2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
39 struct xhci_segment *seg;
42 seg = kzalloc(sizeof *seg, flags);
45 xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
47 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
52 xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53 seg->trbs, (unsigned long long)dma);
55 memset(seg->trbs, 0, SEGMENT_SIZE);
62 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
65 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
66 seg->trbs, (unsigned long long)seg->dma);
67 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
75 * Make the prev segment point to the next segment.
77 * Change the last TRB in the prev segment to be a Link TRB which points to the
78 * DMA address of the next segment. The caller needs to set any Link TRB
79 * related flags, such as End TRB, Toggle Cycle, and no snoop.
81 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
82 struct xhci_segment *next, bool link_trbs, bool isoc)
90 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
91 cpu_to_le64(next->dma);
93 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
94 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
95 val &= ~TRB_TYPE_BITMASK;
96 val |= TRB_TYPE(TRB_LINK);
97 /* Always set the chain bit with 0.95 hardware */
98 /* Set chain bit for isoc rings on AMD 0.96 host */
99 if (xhci_link_trb_quirk(xhci) ||
100 (isoc && (xhci->quirks & XHCI_AMD_0x96_HOST)))
102 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
104 xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
105 (unsigned long long)prev->dma,
106 (unsigned long long)next->dma);
109 /* XXX: Do we need the hcd structure in all these functions? */
110 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
112 struct xhci_segment *seg;
113 struct xhci_segment *first_seg;
117 if (ring->first_seg) {
118 first_seg = ring->first_seg;
119 seg = first_seg->next;
120 xhci_dbg(xhci, "Freeing ring at %p\n", ring);
121 while (seg != first_seg) {
122 struct xhci_segment *next = seg->next;
123 xhci_segment_free(xhci, seg);
126 xhci_segment_free(xhci, first_seg);
127 ring->first_seg = NULL;
132 static void xhci_initialize_ring_info(struct xhci_ring *ring)
134 /* The ring is empty, so the enqueue pointer == dequeue pointer */
135 ring->enqueue = ring->first_seg->trbs;
136 ring->enq_seg = ring->first_seg;
137 ring->dequeue = ring->enqueue;
138 ring->deq_seg = ring->first_seg;
139 /* The ring is initialized to 0. The producer must write 1 to the cycle
140 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
141 * compare CCS to the cycle bit to check ownership, so CCS = 1.
143 ring->cycle_state = 1;
144 /* Not necessary for new rings, but needed for re-initialized rings */
145 ring->enq_updates = 0;
146 ring->deq_updates = 0;
150 * Create a new ring with zero or more segments.
152 * Link each segment together into a ring.
153 * Set the end flag and the cycle toggle bit on the last segment.
154 * See section 4.9.1 and figures 15 and 16.
156 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
157 unsigned int num_segs, bool link_trbs, bool isoc, gfp_t flags)
159 struct xhci_ring *ring;
160 struct xhci_segment *prev;
162 ring = kzalloc(sizeof *(ring), flags);
163 xhci_dbg(xhci, "Allocating ring at %p\n", ring);
167 INIT_LIST_HEAD(&ring->td_list);
171 ring->first_seg = xhci_segment_alloc(xhci, flags);
172 if (!ring->first_seg)
176 prev = ring->first_seg;
177 while (num_segs > 0) {
178 struct xhci_segment *next;
180 next = xhci_segment_alloc(xhci, flags);
183 xhci_link_segments(xhci, prev, next, link_trbs, isoc);
188 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs, isoc);
191 /* See section 4.9.2.1 and 6.4.4.1 */
192 prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
193 cpu_to_le32(LINK_TOGGLE);
194 xhci_dbg(xhci, "Wrote link toggle flag to"
195 " segment %p (virtual), 0x%llx (DMA)\n",
196 prev, (unsigned long long)prev->dma);
198 xhci_initialize_ring_info(ring);
202 xhci_ring_free(xhci, ring);
206 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
207 struct xhci_virt_device *virt_dev,
208 unsigned int ep_index)
212 rings_cached = virt_dev->num_rings_cached;
213 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
214 virt_dev->ring_cache[rings_cached] =
215 virt_dev->eps[ep_index].ring;
216 virt_dev->num_rings_cached++;
217 xhci_dbg(xhci, "Cached old ring, "
218 "%d ring%s cached\n",
219 virt_dev->num_rings_cached,
220 (virt_dev->num_rings_cached > 1) ? "s" : "");
222 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
223 xhci_dbg(xhci, "Ring cache full (%d rings), "
225 virt_dev->num_rings_cached);
227 virt_dev->eps[ep_index].ring = NULL;
230 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
231 * pointers to the beginning of the ring.
233 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
234 struct xhci_ring *ring, bool isoc)
236 struct xhci_segment *seg = ring->first_seg;
239 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
240 /* All endpoint rings have link TRBs */
241 xhci_link_segments(xhci, seg, seg->next, 1, isoc);
243 } while (seg != ring->first_seg);
244 xhci_initialize_ring_info(ring);
245 /* td list should be empty since all URBs have been cancelled,
246 * but just in case...
248 INIT_LIST_HEAD(&ring->td_list);
251 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
253 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
254 int type, gfp_t flags)
256 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
260 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
262 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
263 if (type == XHCI_CTX_TYPE_INPUT)
264 ctx->size += CTX_SIZE(xhci->hcc_params);
266 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
267 memset(ctx->bytes, 0, ctx->size);
271 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
272 struct xhci_container_ctx *ctx)
276 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
280 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
281 struct xhci_container_ctx *ctx)
283 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
284 return (struct xhci_input_control_ctx *)ctx->bytes;
287 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
288 struct xhci_container_ctx *ctx)
290 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
291 return (struct xhci_slot_ctx *)ctx->bytes;
293 return (struct xhci_slot_ctx *)
294 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
297 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
298 struct xhci_container_ctx *ctx,
299 unsigned int ep_index)
301 /* increment ep index by offset of start of ep ctx array */
303 if (ctx->type == XHCI_CTX_TYPE_INPUT)
306 return (struct xhci_ep_ctx *)
307 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
311 /***************** Streams structures manipulation *************************/
313 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
314 unsigned int num_stream_ctxs,
315 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
317 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
319 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
320 dma_free_coherent(&pdev->dev,
321 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
323 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
324 return dma_pool_free(xhci->small_streams_pool,
327 return dma_pool_free(xhci->medium_streams_pool,
332 * The stream context array for each endpoint with bulk streams enabled can
333 * vary in size, based on:
334 * - how many streams the endpoint supports,
335 * - the maximum primary stream array size the host controller supports,
336 * - and how many streams the device driver asks for.
338 * The stream context array must be a power of 2, and can be as small as
339 * 64 bytes or as large as 1MB.
341 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
342 unsigned int num_stream_ctxs, dma_addr_t *dma,
345 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
347 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
348 return dma_alloc_coherent(&pdev->dev,
349 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
351 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
352 return dma_pool_alloc(xhci->small_streams_pool,
355 return dma_pool_alloc(xhci->medium_streams_pool,
359 struct xhci_ring *xhci_dma_to_transfer_ring(
360 struct xhci_virt_ep *ep,
363 if (ep->ep_state & EP_HAS_STREAMS)
364 return radix_tree_lookup(&ep->stream_info->trb_address_map,
365 address >> SEGMENT_SHIFT);
369 /* Only use this when you know stream_info is valid */
370 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
371 static struct xhci_ring *dma_to_stream_ring(
372 struct xhci_stream_info *stream_info,
375 return radix_tree_lookup(&stream_info->trb_address_map,
376 address >> SEGMENT_SHIFT);
378 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
380 struct xhci_ring *xhci_stream_id_to_ring(
381 struct xhci_virt_device *dev,
382 unsigned int ep_index,
383 unsigned int stream_id)
385 struct xhci_virt_ep *ep = &dev->eps[ep_index];
389 if (!ep->stream_info)
392 if (stream_id > ep->stream_info->num_streams)
394 return ep->stream_info->stream_rings[stream_id];
397 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
398 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
399 unsigned int num_streams,
400 struct xhci_stream_info *stream_info)
403 struct xhci_ring *cur_ring;
406 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
407 struct xhci_ring *mapped_ring;
408 int trb_size = sizeof(union xhci_trb);
410 cur_ring = stream_info->stream_rings[cur_stream];
411 for (addr = cur_ring->first_seg->dma;
412 addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
414 mapped_ring = dma_to_stream_ring(stream_info, addr);
415 if (cur_ring != mapped_ring) {
416 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
417 "didn't map to stream ID %u; "
418 "mapped to ring %p\n",
419 (unsigned long long) addr,
425 /* One TRB after the end of the ring segment shouldn't return a
426 * pointer to the current ring (although it may be a part of a
429 mapped_ring = dma_to_stream_ring(stream_info, addr);
430 if (mapped_ring != cur_ring) {
431 /* One TRB before should also fail */
432 addr = cur_ring->first_seg->dma - trb_size;
433 mapped_ring = dma_to_stream_ring(stream_info, addr);
435 if (mapped_ring == cur_ring) {
436 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
437 "mapped to valid stream ID %u; "
438 "mapped ring = %p\n",
439 (unsigned long long) addr,
447 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
450 * Change an endpoint's internal structure so it supports stream IDs. The
451 * number of requested streams includes stream 0, which cannot be used by device
454 * The number of stream contexts in the stream context array may be bigger than
455 * the number of streams the driver wants to use. This is because the number of
456 * stream context array entries must be a power of two.
458 * We need a radix tree for mapping physical addresses of TRBs to which stream
459 * ID they belong to. We need to do this because the host controller won't tell
460 * us which stream ring the TRB came from. We could store the stream ID in an
461 * event data TRB, but that doesn't help us for the cancellation case, since the
462 * endpoint may stop before it reaches that event data TRB.
464 * The radix tree maps the upper portion of the TRB DMA address to a ring
465 * segment that has the same upper portion of DMA addresses. For example, say I
466 * have segments of size 1KB, that are always 64-byte aligned. A segment may
467 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
468 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
469 * pass the radix tree a key to get the right stream ID:
471 * 0x10c90fff >> 10 = 0x43243
472 * 0x10c912c0 >> 10 = 0x43244
473 * 0x10c91400 >> 10 = 0x43245
475 * Obviously, only those TRBs with DMA addresses that are within the segment
476 * will make the radix tree return the stream ID for that ring.
478 * Caveats for the radix tree:
480 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
481 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
482 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
483 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
484 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
485 * extended systems (where the DMA address can be bigger than 32-bits),
486 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
488 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
489 unsigned int num_stream_ctxs,
490 unsigned int num_streams, gfp_t mem_flags)
492 struct xhci_stream_info *stream_info;
494 struct xhci_ring *cur_ring;
499 xhci_dbg(xhci, "Allocating %u streams and %u "
500 "stream context array entries.\n",
501 num_streams, num_stream_ctxs);
502 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
503 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
506 xhci->cmd_ring_reserved_trbs++;
508 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
512 stream_info->num_streams = num_streams;
513 stream_info->num_stream_ctxs = num_stream_ctxs;
515 /* Initialize the array of virtual pointers to stream rings. */
516 stream_info->stream_rings = kzalloc(
517 sizeof(struct xhci_ring *)*num_streams,
519 if (!stream_info->stream_rings)
522 /* Initialize the array of DMA addresses for stream rings for the HW. */
523 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
524 num_stream_ctxs, &stream_info->ctx_array_dma,
526 if (!stream_info->stream_ctx_array)
528 memset(stream_info->stream_ctx_array, 0,
529 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
531 /* Allocate everything needed to free the stream rings later */
532 stream_info->free_streams_command =
533 xhci_alloc_command(xhci, true, true, mem_flags);
534 if (!stream_info->free_streams_command)
537 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
539 /* Allocate rings for all the streams that the driver will use,
540 * and add their segment DMA addresses to the radix tree.
541 * Stream 0 is reserved.
543 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
544 stream_info->stream_rings[cur_stream] =
545 xhci_ring_alloc(xhci, 1, true, false, mem_flags);
546 cur_ring = stream_info->stream_rings[cur_stream];
549 cur_ring->stream_id = cur_stream;
550 /* Set deq ptr, cycle bit, and stream context type */
551 addr = cur_ring->first_seg->dma |
552 SCT_FOR_CTX(SCT_PRI_TR) |
553 cur_ring->cycle_state;
554 stream_info->stream_ctx_array[cur_stream].stream_ring =
556 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
557 cur_stream, (unsigned long long) addr);
559 key = (unsigned long)
560 (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
561 ret = radix_tree_insert(&stream_info->trb_address_map,
564 xhci_ring_free(xhci, cur_ring);
565 stream_info->stream_rings[cur_stream] = NULL;
569 /* Leave the other unused stream ring pointers in the stream context
570 * array initialized to zero. This will cause the xHC to give us an
571 * error if the device asks for a stream ID we don't have setup (if it
572 * was any other way, the host controller would assume the ring is
573 * "empty" and wait forever for data to be queued to that stream ID).
576 /* Do a little test on the radix tree to make sure it returns the
579 if (xhci_test_radix_tree(xhci, num_streams, stream_info))
586 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
587 cur_ring = stream_info->stream_rings[cur_stream];
589 addr = cur_ring->first_seg->dma;
590 radix_tree_delete(&stream_info->trb_address_map,
591 addr >> SEGMENT_SHIFT);
592 xhci_ring_free(xhci, cur_ring);
593 stream_info->stream_rings[cur_stream] = NULL;
596 xhci_free_command(xhci, stream_info->free_streams_command);
598 kfree(stream_info->stream_rings);
602 xhci->cmd_ring_reserved_trbs--;
606 * Sets the MaxPStreams field and the Linear Stream Array field.
607 * Sets the dequeue pointer to the stream context array.
609 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
610 struct xhci_ep_ctx *ep_ctx,
611 struct xhci_stream_info *stream_info)
613 u32 max_primary_streams;
614 /* MaxPStreams is the number of stream context array entries, not the
615 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
616 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
618 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
619 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
620 1 << (max_primary_streams + 1));
621 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
622 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
624 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
628 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
629 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
630 * not at the beginning of the ring).
632 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
633 struct xhci_ep_ctx *ep_ctx,
634 struct xhci_virt_ep *ep)
637 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
638 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
639 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
642 /* Frees all stream contexts associated with the endpoint,
644 * Caller should fix the endpoint context streams fields.
646 void xhci_free_stream_info(struct xhci_hcd *xhci,
647 struct xhci_stream_info *stream_info)
650 struct xhci_ring *cur_ring;
656 for (cur_stream = 1; cur_stream < stream_info->num_streams;
658 cur_ring = stream_info->stream_rings[cur_stream];
660 addr = cur_ring->first_seg->dma;
661 radix_tree_delete(&stream_info->trb_address_map,
662 addr >> SEGMENT_SHIFT);
663 xhci_ring_free(xhci, cur_ring);
664 stream_info->stream_rings[cur_stream] = NULL;
667 xhci_free_command(xhci, stream_info->free_streams_command);
668 xhci->cmd_ring_reserved_trbs--;
669 if (stream_info->stream_ctx_array)
670 xhci_free_stream_ctx(xhci,
671 stream_info->num_stream_ctxs,
672 stream_info->stream_ctx_array,
673 stream_info->ctx_array_dma);
676 kfree(stream_info->stream_rings);
681 /***************** Device context manipulation *************************/
683 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
684 struct xhci_virt_ep *ep)
686 init_timer(&ep->stop_cmd_timer);
687 ep->stop_cmd_timer.data = (unsigned long) ep;
688 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
692 static void xhci_free_tt_info(struct xhci_hcd *xhci,
693 struct xhci_virt_device *virt_dev,
696 struct list_head *tt;
697 struct list_head *tt_list_head;
698 struct list_head *tt_next;
699 struct xhci_tt_bw_info *tt_info;
701 /* If the device never made it past the Set Address stage,
702 * it may not have the real_port set correctly.
704 if (virt_dev->real_port == 0 ||
705 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
706 xhci_dbg(xhci, "Bad real port.\n");
710 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
711 if (list_empty(tt_list_head))
714 list_for_each(tt, tt_list_head) {
715 tt_info = list_entry(tt, struct xhci_tt_bw_info, tt_list);
716 if (tt_info->slot_id == slot_id)
719 /* Cautionary measure in case the hub was disconnected before we
720 * stored the TT information.
722 if (tt_info->slot_id != slot_id)
726 tt_info = list_entry(tt, struct xhci_tt_bw_info,
728 /* Multi-TT hubs will have more than one entry */
733 if (list_empty(tt_list_head))
736 tt_info = list_entry(tt, struct xhci_tt_bw_info,
738 } while (tt_info->slot_id == slot_id);
741 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
742 struct xhci_virt_device *virt_dev,
743 struct usb_device *hdev,
744 struct usb_tt *tt, gfp_t mem_flags)
746 struct xhci_tt_bw_info *tt_info;
747 unsigned int num_ports;
753 num_ports = hdev->maxchild;
755 for (i = 0; i < num_ports; i++, tt_info++) {
756 struct xhci_interval_bw_table *bw_table;
758 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
761 INIT_LIST_HEAD(&tt_info->tt_list);
762 list_add(&tt_info->tt_list,
763 &xhci->rh_bw[virt_dev->real_port - 1].tts);
764 tt_info->slot_id = virt_dev->udev->slot_id;
766 tt_info->ttport = i+1;
767 bw_table = &tt_info->bw_table;
768 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
769 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
774 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
779 /* All the xhci_tds in the ring's TD list should be freed at this point.
780 * Should be called with xhci->lock held if there is any chance the TT lists
781 * will be manipulated by the configure endpoint, allocate device, or update
782 * hub functions while this function is removing the TT entries from the list.
784 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
786 struct xhci_virt_device *dev;
788 int old_active_eps = 0;
790 /* Slot ID 0 is reserved */
791 if (slot_id == 0 || !xhci->devs[slot_id])
794 dev = xhci->devs[slot_id];
795 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
800 old_active_eps = dev->tt_info->active_eps;
802 for (i = 0; i < 31; ++i) {
803 if (dev->eps[i].ring)
804 xhci_ring_free(xhci, dev->eps[i].ring);
805 if (dev->eps[i].stream_info)
806 xhci_free_stream_info(xhci,
807 dev->eps[i].stream_info);
808 /* Endpoints on the TT/root port lists should have been removed
809 * when usb_disable_device() was called for the device.
810 * We can't drop them anyway, because the udev might have gone
811 * away by this point, and we can't tell what speed it was.
813 if (!list_empty(&dev->eps[i].bw_endpoint_list))
814 xhci_warn(xhci, "Slot %u endpoint %u "
815 "not removed from BW list!\n",
818 /* If this is a hub, free the TT(s) from the TT list */
819 xhci_free_tt_info(xhci, dev, slot_id);
820 /* If necessary, update the number of active TTs on this root port */
821 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
823 if (dev->ring_cache) {
824 for (i = 0; i < dev->num_rings_cached; i++)
825 xhci_ring_free(xhci, dev->ring_cache[i]);
826 kfree(dev->ring_cache);
830 xhci_free_container_ctx(xhci, dev->in_ctx);
832 xhci_free_container_ctx(xhci, dev->out_ctx);
834 kfree(xhci->devs[slot_id]);
835 xhci->devs[slot_id] = NULL;
838 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
839 struct usb_device *udev, gfp_t flags)
841 struct xhci_virt_device *dev;
844 /* Slot ID 0 is reserved */
845 if (slot_id == 0 || xhci->devs[slot_id]) {
846 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
850 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
851 if (!xhci->devs[slot_id])
853 dev = xhci->devs[slot_id];
855 /* Allocate the (output) device context that will be used in the HC. */
856 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
860 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
861 (unsigned long long)dev->out_ctx->dma);
863 /* Allocate the (input) device context for address device command */
864 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
868 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
869 (unsigned long long)dev->in_ctx->dma);
871 /* Initialize the cancellation list and watchdog timers for each ep */
872 for (i = 0; i < 31; i++) {
873 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
874 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
875 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
878 /* Allocate endpoint 0 ring */
879 dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, false, flags);
880 if (!dev->eps[0].ring)
883 /* Allocate pointers to the ring cache */
884 dev->ring_cache = kzalloc(
885 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
887 if (!dev->ring_cache)
889 dev->num_rings_cached = 0;
891 init_completion(&dev->cmd_completion);
892 INIT_LIST_HEAD(&dev->cmd_list);
895 /* Point to output device context in dcbaa. */
896 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
897 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
899 &xhci->dcbaa->dev_context_ptrs[slot_id],
900 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
904 xhci_free_virt_device(xhci, slot_id);
908 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
909 struct usb_device *udev)
911 struct xhci_virt_device *virt_dev;
912 struct xhci_ep_ctx *ep0_ctx;
913 struct xhci_ring *ep_ring;
915 virt_dev = xhci->devs[udev->slot_id];
916 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
917 ep_ring = virt_dev->eps[0].ring;
919 * FIXME we don't keep track of the dequeue pointer very well after a
920 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
921 * host to our enqueue pointer. This should only be called after a
922 * configured device has reset, so all control transfers should have
923 * been completed or cancelled before the reset.
925 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
927 | ep_ring->cycle_state);
931 * The xHCI roothub may have ports of differing speeds in any order in the port
932 * status registers. xhci->port_array provides an array of the port speed for
933 * each offset into the port status registers.
935 * The xHCI hardware wants to know the roothub port number that the USB device
936 * is attached to (or the roothub port its ancestor hub is attached to). All we
937 * know is the index of that port under either the USB 2.0 or the USB 3.0
938 * roothub, but that doesn't give us the real index into the HW port status
939 * registers. Scan through the xHCI roothub port array, looking for the Nth
940 * entry of the correct port speed. Return the port number of that entry.
942 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
943 struct usb_device *udev)
945 struct usb_device *top_dev;
946 unsigned int num_similar_speed_ports;
947 unsigned int faked_port_num;
950 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
951 top_dev = top_dev->parent)
952 /* Found device below root hub */;
953 faked_port_num = top_dev->portnum;
954 for (i = 0, num_similar_speed_ports = 0;
955 i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
956 u8 port_speed = xhci->port_array[i];
959 * Skip ports that don't have known speeds, or have duplicate
960 * Extended Capabilities port speed entries.
962 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
966 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
967 * 1.1 ports are under the USB 2.0 hub. If the port speed
968 * matches the device speed, it's a similar speed port.
970 if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
971 num_similar_speed_ports++;
972 if (num_similar_speed_ports == faked_port_num)
973 /* Roothub ports are numbered from 1 to N */
979 /* Setup an xHCI virtual device for a Set Address command */
980 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
982 struct xhci_virt_device *dev;
983 struct xhci_ep_ctx *ep0_ctx;
984 struct xhci_slot_ctx *slot_ctx;
986 struct usb_device *top_dev;
988 dev = xhci->devs[udev->slot_id];
989 /* Slot ID 0 is reserved */
990 if (udev->slot_id == 0 || !dev) {
991 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
995 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
996 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
998 /* 3) Only the control endpoint is valid - one endpoint context */
999 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1000 switch (udev->speed) {
1001 case USB_SPEED_SUPER:
1002 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1004 case USB_SPEED_HIGH:
1005 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1007 case USB_SPEED_FULL:
1008 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1011 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1013 case USB_SPEED_WIRELESS:
1014 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1018 /* Speed was set earlier, this shouldn't happen. */
1021 /* Find the root hub port this device is under */
1022 port_num = xhci_find_real_port_number(xhci, udev);
1025 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1026 /* Set the port number in the virtual_device to the faked port number */
1027 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1028 top_dev = top_dev->parent)
1029 /* Found device below root hub */;
1030 dev->fake_port = top_dev->portnum;
1031 dev->real_port = port_num;
1032 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1033 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1035 /* Find the right bandwidth table that this device will be a part of.
1036 * If this is a full speed device attached directly to a root port (or a
1037 * decendent of one), it counts as a primary bandwidth domain, not a
1038 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1039 * will never be created for the HS root hub.
1041 if (!udev->tt || !udev->tt->hub->parent) {
1042 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1044 struct xhci_root_port_bw_info *rh_bw;
1045 struct xhci_tt_bw_info *tt_bw;
1047 rh_bw = &xhci->rh_bw[port_num - 1];
1048 /* Find the right TT. */
1049 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1050 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1053 if (!dev->udev->tt->multi ||
1055 tt_bw->ttport == dev->udev->ttport)) {
1056 dev->bw_table = &tt_bw->bw_table;
1057 dev->tt_info = tt_bw;
1062 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1065 /* Is this a LS/FS device under an external HS hub? */
1066 if (udev->tt && udev->tt->hub->parent) {
1067 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1068 (udev->ttport << 8));
1069 if (udev->tt->multi)
1070 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1072 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1073 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1075 /* Step 4 - ring already allocated */
1077 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1079 * XXX: Not sure about wireless USB devices.
1081 switch (udev->speed) {
1082 case USB_SPEED_SUPER:
1083 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
1085 case USB_SPEED_HIGH:
1086 /* USB core guesses at a 64-byte max packet first for FS devices */
1087 case USB_SPEED_FULL:
1088 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
1091 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
1093 case USB_SPEED_WIRELESS:
1094 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1101 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1102 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
1104 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1105 dev->eps[0].ring->cycle_state);
1107 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1113 * Convert interval expressed as 2^(bInterval - 1) == interval into
1114 * straight exponent value 2^n == interval.
1117 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1118 struct usb_host_endpoint *ep)
1120 unsigned int interval;
1122 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1123 if (interval != ep->desc.bInterval - 1)
1124 dev_warn(&udev->dev,
1125 "ep %#x - rounding interval to %d %sframes\n",
1126 ep->desc.bEndpointAddress,
1128 udev->speed == USB_SPEED_FULL ? "" : "micro");
1130 if (udev->speed == USB_SPEED_FULL) {
1132 * Full speed isoc endpoints specify interval in frames,
1133 * not microframes. We are using microframes everywhere,
1134 * so adjust accordingly.
1136 interval += 3; /* 1 frame = 2^3 uframes */
1143 * Convert bInterval expressed in frames (in 1-255 range) to exponent of
1144 * microframes, rounded down to nearest power of 2.
1146 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1147 struct usb_host_endpoint *ep)
1149 unsigned int interval;
1151 interval = fls(8 * ep->desc.bInterval) - 1;
1152 interval = clamp_val(interval, 3, 10);
1153 if ((1 << interval) != 8 * ep->desc.bInterval)
1154 dev_warn(&udev->dev,
1155 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1156 ep->desc.bEndpointAddress,
1158 8 * ep->desc.bInterval);
1163 /* Return the polling or NAK interval.
1165 * The polling interval is expressed in "microframes". If xHCI's Interval field
1166 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1168 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1171 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1172 struct usb_host_endpoint *ep)
1174 unsigned int interval = 0;
1176 switch (udev->speed) {
1177 case USB_SPEED_HIGH:
1179 if (usb_endpoint_xfer_control(&ep->desc) ||
1180 usb_endpoint_xfer_bulk(&ep->desc)) {
1181 interval = ep->desc.bInterval;
1184 /* Fall through - SS and HS isoc/int have same decoding */
1186 case USB_SPEED_SUPER:
1187 if (usb_endpoint_xfer_int(&ep->desc) ||
1188 usb_endpoint_xfer_isoc(&ep->desc)) {
1189 interval = xhci_parse_exponent_interval(udev, ep);
1193 case USB_SPEED_FULL:
1194 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1195 interval = xhci_parse_exponent_interval(udev, ep);
1199 * Fall through for interrupt endpoint interval decoding
1200 * since it uses the same rules as low speed interrupt
1205 if (usb_endpoint_xfer_int(&ep->desc) ||
1206 usb_endpoint_xfer_isoc(&ep->desc)) {
1208 interval = xhci_parse_frame_interval(udev, ep);
1215 return EP_INTERVAL(interval);
1218 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1219 * High speed endpoint descriptors can define "the number of additional
1220 * transaction opportunities per microframe", but that goes in the Max Burst
1221 * endpoint context field.
1223 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1224 struct usb_host_endpoint *ep)
1226 if (udev->speed != USB_SPEED_SUPER ||
1227 !usb_endpoint_xfer_isoc(&ep->desc))
1229 return ep->ss_ep_comp.bmAttributes;
1232 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1233 struct usb_host_endpoint *ep)
1238 in = usb_endpoint_dir_in(&ep->desc);
1239 if (usb_endpoint_xfer_control(&ep->desc)) {
1240 type = EP_TYPE(CTRL_EP);
1241 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1243 type = EP_TYPE(BULK_IN_EP);
1245 type = EP_TYPE(BULK_OUT_EP);
1246 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1248 type = EP_TYPE(ISOC_IN_EP);
1250 type = EP_TYPE(ISOC_OUT_EP);
1251 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1253 type = EP_TYPE(INT_IN_EP);
1255 type = EP_TYPE(INT_OUT_EP);
1262 /* Return the maximum endpoint service interval time (ESIT) payload.
1263 * Basically, this is the maxpacket size, multiplied by the burst size
1266 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1267 struct usb_device *udev,
1268 struct usb_host_endpoint *ep)
1273 /* Only applies for interrupt or isochronous endpoints */
1274 if (usb_endpoint_xfer_control(&ep->desc) ||
1275 usb_endpoint_xfer_bulk(&ep->desc))
1278 if (udev->speed == USB_SPEED_SUPER)
1279 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1281 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1282 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1283 /* A 0 in max burst means 1 transfer per ESIT */
1284 return max_packet * (max_burst + 1);
1287 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1288 * Drivers will have to call usb_alloc_streams() to do that.
1290 int xhci_endpoint_init(struct xhci_hcd *xhci,
1291 struct xhci_virt_device *virt_dev,
1292 struct usb_device *udev,
1293 struct usb_host_endpoint *ep,
1296 unsigned int ep_index;
1297 struct xhci_ep_ctx *ep_ctx;
1298 struct xhci_ring *ep_ring;
1299 unsigned int max_packet;
1300 unsigned int max_burst;
1301 u32 max_esit_payload;
1303 ep_index = xhci_get_endpoint_index(&ep->desc);
1304 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1306 /* Set up the endpoint ring */
1308 * Isochronous endpoint ring needs bigger size because one isoc URB
1309 * carries multiple packets and it will insert multiple tds to the
1311 * This should be replaced with dynamic ring resizing in the future.
1313 if (usb_endpoint_xfer_isoc(&ep->desc))
1314 virt_dev->eps[ep_index].new_ring =
1315 xhci_ring_alloc(xhci, 8, true, true, mem_flags);
1317 virt_dev->eps[ep_index].new_ring =
1318 xhci_ring_alloc(xhci, 1, true, false, mem_flags);
1319 if (!virt_dev->eps[ep_index].new_ring) {
1320 /* Attempt to use the ring cache */
1321 if (virt_dev->num_rings_cached == 0)
1323 virt_dev->eps[ep_index].new_ring =
1324 virt_dev->ring_cache[virt_dev->num_rings_cached];
1325 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1326 virt_dev->num_rings_cached--;
1327 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1328 usb_endpoint_xfer_isoc(&ep->desc) ? true : false);
1330 virt_dev->eps[ep_index].skip = false;
1331 ep_ring = virt_dev->eps[ep_index].new_ring;
1332 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1334 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1335 | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1337 /* FIXME dig Mult and streams info out of ep companion desc */
1339 /* Allow 3 retries for everything but isoc;
1340 * CErr shall be set to 0 for Isoch endpoints.
1342 if (!usb_endpoint_xfer_isoc(&ep->desc))
1343 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1345 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1347 ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1349 /* Set the max packet size and max burst */
1350 switch (udev->speed) {
1351 case USB_SPEED_SUPER:
1352 max_packet = usb_endpoint_maxp(&ep->desc);
1353 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1354 /* dig out max burst from ep companion desc */
1355 max_packet = ep->ss_ep_comp.bMaxBurst;
1356 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1358 case USB_SPEED_HIGH:
1359 /* bits 11:12 specify the number of additional transaction
1360 * opportunities per microframe (USB 2.0, section 9.6.6)
1362 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1363 usb_endpoint_xfer_int(&ep->desc)) {
1364 max_burst = (usb_endpoint_maxp(&ep->desc)
1366 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1369 case USB_SPEED_FULL:
1371 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1372 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1377 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1378 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1381 * XXX no idea how to calculate the average TRB buffer length for bulk
1382 * endpoints, as the driver gives us no clue how big each scatter gather
1383 * list entry (or buffer) is going to be.
1385 * For isochronous and interrupt endpoints, we set it to the max
1386 * available, until we have new API in the USB core to allow drivers to
1387 * declare how much bandwidth they actually need.
1389 * Normally, it would be calculated by taking the total of the buffer
1390 * lengths in the TD and then dividing by the number of TRBs in a TD,
1391 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1392 * use Event Data TRBs, and we don't chain in a link TRB on short
1393 * transfers, we're basically dividing by 1.
1395 * xHCI 1.0 specification indicates that the Average TRB Length should
1396 * be set to 8 for control endpoints.
1398 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1399 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1402 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1404 /* FIXME Debug endpoint context */
1408 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1409 struct xhci_virt_device *virt_dev,
1410 struct usb_host_endpoint *ep)
1412 unsigned int ep_index;
1413 struct xhci_ep_ctx *ep_ctx;
1415 ep_index = xhci_get_endpoint_index(&ep->desc);
1416 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1418 ep_ctx->ep_info = 0;
1419 ep_ctx->ep_info2 = 0;
1421 ep_ctx->tx_info = 0;
1422 /* Don't free the endpoint ring until the set interface or configuration
1427 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1429 bw_info->ep_interval = 0;
1431 bw_info->num_packets = 0;
1432 bw_info->max_packet_size = 0;
1434 bw_info->max_esit_payload = 0;
1437 void xhci_update_bw_info(struct xhci_hcd *xhci,
1438 struct xhci_container_ctx *in_ctx,
1439 struct xhci_input_control_ctx *ctrl_ctx,
1440 struct xhci_virt_device *virt_dev)
1442 struct xhci_bw_info *bw_info;
1443 struct xhci_ep_ctx *ep_ctx;
1444 unsigned int ep_type;
1447 for (i = 1; i < 31; ++i) {
1448 bw_info = &virt_dev->eps[i].bw_info;
1450 /* We can't tell what endpoint type is being dropped, but
1451 * unconditionally clearing the bandwidth info for non-periodic
1452 * endpoints should be harmless because the info will never be
1453 * set in the first place.
1455 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1456 /* Dropped endpoint */
1457 xhci_clear_endpoint_bw_info(bw_info);
1461 if (EP_IS_ADDED(ctrl_ctx, i)) {
1462 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1463 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1465 /* Ignore non-periodic endpoints */
1466 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1467 ep_type != ISOC_IN_EP &&
1468 ep_type != INT_IN_EP)
1471 /* Added or changed endpoint */
1472 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1473 le32_to_cpu(ep_ctx->ep_info));
1474 /* Number of packets and mult are zero-based in the
1475 * input context, but we want one-based for the
1478 bw_info->mult = CTX_TO_EP_MULT(
1479 le32_to_cpu(ep_ctx->ep_info)) + 1;
1480 bw_info->num_packets = CTX_TO_MAX_BURST(
1481 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1482 bw_info->max_packet_size = MAX_PACKET_DECODED(
1483 le32_to_cpu(ep_ctx->ep_info2));
1484 bw_info->type = ep_type;
1485 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1486 le32_to_cpu(ep_ctx->tx_info));
1491 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1492 * Useful when you want to change one particular aspect of the endpoint and then
1493 * issue a configure endpoint command.
1495 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1496 struct xhci_container_ctx *in_ctx,
1497 struct xhci_container_ctx *out_ctx,
1498 unsigned int ep_index)
1500 struct xhci_ep_ctx *out_ep_ctx;
1501 struct xhci_ep_ctx *in_ep_ctx;
1503 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1504 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1506 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1507 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1508 in_ep_ctx->deq = out_ep_ctx->deq;
1509 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1512 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1513 * Useful when you want to change one particular aspect of the endpoint and then
1514 * issue a configure endpoint command. Only the context entries field matters,
1515 * but we'll copy the whole thing anyway.
1517 void xhci_slot_copy(struct xhci_hcd *xhci,
1518 struct xhci_container_ctx *in_ctx,
1519 struct xhci_container_ctx *out_ctx)
1521 struct xhci_slot_ctx *in_slot_ctx;
1522 struct xhci_slot_ctx *out_slot_ctx;
1524 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1525 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1527 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1528 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1529 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1530 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1533 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1534 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1537 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1538 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1540 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1545 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1546 if (!xhci->scratchpad)
1549 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1550 num_sp * sizeof(u64),
1551 &xhci->scratchpad->sp_dma, flags);
1552 if (!xhci->scratchpad->sp_array)
1555 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1556 if (!xhci->scratchpad->sp_buffers)
1559 xhci->scratchpad->sp_dma_buffers =
1560 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1562 if (!xhci->scratchpad->sp_dma_buffers)
1565 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1566 for (i = 0; i < num_sp; i++) {
1568 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1573 xhci->scratchpad->sp_array[i] = dma;
1574 xhci->scratchpad->sp_buffers[i] = buf;
1575 xhci->scratchpad->sp_dma_buffers[i] = dma;
1581 for (i = i - 1; i >= 0; i--) {
1582 dma_free_coherent(dev, xhci->page_size,
1583 xhci->scratchpad->sp_buffers[i],
1584 xhci->scratchpad->sp_dma_buffers[i]);
1586 kfree(xhci->scratchpad->sp_dma_buffers);
1589 kfree(xhci->scratchpad->sp_buffers);
1592 dma_free_coherent(dev, num_sp * sizeof(u64),
1593 xhci->scratchpad->sp_array,
1594 xhci->scratchpad->sp_dma);
1597 kfree(xhci->scratchpad);
1598 xhci->scratchpad = NULL;
1604 static void scratchpad_free(struct xhci_hcd *xhci)
1608 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1610 if (!xhci->scratchpad)
1613 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1615 for (i = 0; i < num_sp; i++) {
1616 dma_free_coherent(&pdev->dev, xhci->page_size,
1617 xhci->scratchpad->sp_buffers[i],
1618 xhci->scratchpad->sp_dma_buffers[i]);
1620 kfree(xhci->scratchpad->sp_dma_buffers);
1621 kfree(xhci->scratchpad->sp_buffers);
1622 dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1623 xhci->scratchpad->sp_array,
1624 xhci->scratchpad->sp_dma);
1625 kfree(xhci->scratchpad);
1626 xhci->scratchpad = NULL;
1629 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1630 bool allocate_in_ctx, bool allocate_completion,
1633 struct xhci_command *command;
1635 command = kzalloc(sizeof(*command), mem_flags);
1639 if (allocate_in_ctx) {
1641 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1643 if (!command->in_ctx) {
1649 if (allocate_completion) {
1650 command->completion =
1651 kzalloc(sizeof(struct completion), mem_flags);
1652 if (!command->completion) {
1653 xhci_free_container_ctx(xhci, command->in_ctx);
1657 init_completion(command->completion);
1660 command->status = 0;
1661 INIT_LIST_HEAD(&command->cmd_list);
1665 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1668 kfree(urb_priv->td[0]);
1673 void xhci_free_command(struct xhci_hcd *xhci,
1674 struct xhci_command *command)
1676 xhci_free_container_ctx(xhci,
1678 kfree(command->completion);
1682 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1684 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1685 struct dev_info *dev_info, *next;
1686 unsigned long flags;
1690 /* Free the Event Ring Segment Table and the actual Event Ring */
1692 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1693 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1694 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1696 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1697 if (xhci->erst.entries)
1698 dma_free_coherent(&pdev->dev, size,
1699 xhci->erst.entries, xhci->erst.erst_dma_addr);
1700 xhci->erst.entries = NULL;
1701 xhci_dbg(xhci, "Freed ERST\n");
1702 if (xhci->event_ring)
1703 xhci_ring_free(xhci, xhci->event_ring);
1704 xhci->event_ring = NULL;
1705 xhci_dbg(xhci, "Freed event ring\n");
1707 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1709 xhci_ring_free(xhci, xhci->cmd_ring);
1710 xhci->cmd_ring = NULL;
1711 xhci_dbg(xhci, "Freed command ring\n");
1713 for (i = 1; i < MAX_HC_SLOTS; ++i)
1714 xhci_free_virt_device(xhci, i);
1716 if (xhci->segment_pool)
1717 dma_pool_destroy(xhci->segment_pool);
1718 xhci->segment_pool = NULL;
1719 xhci_dbg(xhci, "Freed segment pool\n");
1721 if (xhci->device_pool)
1722 dma_pool_destroy(xhci->device_pool);
1723 xhci->device_pool = NULL;
1724 xhci_dbg(xhci, "Freed device context pool\n");
1726 if (xhci->small_streams_pool)
1727 dma_pool_destroy(xhci->small_streams_pool);
1728 xhci->small_streams_pool = NULL;
1729 xhci_dbg(xhci, "Freed small stream array pool\n");
1731 if (xhci->medium_streams_pool)
1732 dma_pool_destroy(xhci->medium_streams_pool);
1733 xhci->medium_streams_pool = NULL;
1734 xhci_dbg(xhci, "Freed medium stream array pool\n");
1736 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1738 dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1739 xhci->dcbaa, xhci->dcbaa->dma);
1742 scratchpad_free(xhci);
1744 spin_lock_irqsave(&xhci->lock, flags);
1745 list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1746 list_del(&dev_info->list);
1749 spin_unlock_irqrestore(&xhci->lock, flags);
1751 xhci->num_usb2_ports = 0;
1752 xhci->num_usb3_ports = 0;
1753 kfree(xhci->usb2_ports);
1754 kfree(xhci->usb3_ports);
1755 kfree(xhci->port_array);
1758 xhci->page_size = 0;
1759 xhci->page_shift = 0;
1760 xhci->bus_state[0].bus_suspended = 0;
1761 xhci->bus_state[1].bus_suspended = 0;
1764 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1765 struct xhci_segment *input_seg,
1766 union xhci_trb *start_trb,
1767 union xhci_trb *end_trb,
1768 dma_addr_t input_dma,
1769 struct xhci_segment *result_seg,
1770 char *test_name, int test_number)
1772 unsigned long long start_dma;
1773 unsigned long long end_dma;
1774 struct xhci_segment *seg;
1776 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1777 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1779 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1780 if (seg != result_seg) {
1781 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1782 test_name, test_number);
1783 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1784 "input DMA 0x%llx\n",
1786 (unsigned long long) input_dma);
1787 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1788 "ending TRB %p (0x%llx DMA)\n",
1789 start_trb, start_dma,
1791 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1798 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1799 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1802 dma_addr_t input_dma;
1803 struct xhci_segment *result_seg;
1804 } simple_test_vector [] = {
1805 /* A zeroed DMA field should fail */
1807 /* One TRB before the ring start should fail */
1808 { xhci->event_ring->first_seg->dma - 16, NULL },
1809 /* One byte before the ring start should fail */
1810 { xhci->event_ring->first_seg->dma - 1, NULL },
1811 /* Starting TRB should succeed */
1812 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1813 /* Ending TRB should succeed */
1814 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1815 xhci->event_ring->first_seg },
1816 /* One byte after the ring end should fail */
1817 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1818 /* One TRB after the ring end should fail */
1819 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1820 /* An address of all ones should fail */
1821 { (dma_addr_t) (~0), NULL },
1824 struct xhci_segment *input_seg;
1825 union xhci_trb *start_trb;
1826 union xhci_trb *end_trb;
1827 dma_addr_t input_dma;
1828 struct xhci_segment *result_seg;
1829 } complex_test_vector [] = {
1830 /* Test feeding a valid DMA address from a different ring */
1831 { .input_seg = xhci->event_ring->first_seg,
1832 .start_trb = xhci->event_ring->first_seg->trbs,
1833 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1834 .input_dma = xhci->cmd_ring->first_seg->dma,
1837 /* Test feeding a valid end TRB from a different ring */
1838 { .input_seg = xhci->event_ring->first_seg,
1839 .start_trb = xhci->event_ring->first_seg->trbs,
1840 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1841 .input_dma = xhci->cmd_ring->first_seg->dma,
1844 /* Test feeding a valid start and end TRB from a different ring */
1845 { .input_seg = xhci->event_ring->first_seg,
1846 .start_trb = xhci->cmd_ring->first_seg->trbs,
1847 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1848 .input_dma = xhci->cmd_ring->first_seg->dma,
1851 /* TRB in this ring, but after this TD */
1852 { .input_seg = xhci->event_ring->first_seg,
1853 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1854 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1855 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1858 /* TRB in this ring, but before this TD */
1859 { .input_seg = xhci->event_ring->first_seg,
1860 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1861 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1862 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1865 /* TRB in this ring, but after this wrapped TD */
1866 { .input_seg = xhci->event_ring->first_seg,
1867 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1868 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1869 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1872 /* TRB in this ring, but before this wrapped TD */
1873 { .input_seg = xhci->event_ring->first_seg,
1874 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1875 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1876 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1879 /* TRB not in this ring, and we have a wrapped TD */
1880 { .input_seg = xhci->event_ring->first_seg,
1881 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1882 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1883 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1888 unsigned int num_tests;
1891 num_tests = ARRAY_SIZE(simple_test_vector);
1892 for (i = 0; i < num_tests; i++) {
1893 ret = xhci_test_trb_in_td(xhci,
1894 xhci->event_ring->first_seg,
1895 xhci->event_ring->first_seg->trbs,
1896 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1897 simple_test_vector[i].input_dma,
1898 simple_test_vector[i].result_seg,
1904 num_tests = ARRAY_SIZE(complex_test_vector);
1905 for (i = 0; i < num_tests; i++) {
1906 ret = xhci_test_trb_in_td(xhci,
1907 complex_test_vector[i].input_seg,
1908 complex_test_vector[i].start_trb,
1909 complex_test_vector[i].end_trb,
1910 complex_test_vector[i].input_dma,
1911 complex_test_vector[i].result_seg,
1916 xhci_dbg(xhci, "TRB math tests passed.\n");
1920 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1925 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1926 xhci->event_ring->dequeue);
1927 if (deq == 0 && !in_interrupt())
1928 xhci_warn(xhci, "WARN something wrong with SW event ring "
1930 /* Update HC event ring dequeue pointer */
1931 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1932 temp &= ERST_PTR_MASK;
1933 /* Don't clear the EHB bit (which is RW1C) because
1934 * there might be more events to service.
1937 xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1938 "preserving EHB bit\n");
1939 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1940 &xhci->ir_set->erst_dequeue);
1943 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1944 __le32 __iomem *addr, u8 major_revision)
1946 u32 temp, port_offset, port_count;
1949 if (major_revision > 0x03) {
1950 xhci_warn(xhci, "Ignoring unknown port speed, "
1951 "Ext Cap %p, revision = 0x%x\n",
1952 addr, major_revision);
1953 /* Ignoring port protocol we can't understand. FIXME */
1957 /* Port offset and count in the third dword, see section 7.2 */
1958 temp = xhci_readl(xhci, addr + 2);
1959 port_offset = XHCI_EXT_PORT_OFF(temp);
1960 port_count = XHCI_EXT_PORT_COUNT(temp);
1961 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1962 "count = %u, revision = 0x%x\n",
1963 addr, port_offset, port_count, major_revision);
1964 /* Port count includes the current port offset */
1965 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1966 /* WTF? "Valid values are ‘1’ to MaxPorts" */
1969 /* Check the host's USB2 LPM capability */
1970 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
1971 (temp & XHCI_L1C)) {
1972 xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
1973 xhci->sw_lpm_support = 1;
1976 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
1977 xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
1978 xhci->sw_lpm_support = 1;
1979 if (temp & XHCI_HLC) {
1980 xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
1981 xhci->hw_lpm_support = 1;
1986 for (i = port_offset; i < (port_offset + port_count); i++) {
1987 /* Duplicate entry. Ignore the port if the revisions differ. */
1988 if (xhci->port_array[i] != 0) {
1989 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1990 " port %u\n", addr, i);
1991 xhci_warn(xhci, "Port was marked as USB %u, "
1992 "duplicated as USB %u\n",
1993 xhci->port_array[i], major_revision);
1994 /* Only adjust the roothub port counts if we haven't
1995 * found a similar duplicate.
1997 if (xhci->port_array[i] != major_revision &&
1998 xhci->port_array[i] != DUPLICATE_ENTRY) {
1999 if (xhci->port_array[i] == 0x03)
2000 xhci->num_usb3_ports--;
2002 xhci->num_usb2_ports--;
2003 xhci->port_array[i] = DUPLICATE_ENTRY;
2005 /* FIXME: Should we disable the port? */
2008 xhci->port_array[i] = major_revision;
2009 if (major_revision == 0x03)
2010 xhci->num_usb3_ports++;
2012 xhci->num_usb2_ports++;
2014 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2018 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2019 * specify what speeds each port is supposed to be. We can't count on the port
2020 * speed bits in the PORTSC register being correct until a device is connected,
2021 * but we need to set up the two fake roothubs with the correct number of USB
2022 * 3.0 and USB 2.0 ports at host controller initialization time.
2024 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2026 __le32 __iomem *addr;
2028 unsigned int num_ports;
2029 int i, j, port_index;
2031 addr = &xhci->cap_regs->hcc_params;
2032 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2034 xhci_err(xhci, "No Extended Capability registers, "
2035 "unable to set up roothub.\n");
2039 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2040 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2041 if (!xhci->port_array)
2044 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2047 for (i = 0; i < num_ports; i++) {
2048 struct xhci_interval_bw_table *bw_table;
2050 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2051 bw_table = &xhci->rh_bw[i].bw_table;
2052 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2053 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2057 * For whatever reason, the first capability offset is from the
2058 * capability register base, not from the HCCPARAMS register.
2059 * See section 5.3.6 for offset calculation.
2061 addr = &xhci->cap_regs->hc_capbase + offset;
2065 cap_id = xhci_readl(xhci, addr);
2066 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2067 xhci_add_in_port(xhci, num_ports, addr,
2068 (u8) XHCI_EXT_PORT_MAJOR(cap_id));
2069 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2070 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2074 * Once you're into the Extended Capabilities, the offset is
2075 * always relative to the register holding the offset.
2080 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2081 xhci_warn(xhci, "No ports on the roothubs?\n");
2084 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2085 xhci->num_usb2_ports, xhci->num_usb3_ports);
2087 /* Place limits on the number of roothub ports so that the hub
2088 * descriptors aren't longer than the USB core will allocate.
2090 if (xhci->num_usb3_ports > 15) {
2091 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2092 xhci->num_usb3_ports = 15;
2094 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2095 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2097 xhci->num_usb2_ports = USB_MAXCHILDREN;
2101 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2102 * Not sure how the USB core will handle a hub with no ports...
2104 if (xhci->num_usb2_ports) {
2105 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2106 xhci->num_usb2_ports, flags);
2107 if (!xhci->usb2_ports)
2111 for (i = 0; i < num_ports; i++) {
2112 if (xhci->port_array[i] == 0x03 ||
2113 xhci->port_array[i] == 0 ||
2114 xhci->port_array[i] == DUPLICATE_ENTRY)
2117 xhci->usb2_ports[port_index] =
2118 &xhci->op_regs->port_status_base +
2120 xhci_dbg(xhci, "USB 2.0 port at index %u, "
2122 xhci->usb2_ports[port_index]);
2124 if (port_index == xhci->num_usb2_ports)
2128 if (xhci->num_usb3_ports) {
2129 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2130 xhci->num_usb3_ports, flags);
2131 if (!xhci->usb3_ports)
2135 for (i = 0; i < num_ports; i++)
2136 if (xhci->port_array[i] == 0x03) {
2137 xhci->usb3_ports[port_index] =
2138 &xhci->op_regs->port_status_base +
2140 xhci_dbg(xhci, "USB 3.0 port at index %u, "
2142 xhci->usb3_ports[port_index]);
2144 if (port_index == xhci->num_usb3_ports)
2151 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2154 struct device *dev = xhci_to_hcd(xhci)->self.controller;
2155 unsigned int val, val2;
2157 struct xhci_segment *seg;
2161 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2162 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2163 for (i = 0; i < 16; i++) {
2164 if ((0x1 & page_size) != 0)
2166 page_size = page_size >> 1;
2169 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2171 xhci_warn(xhci, "WARN: no supported page size\n");
2172 /* Use 4K pages, since that's common and the minimum the HC supports */
2173 xhci->page_shift = 12;
2174 xhci->page_size = 1 << xhci->page_shift;
2175 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2178 * Program the Number of Device Slots Enabled field in the CONFIG
2179 * register with the max value of slots the HC can handle.
2181 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2182 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2183 (unsigned int) val);
2184 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2185 val |= (val2 & ~HCS_SLOTS_MASK);
2186 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2187 (unsigned int) val);
2188 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2191 * Section 5.4.8 - doorbell array must be
2192 * "physically contiguous and 64-byte (cache line) aligned".
2194 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2198 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2199 xhci->dcbaa->dma = dma;
2200 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2201 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2202 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2205 * Initialize the ring segment pool. The ring must be a contiguous
2206 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2207 * however, the command ring segment needs 64-byte aligned segments,
2208 * so we pick the greater alignment need.
2210 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2211 SEGMENT_SIZE, 64, xhci->page_size);
2213 /* See Table 46 and Note on Figure 55 */
2214 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2215 2112, 64, xhci->page_size);
2216 if (!xhci->segment_pool || !xhci->device_pool)
2219 /* Linear stream context arrays don't have any boundary restrictions,
2220 * and only need to be 16-byte aligned.
2222 xhci->small_streams_pool =
2223 dma_pool_create("xHCI 256 byte stream ctx arrays",
2224 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2225 xhci->medium_streams_pool =
2226 dma_pool_create("xHCI 1KB stream ctx arrays",
2227 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2228 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2229 * will be allocated with dma_alloc_coherent()
2232 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2235 /* Set up the command ring to have one segments for now. */
2236 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, false, flags);
2237 if (!xhci->cmd_ring)
2239 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2240 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2241 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2243 /* Set the address in the Command Ring Control register */
2244 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2245 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2246 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2247 xhci->cmd_ring->cycle_state;
2248 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2249 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2250 xhci_dbg_cmd_ptrs(xhci);
2252 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2254 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2255 " from cap regs base addr\n", val);
2256 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2257 xhci_dbg_regs(xhci);
2258 xhci_print_run_regs(xhci);
2259 /* Set ir_set to interrupt register set 0 */
2260 xhci->ir_set = &xhci->run_regs->ir_set[0];
2263 * Event ring setup: Allocate a normal ring, but also setup
2264 * the event ring segment table (ERST). Section 4.9.3.
2266 xhci_dbg(xhci, "// Allocating event ring\n");
2267 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, false,
2269 if (!xhci->event_ring)
2271 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2274 xhci->erst.entries = dma_alloc_coherent(dev,
2275 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2277 if (!xhci->erst.entries)
2279 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2280 (unsigned long long)dma);
2282 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2283 xhci->erst.num_entries = ERST_NUM_SEGS;
2284 xhci->erst.erst_dma_addr = dma;
2285 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2286 xhci->erst.num_entries,
2288 (unsigned long long)xhci->erst.erst_dma_addr);
2290 /* set ring base address and size for each segment table entry */
2291 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2292 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2293 entry->seg_addr = cpu_to_le64(seg->dma);
2294 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2299 /* set ERST count with the number of entries in the segment table */
2300 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2301 val &= ERST_SIZE_MASK;
2302 val |= ERST_NUM_SEGS;
2303 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2305 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2307 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2308 /* set the segment table base address */
2309 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2310 (unsigned long long)xhci->erst.erst_dma_addr);
2311 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2312 val_64 &= ERST_PTR_MASK;
2313 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2314 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2316 /* Set the event ring dequeue address */
2317 xhci_set_hc_event_deq(xhci);
2318 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2319 xhci_print_ir_set(xhci, 0);
2322 * XXX: Might need to set the Interrupter Moderation Register to
2323 * something other than the default (~1ms minimum between interrupts).
2324 * See section 5.5.1.2.
2326 init_completion(&xhci->addr_dev);
2327 for (i = 0; i < MAX_HC_SLOTS; ++i)
2328 xhci->devs[i] = NULL;
2329 for (i = 0; i < USB_MAXCHILDREN; ++i) {
2330 xhci->bus_state[0].resume_done[i] = 0;
2331 xhci->bus_state[1].resume_done[i] = 0;
2334 if (scratchpad_alloc(xhci, flags))
2336 if (xhci_setup_port_arrays(xhci, flags))
2339 INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2344 xhci_warn(xhci, "Couldn't initialize memory\n");
2345 xhci_mem_cleanup(xhci);