xhci: Implement HS/FS/LS bandwidth checking.
[pandora-kernel.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29
30 #include "xhci.h"
31
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55                       u32 mask, u32 done, int usec)
56 {
57         u32     result;
58
59         do {
60                 result = xhci_readl(xhci, ptr);
61                 if (result == ~(u32)0)          /* card removed */
62                         return -ENODEV;
63                 result &= mask;
64                 if (result == done)
65                         return 0;
66                 udelay(1);
67                 usec--;
68         } while (usec > 0);
69         return -ETIMEDOUT;
70 }
71
72 /*
73  * Disable interrupts and begin the xHCI halting process.
74  */
75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77         u32 halted;
78         u32 cmd;
79         u32 mask;
80
81         mask = ~(XHCI_IRQS);
82         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83         if (!halted)
84                 mask &= ~CMD_RUN;
85
86         cmd = xhci_readl(xhci, &xhci->op_regs->command);
87         cmd &= mask;
88         xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90
91 /*
92  * Force HC into halt state.
93  *
94  * Disable any IRQs and clear the run/stop bit.
95  * HC will complete any current and actively pipelined transactions, and
96  * should halt within 16 ms of the run/stop bit being cleared.
97  * Read HC Halted bit in the status register to see when the HC is finished.
98  */
99 int xhci_halt(struct xhci_hcd *xhci)
100 {
101         int ret;
102         xhci_dbg(xhci, "// Halt the HC\n");
103         xhci_quiesce(xhci);
104
105         ret = handshake(xhci, &xhci->op_regs->status,
106                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107         if (!ret)
108                 xhci->xhc_state |= XHCI_STATE_HALTED;
109         return ret;
110 }
111
112 /*
113  * Set the run bit and wait for the host to be running.
114  */
115 static int xhci_start(struct xhci_hcd *xhci)
116 {
117         u32 temp;
118         int ret;
119
120         temp = xhci_readl(xhci, &xhci->op_regs->command);
121         temp |= (CMD_RUN);
122         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
123                         temp);
124         xhci_writel(xhci, temp, &xhci->op_regs->command);
125
126         /*
127          * Wait for the HCHalted Status bit to be 0 to indicate the host is
128          * running.
129          */
130         ret = handshake(xhci, &xhci->op_regs->status,
131                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
132         if (ret == -ETIMEDOUT)
133                 xhci_err(xhci, "Host took too long to start, "
134                                 "waited %u microseconds.\n",
135                                 XHCI_MAX_HALT_USEC);
136         if (!ret)
137                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
138         return ret;
139 }
140
141 /*
142  * Reset a halted HC.
143  *
144  * This resets pipelines, timers, counters, state machines, etc.
145  * Transactions will be terminated immediately, and operational registers
146  * will be set to their defaults.
147  */
148 int xhci_reset(struct xhci_hcd *xhci)
149 {
150         u32 command;
151         u32 state;
152         int ret;
153
154         state = xhci_readl(xhci, &xhci->op_regs->status);
155         if ((state & STS_HALT) == 0) {
156                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
157                 return 0;
158         }
159
160         xhci_dbg(xhci, "// Reset the HC\n");
161         command = xhci_readl(xhci, &xhci->op_regs->command);
162         command |= CMD_RESET;
163         xhci_writel(xhci, command, &xhci->op_regs->command);
164
165         ret = handshake(xhci, &xhci->op_regs->command,
166                         CMD_RESET, 0, 250 * 1000);
167         if (ret)
168                 return ret;
169
170         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
171         /*
172          * xHCI cannot write to any doorbells or operational registers other
173          * than status until the "Controller Not Ready" flag is cleared.
174          */
175         return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
176 }
177
178 /*
179  * Free IRQs
180  * free all IRQs request
181  */
182 static void xhci_free_irq(struct xhci_hcd *xhci)
183 {
184         int i;
185         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
186
187         /* return if using legacy interrupt */
188         if (xhci_to_hcd(xhci)->irq >= 0)
189                 return;
190
191         if (xhci->msix_entries) {
192                 for (i = 0; i < xhci->msix_count; i++)
193                         if (xhci->msix_entries[i].vector)
194                                 free_irq(xhci->msix_entries[i].vector,
195                                                 xhci_to_hcd(xhci));
196         } else if (pdev->irq >= 0)
197                 free_irq(pdev->irq, xhci_to_hcd(xhci));
198
199         return;
200 }
201
202 /*
203  * Set up MSI
204  */
205 static int xhci_setup_msi(struct xhci_hcd *xhci)
206 {
207         int ret;
208         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
209
210         ret = pci_enable_msi(pdev);
211         if (ret) {
212                 xhci_err(xhci, "failed to allocate MSI entry\n");
213                 return ret;
214         }
215
216         ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
217                                 0, "xhci_hcd", xhci_to_hcd(xhci));
218         if (ret) {
219                 xhci_err(xhci, "disable MSI interrupt\n");
220                 pci_disable_msi(pdev);
221         }
222
223         return ret;
224 }
225
226 /*
227  * Set up MSI-X
228  */
229 static int xhci_setup_msix(struct xhci_hcd *xhci)
230 {
231         int i, ret = 0;
232         struct usb_hcd *hcd = xhci_to_hcd(xhci);
233         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
234
235         /*
236          * calculate number of msi-x vectors supported.
237          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
238          *   with max number of interrupters based on the xhci HCSPARAMS1.
239          * - num_online_cpus: maximum msi-x vectors per CPUs core.
240          *   Add additional 1 vector to ensure always available interrupt.
241          */
242         xhci->msix_count = min(num_online_cpus() + 1,
243                                 HCS_MAX_INTRS(xhci->hcs_params1));
244
245         xhci->msix_entries =
246                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
247                                 GFP_KERNEL);
248         if (!xhci->msix_entries) {
249                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
250                 return -ENOMEM;
251         }
252
253         for (i = 0; i < xhci->msix_count; i++) {
254                 xhci->msix_entries[i].entry = i;
255                 xhci->msix_entries[i].vector = 0;
256         }
257
258         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
259         if (ret) {
260                 xhci_err(xhci, "Failed to enable MSI-X\n");
261                 goto free_entries;
262         }
263
264         for (i = 0; i < xhci->msix_count; i++) {
265                 ret = request_irq(xhci->msix_entries[i].vector,
266                                 (irq_handler_t)xhci_msi_irq,
267                                 0, "xhci_hcd", xhci_to_hcd(xhci));
268                 if (ret)
269                         goto disable_msix;
270         }
271
272         hcd->msix_enabled = 1;
273         return ret;
274
275 disable_msix:
276         xhci_err(xhci, "disable MSI-X interrupt\n");
277         xhci_free_irq(xhci);
278         pci_disable_msix(pdev);
279 free_entries:
280         kfree(xhci->msix_entries);
281         xhci->msix_entries = NULL;
282         return ret;
283 }
284
285 /* Free any IRQs and disable MSI-X */
286 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
287 {
288         struct usb_hcd *hcd = xhci_to_hcd(xhci);
289         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
290
291         xhci_free_irq(xhci);
292
293         if (xhci->msix_entries) {
294                 pci_disable_msix(pdev);
295                 kfree(xhci->msix_entries);
296                 xhci->msix_entries = NULL;
297         } else {
298                 pci_disable_msi(pdev);
299         }
300
301         hcd->msix_enabled = 0;
302         return;
303 }
304
305 /*
306  * Initialize memory for HCD and xHC (one-time init).
307  *
308  * Program the PAGESIZE register, initialize the device context array, create
309  * device contexts (?), set up a command ring segment (or two?), create event
310  * ring (one for now).
311  */
312 int xhci_init(struct usb_hcd *hcd)
313 {
314         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
315         int retval = 0;
316
317         xhci_dbg(xhci, "xhci_init\n");
318         spin_lock_init(&xhci->lock);
319         if (link_quirk) {
320                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
321                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
322         } else {
323                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
324         }
325         retval = xhci_mem_init(xhci, GFP_KERNEL);
326         xhci_dbg(xhci, "Finished xhci_init\n");
327
328         return retval;
329 }
330
331 /*-------------------------------------------------------------------------*/
332
333
334 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
335 static void xhci_event_ring_work(unsigned long arg)
336 {
337         unsigned long flags;
338         int temp;
339         u64 temp_64;
340         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
341         int i, j;
342
343         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
344
345         spin_lock_irqsave(&xhci->lock, flags);
346         temp = xhci_readl(xhci, &xhci->op_regs->status);
347         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
348         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
349                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
350                 xhci_dbg(xhci, "HW died, polling stopped.\n");
351                 spin_unlock_irqrestore(&xhci->lock, flags);
352                 return;
353         }
354
355         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
356         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
357         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
358         xhci->error_bitmask = 0;
359         xhci_dbg(xhci, "Event ring:\n");
360         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
361         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
362         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
363         temp_64 &= ~ERST_PTR_MASK;
364         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
365         xhci_dbg(xhci, "Command ring:\n");
366         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
367         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
368         xhci_dbg_cmd_ptrs(xhci);
369         for (i = 0; i < MAX_HC_SLOTS; ++i) {
370                 if (!xhci->devs[i])
371                         continue;
372                 for (j = 0; j < 31; ++j) {
373                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
374                 }
375         }
376         spin_unlock_irqrestore(&xhci->lock, flags);
377
378         if (!xhci->zombie)
379                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
380         else
381                 xhci_dbg(xhci, "Quit polling the event ring.\n");
382 }
383 #endif
384
385 static int xhci_run_finished(struct xhci_hcd *xhci)
386 {
387         if (xhci_start(xhci)) {
388                 xhci_halt(xhci);
389                 return -ENODEV;
390         }
391         xhci->shared_hcd->state = HC_STATE_RUNNING;
392
393         if (xhci->quirks & XHCI_NEC_HOST)
394                 xhci_ring_cmd_db(xhci);
395
396         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
397         return 0;
398 }
399
400 /*
401  * Start the HC after it was halted.
402  *
403  * This function is called by the USB core when the HC driver is added.
404  * Its opposite is xhci_stop().
405  *
406  * xhci_init() must be called once before this function can be called.
407  * Reset the HC, enable device slot contexts, program DCBAAP, and
408  * set command ring pointer and event ring pointer.
409  *
410  * Setup MSI-X vectors and enable interrupts.
411  */
412 int xhci_run(struct usb_hcd *hcd)
413 {
414         u32 temp;
415         u64 temp_64;
416         u32 ret;
417         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
418         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
419
420         /* Start the xHCI host controller running only after the USB 2.0 roothub
421          * is setup.
422          */
423
424         hcd->uses_new_polling = 1;
425         if (!usb_hcd_is_primary_hcd(hcd))
426                 return xhci_run_finished(xhci);
427
428         xhci_dbg(xhci, "xhci_run\n");
429         /* unregister the legacy interrupt */
430         if (hcd->irq)
431                 free_irq(hcd->irq, hcd);
432         hcd->irq = -1;
433
434         /* Some Fresco Logic host controllers advertise MSI, but fail to
435          * generate interrupts.  Don't even try to enable MSI.
436          */
437         if (xhci->quirks & XHCI_BROKEN_MSI)
438                 goto legacy_irq;
439
440         ret = xhci_setup_msix(xhci);
441         if (ret)
442                 /* fall back to msi*/
443                 ret = xhci_setup_msi(xhci);
444
445         if (ret) {
446 legacy_irq:
447                 /* fall back to legacy interrupt*/
448                 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
449                                         hcd->irq_descr, hcd);
450                 if (ret) {
451                         xhci_err(xhci, "request interrupt %d failed\n",
452                                         pdev->irq);
453                         return ret;
454                 }
455                 hcd->irq = pdev->irq;
456         }
457
458 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
459         init_timer(&xhci->event_ring_timer);
460         xhci->event_ring_timer.data = (unsigned long) xhci;
461         xhci->event_ring_timer.function = xhci_event_ring_work;
462         /* Poll the event ring */
463         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
464         xhci->zombie = 0;
465         xhci_dbg(xhci, "Setting event ring polling timer\n");
466         add_timer(&xhci->event_ring_timer);
467 #endif
468
469         xhci_dbg(xhci, "Command ring memory map follows:\n");
470         xhci_debug_ring(xhci, xhci->cmd_ring);
471         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
472         xhci_dbg_cmd_ptrs(xhci);
473
474         xhci_dbg(xhci, "ERST memory map follows:\n");
475         xhci_dbg_erst(xhci, &xhci->erst);
476         xhci_dbg(xhci, "Event ring:\n");
477         xhci_debug_ring(xhci, xhci->event_ring);
478         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
479         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
480         temp_64 &= ~ERST_PTR_MASK;
481         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
482
483         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
484         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
485         temp &= ~ER_IRQ_INTERVAL_MASK;
486         temp |= (u32) 160;
487         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
488
489         /* Set the HCD state before we enable the irqs */
490         temp = xhci_readl(xhci, &xhci->op_regs->command);
491         temp |= (CMD_EIE);
492         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
493                         temp);
494         xhci_writel(xhci, temp, &xhci->op_regs->command);
495
496         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
497         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
498                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
499         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
500                         &xhci->ir_set->irq_pending);
501         xhci_print_ir_set(xhci, 0);
502
503         if (xhci->quirks & XHCI_NEC_HOST)
504                 xhci_queue_vendor_command(xhci, 0, 0, 0,
505                                 TRB_TYPE(TRB_NEC_GET_FW));
506
507         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
508         return 0;
509 }
510
511 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
512 {
513         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
514
515         spin_lock_irq(&xhci->lock);
516         xhci_halt(xhci);
517
518         /* The shared_hcd is going to be deallocated shortly (the USB core only
519          * calls this function when allocation fails in usb_add_hcd(), or
520          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
521          */
522         xhci->shared_hcd = NULL;
523         spin_unlock_irq(&xhci->lock);
524 }
525
526 /*
527  * Stop xHCI driver.
528  *
529  * This function is called by the USB core when the HC driver is removed.
530  * Its opposite is xhci_run().
531  *
532  * Disable device contexts, disable IRQs, and quiesce the HC.
533  * Reset the HC, finish any completed transactions, and cleanup memory.
534  */
535 void xhci_stop(struct usb_hcd *hcd)
536 {
537         u32 temp;
538         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
539
540         if (!usb_hcd_is_primary_hcd(hcd)) {
541                 xhci_only_stop_hcd(xhci->shared_hcd);
542                 return;
543         }
544
545         spin_lock_irq(&xhci->lock);
546         /* Make sure the xHC is halted for a USB3 roothub
547          * (xhci_stop() could be called as part of failed init).
548          */
549         xhci_halt(xhci);
550         xhci_reset(xhci);
551         spin_unlock_irq(&xhci->lock);
552
553         xhci_cleanup_msix(xhci);
554
555 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
556         /* Tell the event ring poll function not to reschedule */
557         xhci->zombie = 1;
558         del_timer_sync(&xhci->event_ring_timer);
559 #endif
560
561         if (xhci->quirks & XHCI_AMD_PLL_FIX)
562                 usb_amd_dev_put();
563
564         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
565         temp = xhci_readl(xhci, &xhci->op_regs->status);
566         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
567         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
568         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
569                         &xhci->ir_set->irq_pending);
570         xhci_print_ir_set(xhci, 0);
571
572         xhci_dbg(xhci, "cleaning up memory\n");
573         xhci_mem_cleanup(xhci);
574         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
575                     xhci_readl(xhci, &xhci->op_regs->status));
576 }
577
578 /*
579  * Shutdown HC (not bus-specific)
580  *
581  * This is called when the machine is rebooting or halting.  We assume that the
582  * machine will be powered off, and the HC's internal state will be reset.
583  * Don't bother to free memory.
584  *
585  * This will only ever be called with the main usb_hcd (the USB3 roothub).
586  */
587 void xhci_shutdown(struct usb_hcd *hcd)
588 {
589         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
590
591         spin_lock_irq(&xhci->lock);
592         xhci_halt(xhci);
593         spin_unlock_irq(&xhci->lock);
594
595         xhci_cleanup_msix(xhci);
596
597         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
598                     xhci_readl(xhci, &xhci->op_regs->status));
599 }
600
601 #ifdef CONFIG_PM
602 static void xhci_save_registers(struct xhci_hcd *xhci)
603 {
604         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
605         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
606         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
607         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
608         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
609         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
610         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
611         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
612         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
613 }
614
615 static void xhci_restore_registers(struct xhci_hcd *xhci)
616 {
617         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
618         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
619         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
620         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
621         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
622         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
623         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
624         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
625 }
626
627 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
628 {
629         u64     val_64;
630
631         /* step 2: initialize command ring buffer */
632         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
633         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
634                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
635                                       xhci->cmd_ring->dequeue) &
636                  (u64) ~CMD_RING_RSVD_BITS) |
637                 xhci->cmd_ring->cycle_state;
638         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
639                         (long unsigned long) val_64);
640         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
641 }
642
643 /*
644  * The whole command ring must be cleared to zero when we suspend the host.
645  *
646  * The host doesn't save the command ring pointer in the suspend well, so we
647  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
648  * aligned, because of the reserved bits in the command ring dequeue pointer
649  * register.  Therefore, we can't just set the dequeue pointer back in the
650  * middle of the ring (TRBs are 16-byte aligned).
651  */
652 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
653 {
654         struct xhci_ring *ring;
655         struct xhci_segment *seg;
656
657         ring = xhci->cmd_ring;
658         seg = ring->deq_seg;
659         do {
660                 memset(seg->trbs, 0, SEGMENT_SIZE);
661                 seg = seg->next;
662         } while (seg != ring->deq_seg);
663
664         /* Reset the software enqueue and dequeue pointers */
665         ring->deq_seg = ring->first_seg;
666         ring->dequeue = ring->first_seg->trbs;
667         ring->enq_seg = ring->deq_seg;
668         ring->enqueue = ring->dequeue;
669
670         /*
671          * Ring is now zeroed, so the HW should look for change of ownership
672          * when the cycle bit is set to 1.
673          */
674         ring->cycle_state = 1;
675
676         /*
677          * Reset the hardware dequeue pointer.
678          * Yes, this will need to be re-written after resume, but we're paranoid
679          * and want to make sure the hardware doesn't access bogus memory
680          * because, say, the BIOS or an SMI started the host without changing
681          * the command ring pointers.
682          */
683         xhci_set_cmd_ring_deq(xhci);
684 }
685
686 /*
687  * Stop HC (not bus-specific)
688  *
689  * This is called when the machine transition into S3/S4 mode.
690  *
691  */
692 int xhci_suspend(struct xhci_hcd *xhci)
693 {
694         int                     rc = 0;
695         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
696         u32                     command;
697         int                     i;
698
699         spin_lock_irq(&xhci->lock);
700         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
701         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
702         /* step 1: stop endpoint */
703         /* skipped assuming that port suspend has done */
704
705         /* step 2: clear Run/Stop bit */
706         command = xhci_readl(xhci, &xhci->op_regs->command);
707         command &= ~CMD_RUN;
708         xhci_writel(xhci, command, &xhci->op_regs->command);
709         if (handshake(xhci, &xhci->op_regs->status,
710                       STS_HALT, STS_HALT, 100*100)) {
711                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
712                 spin_unlock_irq(&xhci->lock);
713                 return -ETIMEDOUT;
714         }
715         xhci_clear_command_ring(xhci);
716
717         /* step 3: save registers */
718         xhci_save_registers(xhci);
719
720         /* step 4: set CSS flag */
721         command = xhci_readl(xhci, &xhci->op_regs->command);
722         command |= CMD_CSS;
723         xhci_writel(xhci, command, &xhci->op_regs->command);
724         if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
725                 xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
726                 spin_unlock_irq(&xhci->lock);
727                 return -ETIMEDOUT;
728         }
729         spin_unlock_irq(&xhci->lock);
730
731         /* step 5: remove core well power */
732         /* synchronize irq when using MSI-X */
733         if (xhci->msix_entries) {
734                 for (i = 0; i < xhci->msix_count; i++)
735                         synchronize_irq(xhci->msix_entries[i].vector);
736         }
737
738         return rc;
739 }
740
741 /*
742  * start xHC (not bus-specific)
743  *
744  * This is called when the machine transition from S3/S4 mode.
745  *
746  */
747 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
748 {
749         u32                     command, temp = 0;
750         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
751         struct usb_hcd          *secondary_hcd;
752         int                     retval;
753
754         /* Wait a bit if either of the roothubs need to settle from the
755          * transition into bus suspend.
756          */
757         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
758                         time_before(jiffies,
759                                 xhci->bus_state[1].next_statechange))
760                 msleep(100);
761
762         spin_lock_irq(&xhci->lock);
763         if (xhci->quirks & XHCI_RESET_ON_RESUME)
764                 hibernated = true;
765
766         if (!hibernated) {
767                 /* step 1: restore register */
768                 xhci_restore_registers(xhci);
769                 /* step 2: initialize command ring buffer */
770                 xhci_set_cmd_ring_deq(xhci);
771                 /* step 3: restore state and start state*/
772                 /* step 3: set CRS flag */
773                 command = xhci_readl(xhci, &xhci->op_regs->command);
774                 command |= CMD_CRS;
775                 xhci_writel(xhci, command, &xhci->op_regs->command);
776                 if (handshake(xhci, &xhci->op_regs->status,
777                               STS_RESTORE, 0, 10*100)) {
778                         xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
779                         spin_unlock_irq(&xhci->lock);
780                         return -ETIMEDOUT;
781                 }
782                 temp = xhci_readl(xhci, &xhci->op_regs->status);
783         }
784
785         /* If restore operation fails, re-initialize the HC during resume */
786         if ((temp & STS_SRE) || hibernated) {
787                 /* Let the USB core know _both_ roothubs lost power. */
788                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
789                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
790
791                 xhci_dbg(xhci, "Stop HCD\n");
792                 xhci_halt(xhci);
793                 xhci_reset(xhci);
794                 spin_unlock_irq(&xhci->lock);
795                 xhci_cleanup_msix(xhci);
796
797 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
798                 /* Tell the event ring poll function not to reschedule */
799                 xhci->zombie = 1;
800                 del_timer_sync(&xhci->event_ring_timer);
801 #endif
802
803                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
804                 temp = xhci_readl(xhci, &xhci->op_regs->status);
805                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
806                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
807                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
808                                 &xhci->ir_set->irq_pending);
809                 xhci_print_ir_set(xhci, 0);
810
811                 xhci_dbg(xhci, "cleaning up memory\n");
812                 xhci_mem_cleanup(xhci);
813                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
814                             xhci_readl(xhci, &xhci->op_regs->status));
815
816                 /* USB core calls the PCI reinit and start functions twice:
817                  * first with the primary HCD, and then with the secondary HCD.
818                  * If we don't do the same, the host will never be started.
819                  */
820                 if (!usb_hcd_is_primary_hcd(hcd))
821                         secondary_hcd = hcd;
822                 else
823                         secondary_hcd = xhci->shared_hcd;
824
825                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
826                 retval = xhci_init(hcd->primary_hcd);
827                 if (retval)
828                         return retval;
829                 xhci_dbg(xhci, "Start the primary HCD\n");
830                 retval = xhci_run(hcd->primary_hcd);
831                 if (retval)
832                         goto failed_restart;
833
834                 xhci_dbg(xhci, "Start the secondary HCD\n");
835                 retval = xhci_run(secondary_hcd);
836                 if (!retval) {
837                         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
838                         set_bit(HCD_FLAG_HW_ACCESSIBLE,
839                                         &xhci->shared_hcd->flags);
840                 }
841 failed_restart:
842                 hcd->state = HC_STATE_SUSPENDED;
843                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
844                 return retval;
845         }
846
847         /* step 4: set Run/Stop bit */
848         command = xhci_readl(xhci, &xhci->op_regs->command);
849         command |= CMD_RUN;
850         xhci_writel(xhci, command, &xhci->op_regs->command);
851         handshake(xhci, &xhci->op_regs->status, STS_HALT,
852                   0, 250 * 1000);
853
854         /* step 5: walk topology and initialize portsc,
855          * portpmsc and portli
856          */
857         /* this is done in bus_resume */
858
859         /* step 6: restart each of the previously
860          * Running endpoints by ringing their doorbells
861          */
862
863         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
864         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
865
866         spin_unlock_irq(&xhci->lock);
867         return 0;
868 }
869 #endif  /* CONFIG_PM */
870
871 /*-------------------------------------------------------------------------*/
872
873 /**
874  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
875  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
876  * value to right shift 1 for the bitmask.
877  *
878  * Index  = (epnum * 2) + direction - 1,
879  * where direction = 0 for OUT, 1 for IN.
880  * For control endpoints, the IN index is used (OUT index is unused), so
881  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
882  */
883 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
884 {
885         unsigned int index;
886         if (usb_endpoint_xfer_control(desc))
887                 index = (unsigned int) (usb_endpoint_num(desc)*2);
888         else
889                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
890                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
891         return index;
892 }
893
894 /* Find the flag for this endpoint (for use in the control context).  Use the
895  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
896  * bit 1, etc.
897  */
898 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
899 {
900         return 1 << (xhci_get_endpoint_index(desc) + 1);
901 }
902
903 /* Find the flag for this endpoint (for use in the control context).  Use the
904  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
905  * bit 1, etc.
906  */
907 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
908 {
909         return 1 << (ep_index + 1);
910 }
911
912 /* Compute the last valid endpoint context index.  Basically, this is the
913  * endpoint index plus one.  For slot contexts with more than valid endpoint,
914  * we find the most significant bit set in the added contexts flags.
915  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
916  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
917  */
918 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
919 {
920         return fls(added_ctxs) - 1;
921 }
922
923 /* Returns 1 if the arguments are OK;
924  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
925  */
926 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
927                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
928                 const char *func) {
929         struct xhci_hcd *xhci;
930         struct xhci_virt_device *virt_dev;
931
932         if (!hcd || (check_ep && !ep) || !udev) {
933                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
934                                 func);
935                 return -EINVAL;
936         }
937         if (!udev->parent) {
938                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
939                                 func);
940                 return 0;
941         }
942
943         xhci = hcd_to_xhci(hcd);
944         if (xhci->xhc_state & XHCI_STATE_HALTED)
945                 return -ENODEV;
946
947         if (check_virt_dev) {
948                 if (!udev->slot_id || !xhci->devs
949                         || !xhci->devs[udev->slot_id]) {
950                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
951                                                 "device\n", func);
952                         return -EINVAL;
953                 }
954
955                 virt_dev = xhci->devs[udev->slot_id];
956                 if (virt_dev->udev != udev) {
957                         printk(KERN_DEBUG "xHCI %s called with udev and "
958                                           "virt_dev does not match\n", func);
959                         return -EINVAL;
960                 }
961         }
962
963         return 1;
964 }
965
966 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
967                 struct usb_device *udev, struct xhci_command *command,
968                 bool ctx_change, bool must_succeed);
969
970 /*
971  * Full speed devices may have a max packet size greater than 8 bytes, but the
972  * USB core doesn't know that until it reads the first 8 bytes of the
973  * descriptor.  If the usb_device's max packet size changes after that point,
974  * we need to issue an evaluate context command and wait on it.
975  */
976 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
977                 unsigned int ep_index, struct urb *urb)
978 {
979         struct xhci_container_ctx *in_ctx;
980         struct xhci_container_ctx *out_ctx;
981         struct xhci_input_control_ctx *ctrl_ctx;
982         struct xhci_ep_ctx *ep_ctx;
983         int max_packet_size;
984         int hw_max_packet_size;
985         int ret = 0;
986
987         out_ctx = xhci->devs[slot_id]->out_ctx;
988         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
989         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
990         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
991         if (hw_max_packet_size != max_packet_size) {
992                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
993                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
994                                 max_packet_size);
995                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
996                                 hw_max_packet_size);
997                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
998
999                 /* Set up the modified control endpoint 0 */
1000                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1001                                 xhci->devs[slot_id]->out_ctx, ep_index);
1002                 in_ctx = xhci->devs[slot_id]->in_ctx;
1003                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1004                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1005                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1006
1007                 /* Set up the input context flags for the command */
1008                 /* FIXME: This won't work if a non-default control endpoint
1009                  * changes max packet sizes.
1010                  */
1011                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1012                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1013                 ctrl_ctx->drop_flags = 0;
1014
1015                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1016                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1017                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1018                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1019
1020                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1021                                 true, false);
1022
1023                 /* Clean up the input context for later use by bandwidth
1024                  * functions.
1025                  */
1026                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1027         }
1028         return ret;
1029 }
1030
1031 /*
1032  * non-error returns are a promise to giveback() the urb later
1033  * we drop ownership so next owner (or urb unlink) can get it
1034  */
1035 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1036 {
1037         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1038         unsigned long flags;
1039         int ret = 0;
1040         unsigned int slot_id, ep_index;
1041         struct urb_priv *urb_priv;
1042         int size, i;
1043
1044         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1045                                         true, true, __func__) <= 0)
1046                 return -EINVAL;
1047
1048         slot_id = urb->dev->slot_id;
1049         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1050
1051         if (!HCD_HW_ACCESSIBLE(hcd)) {
1052                 if (!in_interrupt())
1053                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1054                 ret = -ESHUTDOWN;
1055                 goto exit;
1056         }
1057
1058         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1059                 size = urb->number_of_packets;
1060         else
1061                 size = 1;
1062
1063         urb_priv = kzalloc(sizeof(struct urb_priv) +
1064                                   size * sizeof(struct xhci_td *), mem_flags);
1065         if (!urb_priv)
1066                 return -ENOMEM;
1067
1068         for (i = 0; i < size; i++) {
1069                 urb_priv->td[i] = kzalloc(sizeof(struct xhci_td), mem_flags);
1070                 if (!urb_priv->td[i]) {
1071                         urb_priv->length = i;
1072                         xhci_urb_free_priv(xhci, urb_priv);
1073                         return -ENOMEM;
1074                 }
1075         }
1076
1077         urb_priv->length = size;
1078         urb_priv->td_cnt = 0;
1079         urb->hcpriv = urb_priv;
1080
1081         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1082                 /* Check to see if the max packet size for the default control
1083                  * endpoint changed during FS device enumeration
1084                  */
1085                 if (urb->dev->speed == USB_SPEED_FULL) {
1086                         ret = xhci_check_maxpacket(xhci, slot_id,
1087                                         ep_index, urb);
1088                         if (ret < 0) {
1089                                 xhci_urb_free_priv(xhci, urb_priv);
1090                                 urb->hcpriv = NULL;
1091                                 return ret;
1092                         }
1093                 }
1094
1095                 /* We have a spinlock and interrupts disabled, so we must pass
1096                  * atomic context to this function, which may allocate memory.
1097                  */
1098                 spin_lock_irqsave(&xhci->lock, flags);
1099                 if (xhci->xhc_state & XHCI_STATE_DYING)
1100                         goto dying;
1101                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1102                                 slot_id, ep_index);
1103                 if (ret)
1104                         goto free_priv;
1105                 spin_unlock_irqrestore(&xhci->lock, flags);
1106         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1107                 spin_lock_irqsave(&xhci->lock, flags);
1108                 if (xhci->xhc_state & XHCI_STATE_DYING)
1109                         goto dying;
1110                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1111                                 EP_GETTING_STREAMS) {
1112                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1113                                         "is transitioning to using streams.\n");
1114                         ret = -EINVAL;
1115                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1116                                 EP_GETTING_NO_STREAMS) {
1117                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1118                                         "is transitioning to "
1119                                         "not having streams.\n");
1120                         ret = -EINVAL;
1121                 } else {
1122                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1123                                         slot_id, ep_index);
1124                 }
1125                 if (ret)
1126                         goto free_priv;
1127                 spin_unlock_irqrestore(&xhci->lock, flags);
1128         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1129                 spin_lock_irqsave(&xhci->lock, flags);
1130                 if (xhci->xhc_state & XHCI_STATE_DYING)
1131                         goto dying;
1132                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1133                                 slot_id, ep_index);
1134                 if (ret)
1135                         goto free_priv;
1136                 spin_unlock_irqrestore(&xhci->lock, flags);
1137         } else {
1138                 spin_lock_irqsave(&xhci->lock, flags);
1139                 if (xhci->xhc_state & XHCI_STATE_DYING)
1140                         goto dying;
1141                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1142                                 slot_id, ep_index);
1143                 if (ret)
1144                         goto free_priv;
1145                 spin_unlock_irqrestore(&xhci->lock, flags);
1146         }
1147 exit:
1148         return ret;
1149 dying:
1150         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1151                         "non-responsive xHCI host.\n",
1152                         urb->ep->desc.bEndpointAddress, urb);
1153         ret = -ESHUTDOWN;
1154 free_priv:
1155         xhci_urb_free_priv(xhci, urb_priv);
1156         urb->hcpriv = NULL;
1157         spin_unlock_irqrestore(&xhci->lock, flags);
1158         return ret;
1159 }
1160
1161 /* Get the right ring for the given URB.
1162  * If the endpoint supports streams, boundary check the URB's stream ID.
1163  * If the endpoint doesn't support streams, return the singular endpoint ring.
1164  */
1165 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1166                 struct urb *urb)
1167 {
1168         unsigned int slot_id;
1169         unsigned int ep_index;
1170         unsigned int stream_id;
1171         struct xhci_virt_ep *ep;
1172
1173         slot_id = urb->dev->slot_id;
1174         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1175         stream_id = urb->stream_id;
1176         ep = &xhci->devs[slot_id]->eps[ep_index];
1177         /* Common case: no streams */
1178         if (!(ep->ep_state & EP_HAS_STREAMS))
1179                 return ep->ring;
1180
1181         if (stream_id == 0) {
1182                 xhci_warn(xhci,
1183                                 "WARN: Slot ID %u, ep index %u has streams, "
1184                                 "but URB has no stream ID.\n",
1185                                 slot_id, ep_index);
1186                 return NULL;
1187         }
1188
1189         if (stream_id < ep->stream_info->num_streams)
1190                 return ep->stream_info->stream_rings[stream_id];
1191
1192         xhci_warn(xhci,
1193                         "WARN: Slot ID %u, ep index %u has "
1194                         "stream IDs 1 to %u allocated, "
1195                         "but stream ID %u is requested.\n",
1196                         slot_id, ep_index,
1197                         ep->stream_info->num_streams - 1,
1198                         stream_id);
1199         return NULL;
1200 }
1201
1202 /*
1203  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1204  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1205  * should pick up where it left off in the TD, unless a Set Transfer Ring
1206  * Dequeue Pointer is issued.
1207  *
1208  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1209  * the ring.  Since the ring is a contiguous structure, they can't be physically
1210  * removed.  Instead, there are two options:
1211  *
1212  *  1) If the HC is in the middle of processing the URB to be canceled, we
1213  *     simply move the ring's dequeue pointer past those TRBs using the Set
1214  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1215  *     when drivers timeout on the last submitted URB and attempt to cancel.
1216  *
1217  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1218  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1219  *     HC will need to invalidate the any TRBs it has cached after the stop
1220  *     endpoint command, as noted in the xHCI 0.95 errata.
1221  *
1222  *  3) The TD may have completed by the time the Stop Endpoint Command
1223  *     completes, so software needs to handle that case too.
1224  *
1225  * This function should protect against the TD enqueueing code ringing the
1226  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1227  * It also needs to account for multiple cancellations on happening at the same
1228  * time for the same endpoint.
1229  *
1230  * Note that this function can be called in any context, or so says
1231  * usb_hcd_unlink_urb()
1232  */
1233 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1234 {
1235         unsigned long flags;
1236         int ret, i;
1237         u32 temp;
1238         struct xhci_hcd *xhci;
1239         struct urb_priv *urb_priv;
1240         struct xhci_td *td;
1241         unsigned int ep_index;
1242         struct xhci_ring *ep_ring;
1243         struct xhci_virt_ep *ep;
1244
1245         xhci = hcd_to_xhci(hcd);
1246         spin_lock_irqsave(&xhci->lock, flags);
1247         /* Make sure the URB hasn't completed or been unlinked already */
1248         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1249         if (ret || !urb->hcpriv)
1250                 goto done;
1251         temp = xhci_readl(xhci, &xhci->op_regs->status);
1252         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1253                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1254                 urb_priv = urb->hcpriv;
1255                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1256                         td = urb_priv->td[i];
1257                         if (!list_empty(&td->td_list))
1258                                 list_del_init(&td->td_list);
1259                         if (!list_empty(&td->cancelled_td_list))
1260                                 list_del_init(&td->cancelled_td_list);
1261                 }
1262
1263                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1264                 spin_unlock_irqrestore(&xhci->lock, flags);
1265                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1266                 xhci_urb_free_priv(xhci, urb_priv);
1267                 return ret;
1268         }
1269         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1270                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1271                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1272                                 "non-responsive xHCI host.\n",
1273                                 urb->ep->desc.bEndpointAddress, urb);
1274                 /* Let the stop endpoint command watchdog timer (which set this
1275                  * state) finish cleaning up the endpoint TD lists.  We must
1276                  * have caught it in the middle of dropping a lock and giving
1277                  * back an URB.
1278                  */
1279                 goto done;
1280         }
1281
1282         xhci_dbg(xhci, "Cancel URB %p\n", urb);
1283         xhci_dbg(xhci, "Event ring:\n");
1284         xhci_debug_ring(xhci, xhci->event_ring);
1285         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1286         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1287         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1288         if (!ep_ring) {
1289                 ret = -EINVAL;
1290                 goto done;
1291         }
1292
1293         xhci_dbg(xhci, "Endpoint ring:\n");
1294         xhci_debug_ring(xhci, ep_ring);
1295
1296         urb_priv = urb->hcpriv;
1297
1298         for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1299                 td = urb_priv->td[i];
1300                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1301         }
1302
1303         /* Queue a stop endpoint command, but only if this is
1304          * the first cancellation to be handled.
1305          */
1306         if (!(ep->ep_state & EP_HALT_PENDING)) {
1307                 ep->ep_state |= EP_HALT_PENDING;
1308                 ep->stop_cmds_pending++;
1309                 ep->stop_cmd_timer.expires = jiffies +
1310                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1311                 add_timer(&ep->stop_cmd_timer);
1312                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1313                 xhci_ring_cmd_db(xhci);
1314         }
1315 done:
1316         spin_unlock_irqrestore(&xhci->lock, flags);
1317         return ret;
1318 }
1319
1320 /* Drop an endpoint from a new bandwidth configuration for this device.
1321  * Only one call to this function is allowed per endpoint before
1322  * check_bandwidth() or reset_bandwidth() must be called.
1323  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1324  * add the endpoint to the schedule with possibly new parameters denoted by a
1325  * different endpoint descriptor in usb_host_endpoint.
1326  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1327  * not allowed.
1328  *
1329  * The USB core will not allow URBs to be queued to an endpoint that is being
1330  * disabled, so there's no need for mutual exclusion to protect
1331  * the xhci->devs[slot_id] structure.
1332  */
1333 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1334                 struct usb_host_endpoint *ep)
1335 {
1336         struct xhci_hcd *xhci;
1337         struct xhci_container_ctx *in_ctx, *out_ctx;
1338         struct xhci_input_control_ctx *ctrl_ctx;
1339         struct xhci_slot_ctx *slot_ctx;
1340         unsigned int last_ctx;
1341         unsigned int ep_index;
1342         struct xhci_ep_ctx *ep_ctx;
1343         u32 drop_flag;
1344         u32 new_add_flags, new_drop_flags, new_slot_info;
1345         int ret;
1346
1347         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1348         if (ret <= 0)
1349                 return ret;
1350         xhci = hcd_to_xhci(hcd);
1351         if (xhci->xhc_state & XHCI_STATE_DYING)
1352                 return -ENODEV;
1353
1354         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1355         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1356         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1357                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1358                                 __func__, drop_flag);
1359                 return 0;
1360         }
1361
1362         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1363         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1364         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1365         ep_index = xhci_get_endpoint_index(&ep->desc);
1366         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1367         /* If the HC already knows the endpoint is disabled,
1368          * or the HCD has noted it is disabled, ignore this request
1369          */
1370         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1371              cpu_to_le32(EP_STATE_DISABLED)) ||
1372             le32_to_cpu(ctrl_ctx->drop_flags) &
1373             xhci_get_endpoint_flag(&ep->desc)) {
1374                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1375                                 __func__, ep);
1376                 return 0;
1377         }
1378
1379         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1380         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1381
1382         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1383         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1384
1385         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1386         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1387         /* Update the last valid endpoint context, if we deleted the last one */
1388         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1389             LAST_CTX(last_ctx)) {
1390                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1391                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1392         }
1393         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1394
1395         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1396
1397         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1398                         (unsigned int) ep->desc.bEndpointAddress,
1399                         udev->slot_id,
1400                         (unsigned int) new_drop_flags,
1401                         (unsigned int) new_add_flags,
1402                         (unsigned int) new_slot_info);
1403         return 0;
1404 }
1405
1406 /* Add an endpoint to a new possible bandwidth configuration for this device.
1407  * Only one call to this function is allowed per endpoint before
1408  * check_bandwidth() or reset_bandwidth() must be called.
1409  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1410  * add the endpoint to the schedule with possibly new parameters denoted by a
1411  * different endpoint descriptor in usb_host_endpoint.
1412  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1413  * not allowed.
1414  *
1415  * The USB core will not allow URBs to be queued to an endpoint until the
1416  * configuration or alt setting is installed in the device, so there's no need
1417  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1418  */
1419 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1420                 struct usb_host_endpoint *ep)
1421 {
1422         struct xhci_hcd *xhci;
1423         struct xhci_container_ctx *in_ctx, *out_ctx;
1424         unsigned int ep_index;
1425         struct xhci_ep_ctx *ep_ctx;
1426         struct xhci_slot_ctx *slot_ctx;
1427         struct xhci_input_control_ctx *ctrl_ctx;
1428         u32 added_ctxs;
1429         unsigned int last_ctx;
1430         u32 new_add_flags, new_drop_flags, new_slot_info;
1431         struct xhci_virt_device *virt_dev;
1432         int ret = 0;
1433
1434         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1435         if (ret <= 0) {
1436                 /* So we won't queue a reset ep command for a root hub */
1437                 ep->hcpriv = NULL;
1438                 return ret;
1439         }
1440         xhci = hcd_to_xhci(hcd);
1441         if (xhci->xhc_state & XHCI_STATE_DYING)
1442                 return -ENODEV;
1443
1444         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1445         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1446         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1447                 /* FIXME when we have to issue an evaluate endpoint command to
1448                  * deal with ep0 max packet size changing once we get the
1449                  * descriptors
1450                  */
1451                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1452                                 __func__, added_ctxs);
1453                 return 0;
1454         }
1455
1456         virt_dev = xhci->devs[udev->slot_id];
1457         in_ctx = virt_dev->in_ctx;
1458         out_ctx = virt_dev->out_ctx;
1459         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1460         ep_index = xhci_get_endpoint_index(&ep->desc);
1461         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1462
1463         /* If this endpoint is already in use, and the upper layers are trying
1464          * to add it again without dropping it, reject the addition.
1465          */
1466         if (virt_dev->eps[ep_index].ring &&
1467                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1468                                 xhci_get_endpoint_flag(&ep->desc))) {
1469                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1470                                 "without dropping it.\n",
1471                                 (unsigned int) ep->desc.bEndpointAddress);
1472                 return -EINVAL;
1473         }
1474
1475         /* If the HCD has already noted the endpoint is enabled,
1476          * ignore this request.
1477          */
1478         if (le32_to_cpu(ctrl_ctx->add_flags) &
1479             xhci_get_endpoint_flag(&ep->desc)) {
1480                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1481                                 __func__, ep);
1482                 return 0;
1483         }
1484
1485         /*
1486          * Configuration and alternate setting changes must be done in
1487          * process context, not interrupt context (or so documenation
1488          * for usb_set_interface() and usb_set_configuration() claim).
1489          */
1490         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1491                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1492                                 __func__, ep->desc.bEndpointAddress);
1493                 return -ENOMEM;
1494         }
1495
1496         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1497         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1498
1499         /* If xhci_endpoint_disable() was called for this endpoint, but the
1500          * xHC hasn't been notified yet through the check_bandwidth() call,
1501          * this re-adds a new state for the endpoint from the new endpoint
1502          * descriptors.  We must drop and re-add this endpoint, so we leave the
1503          * drop flags alone.
1504          */
1505         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1506
1507         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1508         /* Update the last valid endpoint context, if we just added one past */
1509         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1510             LAST_CTX(last_ctx)) {
1511                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1512                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1513         }
1514         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1515
1516         /* Store the usb_device pointer for later use */
1517         ep->hcpriv = udev;
1518
1519         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1520                         (unsigned int) ep->desc.bEndpointAddress,
1521                         udev->slot_id,
1522                         (unsigned int) new_drop_flags,
1523                         (unsigned int) new_add_flags,
1524                         (unsigned int) new_slot_info);
1525         return 0;
1526 }
1527
1528 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1529 {
1530         struct xhci_input_control_ctx *ctrl_ctx;
1531         struct xhci_ep_ctx *ep_ctx;
1532         struct xhci_slot_ctx *slot_ctx;
1533         int i;
1534
1535         /* When a device's add flag and drop flag are zero, any subsequent
1536          * configure endpoint command will leave that endpoint's state
1537          * untouched.  Make sure we don't leave any old state in the input
1538          * endpoint contexts.
1539          */
1540         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1541         ctrl_ctx->drop_flags = 0;
1542         ctrl_ctx->add_flags = 0;
1543         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1544         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1545         /* Endpoint 0 is always valid */
1546         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1547         for (i = 1; i < 31; ++i) {
1548                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1549                 ep_ctx->ep_info = 0;
1550                 ep_ctx->ep_info2 = 0;
1551                 ep_ctx->deq = 0;
1552                 ep_ctx->tx_info = 0;
1553         }
1554 }
1555
1556 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1557                 struct usb_device *udev, u32 *cmd_status)
1558 {
1559         int ret;
1560
1561         switch (*cmd_status) {
1562         case COMP_ENOMEM:
1563                 dev_warn(&udev->dev, "Not enough host controller resources "
1564                                 "for new device state.\n");
1565                 ret = -ENOMEM;
1566                 /* FIXME: can we allocate more resources for the HC? */
1567                 break;
1568         case COMP_BW_ERR:
1569                 dev_warn(&udev->dev, "Not enough bandwidth "
1570                                 "for new device state.\n");
1571                 ret = -ENOSPC;
1572                 /* FIXME: can we go back to the old state? */
1573                 break;
1574         case COMP_TRB_ERR:
1575                 /* the HCD set up something wrong */
1576                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1577                                 "add flag = 1, "
1578                                 "and endpoint is not disabled.\n");
1579                 ret = -EINVAL;
1580                 break;
1581         case COMP_DEV_ERR:
1582                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1583                                 "configure command.\n");
1584                 ret = -ENODEV;
1585                 break;
1586         case COMP_SUCCESS:
1587                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1588                 ret = 0;
1589                 break;
1590         default:
1591                 xhci_err(xhci, "ERROR: unexpected command completion "
1592                                 "code 0x%x.\n", *cmd_status);
1593                 ret = -EINVAL;
1594                 break;
1595         }
1596         return ret;
1597 }
1598
1599 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1600                 struct usb_device *udev, u32 *cmd_status)
1601 {
1602         int ret;
1603         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1604
1605         switch (*cmd_status) {
1606         case COMP_EINVAL:
1607                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1608                                 "context command.\n");
1609                 ret = -EINVAL;
1610                 break;
1611         case COMP_EBADSLT:
1612                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1613                                 "evaluate context command.\n");
1614         case COMP_CTX_STATE:
1615                 dev_warn(&udev->dev, "WARN: invalid context state for "
1616                                 "evaluate context command.\n");
1617                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1618                 ret = -EINVAL;
1619                 break;
1620         case COMP_DEV_ERR:
1621                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1622                                 "context command.\n");
1623                 ret = -ENODEV;
1624                 break;
1625         case COMP_MEL_ERR:
1626                 /* Max Exit Latency too large error */
1627                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1628                 ret = -EINVAL;
1629                 break;
1630         case COMP_SUCCESS:
1631                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1632                 ret = 0;
1633                 break;
1634         default:
1635                 xhci_err(xhci, "ERROR: unexpected command completion "
1636                                 "code 0x%x.\n", *cmd_status);
1637                 ret = -EINVAL;
1638                 break;
1639         }
1640         return ret;
1641 }
1642
1643 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1644                 struct xhci_container_ctx *in_ctx)
1645 {
1646         struct xhci_input_control_ctx *ctrl_ctx;
1647         u32 valid_add_flags;
1648         u32 valid_drop_flags;
1649
1650         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1651         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1652          * (bit 1).  The default control endpoint is added during the Address
1653          * Device command and is never removed until the slot is disabled.
1654          */
1655         valid_add_flags = ctrl_ctx->add_flags >> 2;
1656         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1657
1658         /* Use hweight32 to count the number of ones in the add flags, or
1659          * number of endpoints added.  Don't count endpoints that are changed
1660          * (both added and dropped).
1661          */
1662         return hweight32(valid_add_flags) -
1663                 hweight32(valid_add_flags & valid_drop_flags);
1664 }
1665
1666 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1667                 struct xhci_container_ctx *in_ctx)
1668 {
1669         struct xhci_input_control_ctx *ctrl_ctx;
1670         u32 valid_add_flags;
1671         u32 valid_drop_flags;
1672
1673         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1674         valid_add_flags = ctrl_ctx->add_flags >> 2;
1675         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1676
1677         return hweight32(valid_drop_flags) -
1678                 hweight32(valid_add_flags & valid_drop_flags);
1679 }
1680
1681 /*
1682  * We need to reserve the new number of endpoints before the configure endpoint
1683  * command completes.  We can't subtract the dropped endpoints from the number
1684  * of active endpoints until the command completes because we can oversubscribe
1685  * the host in this case:
1686  *
1687  *  - the first configure endpoint command drops more endpoints than it adds
1688  *  - a second configure endpoint command that adds more endpoints is queued
1689  *  - the first configure endpoint command fails, so the config is unchanged
1690  *  - the second command may succeed, even though there isn't enough resources
1691  *
1692  * Must be called with xhci->lock held.
1693  */
1694 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1695                 struct xhci_container_ctx *in_ctx)
1696 {
1697         u32 added_eps;
1698
1699         added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1700         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1701                 xhci_dbg(xhci, "Not enough ep ctxs: "
1702                                 "%u active, need to add %u, limit is %u.\n",
1703                                 xhci->num_active_eps, added_eps,
1704                                 xhci->limit_active_eps);
1705                 return -ENOMEM;
1706         }
1707         xhci->num_active_eps += added_eps;
1708         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1709                         xhci->num_active_eps);
1710         return 0;
1711 }
1712
1713 /*
1714  * The configure endpoint was failed by the xHC for some other reason, so we
1715  * need to revert the resources that failed configuration would have used.
1716  *
1717  * Must be called with xhci->lock held.
1718  */
1719 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1720                 struct xhci_container_ctx *in_ctx)
1721 {
1722         u32 num_failed_eps;
1723
1724         num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1725         xhci->num_active_eps -= num_failed_eps;
1726         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1727                         num_failed_eps,
1728                         xhci->num_active_eps);
1729 }
1730
1731 /*
1732  * Now that the command has completed, clean up the active endpoint count by
1733  * subtracting out the endpoints that were dropped (but not changed).
1734  *
1735  * Must be called with xhci->lock held.
1736  */
1737 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1738                 struct xhci_container_ctx *in_ctx)
1739 {
1740         u32 num_dropped_eps;
1741
1742         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1743         xhci->num_active_eps -= num_dropped_eps;
1744         if (num_dropped_eps)
1745                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1746                                 num_dropped_eps,
1747                                 xhci->num_active_eps);
1748 }
1749
1750 unsigned int xhci_get_block_size(struct usb_device *udev)
1751 {
1752         switch (udev->speed) {
1753         case USB_SPEED_LOW:
1754         case USB_SPEED_FULL:
1755                 return FS_BLOCK;
1756         case USB_SPEED_HIGH:
1757                 return HS_BLOCK;
1758         case USB_SPEED_SUPER:
1759                 return SS_BLOCK;
1760         case USB_SPEED_UNKNOWN:
1761         case USB_SPEED_WIRELESS:
1762         default:
1763                 /* Should never happen */
1764                 return 1;
1765         }
1766 }
1767
1768 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1769 {
1770         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1771                 return LS_OVERHEAD;
1772         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1773                 return FS_OVERHEAD;
1774         return HS_OVERHEAD;
1775 }
1776
1777 /* If we are changing a LS/FS device under a HS hub,
1778  * make sure (if we are activating a new TT) that the HS bus has enough
1779  * bandwidth for this new TT.
1780  */
1781 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1782                 struct xhci_virt_device *virt_dev,
1783                 int old_active_eps)
1784 {
1785         struct xhci_interval_bw_table *bw_table;
1786         struct xhci_tt_bw_info *tt_info;
1787
1788         /* Find the bandwidth table for the root port this TT is attached to. */
1789         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1790         tt_info = virt_dev->tt_info;
1791         /* If this TT already had active endpoints, the bandwidth for this TT
1792          * has already been added.  Removing all periodic endpoints (and thus
1793          * making the TT enactive) will only decrease the bandwidth used.
1794          */
1795         if (old_active_eps)
1796                 return 0;
1797         if (old_active_eps == 0 && tt_info->active_eps != 0) {
1798                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
1799                         return -ENOMEM;
1800                 return 0;
1801         }
1802         /* Not sure why we would have no new active endpoints...
1803          *
1804          * Maybe because of an Evaluate Context change for a hub update or a
1805          * control endpoint 0 max packet size change?
1806          * FIXME: skip the bandwidth calculation in that case.
1807          */
1808         return 0;
1809 }
1810
1811 /*
1812  * This algorithm is a very conservative estimate of the worst-case scheduling
1813  * scenario for any one interval.  The hardware dynamically schedules the
1814  * packets, so we can't tell which microframe could be the limiting factor in
1815  * the bandwidth scheduling.  This only takes into account periodic endpoints.
1816  *
1817  * Obviously, we can't solve an NP complete problem to find the minimum worst
1818  * case scenario.  Instead, we come up with an estimate that is no less than
1819  * the worst case bandwidth used for any one microframe, but may be an
1820  * over-estimate.
1821  *
1822  * We walk the requirements for each endpoint by interval, starting with the
1823  * smallest interval, and place packets in the schedule where there is only one
1824  * possible way to schedule packets for that interval.  In order to simplify
1825  * this algorithm, we record the largest max packet size for each interval, and
1826  * assume all packets will be that size.
1827  *
1828  * For interval 0, we obviously must schedule all packets for each interval.
1829  * The bandwidth for interval 0 is just the amount of data to be transmitted
1830  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
1831  * the number of packets).
1832  *
1833  * For interval 1, we have two possible microframes to schedule those packets
1834  * in.  For this algorithm, if we can schedule the same number of packets for
1835  * each possible scheduling opportunity (each microframe), we will do so.  The
1836  * remaining number of packets will be saved to be transmitted in the gaps in
1837  * the next interval's scheduling sequence.
1838  *
1839  * As we move those remaining packets to be scheduled with interval 2 packets,
1840  * we have to double the number of remaining packets to transmit.  This is
1841  * because the intervals are actually powers of 2, and we would be transmitting
1842  * the previous interval's packets twice in this interval.  We also have to be
1843  * sure that when we look at the largest max packet size for this interval, we
1844  * also look at the largest max packet size for the remaining packets and take
1845  * the greater of the two.
1846  *
1847  * The algorithm continues to evenly distribute packets in each scheduling
1848  * opportunity, and push the remaining packets out, until we get to the last
1849  * interval.  Then those packets and their associated overhead are just added
1850  * to the bandwidth used.
1851  */
1852 static int xhci_check_bw_table(struct xhci_hcd *xhci,
1853                 struct xhci_virt_device *virt_dev,
1854                 int old_active_eps)
1855 {
1856         unsigned int bw_reserved;
1857         unsigned int max_bandwidth;
1858         unsigned int bw_used;
1859         unsigned int block_size;
1860         struct xhci_interval_bw_table *bw_table;
1861         unsigned int packet_size = 0;
1862         unsigned int overhead = 0;
1863         unsigned int packets_transmitted = 0;
1864         unsigned int packets_remaining = 0;
1865         unsigned int i;
1866
1867         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
1868                 max_bandwidth = HS_BW_LIMIT;
1869                 /* Convert percent of bus BW reserved to blocks reserved */
1870                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
1871         } else {
1872                 max_bandwidth = FS_BW_LIMIT;
1873                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
1874         }
1875
1876         bw_table = virt_dev->bw_table;
1877         /* We need to translate the max packet size and max ESIT payloads into
1878          * the units the hardware uses.
1879          */
1880         block_size = xhci_get_block_size(virt_dev->udev);
1881
1882         /* If we are manipulating a LS/FS device under a HS hub, double check
1883          * that the HS bus has enough bandwidth if we are activing a new TT.
1884          */
1885         if (virt_dev->tt_info) {
1886                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1887                                 virt_dev->real_port);
1888                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
1889                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
1890                                         "newly activated TT.\n");
1891                         return -ENOMEM;
1892                 }
1893                 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
1894                                 virt_dev->tt_info->slot_id,
1895                                 virt_dev->tt_info->ttport);
1896         } else {
1897                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1898                                 virt_dev->real_port);
1899         }
1900
1901         /* Add in how much bandwidth will be used for interval zero, or the
1902          * rounded max ESIT payload + number of packets * largest overhead.
1903          */
1904         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
1905                 bw_table->interval_bw[0].num_packets *
1906                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
1907
1908         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
1909                 unsigned int bw_added;
1910                 unsigned int largest_mps;
1911                 unsigned int interval_overhead;
1912
1913                 /*
1914                  * How many packets could we transmit in this interval?
1915                  * If packets didn't fit in the previous interval, we will need
1916                  * to transmit that many packets twice within this interval.
1917                  */
1918                 packets_remaining = 2 * packets_remaining +
1919                         bw_table->interval_bw[i].num_packets;
1920
1921                 /* Find the largest max packet size of this or the previous
1922                  * interval.
1923                  */
1924                 if (list_empty(&bw_table->interval_bw[i].endpoints))
1925                         largest_mps = 0;
1926                 else {
1927                         struct xhci_virt_ep *virt_ep;
1928                         struct list_head *ep_entry;
1929
1930                         ep_entry = bw_table->interval_bw[i].endpoints.next;
1931                         virt_ep = list_entry(ep_entry,
1932                                         struct xhci_virt_ep, bw_endpoint_list);
1933                         /* Convert to blocks, rounding up */
1934                         largest_mps = DIV_ROUND_UP(
1935                                         virt_ep->bw_info.max_packet_size,
1936                                         block_size);
1937                 }
1938                 if (largest_mps > packet_size)
1939                         packet_size = largest_mps;
1940
1941                 /* Use the larger overhead of this or the previous interval. */
1942                 interval_overhead = xhci_get_largest_overhead(
1943                                 &bw_table->interval_bw[i]);
1944                 if (interval_overhead > overhead)
1945                         overhead = interval_overhead;
1946
1947                 /* How many packets can we evenly distribute across
1948                  * (1 << (i + 1)) possible scheduling opportunities?
1949                  */
1950                 packets_transmitted = packets_remaining >> (i + 1);
1951
1952                 /* Add in the bandwidth used for those scheduled packets */
1953                 bw_added = packets_transmitted * (overhead + packet_size);
1954
1955                 /* How many packets do we have remaining to transmit? */
1956                 packets_remaining = packets_remaining % (1 << (i + 1));
1957
1958                 /* What largest max packet size should those packets have? */
1959                 /* If we've transmitted all packets, don't carry over the
1960                  * largest packet size.
1961                  */
1962                 if (packets_remaining == 0) {
1963                         packet_size = 0;
1964                         overhead = 0;
1965                 } else if (packets_transmitted > 0) {
1966                         /* Otherwise if we do have remaining packets, and we've
1967                          * scheduled some packets in this interval, take the
1968                          * largest max packet size from endpoints with this
1969                          * interval.
1970                          */
1971                         packet_size = largest_mps;
1972                         overhead = interval_overhead;
1973                 }
1974                 /* Otherwise carry over packet_size and overhead from the last
1975                  * time we had a remainder.
1976                  */
1977                 bw_used += bw_added;
1978                 if (bw_used > max_bandwidth) {
1979                         xhci_warn(xhci, "Not enough bandwidth. "
1980                                         "Proposed: %u, Max: %u\n",
1981                                 bw_used, max_bandwidth);
1982                         return -ENOMEM;
1983                 }
1984         }
1985         /*
1986          * Ok, we know we have some packets left over after even-handedly
1987          * scheduling interval 15.  We don't know which microframes they will
1988          * fit into, so we over-schedule and say they will be scheduled every
1989          * microframe.
1990          */
1991         if (packets_remaining > 0)
1992                 bw_used += overhead + packet_size;
1993
1994         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
1995                 unsigned int port_index = virt_dev->real_port - 1;
1996
1997                 /* OK, we're manipulating a HS device attached to a
1998                  * root port bandwidth domain.  Include the number of active TTs
1999                  * in the bandwidth used.
2000                  */
2001                 bw_used += TT_HS_OVERHEAD *
2002                         xhci->rh_bw[port_index].num_active_tts;
2003         }
2004
2005         xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2006                 "Available: %u " "percent\n",
2007                 bw_used, max_bandwidth, bw_reserved,
2008                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2009                 max_bandwidth);
2010
2011         bw_used += bw_reserved;
2012         if (bw_used > max_bandwidth) {
2013                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2014                                 bw_used, max_bandwidth);
2015                 return -ENOMEM;
2016         }
2017
2018         bw_table->bw_used = bw_used;
2019         return 0;
2020 }
2021
2022 static bool xhci_is_async_ep(unsigned int ep_type)
2023 {
2024         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2025                                         ep_type != ISOC_IN_EP &&
2026                                         ep_type != INT_IN_EP);
2027 }
2028
2029 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2030                 struct xhci_bw_info *ep_bw,
2031                 struct xhci_interval_bw_table *bw_table,
2032                 struct usb_device *udev,
2033                 struct xhci_virt_ep *virt_ep,
2034                 struct xhci_tt_bw_info *tt_info)
2035 {
2036         struct xhci_interval_bw *interval_bw;
2037         int normalized_interval;
2038
2039         if (xhci_is_async_ep(ep_bw->type) ||
2040                         list_empty(&virt_ep->bw_endpoint_list))
2041                 return;
2042
2043         /* For LS/FS devices, we need to translate the interval expressed in
2044          * microframes to frames.
2045          */
2046         if (udev->speed == USB_SPEED_HIGH)
2047                 normalized_interval = ep_bw->ep_interval;
2048         else
2049                 normalized_interval = ep_bw->ep_interval - 3;
2050
2051         if (normalized_interval == 0)
2052                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2053         interval_bw = &bw_table->interval_bw[normalized_interval];
2054         interval_bw->num_packets -= ep_bw->num_packets;
2055         switch (udev->speed) {
2056         case USB_SPEED_LOW:
2057                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2058                 break;
2059         case USB_SPEED_FULL:
2060                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2061                 break;
2062         case USB_SPEED_HIGH:
2063                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2064                 break;
2065         case USB_SPEED_SUPER:
2066         case USB_SPEED_UNKNOWN:
2067         case USB_SPEED_WIRELESS:
2068                 /* Should never happen because only LS/FS/HS endpoints will get
2069                  * added to the endpoint list.
2070                  */
2071                 return;
2072         }
2073         if (tt_info)
2074                 tt_info->active_eps -= 1;
2075         list_del_init(&virt_ep->bw_endpoint_list);
2076 }
2077
2078 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2079                 struct xhci_bw_info *ep_bw,
2080                 struct xhci_interval_bw_table *bw_table,
2081                 struct usb_device *udev,
2082                 struct xhci_virt_ep *virt_ep,
2083                 struct xhci_tt_bw_info *tt_info)
2084 {
2085         struct xhci_interval_bw *interval_bw;
2086         struct xhci_virt_ep *smaller_ep;
2087         int normalized_interval;
2088
2089         if (xhci_is_async_ep(ep_bw->type))
2090                 return;
2091
2092         /* For LS/FS devices, we need to translate the interval expressed in
2093          * microframes to frames.
2094          */
2095         if (udev->speed == USB_SPEED_HIGH)
2096                 normalized_interval = ep_bw->ep_interval;
2097         else
2098                 normalized_interval = ep_bw->ep_interval - 3;
2099
2100         if (normalized_interval == 0)
2101                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2102         interval_bw = &bw_table->interval_bw[normalized_interval];
2103         interval_bw->num_packets += ep_bw->num_packets;
2104         switch (udev->speed) {
2105         case USB_SPEED_LOW:
2106                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2107                 break;
2108         case USB_SPEED_FULL:
2109                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2110                 break;
2111         case USB_SPEED_HIGH:
2112                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2113                 break;
2114         case USB_SPEED_SUPER:
2115         case USB_SPEED_UNKNOWN:
2116         case USB_SPEED_WIRELESS:
2117                 /* Should never happen because only LS/FS/HS endpoints will get
2118                  * added to the endpoint list.
2119                  */
2120                 return;
2121         }
2122
2123         if (tt_info)
2124                 tt_info->active_eps += 1;
2125         /* Insert the endpoint into the list, largest max packet size first. */
2126         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2127                         bw_endpoint_list) {
2128                 if (ep_bw->max_packet_size >=
2129                                 smaller_ep->bw_info.max_packet_size) {
2130                         /* Add the new ep before the smaller endpoint */
2131                         list_add_tail(&virt_ep->bw_endpoint_list,
2132                                         &smaller_ep->bw_endpoint_list);
2133                         return;
2134                 }
2135         }
2136         /* Add the new endpoint at the end of the list. */
2137         list_add_tail(&virt_ep->bw_endpoint_list,
2138                         &interval_bw->endpoints);
2139 }
2140
2141 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2142                 struct xhci_virt_device *virt_dev,
2143                 int old_active_eps)
2144 {
2145         struct xhci_root_port_bw_info *rh_bw_info;
2146         if (!virt_dev->tt_info)
2147                 return;
2148
2149         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2150         if (old_active_eps == 0 &&
2151                                 virt_dev->tt_info->active_eps != 0) {
2152                 rh_bw_info->num_active_tts += 1;
2153                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2154         } else if (old_active_eps != 0 &&
2155                                 virt_dev->tt_info->active_eps == 0) {
2156                 rh_bw_info->num_active_tts -= 1;
2157                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2158         }
2159 }
2160
2161 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2162                 struct xhci_virt_device *virt_dev,
2163                 struct xhci_container_ctx *in_ctx)
2164 {
2165         struct xhci_bw_info ep_bw_info[31];
2166         int i;
2167         struct xhci_input_control_ctx *ctrl_ctx;
2168         int old_active_eps = 0;
2169
2170         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2171                 return 0;
2172
2173         if (virt_dev->tt_info)
2174                 old_active_eps = virt_dev->tt_info->active_eps;
2175
2176         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2177
2178         for (i = 0; i < 31; i++) {
2179                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2180                         continue;
2181
2182                 /* Make a copy of the BW info in case we need to revert this */
2183                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2184                                 sizeof(ep_bw_info[i]));
2185                 /* Drop the endpoint from the interval table if the endpoint is
2186                  * being dropped or changed.
2187                  */
2188                 if (EP_IS_DROPPED(ctrl_ctx, i))
2189                         xhci_drop_ep_from_interval_table(xhci,
2190                                         &virt_dev->eps[i].bw_info,
2191                                         virt_dev->bw_table,
2192                                         virt_dev->udev,
2193                                         &virt_dev->eps[i],
2194                                         virt_dev->tt_info);
2195         }
2196         /* Overwrite the information stored in the endpoints' bw_info */
2197         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2198         for (i = 0; i < 31; i++) {
2199                 /* Add any changed or added endpoints to the interval table */
2200                 if (EP_IS_ADDED(ctrl_ctx, i))
2201                         xhci_add_ep_to_interval_table(xhci,
2202                                         &virt_dev->eps[i].bw_info,
2203                                         virt_dev->bw_table,
2204                                         virt_dev->udev,
2205                                         &virt_dev->eps[i],
2206                                         virt_dev->tt_info);
2207         }
2208
2209         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2210                 /* Ok, this fits in the bandwidth we have.
2211                  * Update the number of active TTs.
2212                  */
2213                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2214                 return 0;
2215         }
2216
2217         /* We don't have enough bandwidth for this, revert the stored info. */
2218         for (i = 0; i < 31; i++) {
2219                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2220                         continue;
2221
2222                 /* Drop the new copies of any added or changed endpoints from
2223                  * the interval table.
2224                  */
2225                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2226                         xhci_drop_ep_from_interval_table(xhci,
2227                                         &virt_dev->eps[i].bw_info,
2228                                         virt_dev->bw_table,
2229                                         virt_dev->udev,
2230                                         &virt_dev->eps[i],
2231                                         virt_dev->tt_info);
2232                 }
2233                 /* Revert the endpoint back to its old information */
2234                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2235                                 sizeof(ep_bw_info[i]));
2236                 /* Add any changed or dropped endpoints back into the table */
2237                 if (EP_IS_DROPPED(ctrl_ctx, i))
2238                         xhci_add_ep_to_interval_table(xhci,
2239                                         &virt_dev->eps[i].bw_info,
2240                                         virt_dev->bw_table,
2241                                         virt_dev->udev,
2242                                         &virt_dev->eps[i],
2243                                         virt_dev->tt_info);
2244         }
2245         return -ENOMEM;
2246 }
2247
2248
2249 /* Issue a configure endpoint command or evaluate context command
2250  * and wait for it to finish.
2251  */
2252 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2253                 struct usb_device *udev,
2254                 struct xhci_command *command,
2255                 bool ctx_change, bool must_succeed)
2256 {
2257         int ret;
2258         int timeleft;
2259         unsigned long flags;
2260         struct xhci_container_ctx *in_ctx;
2261         struct completion *cmd_completion;
2262         u32 *cmd_status;
2263         struct xhci_virt_device *virt_dev;
2264
2265         spin_lock_irqsave(&xhci->lock, flags);
2266         virt_dev = xhci->devs[udev->slot_id];
2267
2268         if (command)
2269                 in_ctx = command->in_ctx;
2270         else
2271                 in_ctx = virt_dev->in_ctx;
2272
2273         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2274                         xhci_reserve_host_resources(xhci, in_ctx)) {
2275                 spin_unlock_irqrestore(&xhci->lock, flags);
2276                 xhci_warn(xhci, "Not enough host resources, "
2277                                 "active endpoint contexts = %u\n",
2278                                 xhci->num_active_eps);
2279                 return -ENOMEM;
2280         }
2281         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2282                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2283                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2284                         xhci_free_host_resources(xhci, in_ctx);
2285                 spin_unlock_irqrestore(&xhci->lock, flags);
2286                 xhci_warn(xhci, "Not enough bandwidth\n");
2287                 return -ENOMEM;
2288         }
2289
2290         if (command) {
2291                 cmd_completion = command->completion;
2292                 cmd_status = &command->status;
2293                 command->command_trb = xhci->cmd_ring->enqueue;
2294
2295                 /* Enqueue pointer can be left pointing to the link TRB,
2296                  * we must handle that
2297                  */
2298                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2299                         command->command_trb =
2300                                 xhci->cmd_ring->enq_seg->next->trbs;
2301
2302                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2303         } else {
2304                 cmd_completion = &virt_dev->cmd_completion;
2305                 cmd_status = &virt_dev->cmd_status;
2306         }
2307         init_completion(cmd_completion);
2308
2309         if (!ctx_change)
2310                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2311                                 udev->slot_id, must_succeed);
2312         else
2313                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2314                                 udev->slot_id);
2315         if (ret < 0) {
2316                 if (command)
2317                         list_del(&command->cmd_list);
2318                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2319                         xhci_free_host_resources(xhci, in_ctx);
2320                 spin_unlock_irqrestore(&xhci->lock, flags);
2321                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2322                 return -ENOMEM;
2323         }
2324         xhci_ring_cmd_db(xhci);
2325         spin_unlock_irqrestore(&xhci->lock, flags);
2326
2327         /* Wait for the configure endpoint command to complete */
2328         timeleft = wait_for_completion_interruptible_timeout(
2329                         cmd_completion,
2330                         USB_CTRL_SET_TIMEOUT);
2331         if (timeleft <= 0) {
2332                 xhci_warn(xhci, "%s while waiting for %s command\n",
2333                                 timeleft == 0 ? "Timeout" : "Signal",
2334                                 ctx_change == 0 ?
2335                                         "configure endpoint" :
2336                                         "evaluate context");
2337                 /* FIXME cancel the configure endpoint command */
2338                 return -ETIME;
2339         }
2340
2341         if (!ctx_change)
2342                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2343         else
2344                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2345
2346         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2347                 spin_lock_irqsave(&xhci->lock, flags);
2348                 /* If the command failed, remove the reserved resources.
2349                  * Otherwise, clean up the estimate to include dropped eps.
2350                  */
2351                 if (ret)
2352                         xhci_free_host_resources(xhci, in_ctx);
2353                 else
2354                         xhci_finish_resource_reservation(xhci, in_ctx);
2355                 spin_unlock_irqrestore(&xhci->lock, flags);
2356         }
2357         return ret;
2358 }
2359
2360 /* Called after one or more calls to xhci_add_endpoint() or
2361  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2362  * to call xhci_reset_bandwidth().
2363  *
2364  * Since we are in the middle of changing either configuration or
2365  * installing a new alt setting, the USB core won't allow URBs to be
2366  * enqueued for any endpoint on the old config or interface.  Nothing
2367  * else should be touching the xhci->devs[slot_id] structure, so we
2368  * don't need to take the xhci->lock for manipulating that.
2369  */
2370 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2371 {
2372         int i;
2373         int ret = 0;
2374         struct xhci_hcd *xhci;
2375         struct xhci_virt_device *virt_dev;
2376         struct xhci_input_control_ctx *ctrl_ctx;
2377         struct xhci_slot_ctx *slot_ctx;
2378
2379         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2380         if (ret <= 0)
2381                 return ret;
2382         xhci = hcd_to_xhci(hcd);
2383         if (xhci->xhc_state & XHCI_STATE_DYING)
2384                 return -ENODEV;
2385
2386         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2387         virt_dev = xhci->devs[udev->slot_id];
2388
2389         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2390         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2391         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2392         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2393         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2394
2395         /* Don't issue the command if there's no endpoints to update. */
2396         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2397                         ctrl_ctx->drop_flags == 0)
2398                 return 0;
2399
2400         xhci_dbg(xhci, "New Input Control Context:\n");
2401         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2402         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2403                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2404
2405         ret = xhci_configure_endpoint(xhci, udev, NULL,
2406                         false, false);
2407         if (ret) {
2408                 /* Callee should call reset_bandwidth() */
2409                 return ret;
2410         }
2411
2412         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2413         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2414                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2415
2416         /* Free any rings that were dropped, but not changed. */
2417         for (i = 1; i < 31; ++i) {
2418                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2419                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2420                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2421         }
2422         xhci_zero_in_ctx(xhci, virt_dev);
2423         /*
2424          * Install any rings for completely new endpoints or changed endpoints,
2425          * and free or cache any old rings from changed endpoints.
2426          */
2427         for (i = 1; i < 31; ++i) {
2428                 if (!virt_dev->eps[i].new_ring)
2429                         continue;
2430                 /* Only cache or free the old ring if it exists.
2431                  * It may not if this is the first add of an endpoint.
2432                  */
2433                 if (virt_dev->eps[i].ring) {
2434                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2435                 }
2436                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2437                 virt_dev->eps[i].new_ring = NULL;
2438         }
2439
2440         return ret;
2441 }
2442
2443 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2444 {
2445         struct xhci_hcd *xhci;
2446         struct xhci_virt_device *virt_dev;
2447         int i, ret;
2448
2449         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2450         if (ret <= 0)
2451                 return;
2452         xhci = hcd_to_xhci(hcd);
2453
2454         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2455         virt_dev = xhci->devs[udev->slot_id];
2456         /* Free any rings allocated for added endpoints */
2457         for (i = 0; i < 31; ++i) {
2458                 if (virt_dev->eps[i].new_ring) {
2459                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2460                         virt_dev->eps[i].new_ring = NULL;
2461                 }
2462         }
2463         xhci_zero_in_ctx(xhci, virt_dev);
2464 }
2465
2466 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2467                 struct xhci_container_ctx *in_ctx,
2468                 struct xhci_container_ctx *out_ctx,
2469                 u32 add_flags, u32 drop_flags)
2470 {
2471         struct xhci_input_control_ctx *ctrl_ctx;
2472         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2473         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2474         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2475         xhci_slot_copy(xhci, in_ctx, out_ctx);
2476         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2477
2478         xhci_dbg(xhci, "Input Context:\n");
2479         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2480 }
2481
2482 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2483                 unsigned int slot_id, unsigned int ep_index,
2484                 struct xhci_dequeue_state *deq_state)
2485 {
2486         struct xhci_container_ctx *in_ctx;
2487         struct xhci_ep_ctx *ep_ctx;
2488         u32 added_ctxs;
2489         dma_addr_t addr;
2490
2491         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2492                         xhci->devs[slot_id]->out_ctx, ep_index);
2493         in_ctx = xhci->devs[slot_id]->in_ctx;
2494         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2495         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2496                         deq_state->new_deq_ptr);
2497         if (addr == 0) {
2498                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2499                                 "reset ep command\n");
2500                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2501                                 deq_state->new_deq_seg,
2502                                 deq_state->new_deq_ptr);
2503                 return;
2504         }
2505         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2506
2507         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2508         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2509                         xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2510 }
2511
2512 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2513                 struct usb_device *udev, unsigned int ep_index)
2514 {
2515         struct xhci_dequeue_state deq_state;
2516         struct xhci_virt_ep *ep;
2517
2518         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2519         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2520         /* We need to move the HW's dequeue pointer past this TD,
2521          * or it will attempt to resend it on the next doorbell ring.
2522          */
2523         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2524                         ep_index, ep->stopped_stream, ep->stopped_td,
2525                         &deq_state);
2526
2527         /* HW with the reset endpoint quirk will use the saved dequeue state to
2528          * issue a configure endpoint command later.
2529          */
2530         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2531                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2532                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2533                                 ep_index, ep->stopped_stream, &deq_state);
2534         } else {
2535                 /* Better hope no one uses the input context between now and the
2536                  * reset endpoint completion!
2537                  * XXX: No idea how this hardware will react when stream rings
2538                  * are enabled.
2539                  */
2540                 xhci_dbg(xhci, "Setting up input context for "
2541                                 "configure endpoint command\n");
2542                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2543                                 ep_index, &deq_state);
2544         }
2545 }
2546
2547 /* Deal with stalled endpoints.  The core should have sent the control message
2548  * to clear the halt condition.  However, we need to make the xHCI hardware
2549  * reset its sequence number, since a device will expect a sequence number of
2550  * zero after the halt condition is cleared.
2551  * Context: in_interrupt
2552  */
2553 void xhci_endpoint_reset(struct usb_hcd *hcd,
2554                 struct usb_host_endpoint *ep)
2555 {
2556         struct xhci_hcd *xhci;
2557         struct usb_device *udev;
2558         unsigned int ep_index;
2559         unsigned long flags;
2560         int ret;
2561         struct xhci_virt_ep *virt_ep;
2562
2563         xhci = hcd_to_xhci(hcd);
2564         udev = (struct usb_device *) ep->hcpriv;
2565         /* Called with a root hub endpoint (or an endpoint that wasn't added
2566          * with xhci_add_endpoint()
2567          */
2568         if (!ep->hcpriv)
2569                 return;
2570         ep_index = xhci_get_endpoint_index(&ep->desc);
2571         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2572         if (!virt_ep->stopped_td) {
2573                 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2574                                 ep->desc.bEndpointAddress);
2575                 return;
2576         }
2577         if (usb_endpoint_xfer_control(&ep->desc)) {
2578                 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2579                 return;
2580         }
2581
2582         xhci_dbg(xhci, "Queueing reset endpoint command\n");
2583         spin_lock_irqsave(&xhci->lock, flags);
2584         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2585         /*
2586          * Can't change the ring dequeue pointer until it's transitioned to the
2587          * stopped state, which is only upon a successful reset endpoint
2588          * command.  Better hope that last command worked!
2589          */
2590         if (!ret) {
2591                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2592                 kfree(virt_ep->stopped_td);
2593                 xhci_ring_cmd_db(xhci);
2594         }
2595         virt_ep->stopped_td = NULL;
2596         virt_ep->stopped_trb = NULL;
2597         virt_ep->stopped_stream = 0;
2598         spin_unlock_irqrestore(&xhci->lock, flags);
2599
2600         if (ret)
2601                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2602 }
2603
2604 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2605                 struct usb_device *udev, struct usb_host_endpoint *ep,
2606                 unsigned int slot_id)
2607 {
2608         int ret;
2609         unsigned int ep_index;
2610         unsigned int ep_state;
2611
2612         if (!ep)
2613                 return -EINVAL;
2614         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2615         if (ret <= 0)
2616                 return -EINVAL;
2617         if (ep->ss_ep_comp.bmAttributes == 0) {
2618                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2619                                 " descriptor for ep 0x%x does not support streams\n",
2620                                 ep->desc.bEndpointAddress);
2621                 return -EINVAL;
2622         }
2623
2624         ep_index = xhci_get_endpoint_index(&ep->desc);
2625         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2626         if (ep_state & EP_HAS_STREAMS ||
2627                         ep_state & EP_GETTING_STREAMS) {
2628                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2629                                 "already has streams set up.\n",
2630                                 ep->desc.bEndpointAddress);
2631                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2632                                 "dynamic stream context array reallocation.\n");
2633                 return -EINVAL;
2634         }
2635         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2636                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2637                                 "endpoint 0x%x; URBs are pending.\n",
2638                                 ep->desc.bEndpointAddress);
2639                 return -EINVAL;
2640         }
2641         return 0;
2642 }
2643
2644 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2645                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2646 {
2647         unsigned int max_streams;
2648
2649         /* The stream context array size must be a power of two */
2650         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2651         /*
2652          * Find out how many primary stream array entries the host controller
2653          * supports.  Later we may use secondary stream arrays (similar to 2nd
2654          * level page entries), but that's an optional feature for xHCI host
2655          * controllers. xHCs must support at least 4 stream IDs.
2656          */
2657         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2658         if (*num_stream_ctxs > max_streams) {
2659                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2660                                 max_streams);
2661                 *num_stream_ctxs = max_streams;
2662                 *num_streams = max_streams;
2663         }
2664 }
2665
2666 /* Returns an error code if one of the endpoint already has streams.
2667  * This does not change any data structures, it only checks and gathers
2668  * information.
2669  */
2670 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2671                 struct usb_device *udev,
2672                 struct usb_host_endpoint **eps, unsigned int num_eps,
2673                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2674 {
2675         unsigned int max_streams;
2676         unsigned int endpoint_flag;
2677         int i;
2678         int ret;
2679
2680         for (i = 0; i < num_eps; i++) {
2681                 ret = xhci_check_streams_endpoint(xhci, udev,
2682                                 eps[i], udev->slot_id);
2683                 if (ret < 0)
2684                         return ret;
2685
2686                 max_streams = USB_SS_MAX_STREAMS(
2687                                 eps[i]->ss_ep_comp.bmAttributes);
2688                 if (max_streams < (*num_streams - 1)) {
2689                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2690                                         eps[i]->desc.bEndpointAddress,
2691                                         max_streams);
2692                         *num_streams = max_streams+1;
2693                 }
2694
2695                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2696                 if (*changed_ep_bitmask & endpoint_flag)
2697                         return -EINVAL;
2698                 *changed_ep_bitmask |= endpoint_flag;
2699         }
2700         return 0;
2701 }
2702
2703 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2704                 struct usb_device *udev,
2705                 struct usb_host_endpoint **eps, unsigned int num_eps)
2706 {
2707         u32 changed_ep_bitmask = 0;
2708         unsigned int slot_id;
2709         unsigned int ep_index;
2710         unsigned int ep_state;
2711         int i;
2712
2713         slot_id = udev->slot_id;
2714         if (!xhci->devs[slot_id])
2715                 return 0;
2716
2717         for (i = 0; i < num_eps; i++) {
2718                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2719                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2720                 /* Are streams already being freed for the endpoint? */
2721                 if (ep_state & EP_GETTING_NO_STREAMS) {
2722                         xhci_warn(xhci, "WARN Can't disable streams for "
2723                                         "endpoint 0x%x\n, "
2724                                         "streams are being disabled already.",
2725                                         eps[i]->desc.bEndpointAddress);
2726                         return 0;
2727                 }
2728                 /* Are there actually any streams to free? */
2729                 if (!(ep_state & EP_HAS_STREAMS) &&
2730                                 !(ep_state & EP_GETTING_STREAMS)) {
2731                         xhci_warn(xhci, "WARN Can't disable streams for "
2732                                         "endpoint 0x%x\n, "
2733                                         "streams are already disabled!",
2734                                         eps[i]->desc.bEndpointAddress);
2735                         xhci_warn(xhci, "WARN xhci_free_streams() called "
2736                                         "with non-streams endpoint\n");
2737                         return 0;
2738                 }
2739                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2740         }
2741         return changed_ep_bitmask;
2742 }
2743
2744 /*
2745  * The USB device drivers use this function (though the HCD interface in USB
2746  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2747  * coordinate mass storage command queueing across multiple endpoints (basically
2748  * a stream ID == a task ID).
2749  *
2750  * Setting up streams involves allocating the same size stream context array
2751  * for each endpoint and issuing a configure endpoint command for all endpoints.
2752  *
2753  * Don't allow the call to succeed if one endpoint only supports one stream
2754  * (which means it doesn't support streams at all).
2755  *
2756  * Drivers may get less stream IDs than they asked for, if the host controller
2757  * hardware or endpoints claim they can't support the number of requested
2758  * stream IDs.
2759  */
2760 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2761                 struct usb_host_endpoint **eps, unsigned int num_eps,
2762                 unsigned int num_streams, gfp_t mem_flags)
2763 {
2764         int i, ret;
2765         struct xhci_hcd *xhci;
2766         struct xhci_virt_device *vdev;
2767         struct xhci_command *config_cmd;
2768         unsigned int ep_index;
2769         unsigned int num_stream_ctxs;
2770         unsigned long flags;
2771         u32 changed_ep_bitmask = 0;
2772
2773         if (!eps)
2774                 return -EINVAL;
2775
2776         /* Add one to the number of streams requested to account for
2777          * stream 0 that is reserved for xHCI usage.
2778          */
2779         num_streams += 1;
2780         xhci = hcd_to_xhci(hcd);
2781         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2782                         num_streams);
2783
2784         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2785         if (!config_cmd) {
2786                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2787                 return -ENOMEM;
2788         }
2789
2790         /* Check to make sure all endpoints are not already configured for
2791          * streams.  While we're at it, find the maximum number of streams that
2792          * all the endpoints will support and check for duplicate endpoints.
2793          */
2794         spin_lock_irqsave(&xhci->lock, flags);
2795         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2796                         num_eps, &num_streams, &changed_ep_bitmask);
2797         if (ret < 0) {
2798                 xhci_free_command(xhci, config_cmd);
2799                 spin_unlock_irqrestore(&xhci->lock, flags);
2800                 return ret;
2801         }
2802         if (num_streams <= 1) {
2803                 xhci_warn(xhci, "WARN: endpoints can't handle "
2804                                 "more than one stream.\n");
2805                 xhci_free_command(xhci, config_cmd);
2806                 spin_unlock_irqrestore(&xhci->lock, flags);
2807                 return -EINVAL;
2808         }
2809         vdev = xhci->devs[udev->slot_id];
2810         /* Mark each endpoint as being in transition, so
2811          * xhci_urb_enqueue() will reject all URBs.
2812          */
2813         for (i = 0; i < num_eps; i++) {
2814                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2815                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2816         }
2817         spin_unlock_irqrestore(&xhci->lock, flags);
2818
2819         /* Setup internal data structures and allocate HW data structures for
2820          * streams (but don't install the HW structures in the input context
2821          * until we're sure all memory allocation succeeded).
2822          */
2823         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2824         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2825                         num_stream_ctxs, num_streams);
2826
2827         for (i = 0; i < num_eps; i++) {
2828                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2829                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2830                                 num_stream_ctxs,
2831                                 num_streams, mem_flags);
2832                 if (!vdev->eps[ep_index].stream_info)
2833                         goto cleanup;
2834                 /* Set maxPstreams in endpoint context and update deq ptr to
2835                  * point to stream context array. FIXME
2836                  */
2837         }
2838
2839         /* Set up the input context for a configure endpoint command. */
2840         for (i = 0; i < num_eps; i++) {
2841                 struct xhci_ep_ctx *ep_ctx;
2842
2843                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2844                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2845
2846                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2847                                 vdev->out_ctx, ep_index);
2848                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2849                                 vdev->eps[ep_index].stream_info);
2850         }
2851         /* Tell the HW to drop its old copy of the endpoint context info
2852          * and add the updated copy from the input context.
2853          */
2854         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2855                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2856
2857         /* Issue and wait for the configure endpoint command */
2858         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2859                         false, false);
2860
2861         /* xHC rejected the configure endpoint command for some reason, so we
2862          * leave the old ring intact and free our internal streams data
2863          * structure.
2864          */
2865         if (ret < 0)
2866                 goto cleanup;
2867
2868         spin_lock_irqsave(&xhci->lock, flags);
2869         for (i = 0; i < num_eps; i++) {
2870                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2871                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2872                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2873                          udev->slot_id, ep_index);
2874                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2875         }
2876         xhci_free_command(xhci, config_cmd);
2877         spin_unlock_irqrestore(&xhci->lock, flags);
2878
2879         /* Subtract 1 for stream 0, which drivers can't use */
2880         return num_streams - 1;
2881
2882 cleanup:
2883         /* If it didn't work, free the streams! */
2884         for (i = 0; i < num_eps; i++) {
2885                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2886                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2887                 vdev->eps[ep_index].stream_info = NULL;
2888                 /* FIXME Unset maxPstreams in endpoint context and
2889                  * update deq ptr to point to normal string ring.
2890                  */
2891                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2892                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2893                 xhci_endpoint_zero(xhci, vdev, eps[i]);
2894         }
2895         xhci_free_command(xhci, config_cmd);
2896         return -ENOMEM;
2897 }
2898
2899 /* Transition the endpoint from using streams to being a "normal" endpoint
2900  * without streams.
2901  *
2902  * Modify the endpoint context state, submit a configure endpoint command,
2903  * and free all endpoint rings for streams if that completes successfully.
2904  */
2905 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
2906                 struct usb_host_endpoint **eps, unsigned int num_eps,
2907                 gfp_t mem_flags)
2908 {
2909         int i, ret;
2910         struct xhci_hcd *xhci;
2911         struct xhci_virt_device *vdev;
2912         struct xhci_command *command;
2913         unsigned int ep_index;
2914         unsigned long flags;
2915         u32 changed_ep_bitmask;
2916
2917         xhci = hcd_to_xhci(hcd);
2918         vdev = xhci->devs[udev->slot_id];
2919
2920         /* Set up a configure endpoint command to remove the streams rings */
2921         spin_lock_irqsave(&xhci->lock, flags);
2922         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
2923                         udev, eps, num_eps);
2924         if (changed_ep_bitmask == 0) {
2925                 spin_unlock_irqrestore(&xhci->lock, flags);
2926                 return -EINVAL;
2927         }
2928
2929         /* Use the xhci_command structure from the first endpoint.  We may have
2930          * allocated too many, but the driver may call xhci_free_streams() for
2931          * each endpoint it grouped into one call to xhci_alloc_streams().
2932          */
2933         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
2934         command = vdev->eps[ep_index].stream_info->free_streams_command;
2935         for (i = 0; i < num_eps; i++) {
2936                 struct xhci_ep_ctx *ep_ctx;
2937
2938                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2939                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
2940                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
2941                         EP_GETTING_NO_STREAMS;
2942
2943                 xhci_endpoint_copy(xhci, command->in_ctx,
2944                                 vdev->out_ctx, ep_index);
2945                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
2946                                 &vdev->eps[ep_index]);
2947         }
2948         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
2949                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2950         spin_unlock_irqrestore(&xhci->lock, flags);
2951
2952         /* Issue and wait for the configure endpoint command,
2953          * which must succeed.
2954          */
2955         ret = xhci_configure_endpoint(xhci, udev, command,
2956                         false, true);
2957
2958         /* xHC rejected the configure endpoint command for some reason, so we
2959          * leave the streams rings intact.
2960          */
2961         if (ret < 0)
2962                 return ret;
2963
2964         spin_lock_irqsave(&xhci->lock, flags);
2965         for (i = 0; i < num_eps; i++) {
2966                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2967                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2968                 vdev->eps[ep_index].stream_info = NULL;
2969                 /* FIXME Unset maxPstreams in endpoint context and
2970                  * update deq ptr to point to normal string ring.
2971                  */
2972                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
2973                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2974         }
2975         spin_unlock_irqrestore(&xhci->lock, flags);
2976
2977         return 0;
2978 }
2979
2980 /*
2981  * Deletes endpoint resources for endpoints that were active before a Reset
2982  * Device command, or a Disable Slot command.  The Reset Device command leaves
2983  * the control endpoint intact, whereas the Disable Slot command deletes it.
2984  *
2985  * Must be called with xhci->lock held.
2986  */
2987 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
2988         struct xhci_virt_device *virt_dev, bool drop_control_ep)
2989 {
2990         int i;
2991         unsigned int num_dropped_eps = 0;
2992         unsigned int drop_flags = 0;
2993
2994         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
2995                 if (virt_dev->eps[i].ring) {
2996                         drop_flags |= 1 << i;
2997                         num_dropped_eps++;
2998                 }
2999         }
3000         xhci->num_active_eps -= num_dropped_eps;
3001         if (num_dropped_eps)
3002                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3003                                 "%u now active.\n",
3004                                 num_dropped_eps, drop_flags,
3005                                 xhci->num_active_eps);
3006 }
3007
3008 /*
3009  * This submits a Reset Device Command, which will set the device state to 0,
3010  * set the device address to 0, and disable all the endpoints except the default
3011  * control endpoint.  The USB core should come back and call
3012  * xhci_address_device(), and then re-set up the configuration.  If this is
3013  * called because of a usb_reset_and_verify_device(), then the old alternate
3014  * settings will be re-installed through the normal bandwidth allocation
3015  * functions.
3016  *
3017  * Wait for the Reset Device command to finish.  Remove all structures
3018  * associated with the endpoints that were disabled.  Clear the input device
3019  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3020  *
3021  * If the virt_dev to be reset does not exist or does not match the udev,
3022  * it means the device is lost, possibly due to the xHC restore error and
3023  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3024  * re-allocate the device.
3025  */
3026 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3027 {
3028         int ret, i;
3029         unsigned long flags;
3030         struct xhci_hcd *xhci;
3031         unsigned int slot_id;
3032         struct xhci_virt_device *virt_dev;
3033         struct xhci_command *reset_device_cmd;
3034         int timeleft;
3035         int last_freed_endpoint;
3036         struct xhci_slot_ctx *slot_ctx;
3037         int old_active_eps = 0;
3038
3039         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3040         if (ret <= 0)
3041                 return ret;
3042         xhci = hcd_to_xhci(hcd);
3043         slot_id = udev->slot_id;
3044         virt_dev = xhci->devs[slot_id];
3045         if (!virt_dev) {
3046                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3047                                 "not exist. Re-allocate the device\n", slot_id);
3048                 ret = xhci_alloc_dev(hcd, udev);
3049                 if (ret == 1)
3050                         return 0;
3051                 else
3052                         return -EINVAL;
3053         }
3054
3055         if (virt_dev->udev != udev) {
3056                 /* If the virt_dev and the udev does not match, this virt_dev
3057                  * may belong to another udev.
3058                  * Re-allocate the device.
3059                  */
3060                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3061                                 "not match the udev. Re-allocate the device\n",
3062                                 slot_id);
3063                 ret = xhci_alloc_dev(hcd, udev);
3064                 if (ret == 1)
3065                         return 0;
3066                 else
3067                         return -EINVAL;
3068         }
3069
3070         /* If device is not setup, there is no point in resetting it */
3071         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3072         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3073                                                 SLOT_STATE_DISABLED)
3074                 return 0;
3075
3076         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3077         /* Allocate the command structure that holds the struct completion.
3078          * Assume we're in process context, since the normal device reset
3079          * process has to wait for the device anyway.  Storage devices are
3080          * reset as part of error handling, so use GFP_NOIO instead of
3081          * GFP_KERNEL.
3082          */
3083         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3084         if (!reset_device_cmd) {
3085                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3086                 return -ENOMEM;
3087         }
3088
3089         /* Attempt to submit the Reset Device command to the command ring */
3090         spin_lock_irqsave(&xhci->lock, flags);
3091         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3092
3093         /* Enqueue pointer can be left pointing to the link TRB,
3094          * we must handle that
3095          */
3096         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3097                 reset_device_cmd->command_trb =
3098                         xhci->cmd_ring->enq_seg->next->trbs;
3099
3100         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3101         ret = xhci_queue_reset_device(xhci, slot_id);
3102         if (ret) {
3103                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3104                 list_del(&reset_device_cmd->cmd_list);
3105                 spin_unlock_irqrestore(&xhci->lock, flags);
3106                 goto command_cleanup;
3107         }
3108         xhci_ring_cmd_db(xhci);
3109         spin_unlock_irqrestore(&xhci->lock, flags);
3110
3111         /* Wait for the Reset Device command to finish */
3112         timeleft = wait_for_completion_interruptible_timeout(
3113                         reset_device_cmd->completion,
3114                         USB_CTRL_SET_TIMEOUT);
3115         if (timeleft <= 0) {
3116                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3117                                 timeleft == 0 ? "Timeout" : "Signal");
3118                 spin_lock_irqsave(&xhci->lock, flags);
3119                 /* The timeout might have raced with the event ring handler, so
3120                  * only delete from the list if the item isn't poisoned.
3121                  */
3122                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3123                         list_del(&reset_device_cmd->cmd_list);
3124                 spin_unlock_irqrestore(&xhci->lock, flags);
3125                 ret = -ETIME;
3126                 goto command_cleanup;
3127         }
3128
3129         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3130          * unless we tried to reset a slot ID that wasn't enabled,
3131          * or the device wasn't in the addressed or configured state.
3132          */
3133         ret = reset_device_cmd->status;
3134         switch (ret) {
3135         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3136         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3137                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3138                                 slot_id,
3139                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3140                 xhci_info(xhci, "Not freeing device rings.\n");
3141                 /* Don't treat this as an error.  May change my mind later. */
3142                 ret = 0;
3143                 goto command_cleanup;
3144         case COMP_SUCCESS:
3145                 xhci_dbg(xhci, "Successful reset device command.\n");
3146                 break;
3147         default:
3148                 if (xhci_is_vendor_info_code(xhci, ret))
3149                         break;
3150                 xhci_warn(xhci, "Unknown completion code %u for "
3151                                 "reset device command.\n", ret);
3152                 ret = -EINVAL;
3153                 goto command_cleanup;
3154         }
3155
3156         /* Free up host controller endpoint resources */
3157         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3158                 spin_lock_irqsave(&xhci->lock, flags);
3159                 /* Don't delete the default control endpoint resources */
3160                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3161                 spin_unlock_irqrestore(&xhci->lock, flags);
3162         }
3163
3164         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3165         last_freed_endpoint = 1;
3166         for (i = 1; i < 31; ++i) {
3167                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3168
3169                 if (ep->ep_state & EP_HAS_STREAMS) {
3170                         xhci_free_stream_info(xhci, ep->stream_info);
3171                         ep->stream_info = NULL;
3172                         ep->ep_state &= ~EP_HAS_STREAMS;
3173                 }
3174
3175                 if (ep->ring) {
3176                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3177                         last_freed_endpoint = i;
3178                 }
3179                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3180                         xhci_drop_ep_from_interval_table(xhci,
3181                                         &virt_dev->eps[i].bw_info,
3182                                         virt_dev->bw_table,
3183                                         udev,
3184                                         &virt_dev->eps[i],
3185                                         virt_dev->tt_info);
3186                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3187         }
3188         /* If necessary, update the number of active TTs on this root port */
3189         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3190
3191         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3192         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3193         ret = 0;
3194
3195 command_cleanup:
3196         xhci_free_command(xhci, reset_device_cmd);
3197         return ret;
3198 }
3199
3200 /*
3201  * At this point, the struct usb_device is about to go away, the device has
3202  * disconnected, and all traffic has been stopped and the endpoints have been
3203  * disabled.  Free any HC data structures associated with that device.
3204  */
3205 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3206 {
3207         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3208         struct xhci_virt_device *virt_dev;
3209         unsigned long flags;
3210         u32 state;
3211         int i, ret;
3212
3213         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3214         /* If the host is halted due to driver unload, we still need to free the
3215          * device.
3216          */
3217         if (ret <= 0 && ret != -ENODEV)
3218                 return;
3219
3220         virt_dev = xhci->devs[udev->slot_id];
3221
3222         /* Stop any wayward timer functions (which may grab the lock) */
3223         for (i = 0; i < 31; ++i) {
3224                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3225                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3226         }
3227
3228         spin_lock_irqsave(&xhci->lock, flags);
3229         /* Don't disable the slot if the host controller is dead. */
3230         state = xhci_readl(xhci, &xhci->op_regs->status);
3231         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3232                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3233                 xhci_free_virt_device(xhci, udev->slot_id);
3234                 spin_unlock_irqrestore(&xhci->lock, flags);
3235                 return;
3236         }
3237
3238         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3239                 spin_unlock_irqrestore(&xhci->lock, flags);
3240                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3241                 return;
3242         }
3243         xhci_ring_cmd_db(xhci);
3244         spin_unlock_irqrestore(&xhci->lock, flags);
3245         /*
3246          * Event command completion handler will free any data structures
3247          * associated with the slot.  XXX Can free sleep?
3248          */
3249 }
3250
3251 /*
3252  * Checks if we have enough host controller resources for the default control
3253  * endpoint.
3254  *
3255  * Must be called with xhci->lock held.
3256  */
3257 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3258 {
3259         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3260                 xhci_dbg(xhci, "Not enough ep ctxs: "
3261                                 "%u active, need to add 1, limit is %u.\n",
3262                                 xhci->num_active_eps, xhci->limit_active_eps);
3263                 return -ENOMEM;
3264         }
3265         xhci->num_active_eps += 1;
3266         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3267                         xhci->num_active_eps);
3268         return 0;
3269 }
3270
3271
3272 /*
3273  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3274  * timed out, or allocating memory failed.  Returns 1 on success.
3275  */
3276 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3277 {
3278         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3279         unsigned long flags;
3280         int timeleft;
3281         int ret;
3282
3283         spin_lock_irqsave(&xhci->lock, flags);
3284         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3285         if (ret) {
3286                 spin_unlock_irqrestore(&xhci->lock, flags);
3287                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3288                 return 0;
3289         }
3290         xhci_ring_cmd_db(xhci);
3291         spin_unlock_irqrestore(&xhci->lock, flags);
3292
3293         /* XXX: how much time for xHC slot assignment? */
3294         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3295                         USB_CTRL_SET_TIMEOUT);
3296         if (timeleft <= 0) {
3297                 xhci_warn(xhci, "%s while waiting for a slot\n",
3298                                 timeleft == 0 ? "Timeout" : "Signal");
3299                 /* FIXME cancel the enable slot request */
3300                 return 0;
3301         }
3302
3303         if (!xhci->slot_id) {
3304                 xhci_err(xhci, "Error while assigning device slot ID\n");
3305                 return 0;
3306         }
3307
3308         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3309                 spin_lock_irqsave(&xhci->lock, flags);
3310                 ret = xhci_reserve_host_control_ep_resources(xhci);
3311                 if (ret) {
3312                         spin_unlock_irqrestore(&xhci->lock, flags);
3313                         xhci_warn(xhci, "Not enough host resources, "
3314                                         "active endpoint contexts = %u\n",
3315                                         xhci->num_active_eps);
3316                         goto disable_slot;
3317                 }
3318                 spin_unlock_irqrestore(&xhci->lock, flags);
3319         }
3320         /* Use GFP_NOIO, since this function can be called from
3321          * xhci_discover_or_reset_device(), which may be called as part of
3322          * mass storage driver error handling.
3323          */
3324         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3325                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3326                 goto disable_slot;
3327         }
3328         udev->slot_id = xhci->slot_id;
3329         /* Is this a LS or FS device under a HS hub? */
3330         /* Hub or peripherial? */
3331         return 1;
3332
3333 disable_slot:
3334         /* Disable slot, if we can do it without mem alloc */
3335         spin_lock_irqsave(&xhci->lock, flags);
3336         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3337                 xhci_ring_cmd_db(xhci);
3338         spin_unlock_irqrestore(&xhci->lock, flags);
3339         return 0;
3340 }
3341
3342 /*
3343  * Issue an Address Device command (which will issue a SetAddress request to
3344  * the device).
3345  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3346  * we should only issue and wait on one address command at the same time.
3347  *
3348  * We add one to the device address issued by the hardware because the USB core
3349  * uses address 1 for the root hubs (even though they're not really devices).
3350  */
3351 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3352 {
3353         unsigned long flags;
3354         int timeleft;
3355         struct xhci_virt_device *virt_dev;
3356         int ret = 0;
3357         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3358         struct xhci_slot_ctx *slot_ctx;
3359         struct xhci_input_control_ctx *ctrl_ctx;
3360         u64 temp_64;
3361
3362         if (!udev->slot_id) {
3363                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3364                 return -EINVAL;
3365         }
3366
3367         virt_dev = xhci->devs[udev->slot_id];
3368
3369         if (WARN_ON(!virt_dev)) {
3370                 /*
3371                  * In plug/unplug torture test with an NEC controller,
3372                  * a zero-dereference was observed once due to virt_dev = 0.
3373                  * Print useful debug rather than crash if it is observed again!
3374                  */
3375                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3376                         udev->slot_id);
3377                 return -EINVAL;
3378         }
3379
3380         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3381         /*
3382          * If this is the first Set Address since device plug-in or
3383          * virt_device realloaction after a resume with an xHCI power loss,
3384          * then set up the slot context.
3385          */
3386         if (!slot_ctx->dev_info)
3387                 xhci_setup_addressable_virt_dev(xhci, udev);
3388         /* Otherwise, update the control endpoint ring enqueue pointer. */
3389         else
3390                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3391         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3392         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3393
3394         spin_lock_irqsave(&xhci->lock, flags);
3395         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3396                                         udev->slot_id);
3397         if (ret) {
3398                 spin_unlock_irqrestore(&xhci->lock, flags);
3399                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3400                 return ret;
3401         }
3402         xhci_ring_cmd_db(xhci);
3403         spin_unlock_irqrestore(&xhci->lock, flags);
3404
3405         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3406         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3407                         USB_CTRL_SET_TIMEOUT);
3408         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3409          * the SetAddress() "recovery interval" required by USB and aborting the
3410          * command on a timeout.
3411          */
3412         if (timeleft <= 0) {
3413                 xhci_warn(xhci, "%s while waiting for a slot\n",
3414                                 timeleft == 0 ? "Timeout" : "Signal");
3415                 /* FIXME cancel the address device command */
3416                 return -ETIME;
3417         }
3418
3419         switch (virt_dev->cmd_status) {
3420         case COMP_CTX_STATE:
3421         case COMP_EBADSLT:
3422                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3423                                 udev->slot_id);
3424                 ret = -EINVAL;
3425                 break;
3426         case COMP_TX_ERR:
3427                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3428                 ret = -EPROTO;
3429                 break;
3430         case COMP_DEV_ERR:
3431                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3432                                 "device command.\n");
3433                 ret = -ENODEV;
3434                 break;
3435         case COMP_SUCCESS:
3436                 xhci_dbg(xhci, "Successful Address Device command\n");
3437                 break;
3438         default:
3439                 xhci_err(xhci, "ERROR: unexpected command completion "
3440                                 "code 0x%x.\n", virt_dev->cmd_status);
3441                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3442                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3443                 ret = -EINVAL;
3444                 break;
3445         }
3446         if (ret) {
3447                 return ret;
3448         }
3449         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3450         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3451         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3452                  udev->slot_id,
3453                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3454                  (unsigned long long)
3455                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3456         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3457                         (unsigned long long)virt_dev->out_ctx->dma);
3458         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3459         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3460         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3461         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3462         /*
3463          * USB core uses address 1 for the roothubs, so we add one to the
3464          * address given back to us by the HC.
3465          */
3466         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3467         /* Use kernel assigned address for devices; store xHC assigned
3468          * address locally. */
3469         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3470                 + 1;
3471         /* Zero the input context control for later use */
3472         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3473         ctrl_ctx->add_flags = 0;
3474         ctrl_ctx->drop_flags = 0;
3475
3476         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3477
3478         return 0;
3479 }
3480
3481 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
3482  * internal data structures for the device.
3483  */
3484 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
3485                         struct usb_tt *tt, gfp_t mem_flags)
3486 {
3487         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3488         struct xhci_virt_device *vdev;
3489         struct xhci_command *config_cmd;
3490         struct xhci_input_control_ctx *ctrl_ctx;
3491         struct xhci_slot_ctx *slot_ctx;
3492         unsigned long flags;
3493         unsigned think_time;
3494         int ret;
3495
3496         /* Ignore root hubs */
3497         if (!hdev->parent)
3498                 return 0;
3499
3500         vdev = xhci->devs[hdev->slot_id];
3501         if (!vdev) {
3502                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
3503                 return -EINVAL;
3504         }
3505         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3506         if (!config_cmd) {
3507                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3508                 return -ENOMEM;
3509         }
3510
3511         spin_lock_irqsave(&xhci->lock, flags);
3512         if (hdev->speed == USB_SPEED_HIGH &&
3513                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
3514                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
3515                 xhci_free_command(xhci, config_cmd);
3516                 spin_unlock_irqrestore(&xhci->lock, flags);
3517                 return -ENOMEM;
3518         }
3519
3520         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
3521         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3522         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3523         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
3524         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
3525         if (tt->multi)
3526                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3527         if (xhci->hci_version > 0x95) {
3528                 xhci_dbg(xhci, "xHCI version %x needs hub "
3529                                 "TT think time and number of ports\n",
3530                                 (unsigned int) xhci->hci_version);
3531                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
3532                 /* Set TT think time - convert from ns to FS bit times.
3533                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
3534                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
3535                  *
3536                  * xHCI 1.0: this field shall be 0 if the device is not a
3537                  * High-spped hub.
3538                  */
3539                 think_time = tt->think_time;
3540                 if (think_time != 0)
3541                         think_time = (think_time / 666) - 1;
3542                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
3543                         slot_ctx->tt_info |=
3544                                 cpu_to_le32(TT_THINK_TIME(think_time));
3545         } else {
3546                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
3547                                 "TT think time or number of ports\n",
3548                                 (unsigned int) xhci->hci_version);
3549         }
3550         slot_ctx->dev_state = 0;
3551         spin_unlock_irqrestore(&xhci->lock, flags);
3552
3553         xhci_dbg(xhci, "Set up %s for hub device.\n",
3554                         (xhci->hci_version > 0x95) ?
3555                         "configure endpoint" : "evaluate context");
3556         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
3557         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3558
3559         /* Issue and wait for the configure endpoint or
3560          * evaluate context command.
3561          */
3562         if (xhci->hci_version > 0x95)
3563                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3564                                 false, false);
3565         else
3566                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3567                                 true, false);
3568
3569         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3570         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3571
3572         xhci_free_command(xhci, config_cmd);
3573         return ret;
3574 }
3575
3576 int xhci_get_frame(struct usb_hcd *hcd)
3577 {
3578         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3579         /* EHCI mods by the periodic size.  Why? */
3580         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
3581 }
3582
3583 MODULE_DESCRIPTION(DRIVER_DESC);
3584 MODULE_AUTHOR(DRIVER_AUTHOR);
3585 MODULE_LICENSE("GPL");
3586
3587 static int __init xhci_hcd_init(void)
3588 {
3589 #ifdef CONFIG_PCI
3590         int retval = 0;
3591
3592         retval = xhci_register_pci();
3593
3594         if (retval < 0) {
3595                 printk(KERN_DEBUG "Problem registering PCI driver.");
3596                 return retval;
3597         }
3598 #endif
3599         /*
3600          * Check the compiler generated sizes of structures that must be laid
3601          * out in specific ways for hardware access.
3602          */
3603         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
3604         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
3605         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
3606         /* xhci_device_control has eight fields, and also
3607          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
3608          */
3609         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
3610         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
3611         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
3612         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
3613         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
3614         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
3615         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
3616         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
3617         return 0;
3618 }
3619 module_init(xhci_hcd_init);
3620
3621 static void __exit xhci_hcd_cleanup(void)
3622 {
3623 #ifdef CONFIG_PCI
3624         xhci_unregister_pci();
3625 #endif
3626 }
3627 module_exit(xhci_hcd_cleanup);