size;
1447         *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1448         *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1449
1450         *ptr += btrfs_extent_inline_ref_size(*out_type);
1451         WARN_ON(*ptr > end);
1452         if (*ptr == end)
1453                 return 1; /* last */
1454
1455         return 0;
1456 }
1457
1458 /*
1459  * reads the tree block backref for an extent. tree level and root are returned
1460  * through out_level and out_root. ptr must point to a 0 value for the first
1461  * call and may be modified (see __get_extent_inline_ref comment).
1462  * returns 0 if data was provided, 1 if there was no more data to provide or
1463  * <0 on error.
1464  */
1465 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1466                             struct btrfs_key *key, struct btrfs_extent_item *ei,
1467                             u32 item_size, u64 *out_root, u8 *out_level)
1468 {
1469         int ret;
1470         int type;
1471         struct btrfs_tree_block_info *info;
1472         struct btrfs_extent_inline_ref *eiref;
1473
1474         if (*ptr == (unsigned long)-1)
1475                 return 1;
1476
1477         while (1) {
1478                 ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
1479                                               &eiref, &type);
1480                 if (ret < 0)
1481                         return ret;
1482
1483                 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1484                     type == BTRFS_SHARED_BLOCK_REF_KEY)
1485                         break;
1486
1487                 if (ret == 1)
1488                         return 1;
1489         }
1490
1491         /* we can treat both ref types equally here */
1492         info = (struct btrfs_tree_block_info *)(ei + 1);
1493         *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1494         *out_level = btrfs_tree_block_level(eb, info);
1495
1496         if (ret == 1)
1497                 *ptr = (unsigned long)-1;
1498
1499         return 0;
1500 }
1501
1502 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1503                                 u64 root, u64 extent_item_objectid,
1504                                 iterate_extent_inodes_t *iterate, void *ctx)
1505 {
1506         struct extent_inode_elem *eie;
1507         int ret = 0;
1508
1509         for (eie = inode_list; eie; eie = eie->next) {
1510                 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1511                          "root %llu\n", extent_item_objectid,
1512                          eie->inum, eie->offset, root);
1513                 ret = iterate(eie->inum, eie->offset, root, ctx);
1514                 if (ret) {
1515                         pr_debug("stopping iteration for %llu due to ret=%d\n",
1516                                  extent_item_objectid, ret);
1517                         break;
1518                 }
1519         }
1520
1521         return ret;
1522 }
1523
1524 /*
1525  * calls iterate() for every inode that references the extent identified by
1526  * the given parameters.
1527  * when the iterator function returns a non-zero value, iteration stops.
1528  */
1529 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1530                                 u64 extent_item_objectid, u64 extent_item_pos,
1531                                 int search_commit_root,
1532                                 iterate_extent_inodes_t *iterate, void *ctx)
1533 {
1534         int ret;
1535         struct btrfs_trans_handle *trans = NULL;
1536         struct ulist *refs = NULL;
1537         struct ulist *roots = NULL;
1538         struct ulist_node *ref_node = NULL;
1539         struct ulist_node *root_node = NULL;
1540         struct seq_list tree_mod_seq_elem = {};
1541         struct ulist_iterator ref_uiter;
1542         struct ulist_iterator root_uiter;
1543
1544         pr_debug("resolving all inodes for extent %llu\n",
1545                         extent_item_objectid);
1546
1547         if (!search_commit_root) {
1548                 trans = btrfs_join_transaction(fs_info->extent_root);
1549                 if (IS_ERR(trans))
1550                         return PTR_ERR(trans);
1551                 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1552         } else {
1553                 down_read(&fs_info->commit_root_sem);
1554         }
1555
1556         ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1557                                    tree_mod_seq_elem.seq, &refs,
1558                                    &extent_item_pos);
1559         if (ret)
1560                 goto out;
1561
1562         ULIST_ITER_INIT(&ref_uiter);
1563         while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1564                 ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
1565                                              tree_mod_seq_elem.seq, &roots);
1566                 if (ret)
1567                         break;
1568                 ULIST_ITER_INIT(&root_uiter);
1569                 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1570                         pr_debug("root %llu references leaf %llu, data list "
1571                                  "%#llx\n", root_node->val, ref_node->val,
1572                                  ref_node->aux);
1573                         ret = iterate_leaf_refs((struct extent_inode_elem *)
1574                                                 (uintptr_t)ref_node->aux,
1575                                                 root_node->val,
1576                                                 extent_item_objectid,
1577                                                 iterate, ctx);
1578                 }
1579                 ulist_free(roots);
1580         }
1581
1582         free_leaf_list(refs);
1583 out:
1584         if (!search_commit_root) {
1585                 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1586                 btrfs_end_transaction(trans, fs_info->extent_root);
1587         } else {
1588                 up_read(&fs_info->commit_root_sem);
1589         }
1590
1591         return ret;
1592 }
1593
1594 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1595                                 struct btrfs_path *path,
1596                                 iterate_extent_inodes_t *iterate, void *ctx)
1597 {
1598         int ret;
1599         u64 extent_item_pos;
1600         u64 flags = 0;
1601         struct btrfs_key found_key;
1602         int search_commit_root = path->search_commit_root;
1603
1604         ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1605         btrfs_release_path(path);
1606         if (ret < 0)
1607                 return ret;
1608         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1609                 return -EINVAL;
1610
1611         extent_item_pos = logical - found_key.objectid;
1612         ret = iterate_extent_inodes(fs_info, found_key.objectid,
1613                                         extent_item_pos, search_commit_root,
1614                                         iterate, ctx);
1615
1616         return ret;
1617 }
1618
1619 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1620                               struct extent_buffer *eb, void *ctx);
1621
1622 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1623                               struct btrfs_path *path,
1624                               iterate_irefs_t *iterate, void *ctx)
1625 {
1626         int ret = 0;
1627         int slot;
1628         u32 cur;
1629         u32 len;
1630         u32 name_len;
1631         u64 parent = 0;
1632         int found = 0;
1633         struct extent_buffer *eb;
1634         struct btrfs_item *item;
1635         struct btrfs_inode_ref *iref;
1636         struct btrfs_key found_key;
1637
1638         while (!ret) {
1639                 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1640                                      &found_key);
1641                 if (ret < 0)
1642                         break;
1643                 if (ret) {
1644                         ret = found ? 0 : -ENOENT;
1645                         break;
1646                 }
1647                 ++found;
1648
1649                 parent = found_key.offset;
1650                 slot = path->slots[0];
1651                 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1652                 if (!eb) {
1653                         ret = -ENOMEM;
1654                         break;
1655                 }
1656                 extent_buffer_get(eb);
1657                 btrfs_tree_read_lock(eb);
1658                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1659                 btrfs_release_path(path);
1660
1661                 item = btrfs_item_nr(slot);
1662                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1663
1664                 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1665                         name_len = btrfs_inode_ref_name_len(eb, iref);
1666                         /* path must be released before calling iterate()! */
1667                         pr_debug("following ref at offset %u for inode %llu in "
1668                                  "tree %llu\n", cur, found_key.objectid,
1669                                  fs_root->objectid);
1670                         ret = iterate(parent, name_len,
1671                                       (unsigned long)(iref + 1), eb, ctx);
1672                         if (ret)
1673                                 break;
1674                         len = sizeof(*iref) + name_len;
1675                         iref = (struct btrfs_inode_ref *)((char *)iref + len);
1676                 }
1677                 btrfs_tree_read_unlock_blocking(eb);
1678                 free_extent_buffer(eb);
1679         }
1680
1681         btrfs_release_path(path);
1682
1683         return ret;
1684 }
1685
1686 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1687                                  struct btrfs_path *path,
1688                                  iterate_irefs_t *iterate, void *ctx)
1689 {
1690         int ret;
1691         int slot;
1692         u64 offset = 0;
1693         u64 parent;
1694         int found = 0;
1695         struct extent_buffer *eb;
1696         struct btrfs_inode_extref *extref;
1697         struct extent_buffer *leaf;
1698         u32 item_size;
1699         u32 cur_offset;
1700         unsigned long ptr;
1701
1702         while (1) {
1703                 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1704                                             &offset);
1705                 if (ret < 0)
1706                         break;
1707                 if (ret) {
1708                         ret = found ? 0 : -ENOENT;
1709                         break;
1710                 }
1711                 ++found;
1712
1713                 slot = path->slots[0];
1714                 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1715                 if (!eb) {
1716                         ret = -ENOMEM;
1717                         break;
1718                 }
1719                 extent_buffer_get(eb);
1720
1721                 btrfs_tree_read_lock(eb);
1722                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1723                 btrfs_release_path(path);
1724
1725                 leaf = path->nodes[0];
1726                 item_size = btrfs_item_size_nr(leaf, slot);
1727                 ptr = btrfs_item_ptr_offset(leaf, slot);
1728                 cur_offset = 0;
1729
1730                 while (cur_offset < item_size) {
1731                         u32 name_len;
1732
1733                         extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1734                         parent = btrfs_inode_extref_parent(eb, extref);
1735                         name_len = btrfs_inode_extref_name_len(eb, extref);
1736                         ret = iterate(parent, name_len,
1737                                       (unsigned long)&extref->name, eb, ctx);
1738                         if (ret)
1739                                 break;
1740
1741                         cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1742                         cur_offset += sizeof(*extref);
1743                 }
1744                 btrfs_tree_read_unlock_blocking(eb);
1745                 free_extent_buffer(eb);
1746
1747                 offset++;
1748         }
1749
1750         btrfs_release_path(path);
1751
1752         return ret;
1753 }
1754
1755 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1756                          struct btrfs_path *path, iterate_irefs_t *iterate,
1757                          void *ctx)
1758 {
1759         int ret;
1760         int found_refs = 0;
1761
1762         ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1763         if (!ret)
1764                 ++found_refs;
1765         else if (ret != -ENOENT)
1766                 return ret;
1767
1768         ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1769         if (ret == -ENOENT && found_refs)
1770                 return 0;
1771
1772         return ret;
1773 }
1774
1775 /*
1776  * returns 0 if the path could be dumped (probably truncated)
1777  * returns <0 in case of an error
1778  */
1779 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1780                          struct extent_buffer *eb, void *ctx)
1781 {
1782         struct inode_fs_paths *ipath = ctx;
1783         char *fspath;
1784         char *fspath_min;
1785         int i = ipath->fspath->elem_cnt;
1786         const int s_ptr = sizeof(char *);
1787         u32 bytes_left;
1788
1789         bytes_left = ipath->fspath->bytes_left > s_ptr ?
1790                                         ipath->fspath->bytes_left - s_ptr : 0;
1791
1792         fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1793         fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1794                                    name_off, eb, inum, fspath_min, bytes_left);
1795         if (IS_ERR(fspath))
1796                 return PTR_ERR(fspath);
1797
1798         if (fspath > fspath_min) {
1799                 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1800                 ++ipath->fspath->elem_cnt;
1801                 ipath->fspath->bytes_left = fspath - fspath_min;
1802         } else {
1803                 ++ipath->fspath->elem_missed;
1804                 ipath->fspath->bytes_missing += fspath_min - fspath;
1805                 ipath->fspath->bytes_left = 0;
1806         }
1807
1808         return 0;
1809 }
1810
1811 /*
1812  * this dumps all file system paths to the inode into the ipath struct, provided
1813  * is has been created large enough. each path is zero-terminated and accessed
1814  * from ipath->fspath->val[i].
1815  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1816  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1817  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1818  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1819  * have been needed to return all paths.
1820  */
1821 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1822 {
1823         return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1824                              inode_to_path, ipath);
1825 }
1826
1827 struct btrfs_data_container *init_data_container(u32 total_bytes)
1828 {
1829         struct btrfs_data_container *data;
1830         size_t alloc_bytes;
1831
1832         alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1833         data = vmalloc(alloc_bytes);
1834         if (!data)
1835                 return ERR_PTR(-ENOMEM);
1836
1837         if (total_bytes >= sizeof(*data)) {
1838                 data->bytes_left = total_bytes - sizeof(*data);
1839                 data->bytes_missing = 0;
1840         } else {
1841                 data->bytes_missing = sizeof(*data) - total_bytes;
1842                 data->bytes_left = 0;
1843         }
1844
1845         data->elem_cnt = 0;
1846         data->elem_missed = 0;
1847
1848         return data;
1849 }
1850
1851 /*
1852  * allocates space to return multiple file system paths for an inode.
1853  * total_bytes to allocate are passed, note that space usable for actual path
1854  * information will be total_bytes - sizeof(struct inode_fs_paths).
1855  * the returned pointer must be freed with free_ipath() in the end.
1856  */
1857 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1858                                         struct btrfs_path *path)
1859 {
1860         struct inode_fs_paths *ifp;
1861         struct btrfs_data_container *fspath;
1862
1863         fspath = init_data_container(total_bytes);
1864         if (IS_ERR(fspath))
1865                 return (void *)fspath;
1866
1867         ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1868         if (!ifp) {
1869                 kfree(fspath);
1870                 return ERR_PTR(-ENOMEM);
1871         }
1872
1873         ifp->btrfs_path = path;
1874         ifp->fspath = fspath;
1875         ifp->fs_root = fs_root;
1876
1877         return ifp;
1878 }
1879
1880 void free_ipath(struct inode_fs_paths *ipath)
1881 {
1882         if (!ipath)
1883                 return;
1884         vfree(ipath->fspath);
1885         kfree(ipath);
1886 }