Merge branch '3.3-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[pandora-kernel.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100 #include <asm/system.h>
101
102 #include <linux/kbd_kern.h>
103 #include <linux/vt_kern.h>
104 #include <linux/selection.h>
105
106 #include <linux/kmod.h>
107 #include <linux/nsproxy.h>
108
109 #undef TTY_DEBUG_HANGUP
110
111 #define TTY_PARANOIA_CHECK 1
112 #define CHECK_TTY_COUNT 1
113
114 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
115         .c_iflag = ICRNL | IXON,
116         .c_oflag = OPOST | ONLCR,
117         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
118         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
119                    ECHOCTL | ECHOKE | IEXTEN,
120         .c_cc = INIT_C_CC,
121         .c_ispeed = 38400,
122         .c_ospeed = 38400
123 };
124
125 EXPORT_SYMBOL(tty_std_termios);
126
127 /* This list gets poked at by procfs and various bits of boot up code. This
128    could do with some rationalisation such as pulling the tty proc function
129    into this file */
130
131 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
132
133 /* Mutex to protect creating and releasing a tty. This is shared with
134    vt.c for deeply disgusting hack reasons */
135 DEFINE_MUTEX(tty_mutex);
136 EXPORT_SYMBOL(tty_mutex);
137
138 /* Spinlock to protect the tty->tty_files list */
139 DEFINE_SPINLOCK(tty_files_lock);
140
141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143 ssize_t redirected_tty_write(struct file *, const char __user *,
144                                                         size_t, loff_t *);
145 static unsigned int tty_poll(struct file *, poll_table *);
146 static int tty_open(struct inode *, struct file *);
147 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148 #ifdef CONFIG_COMPAT
149 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
150                                 unsigned long arg);
151 #else
152 #define tty_compat_ioctl NULL
153 #endif
154 static int __tty_fasync(int fd, struct file *filp, int on);
155 static int tty_fasync(int fd, struct file *filp, int on);
156 static void release_tty(struct tty_struct *tty, int idx);
157 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159
160 /**
161  *      alloc_tty_struct        -       allocate a tty object
162  *
163  *      Return a new empty tty structure. The data fields have not
164  *      been initialized in any way but has been zeroed
165  *
166  *      Locking: none
167  */
168
169 struct tty_struct *alloc_tty_struct(void)
170 {
171         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
172 }
173
174 /**
175  *      free_tty_struct         -       free a disused tty
176  *      @tty: tty struct to free
177  *
178  *      Free the write buffers, tty queue and tty memory itself.
179  *
180  *      Locking: none. Must be called after tty is definitely unused
181  */
182
183 void free_tty_struct(struct tty_struct *tty)
184 {
185         if (tty->dev)
186                 put_device(tty->dev);
187         kfree(tty->write_buf);
188         tty_buffer_free_all(tty);
189         kfree(tty);
190 }
191
192 static inline struct tty_struct *file_tty(struct file *file)
193 {
194         return ((struct tty_file_private *)file->private_data)->tty;
195 }
196
197 int tty_alloc_file(struct file *file)
198 {
199         struct tty_file_private *priv;
200
201         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
202         if (!priv)
203                 return -ENOMEM;
204
205         file->private_data = priv;
206
207         return 0;
208 }
209
210 /* Associate a new file with the tty structure */
211 void tty_add_file(struct tty_struct *tty, struct file *file)
212 {
213         struct tty_file_private *priv = file->private_data;
214
215         priv->tty = tty;
216         priv->file = file;
217
218         spin_lock(&tty_files_lock);
219         list_add(&priv->list, &tty->tty_files);
220         spin_unlock(&tty_files_lock);
221 }
222
223 /**
224  * tty_free_file - free file->private_data
225  *
226  * This shall be used only for fail path handling when tty_add_file was not
227  * called yet.
228  */
229 void tty_free_file(struct file *file)
230 {
231         struct tty_file_private *priv = file->private_data;
232
233         file->private_data = NULL;
234         kfree(priv);
235 }
236
237 /* Delete file from its tty */
238 void tty_del_file(struct file *file)
239 {
240         struct tty_file_private *priv = file->private_data;
241
242         spin_lock(&tty_files_lock);
243         list_del(&priv->list);
244         spin_unlock(&tty_files_lock);
245         tty_free_file(file);
246 }
247
248
249 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
250
251 /**
252  *      tty_name        -       return tty naming
253  *      @tty: tty structure
254  *      @buf: buffer for output
255  *
256  *      Convert a tty structure into a name. The name reflects the kernel
257  *      naming policy and if udev is in use may not reflect user space
258  *
259  *      Locking: none
260  */
261
262 char *tty_name(struct tty_struct *tty, char *buf)
263 {
264         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
265                 strcpy(buf, "NULL tty");
266         else
267                 strcpy(buf, tty->name);
268         return buf;
269 }
270
271 EXPORT_SYMBOL(tty_name);
272
273 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
274                               const char *routine)
275 {
276 #ifdef TTY_PARANOIA_CHECK
277         if (!tty) {
278                 printk(KERN_WARNING
279                         "null TTY for (%d:%d) in %s\n",
280                         imajor(inode), iminor(inode), routine);
281                 return 1;
282         }
283         if (tty->magic != TTY_MAGIC) {
284                 printk(KERN_WARNING
285                         "bad magic number for tty struct (%d:%d) in %s\n",
286                         imajor(inode), iminor(inode), routine);
287                 return 1;
288         }
289 #endif
290         return 0;
291 }
292
293 static int check_tty_count(struct tty_struct *tty, const char *routine)
294 {
295 #ifdef CHECK_TTY_COUNT
296         struct list_head *p;
297         int count = 0;
298
299         spin_lock(&tty_files_lock);
300         list_for_each(p, &tty->tty_files) {
301                 count++;
302         }
303         spin_unlock(&tty_files_lock);
304         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
305             tty->driver->subtype == PTY_TYPE_SLAVE &&
306             tty->link && tty->link->count)
307                 count++;
308         if (tty->count != count) {
309                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
310                                     "!= #fd's(%d) in %s\n",
311                        tty->name, tty->count, count, routine);
312                 return count;
313         }
314 #endif
315         return 0;
316 }
317
318 /**
319  *      get_tty_driver          -       find device of a tty
320  *      @dev_t: device identifier
321  *      @index: returns the index of the tty
322  *
323  *      This routine returns a tty driver structure, given a device number
324  *      and also passes back the index number.
325  *
326  *      Locking: caller must hold tty_mutex
327  */
328
329 static struct tty_driver *get_tty_driver(dev_t device, int *index)
330 {
331         struct tty_driver *p;
332
333         list_for_each_entry(p, &tty_drivers, tty_drivers) {
334                 dev_t base = MKDEV(p->major, p->minor_start);
335                 if (device < base || device >= base + p->num)
336                         continue;
337                 *index = device - base;
338                 return tty_driver_kref_get(p);
339         }
340         return NULL;
341 }
342
343 #ifdef CONFIG_CONSOLE_POLL
344
345 /**
346  *      tty_find_polling_driver -       find device of a polled tty
347  *      @name: name string to match
348  *      @line: pointer to resulting tty line nr
349  *
350  *      This routine returns a tty driver structure, given a name
351  *      and the condition that the tty driver is capable of polled
352  *      operation.
353  */
354 struct tty_driver *tty_find_polling_driver(char *name, int *line)
355 {
356         struct tty_driver *p, *res = NULL;
357         int tty_line = 0;
358         int len;
359         char *str, *stp;
360
361         for (str = name; *str; str++)
362                 if ((*str >= '0' && *str <= '9') || *str == ',')
363                         break;
364         if (!*str)
365                 return NULL;
366
367         len = str - name;
368         tty_line = simple_strtoul(str, &str, 10);
369
370         mutex_lock(&tty_mutex);
371         /* Search through the tty devices to look for a match */
372         list_for_each_entry(p, &tty_drivers, tty_drivers) {
373                 if (strncmp(name, p->name, len) != 0)
374                         continue;
375                 stp = str;
376                 if (*stp == ',')
377                         stp++;
378                 if (*stp == '\0')
379                         stp = NULL;
380
381                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
382                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
383                         res = tty_driver_kref_get(p);
384                         *line = tty_line;
385                         break;
386                 }
387         }
388         mutex_unlock(&tty_mutex);
389
390         return res;
391 }
392 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
393 #endif
394
395 /**
396  *      tty_check_change        -       check for POSIX terminal changes
397  *      @tty: tty to check
398  *
399  *      If we try to write to, or set the state of, a terminal and we're
400  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
401  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
402  *
403  *      Locking: ctrl_lock
404  */
405
406 int tty_check_change(struct tty_struct *tty)
407 {
408         unsigned long flags;
409         int ret = 0;
410
411         if (current->signal->tty != tty)
412                 return 0;
413
414         spin_lock_irqsave(&tty->ctrl_lock, flags);
415
416         if (!tty->pgrp) {
417                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
418                 goto out_unlock;
419         }
420         if (task_pgrp(current) == tty->pgrp)
421                 goto out_unlock;
422         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423         if (is_ignored(SIGTTOU))
424                 goto out;
425         if (is_current_pgrp_orphaned()) {
426                 ret = -EIO;
427                 goto out;
428         }
429         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
430         set_thread_flag(TIF_SIGPENDING);
431         ret = -ERESTARTSYS;
432 out:
433         return ret;
434 out_unlock:
435         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
436         return ret;
437 }
438
439 EXPORT_SYMBOL(tty_check_change);
440
441 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
442                                 size_t count, loff_t *ppos)
443 {
444         return 0;
445 }
446
447 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
448                                  size_t count, loff_t *ppos)
449 {
450         return -EIO;
451 }
452
453 /* No kernel lock held - none needed ;) */
454 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
455 {
456         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
457 }
458
459 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
460                 unsigned long arg)
461 {
462         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463 }
464
465 static long hung_up_tty_compat_ioctl(struct file *file,
466                                      unsigned int cmd, unsigned long arg)
467 {
468         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
469 }
470
471 static const struct file_operations tty_fops = {
472         .llseek         = no_llseek,
473         .read           = tty_read,
474         .write          = tty_write,
475         .poll           = tty_poll,
476         .unlocked_ioctl = tty_ioctl,
477         .compat_ioctl   = tty_compat_ioctl,
478         .open           = tty_open,
479         .release        = tty_release,
480         .fasync         = tty_fasync,
481 };
482
483 static const struct file_operations console_fops = {
484         .llseek         = no_llseek,
485         .read           = tty_read,
486         .write          = redirected_tty_write,
487         .poll           = tty_poll,
488         .unlocked_ioctl = tty_ioctl,
489         .compat_ioctl   = tty_compat_ioctl,
490         .open           = tty_open,
491         .release        = tty_release,
492         .fasync         = tty_fasync,
493 };
494
495 static const struct file_operations hung_up_tty_fops = {
496         .llseek         = no_llseek,
497         .read           = hung_up_tty_read,
498         .write          = hung_up_tty_write,
499         .poll           = hung_up_tty_poll,
500         .unlocked_ioctl = hung_up_tty_ioctl,
501         .compat_ioctl   = hung_up_tty_compat_ioctl,
502         .release        = tty_release,
503 };
504
505 static DEFINE_SPINLOCK(redirect_lock);
506 static struct file *redirect;
507
508 /**
509  *      tty_wakeup      -       request more data
510  *      @tty: terminal
511  *
512  *      Internal and external helper for wakeups of tty. This function
513  *      informs the line discipline if present that the driver is ready
514  *      to receive more output data.
515  */
516
517 void tty_wakeup(struct tty_struct *tty)
518 {
519         struct tty_ldisc *ld;
520
521         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
522                 ld = tty_ldisc_ref(tty);
523                 if (ld) {
524                         if (ld->ops->write_wakeup)
525                                 ld->ops->write_wakeup(tty);
526                         tty_ldisc_deref(ld);
527                 }
528         }
529         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
530 }
531
532 EXPORT_SYMBOL_GPL(tty_wakeup);
533
534 /**
535  *      __tty_hangup            -       actual handler for hangup events
536  *      @work: tty device
537  *
538  *      This can be called by the "eventd" kernel thread.  That is process
539  *      synchronous but doesn't hold any locks, so we need to make sure we
540  *      have the appropriate locks for what we're doing.
541  *
542  *      The hangup event clears any pending redirections onto the hung up
543  *      device. It ensures future writes will error and it does the needed
544  *      line discipline hangup and signal delivery. The tty object itself
545  *      remains intact.
546  *
547  *      Locking:
548  *              BTM
549  *                redirect lock for undoing redirection
550  *                file list lock for manipulating list of ttys
551  *                tty_ldisc_lock from called functions
552  *                termios_mutex resetting termios data
553  *                tasklist_lock to walk task list for hangup event
554  *                  ->siglock to protect ->signal/->sighand
555  */
556 void __tty_hangup(struct tty_struct *tty)
557 {
558         struct file *cons_filp = NULL;
559         struct file *filp, *f = NULL;
560         struct task_struct *p;
561         struct tty_file_private *priv;
562         int    closecount = 0, n;
563         unsigned long flags;
564         int refs = 0;
565
566         if (!tty)
567                 return;
568
569
570         spin_lock(&redirect_lock);
571         if (redirect && file_tty(redirect) == tty) {
572                 f = redirect;
573                 redirect = NULL;
574         }
575         spin_unlock(&redirect_lock);
576
577         tty_lock();
578
579         /* some functions below drop BTM, so we need this bit */
580         set_bit(TTY_HUPPING, &tty->flags);
581
582         /* inuse_filps is protected by the single tty lock,
583            this really needs to change if we want to flush the
584            workqueue with the lock held */
585         check_tty_count(tty, "tty_hangup");
586
587         spin_lock(&tty_files_lock);
588         /* This breaks for file handles being sent over AF_UNIX sockets ? */
589         list_for_each_entry(priv, &tty->tty_files, list) {
590                 filp = priv->file;
591                 if (filp->f_op->write == redirected_tty_write)
592                         cons_filp = filp;
593                 if (filp->f_op->write != tty_write)
594                         continue;
595                 closecount++;
596                 __tty_fasync(-1, filp, 0);      /* can't block */
597                 filp->f_op = &hung_up_tty_fops;
598         }
599         spin_unlock(&tty_files_lock);
600
601         /*
602          * it drops BTM and thus races with reopen
603          * we protect the race by TTY_HUPPING
604          */
605         tty_ldisc_hangup(tty);
606
607         read_lock(&tasklist_lock);
608         if (tty->session) {
609                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
610                         spin_lock_irq(&p->sighand->siglock);
611                         if (p->signal->tty == tty) {
612                                 p->signal->tty = NULL;
613                                 /* We defer the dereferences outside fo
614                                    the tasklist lock */
615                                 refs++;
616                         }
617                         if (!p->signal->leader) {
618                                 spin_unlock_irq(&p->sighand->siglock);
619                                 continue;
620                         }
621                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
622                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
623                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
624                         spin_lock_irqsave(&tty->ctrl_lock, flags);
625                         if (tty->pgrp)
626                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
627                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
628                         spin_unlock_irq(&p->sighand->siglock);
629                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
630         }
631         read_unlock(&tasklist_lock);
632
633         spin_lock_irqsave(&tty->ctrl_lock, flags);
634         clear_bit(TTY_THROTTLED, &tty->flags);
635         clear_bit(TTY_PUSH, &tty->flags);
636         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
637         put_pid(tty->session);
638         put_pid(tty->pgrp);
639         tty->session = NULL;
640         tty->pgrp = NULL;
641         tty->ctrl_status = 0;
642         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
643
644         /* Account for the p->signal references we killed */
645         while (refs--)
646                 tty_kref_put(tty);
647
648         /*
649          * If one of the devices matches a console pointer, we
650          * cannot just call hangup() because that will cause
651          * tty->count and state->count to go out of sync.
652          * So we just call close() the right number of times.
653          */
654         if (cons_filp) {
655                 if (tty->ops->close)
656                         for (n = 0; n < closecount; n++)
657                                 tty->ops->close(tty, cons_filp);
658         } else if (tty->ops->hangup)
659                 (tty->ops->hangup)(tty);
660         /*
661          * We don't want to have driver/ldisc interactions beyond
662          * the ones we did here. The driver layer expects no
663          * calls after ->hangup() from the ldisc side. However we
664          * can't yet guarantee all that.
665          */
666         set_bit(TTY_HUPPED, &tty->flags);
667         clear_bit(TTY_HUPPING, &tty->flags);
668         tty_ldisc_enable(tty);
669
670         tty_unlock();
671
672         if (f)
673                 fput(f);
674 }
675
676 static void do_tty_hangup(struct work_struct *work)
677 {
678         struct tty_struct *tty =
679                 container_of(work, struct tty_struct, hangup_work);
680
681         __tty_hangup(tty);
682 }
683
684 /**
685  *      tty_hangup              -       trigger a hangup event
686  *      @tty: tty to hangup
687  *
688  *      A carrier loss (virtual or otherwise) has occurred on this like
689  *      schedule a hangup sequence to run after this event.
690  */
691
692 void tty_hangup(struct tty_struct *tty)
693 {
694 #ifdef TTY_DEBUG_HANGUP
695         char    buf[64];
696         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
697 #endif
698         schedule_work(&tty->hangup_work);
699 }
700
701 EXPORT_SYMBOL(tty_hangup);
702
703 /**
704  *      tty_vhangup             -       process vhangup
705  *      @tty: tty to hangup
706  *
707  *      The user has asked via system call for the terminal to be hung up.
708  *      We do this synchronously so that when the syscall returns the process
709  *      is complete. That guarantee is necessary for security reasons.
710  */
711
712 void tty_vhangup(struct tty_struct *tty)
713 {
714 #ifdef TTY_DEBUG_HANGUP
715         char    buf[64];
716
717         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
718 #endif
719         __tty_hangup(tty);
720 }
721
722 EXPORT_SYMBOL(tty_vhangup);
723
724
725 /**
726  *      tty_vhangup_self        -       process vhangup for own ctty
727  *
728  *      Perform a vhangup on the current controlling tty
729  */
730
731 void tty_vhangup_self(void)
732 {
733         struct tty_struct *tty;
734
735         tty = get_current_tty();
736         if (tty) {
737                 tty_vhangup(tty);
738                 tty_kref_put(tty);
739         }
740 }
741
742 /**
743  *      tty_hung_up_p           -       was tty hung up
744  *      @filp: file pointer of tty
745  *
746  *      Return true if the tty has been subject to a vhangup or a carrier
747  *      loss
748  */
749
750 int tty_hung_up_p(struct file *filp)
751 {
752         return (filp->f_op == &hung_up_tty_fops);
753 }
754
755 EXPORT_SYMBOL(tty_hung_up_p);
756
757 static void session_clear_tty(struct pid *session)
758 {
759         struct task_struct *p;
760         do_each_pid_task(session, PIDTYPE_SID, p) {
761                 proc_clear_tty(p);
762         } while_each_pid_task(session, PIDTYPE_SID, p);
763 }
764
765 /**
766  *      disassociate_ctty       -       disconnect controlling tty
767  *      @on_exit: true if exiting so need to "hang up" the session
768  *
769  *      This function is typically called only by the session leader, when
770  *      it wants to disassociate itself from its controlling tty.
771  *
772  *      It performs the following functions:
773  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
774  *      (2)  Clears the tty from being controlling the session
775  *      (3)  Clears the controlling tty for all processes in the
776  *              session group.
777  *
778  *      The argument on_exit is set to 1 if called when a process is
779  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
780  *
781  *      Locking:
782  *              BTM is taken for hysterical raisins, and held when
783  *                called from no_tty().
784  *                tty_mutex is taken to protect tty
785  *                ->siglock is taken to protect ->signal/->sighand
786  *                tasklist_lock is taken to walk process list for sessions
787  *                  ->siglock is taken to protect ->signal/->sighand
788  */
789
790 void disassociate_ctty(int on_exit)
791 {
792         struct tty_struct *tty;
793
794         if (!current->signal->leader)
795                 return;
796
797         tty = get_current_tty();
798         if (tty) {
799                 struct pid *tty_pgrp = get_pid(tty->pgrp);
800                 if (on_exit) {
801                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
802                                 tty_vhangup(tty);
803                 }
804                 tty_kref_put(tty);
805                 if (tty_pgrp) {
806                         kill_pgrp(tty_pgrp, SIGHUP, on_exit);
807                         if (!on_exit)
808                                 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
809                         put_pid(tty_pgrp);
810                 }
811         } else if (on_exit) {
812                 struct pid *old_pgrp;
813                 spin_lock_irq(&current->sighand->siglock);
814                 old_pgrp = current->signal->tty_old_pgrp;
815                 current->signal->tty_old_pgrp = NULL;
816                 spin_unlock_irq(&current->sighand->siglock);
817                 if (old_pgrp) {
818                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
819                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
820                         put_pid(old_pgrp);
821                 }
822                 return;
823         }
824
825         spin_lock_irq(&current->sighand->siglock);
826         put_pid(current->signal->tty_old_pgrp);
827         current->signal->tty_old_pgrp = NULL;
828         spin_unlock_irq(&current->sighand->siglock);
829
830         tty = get_current_tty();
831         if (tty) {
832                 unsigned long flags;
833                 spin_lock_irqsave(&tty->ctrl_lock, flags);
834                 put_pid(tty->session);
835                 put_pid(tty->pgrp);
836                 tty->session = NULL;
837                 tty->pgrp = NULL;
838                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
839                 tty_kref_put(tty);
840         } else {
841 #ifdef TTY_DEBUG_HANGUP
842                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
843                        " = NULL", tty);
844 #endif
845         }
846
847         /* Now clear signal->tty under the lock */
848         read_lock(&tasklist_lock);
849         session_clear_tty(task_session(current));
850         read_unlock(&tasklist_lock);
851 }
852
853 /**
854  *
855  *      no_tty  - Ensure the current process does not have a controlling tty
856  */
857 void no_tty(void)
858 {
859         struct task_struct *tsk = current;
860         tty_lock();
861         disassociate_ctty(0);
862         tty_unlock();
863         proc_clear_tty(tsk);
864 }
865
866
867 /**
868  *      stop_tty        -       propagate flow control
869  *      @tty: tty to stop
870  *
871  *      Perform flow control to the driver. For PTY/TTY pairs we
872  *      must also propagate the TIOCKPKT status. May be called
873  *      on an already stopped device and will not re-call the driver
874  *      method.
875  *
876  *      This functionality is used by both the line disciplines for
877  *      halting incoming flow and by the driver. It may therefore be
878  *      called from any context, may be under the tty atomic_write_lock
879  *      but not always.
880  *
881  *      Locking:
882  *              Uses the tty control lock internally
883  */
884
885 void stop_tty(struct tty_struct *tty)
886 {
887         unsigned long flags;
888         spin_lock_irqsave(&tty->ctrl_lock, flags);
889         if (tty->stopped) {
890                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
891                 return;
892         }
893         tty->stopped = 1;
894         if (tty->link && tty->link->packet) {
895                 tty->ctrl_status &= ~TIOCPKT_START;
896                 tty->ctrl_status |= TIOCPKT_STOP;
897                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
898         }
899         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
900         if (tty->ops->stop)
901                 (tty->ops->stop)(tty);
902 }
903
904 EXPORT_SYMBOL(stop_tty);
905
906 /**
907  *      start_tty       -       propagate flow control
908  *      @tty: tty to start
909  *
910  *      Start a tty that has been stopped if at all possible. Perform
911  *      any necessary wakeups and propagate the TIOCPKT status. If this
912  *      is the tty was previous stopped and is being started then the
913  *      driver start method is invoked and the line discipline woken.
914  *
915  *      Locking:
916  *              ctrl_lock
917  */
918
919 void start_tty(struct tty_struct *tty)
920 {
921         unsigned long flags;
922         spin_lock_irqsave(&tty->ctrl_lock, flags);
923         if (!tty->stopped || tty->flow_stopped) {
924                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
925                 return;
926         }
927         tty->stopped = 0;
928         if (tty->link && tty->link->packet) {
929                 tty->ctrl_status &= ~TIOCPKT_STOP;
930                 tty->ctrl_status |= TIOCPKT_START;
931                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
932         }
933         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
934         if (tty->ops->start)
935                 (tty->ops->start)(tty);
936         /* If we have a running line discipline it may need kicking */
937         tty_wakeup(tty);
938 }
939
940 EXPORT_SYMBOL(start_tty);
941
942 /**
943  *      tty_read        -       read method for tty device files
944  *      @file: pointer to tty file
945  *      @buf: user buffer
946  *      @count: size of user buffer
947  *      @ppos: unused
948  *
949  *      Perform the read system call function on this terminal device. Checks
950  *      for hung up devices before calling the line discipline method.
951  *
952  *      Locking:
953  *              Locks the line discipline internally while needed. Multiple
954  *      read calls may be outstanding in parallel.
955  */
956
957 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
958                         loff_t *ppos)
959 {
960         int i;
961         struct inode *inode = file->f_path.dentry->d_inode;
962         struct tty_struct *tty = file_tty(file);
963         struct tty_ldisc *ld;
964
965         if (tty_paranoia_check(tty, inode, "tty_read"))
966                 return -EIO;
967         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
968                 return -EIO;
969
970         /* We want to wait for the line discipline to sort out in this
971            situation */
972         ld = tty_ldisc_ref_wait(tty);
973         if (ld->ops->read)
974                 i = (ld->ops->read)(tty, file, buf, count);
975         else
976                 i = -EIO;
977         tty_ldisc_deref(ld);
978         if (i > 0)
979                 inode->i_atime = current_fs_time(inode->i_sb);
980         return i;
981 }
982
983 void tty_write_unlock(struct tty_struct *tty)
984         __releases(&tty->atomic_write_lock)
985 {
986         mutex_unlock(&tty->atomic_write_lock);
987         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
988 }
989
990 int tty_write_lock(struct tty_struct *tty, int ndelay)
991         __acquires(&tty->atomic_write_lock)
992 {
993         if (!mutex_trylock(&tty->atomic_write_lock)) {
994                 if (ndelay)
995                         return -EAGAIN;
996                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
997                         return -ERESTARTSYS;
998         }
999         return 0;
1000 }
1001
1002 /*
1003  * Split writes up in sane blocksizes to avoid
1004  * denial-of-service type attacks
1005  */
1006 static inline ssize_t do_tty_write(
1007         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1008         struct tty_struct *tty,
1009         struct file *file,
1010         const char __user *buf,
1011         size_t count)
1012 {
1013         ssize_t ret, written = 0;
1014         unsigned int chunk;
1015
1016         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1017         if (ret < 0)
1018                 return ret;
1019
1020         /*
1021          * We chunk up writes into a temporary buffer. This
1022          * simplifies low-level drivers immensely, since they
1023          * don't have locking issues and user mode accesses.
1024          *
1025          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1026          * big chunk-size..
1027          *
1028          * The default chunk-size is 2kB, because the NTTY
1029          * layer has problems with bigger chunks. It will
1030          * claim to be able to handle more characters than
1031          * it actually does.
1032          *
1033          * FIXME: This can probably go away now except that 64K chunks
1034          * are too likely to fail unless switched to vmalloc...
1035          */
1036         chunk = 2048;
1037         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1038                 chunk = 65536;
1039         if (count < chunk)
1040                 chunk = count;
1041
1042         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1043         if (tty->write_cnt < chunk) {
1044                 unsigned char *buf_chunk;
1045
1046                 if (chunk < 1024)
1047                         chunk = 1024;
1048
1049                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1050                 if (!buf_chunk) {
1051                         ret = -ENOMEM;
1052                         goto out;
1053                 }
1054                 kfree(tty->write_buf);
1055                 tty->write_cnt = chunk;
1056                 tty->write_buf = buf_chunk;
1057         }
1058
1059         /* Do the write .. */
1060         for (;;) {
1061                 size_t size = count;
1062                 if (size > chunk)
1063                         size = chunk;
1064                 ret = -EFAULT;
1065                 if (copy_from_user(tty->write_buf, buf, size))
1066                         break;
1067                 ret = write(tty, file, tty->write_buf, size);
1068                 if (ret <= 0)
1069                         break;
1070                 written += ret;
1071                 buf += ret;
1072                 count -= ret;
1073                 if (!count)
1074                         break;
1075                 ret = -ERESTARTSYS;
1076                 if (signal_pending(current))
1077                         break;
1078                 cond_resched();
1079         }
1080         if (written) {
1081                 struct inode *inode = file->f_path.dentry->d_inode;
1082                 inode->i_mtime = current_fs_time(inode->i_sb);
1083                 ret = written;
1084         }
1085 out:
1086         tty_write_unlock(tty);
1087         return ret;
1088 }
1089
1090 /**
1091  * tty_write_message - write a message to a certain tty, not just the console.
1092  * @tty: the destination tty_struct
1093  * @msg: the message to write
1094  *
1095  * This is used for messages that need to be redirected to a specific tty.
1096  * We don't put it into the syslog queue right now maybe in the future if
1097  * really needed.
1098  *
1099  * We must still hold the BTM and test the CLOSING flag for the moment.
1100  */
1101
1102 void tty_write_message(struct tty_struct *tty, char *msg)
1103 {
1104         if (tty) {
1105                 mutex_lock(&tty->atomic_write_lock);
1106                 tty_lock();
1107                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1108                         tty_unlock();
1109                         tty->ops->write(tty, msg, strlen(msg));
1110                 } else
1111                         tty_unlock();
1112                 tty_write_unlock(tty);
1113         }
1114         return;
1115 }
1116
1117
1118 /**
1119  *      tty_write               -       write method for tty device file
1120  *      @file: tty file pointer
1121  *      @buf: user data to write
1122  *      @count: bytes to write
1123  *      @ppos: unused
1124  *
1125  *      Write data to a tty device via the line discipline.
1126  *
1127  *      Locking:
1128  *              Locks the line discipline as required
1129  *              Writes to the tty driver are serialized by the atomic_write_lock
1130  *      and are then processed in chunks to the device. The line discipline
1131  *      write method will not be invoked in parallel for each device.
1132  */
1133
1134 static ssize_t tty_write(struct file *file, const char __user *buf,
1135                                                 size_t count, loff_t *ppos)
1136 {
1137         struct inode *inode = file->f_path.dentry->d_inode;
1138         struct tty_struct *tty = file_tty(file);
1139         struct tty_ldisc *ld;
1140         ssize_t ret;
1141
1142         if (tty_paranoia_check(tty, inode, "tty_write"))
1143                 return -EIO;
1144         if (!tty || !tty->ops->write ||
1145                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1146                         return -EIO;
1147         /* Short term debug to catch buggy drivers */
1148         if (tty->ops->write_room == NULL)
1149                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1150                         tty->driver->name);
1151         ld = tty_ldisc_ref_wait(tty);
1152         if (!ld->ops->write)
1153                 ret = -EIO;
1154         else
1155                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1156         tty_ldisc_deref(ld);
1157         return ret;
1158 }
1159
1160 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1161                                                 size_t count, loff_t *ppos)
1162 {
1163         struct file *p = NULL;
1164
1165         spin_lock(&redirect_lock);
1166         if (redirect) {
1167                 get_file(redirect);
1168                 p = redirect;
1169         }
1170         spin_unlock(&redirect_lock);
1171
1172         if (p) {
1173                 ssize_t res;
1174                 res = vfs_write(p, buf, count, &p->f_pos);
1175                 fput(p);
1176                 return res;
1177         }
1178         return tty_write(file, buf, count, ppos);
1179 }
1180
1181 static char ptychar[] = "pqrstuvwxyzabcde";
1182
1183 /**
1184  *      pty_line_name   -       generate name for a pty
1185  *      @driver: the tty driver in use
1186  *      @index: the minor number
1187  *      @p: output buffer of at least 6 bytes
1188  *
1189  *      Generate a name from a driver reference and write it to the output
1190  *      buffer.
1191  *
1192  *      Locking: None
1193  */
1194 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1195 {
1196         int i = index + driver->name_base;
1197         /* ->name is initialized to "ttyp", but "tty" is expected */
1198         sprintf(p, "%s%c%x",
1199                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1200                 ptychar[i >> 4 & 0xf], i & 0xf);
1201 }
1202
1203 /**
1204  *      tty_line_name   -       generate name for a tty
1205  *      @driver: the tty driver in use
1206  *      @index: the minor number
1207  *      @p: output buffer of at least 7 bytes
1208  *
1209  *      Generate a name from a driver reference and write it to the output
1210  *      buffer.
1211  *
1212  *      Locking: None
1213  */
1214 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1215 {
1216         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1217 }
1218
1219 /**
1220  *      tty_driver_lookup_tty() - find an existing tty, if any
1221  *      @driver: the driver for the tty
1222  *      @idx:    the minor number
1223  *
1224  *      Return the tty, if found or ERR_PTR() otherwise.
1225  *
1226  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1227  *      be held until the 'fast-open' is also done. Will change once we
1228  *      have refcounting in the driver and per driver locking
1229  */
1230 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1231                 struct inode *inode, int idx)
1232 {
1233         struct tty_struct *tty;
1234
1235         if (driver->ops->lookup)
1236                 return driver->ops->lookup(driver, inode, idx);
1237
1238         tty = driver->ttys[idx];
1239         return tty;
1240 }
1241
1242 /**
1243  *      tty_init_termios        -  helper for termios setup
1244  *      @tty: the tty to set up
1245  *
1246  *      Initialise the termios structures for this tty. Thus runs under
1247  *      the tty_mutex currently so we can be relaxed about ordering.
1248  */
1249
1250 int tty_init_termios(struct tty_struct *tty)
1251 {
1252         struct ktermios *tp;
1253         int idx = tty->index;
1254
1255         tp = tty->driver->termios[idx];
1256         if (tp == NULL) {
1257                 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1258                 if (tp == NULL)
1259                         return -ENOMEM;
1260                 memcpy(tp, &tty->driver->init_termios,
1261                                                 sizeof(struct ktermios));
1262                 tty->driver->termios[idx] = tp;
1263         }
1264         tty->termios = tp;
1265         tty->termios_locked = tp + 1;
1266
1267         /* Compatibility until drivers always set this */
1268         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1269         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1270         return 0;
1271 }
1272 EXPORT_SYMBOL_GPL(tty_init_termios);
1273
1274 /**
1275  *      tty_driver_install_tty() - install a tty entry in the driver
1276  *      @driver: the driver for the tty
1277  *      @tty: the tty
1278  *
1279  *      Install a tty object into the driver tables. The tty->index field
1280  *      will be set by the time this is called. This method is responsible
1281  *      for ensuring any need additional structures are allocated and
1282  *      configured.
1283  *
1284  *      Locking: tty_mutex for now
1285  */
1286 static int tty_driver_install_tty(struct tty_driver *driver,
1287                                                 struct tty_struct *tty)
1288 {
1289         int idx = tty->index;
1290         int ret;
1291
1292         if (driver->ops->install) {
1293                 ret = driver->ops->install(driver, tty);
1294                 return ret;
1295         }
1296
1297         if (tty_init_termios(tty) == 0) {
1298                 tty_driver_kref_get(driver);
1299                 tty->count++;
1300                 driver->ttys[idx] = tty;
1301                 return 0;
1302         }
1303         return -ENOMEM;
1304 }
1305
1306 /**
1307  *      tty_driver_remove_tty() - remove a tty from the driver tables
1308  *      @driver: the driver for the tty
1309  *      @idx:    the minor number
1310  *
1311  *      Remvoe a tty object from the driver tables. The tty->index field
1312  *      will be set by the time this is called.
1313  *
1314  *      Locking: tty_mutex for now
1315  */
1316 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1317 {
1318         if (driver->ops->remove)
1319                 driver->ops->remove(driver, tty);
1320         else
1321                 driver->ttys[tty->index] = NULL;
1322 }
1323
1324 /*
1325  *      tty_reopen()    - fast re-open of an open tty
1326  *      @tty    - the tty to open
1327  *
1328  *      Return 0 on success, -errno on error.
1329  *
1330  *      Locking: tty_mutex must be held from the time the tty was found
1331  *               till this open completes.
1332  */
1333 static int tty_reopen(struct tty_struct *tty)
1334 {
1335         struct tty_driver *driver = tty->driver;
1336
1337         if (test_bit(TTY_CLOSING, &tty->flags) ||
1338                         test_bit(TTY_HUPPING, &tty->flags) ||
1339                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1340                 return -EIO;
1341
1342         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1343             driver->subtype == PTY_TYPE_MASTER) {
1344                 /*
1345                  * special case for PTY masters: only one open permitted,
1346                  * and the slave side open count is incremented as well.
1347                  */
1348                 if (tty->count)
1349                         return -EIO;
1350
1351                 tty->link->count++;
1352         }
1353         tty->count++;
1354         tty->driver = driver; /* N.B. why do this every time?? */
1355
1356         mutex_lock(&tty->ldisc_mutex);
1357         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1358         mutex_unlock(&tty->ldisc_mutex);
1359
1360         return 0;
1361 }
1362
1363 /**
1364  *      tty_init_dev            -       initialise a tty device
1365  *      @driver: tty driver we are opening a device on
1366  *      @idx: device index
1367  *      @ret_tty: returned tty structure
1368  *      @first_ok: ok to open a new device (used by ptmx)
1369  *
1370  *      Prepare a tty device. This may not be a "new" clean device but
1371  *      could also be an active device. The pty drivers require special
1372  *      handling because of this.
1373  *
1374  *      Locking:
1375  *              The function is called under the tty_mutex, which
1376  *      protects us from the tty struct or driver itself going away.
1377  *
1378  *      On exit the tty device has the line discipline attached and
1379  *      a reference count of 1. If a pair was created for pty/tty use
1380  *      and the other was a pty master then it too has a reference count of 1.
1381  *
1382  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1383  * failed open.  The new code protects the open with a mutex, so it's
1384  * really quite straightforward.  The mutex locking can probably be
1385  * relaxed for the (most common) case of reopening a tty.
1386  */
1387
1388 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1389                                                                 int first_ok)
1390 {
1391         struct tty_struct *tty;
1392         int retval;
1393
1394         /* Check if pty master is being opened multiple times */
1395         if (driver->subtype == PTY_TYPE_MASTER &&
1396                 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1397                 return ERR_PTR(-EIO);
1398         }
1399
1400         /*
1401          * First time open is complex, especially for PTY devices.
1402          * This code guarantees that either everything succeeds and the
1403          * TTY is ready for operation, or else the table slots are vacated
1404          * and the allocated memory released.  (Except that the termios
1405          * and locked termios may be retained.)
1406          */
1407
1408         if (!try_module_get(driver->owner))
1409                 return ERR_PTR(-ENODEV);
1410
1411         tty = alloc_tty_struct();
1412         if (!tty) {
1413                 retval = -ENOMEM;
1414                 goto err_module_put;
1415         }
1416         initialize_tty_struct(tty, driver, idx);
1417
1418         retval = tty_driver_install_tty(driver, tty);
1419         if (retval < 0)
1420                 goto err_deinit_tty;
1421
1422         /*
1423          * Structures all installed ... call the ldisc open routines.
1424          * If we fail here just call release_tty to clean up.  No need
1425          * to decrement the use counts, as release_tty doesn't care.
1426          */
1427         retval = tty_ldisc_setup(tty, tty->link);
1428         if (retval)
1429                 goto err_release_tty;
1430         return tty;
1431
1432 err_deinit_tty:
1433         deinitialize_tty_struct(tty);
1434         free_tty_struct(tty);
1435 err_module_put:
1436         module_put(driver->owner);
1437         return ERR_PTR(retval);
1438
1439         /* call the tty release_tty routine to clean out this slot */
1440 err_release_tty:
1441         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1442                                  "clearing slot %d\n", idx);
1443         release_tty(tty, idx);
1444         return ERR_PTR(retval);
1445 }
1446
1447 void tty_free_termios(struct tty_struct *tty)
1448 {
1449         struct ktermios *tp;
1450         int idx = tty->index;
1451         /* Kill this flag and push into drivers for locking etc */
1452         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1453                 /* FIXME: Locking on ->termios array */
1454                 tp = tty->termios;
1455                 tty->driver->termios[idx] = NULL;
1456                 kfree(tp);
1457         }
1458 }
1459 EXPORT_SYMBOL(tty_free_termios);
1460
1461 void tty_shutdown(struct tty_struct *tty)
1462 {
1463         tty_driver_remove_tty(tty->driver, tty);
1464         tty_free_termios(tty);
1465 }
1466 EXPORT_SYMBOL(tty_shutdown);
1467
1468 /**
1469  *      release_one_tty         -       release tty structure memory
1470  *      @kref: kref of tty we are obliterating
1471  *
1472  *      Releases memory associated with a tty structure, and clears out the
1473  *      driver table slots. This function is called when a device is no longer
1474  *      in use. It also gets called when setup of a device fails.
1475  *
1476  *      Locking:
1477  *              tty_mutex - sometimes only
1478  *              takes the file list lock internally when working on the list
1479  *      of ttys that the driver keeps.
1480  *
1481  *      This method gets called from a work queue so that the driver private
1482  *      cleanup ops can sleep (needed for USB at least)
1483  */
1484 static void release_one_tty(struct work_struct *work)
1485 {
1486         struct tty_struct *tty =
1487                 container_of(work, struct tty_struct, hangup_work);
1488         struct tty_driver *driver = tty->driver;
1489
1490         if (tty->ops->cleanup)
1491                 tty->ops->cleanup(tty);
1492
1493         tty->magic = 0;
1494         tty_driver_kref_put(driver);
1495         module_put(driver->owner);
1496
1497         spin_lock(&tty_files_lock);
1498         list_del_init(&tty->tty_files);
1499         spin_unlock(&tty_files_lock);
1500
1501         put_pid(tty->pgrp);
1502         put_pid(tty->session);
1503         free_tty_struct(tty);
1504 }
1505
1506 static void queue_release_one_tty(struct kref *kref)
1507 {
1508         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1509
1510         if (tty->ops->shutdown)
1511                 tty->ops->shutdown(tty);
1512         else
1513                 tty_shutdown(tty);
1514
1515         /* The hangup queue is now free so we can reuse it rather than
1516            waste a chunk of memory for each port */
1517         INIT_WORK(&tty->hangup_work, release_one_tty);
1518         schedule_work(&tty->hangup_work);
1519 }
1520
1521 /**
1522  *      tty_kref_put            -       release a tty kref
1523  *      @tty: tty device
1524  *
1525  *      Release a reference to a tty device and if need be let the kref
1526  *      layer destruct the object for us
1527  */
1528
1529 void tty_kref_put(struct tty_struct *tty)
1530 {
1531         if (tty)
1532                 kref_put(&tty->kref, queue_release_one_tty);
1533 }
1534 EXPORT_SYMBOL(tty_kref_put);
1535
1536 /**
1537  *      release_tty             -       release tty structure memory
1538  *
1539  *      Release both @tty and a possible linked partner (think pty pair),
1540  *      and decrement the refcount of the backing module.
1541  *
1542  *      Locking:
1543  *              tty_mutex - sometimes only
1544  *              takes the file list lock internally when working on the list
1545  *      of ttys that the driver keeps.
1546  *              FIXME: should we require tty_mutex is held here ??
1547  *
1548  */
1549 static void release_tty(struct tty_struct *tty, int idx)
1550 {
1551         /* This should always be true but check for the moment */
1552         WARN_ON(tty->index != idx);
1553
1554         if (tty->link)
1555                 tty_kref_put(tty->link);
1556         tty_kref_put(tty);
1557 }
1558
1559 /**
1560  *      tty_release_checks - check a tty before real release
1561  *      @tty: tty to check
1562  *      @o_tty: link of @tty (if any)
1563  *      @idx: index of the tty
1564  *
1565  *      Performs some paranoid checking before true release of the @tty.
1566  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1567  */
1568 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1569                 int idx)
1570 {
1571 #ifdef TTY_PARANOIA_CHECK
1572         if (idx < 0 || idx >= tty->driver->num) {
1573                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1574                                 __func__, tty->name);
1575                 return -1;
1576         }
1577
1578         /* not much to check for devpts */
1579         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1580                 return 0;
1581
1582         if (tty != tty->driver->ttys[idx]) {
1583                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1584                                 __func__, idx, tty->name);
1585                 return -1;
1586         }
1587         if (tty->termios != tty->driver->termios[idx]) {
1588                 printk(KERN_DEBUG "%s: driver.termios[%d] not termios for (%s)\n",
1589                                 __func__, idx, tty->name);
1590                 return -1;
1591         }
1592         if (tty->driver->other) {
1593                 if (o_tty != tty->driver->other->ttys[idx]) {
1594                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1595                                         __func__, idx, tty->name);
1596                         return -1;
1597                 }
1598                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1599                         printk(KERN_DEBUG "%s: other->termios[%d] not o_termios for (%s)\n",
1600                                         __func__, idx, tty->name);
1601                         return -1;
1602                 }
1603                 if (o_tty->link != tty) {
1604                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1605                         return -1;
1606                 }
1607         }
1608 #endif
1609         return 0;
1610 }
1611
1612 /**
1613  *      tty_release             -       vfs callback for close
1614  *      @inode: inode of tty
1615  *      @filp: file pointer for handle to tty
1616  *
1617  *      Called the last time each file handle is closed that references
1618  *      this tty. There may however be several such references.
1619  *
1620  *      Locking:
1621  *              Takes bkl. See tty_release_dev
1622  *
1623  * Even releasing the tty structures is a tricky business.. We have
1624  * to be very careful that the structures are all released at the
1625  * same time, as interrupts might otherwise get the wrong pointers.
1626  *
1627  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1628  * lead to double frees or releasing memory still in use.
1629  */
1630
1631 int tty_release(struct inode *inode, struct file *filp)
1632 {
1633         struct tty_struct *tty = file_tty(filp);
1634         struct tty_struct *o_tty;
1635         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1636         int     devpts;
1637         int     idx;
1638         char    buf[64];
1639
1640         if (tty_paranoia_check(tty, inode, __func__))
1641                 return 0;
1642
1643         tty_lock();
1644         check_tty_count(tty, __func__);
1645
1646         __tty_fasync(-1, filp, 0);
1647
1648         idx = tty->index;
1649         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1650                       tty->driver->subtype == PTY_TYPE_MASTER);
1651         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1652         o_tty = tty->link;
1653
1654         if (tty_release_checks(tty, o_tty, idx)) {
1655                 tty_unlock();
1656                 return 0;
1657         }
1658
1659 #ifdef TTY_DEBUG_HANGUP
1660         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1661                         tty_name(tty, buf), tty->count);
1662 #endif
1663
1664         if (tty->ops->close)
1665                 tty->ops->close(tty, filp);
1666
1667         tty_unlock();
1668         /*
1669          * Sanity check: if tty->count is going to zero, there shouldn't be
1670          * any waiters on tty->read_wait or tty->write_wait.  We test the
1671          * wait queues and kick everyone out _before_ actually starting to
1672          * close.  This ensures that we won't block while releasing the tty
1673          * structure.
1674          *
1675          * The test for the o_tty closing is necessary, since the master and
1676          * slave sides may close in any order.  If the slave side closes out
1677          * first, its count will be one, since the master side holds an open.
1678          * Thus this test wouldn't be triggered at the time the slave closes,
1679          * so we do it now.
1680          *
1681          * Note that it's possible for the tty to be opened again while we're
1682          * flushing out waiters.  By recalculating the closing flags before
1683          * each iteration we avoid any problems.
1684          */
1685         while (1) {
1686                 /* Guard against races with tty->count changes elsewhere and
1687                    opens on /dev/tty */
1688
1689                 mutex_lock(&tty_mutex);
1690                 tty_lock();
1691                 tty_closing = tty->count <= 1;
1692                 o_tty_closing = o_tty &&
1693                         (o_tty->count <= (pty_master ? 1 : 0));
1694                 do_sleep = 0;
1695
1696                 if (tty_closing) {
1697                         if (waitqueue_active(&tty->read_wait)) {
1698                                 wake_up_poll(&tty->read_wait, POLLIN);
1699                                 do_sleep++;
1700                         }
1701                         if (waitqueue_active(&tty->write_wait)) {
1702                                 wake_up_poll(&tty->write_wait, POLLOUT);
1703                                 do_sleep++;
1704                         }
1705                 }
1706                 if (o_tty_closing) {
1707                         if (waitqueue_active(&o_tty->read_wait)) {
1708                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1709                                 do_sleep++;
1710                         }
1711                         if (waitqueue_active(&o_tty->write_wait)) {
1712                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1713                                 do_sleep++;
1714                         }
1715                 }
1716                 if (!do_sleep)
1717                         break;
1718
1719                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1720                                 __func__, tty_name(tty, buf));
1721                 tty_unlock();
1722                 mutex_unlock(&tty_mutex);
1723                 schedule();
1724         }
1725
1726         /*
1727          * The closing flags are now consistent with the open counts on
1728          * both sides, and we've completed the last operation that could
1729          * block, so it's safe to proceed with closing.
1730          */
1731         if (pty_master) {
1732                 if (--o_tty->count < 0) {
1733                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1734                                 __func__, o_tty->count, tty_name(o_tty, buf));
1735                         o_tty->count = 0;
1736                 }
1737         }
1738         if (--tty->count < 0) {
1739                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1740                                 __func__, tty->count, tty_name(tty, buf));
1741                 tty->count = 0;
1742         }
1743
1744         /*
1745          * We've decremented tty->count, so we need to remove this file
1746          * descriptor off the tty->tty_files list; this serves two
1747          * purposes:
1748          *  - check_tty_count sees the correct number of file descriptors
1749          *    associated with this tty.
1750          *  - do_tty_hangup no longer sees this file descriptor as
1751          *    something that needs to be handled for hangups.
1752          */
1753         tty_del_file(filp);
1754
1755         /*
1756          * Perform some housekeeping before deciding whether to return.
1757          *
1758          * Set the TTY_CLOSING flag if this was the last open.  In the
1759          * case of a pty we may have to wait around for the other side
1760          * to close, and TTY_CLOSING makes sure we can't be reopened.
1761          */
1762         if (tty_closing)
1763                 set_bit(TTY_CLOSING, &tty->flags);
1764         if (o_tty_closing)
1765                 set_bit(TTY_CLOSING, &o_tty->flags);
1766
1767         /*
1768          * If _either_ side is closing, make sure there aren't any
1769          * processes that still think tty or o_tty is their controlling
1770          * tty.
1771          */
1772         if (tty_closing || o_tty_closing) {
1773                 read_lock(&tasklist_lock);
1774                 session_clear_tty(tty->session);
1775                 if (o_tty)
1776                         session_clear_tty(o_tty->session);
1777                 read_unlock(&tasklist_lock);
1778         }
1779
1780         mutex_unlock(&tty_mutex);
1781
1782         /* check whether both sides are closing ... */
1783         if (!tty_closing || (o_tty && !o_tty_closing)) {
1784                 tty_unlock();
1785                 return 0;
1786         }
1787
1788 #ifdef TTY_DEBUG_HANGUP
1789         printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1790 #endif
1791         /*
1792          * Ask the line discipline code to release its structures
1793          */
1794         tty_ldisc_release(tty, o_tty);
1795         /*
1796          * The release_tty function takes care of the details of clearing
1797          * the slots and preserving the termios structure.
1798          */
1799         release_tty(tty, idx);
1800
1801         /* Make this pty number available for reallocation */
1802         if (devpts)
1803                 devpts_kill_index(inode, idx);
1804         tty_unlock();
1805         return 0;
1806 }
1807
1808 /**
1809  *      tty_open_current_tty - get tty of current task for open
1810  *      @device: device number
1811  *      @filp: file pointer to tty
1812  *      @return: tty of the current task iff @device is /dev/tty
1813  *
1814  *      We cannot return driver and index like for the other nodes because
1815  *      devpts will not work then. It expects inodes to be from devpts FS.
1816  */
1817 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1818 {
1819         struct tty_struct *tty;
1820
1821         if (device != MKDEV(TTYAUX_MAJOR, 0))
1822                 return NULL;
1823
1824         tty = get_current_tty();
1825         if (!tty)
1826                 return ERR_PTR(-ENXIO);
1827
1828         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1829         /* noctty = 1; */
1830         tty_kref_put(tty);
1831         /* FIXME: we put a reference and return a TTY! */
1832         return tty;
1833 }
1834
1835 /**
1836  *      tty_lookup_driver - lookup a tty driver for a given device file
1837  *      @device: device number
1838  *      @filp: file pointer to tty
1839  *      @noctty: set if the device should not become a controlling tty
1840  *      @index: index for the device in the @return driver
1841  *      @return: driver for this inode (with increased refcount)
1842  *
1843  *      If @return is not erroneous, the caller is responsible to decrement the
1844  *      refcount by tty_driver_kref_put.
1845  *
1846  *      Locking: tty_mutex protects get_tty_driver
1847  */
1848 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1849                 int *noctty, int *index)
1850 {
1851         struct tty_driver *driver;
1852
1853         switch (device) {
1854 #ifdef CONFIG_VT
1855         case MKDEV(TTY_MAJOR, 0): {
1856                 extern struct tty_driver *console_driver;
1857                 driver = tty_driver_kref_get(console_driver);
1858                 *index = fg_console;
1859                 *noctty = 1;
1860                 break;
1861         }
1862 #endif
1863         case MKDEV(TTYAUX_MAJOR, 1): {
1864                 struct tty_driver *console_driver = console_device(index);
1865                 if (console_driver) {
1866                         driver = tty_driver_kref_get(console_driver);
1867                         if (driver) {
1868                                 /* Don't let /dev/console block */
1869                                 filp->f_flags |= O_NONBLOCK;
1870                                 *noctty = 1;
1871                                 break;
1872                         }
1873                 }
1874                 return ERR_PTR(-ENODEV);
1875         }
1876         default:
1877                 driver = get_tty_driver(device, index);
1878                 if (!driver)
1879                         return ERR_PTR(-ENODEV);
1880                 break;
1881         }
1882         return driver;
1883 }
1884
1885 /**
1886  *      tty_open                -       open a tty device
1887  *      @inode: inode of device file
1888  *      @filp: file pointer to tty
1889  *
1890  *      tty_open and tty_release keep up the tty count that contains the
1891  *      number of opens done on a tty. We cannot use the inode-count, as
1892  *      different inodes might point to the same tty.
1893  *
1894  *      Open-counting is needed for pty masters, as well as for keeping
1895  *      track of serial lines: DTR is dropped when the last close happens.
1896  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1897  *
1898  *      The termios state of a pty is reset on first open so that
1899  *      settings don't persist across reuse.
1900  *
1901  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1902  *               tty->count should protect the rest.
1903  *               ->siglock protects ->signal/->sighand
1904  */
1905
1906 static int tty_open(struct inode *inode, struct file *filp)
1907 {
1908         struct tty_struct *tty;
1909         int noctty, retval;
1910         struct tty_driver *driver = NULL;
1911         int index;
1912         dev_t device = inode->i_rdev;
1913         unsigned saved_flags = filp->f_flags;
1914
1915         nonseekable_open(inode, filp);
1916
1917 retry_open:
1918         retval = tty_alloc_file(filp);
1919         if (retval)
1920                 return -ENOMEM;
1921
1922         noctty = filp->f_flags & O_NOCTTY;
1923         index  = -1;
1924         retval = 0;
1925
1926         mutex_lock(&tty_mutex);
1927         tty_lock();
1928
1929         tty = tty_open_current_tty(device, filp);
1930         if (IS_ERR(tty)) {
1931                 retval = PTR_ERR(tty);
1932                 goto err_unlock;
1933         } else if (!tty) {
1934                 driver = tty_lookup_driver(device, filp, &noctty, &index);
1935                 if (IS_ERR(driver)) {
1936                         retval = PTR_ERR(driver);
1937                         goto err_unlock;
1938                 }
1939
1940                 /* check whether we're reopening an existing tty */
1941                 tty = tty_driver_lookup_tty(driver, inode, index);
1942                 if (IS_ERR(tty)) {
1943                         retval = PTR_ERR(tty);
1944                         goto err_unlock;
1945                 }
1946         }
1947
1948         if (tty) {
1949                 retval = tty_reopen(tty);
1950                 if (retval)
1951                         tty = ERR_PTR(retval);
1952         } else
1953                 tty = tty_init_dev(driver, index, 0);
1954
1955         mutex_unlock(&tty_mutex);
1956         if (driver)
1957                 tty_driver_kref_put(driver);
1958         if (IS_ERR(tty)) {
1959                 tty_unlock();
1960                 retval = PTR_ERR(tty);
1961                 goto err_file;
1962         }
1963
1964         tty_add_file(tty, filp);
1965
1966         check_tty_count(tty, __func__);
1967         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1968             tty->driver->subtype == PTY_TYPE_MASTER)
1969                 noctty = 1;
1970 #ifdef TTY_DEBUG_HANGUP
1971         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1972 #endif
1973         if (tty->ops->open)
1974                 retval = tty->ops->open(tty, filp);
1975         else
1976                 retval = -ENODEV;
1977         filp->f_flags = saved_flags;
1978
1979         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1980                                                 !capable(CAP_SYS_ADMIN))
1981                 retval = -EBUSY;
1982
1983         if (retval) {
1984 #ifdef TTY_DEBUG_HANGUP
1985                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1986                                 retval, tty->name);
1987 #endif
1988                 tty_unlock(); /* need to call tty_release without BTM */
1989                 tty_release(inode, filp);
1990                 if (retval != -ERESTARTSYS)
1991                         return retval;
1992
1993                 if (signal_pending(current))
1994                         return retval;
1995
1996                 schedule();
1997                 /*
1998                  * Need to reset f_op in case a hangup happened.
1999                  */
2000                 tty_lock();
2001                 if (filp->f_op == &hung_up_tty_fops)
2002                         filp->f_op = &tty_fops;
2003                 tty_unlock();
2004                 goto retry_open;
2005         }
2006         tty_unlock();
2007
2008
2009         mutex_lock(&tty_mutex);
2010         tty_lock();
2011         spin_lock_irq(&current->sighand->siglock);
2012         if (!noctty &&
2013             current->signal->leader &&
2014             !current->signal->tty &&
2015             tty->session == NULL)
2016                 __proc_set_tty(current, tty);
2017         spin_unlock_irq(&current->sighand->siglock);
2018         tty_unlock();
2019         mutex_unlock(&tty_mutex);
2020         return 0;
2021 err_unlock:
2022         tty_unlock();
2023         mutex_unlock(&tty_mutex);
2024         /* after locks to avoid deadlock */
2025         if (!IS_ERR_OR_NULL(driver))
2026                 tty_driver_kref_put(driver);
2027 err_file:
2028         tty_free_file(filp);
2029         return retval;
2030 }
2031
2032
2033
2034 /**
2035  *      tty_poll        -       check tty status
2036  *      @filp: file being polled
2037  *      @wait: poll wait structures to update
2038  *
2039  *      Call the line discipline polling method to obtain the poll
2040  *      status of the device.
2041  *
2042  *      Locking: locks called line discipline but ldisc poll method
2043  *      may be re-entered freely by other callers.
2044  */
2045
2046 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2047 {
2048         struct tty_struct *tty = file_tty(filp);
2049         struct tty_ldisc *ld;
2050         int ret = 0;
2051
2052         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2053                 return 0;
2054
2055         ld = tty_ldisc_ref_wait(tty);
2056         if (ld->ops->poll)
2057                 ret = (ld->ops->poll)(tty, filp, wait);
2058         tty_ldisc_deref(ld);
2059         return ret;
2060 }
2061
2062 static int __tty_fasync(int fd, struct file *filp, int on)
2063 {
2064         struct tty_struct *tty = file_tty(filp);
2065         unsigned long flags;
2066         int retval = 0;
2067
2068         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2069                 goto out;
2070
2071         retval = fasync_helper(fd, filp, on, &tty->fasync);
2072         if (retval <= 0)
2073                 goto out;
2074
2075         if (on) {
2076                 enum pid_type type;
2077                 struct pid *pid;
2078                 if (!waitqueue_active(&tty->read_wait))
2079                         tty->minimum_to_wake = 1;
2080                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2081                 if (tty->pgrp) {
2082                         pid = tty->pgrp;
2083                         type = PIDTYPE_PGID;
2084                 } else {
2085                         pid = task_pid(current);
2086                         type = PIDTYPE_PID;
2087                 }
2088                 get_pid(pid);
2089                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2090                 retval = __f_setown(filp, pid, type, 0);
2091                 put_pid(pid);
2092                 if (retval)
2093                         goto out;
2094         } else {
2095                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2096                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2097         }
2098         retval = 0;
2099 out:
2100         return retval;
2101 }
2102
2103 static int tty_fasync(int fd, struct file *filp, int on)
2104 {
2105         int retval;
2106         tty_lock();
2107         retval = __tty_fasync(fd, filp, on);
2108         tty_unlock();
2109         return retval;
2110 }
2111
2112 /**
2113  *      tiocsti                 -       fake input character
2114  *      @tty: tty to fake input into
2115  *      @p: pointer to character
2116  *
2117  *      Fake input to a tty device. Does the necessary locking and
2118  *      input management.
2119  *
2120  *      FIXME: does not honour flow control ??
2121  *
2122  *      Locking:
2123  *              Called functions take tty_ldisc_lock
2124  *              current->signal->tty check is safe without locks
2125  *
2126  *      FIXME: may race normal receive processing
2127  */
2128
2129 static int tiocsti(struct tty_struct *tty, char __user *p)
2130 {
2131         char ch, mbz = 0;
2132         struct tty_ldisc *ld;
2133
2134         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2135                 return -EPERM;
2136         if (get_user(ch, p))
2137                 return -EFAULT;
2138         tty_audit_tiocsti(tty, ch);
2139         ld = tty_ldisc_ref_wait(tty);
2140         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2141         tty_ldisc_deref(ld);
2142         return 0;
2143 }
2144
2145 /**
2146  *      tiocgwinsz              -       implement window query ioctl
2147  *      @tty; tty
2148  *      @arg: user buffer for result
2149  *
2150  *      Copies the kernel idea of the window size into the user buffer.
2151  *
2152  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2153  *              is consistent.
2154  */
2155
2156 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2157 {
2158         int err;
2159
2160         mutex_lock(&tty->termios_mutex);
2161         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2162         mutex_unlock(&tty->termios_mutex);
2163
2164         return err ? -EFAULT: 0;
2165 }
2166
2167 /**
2168  *      tty_do_resize           -       resize event
2169  *      @tty: tty being resized
2170  *      @rows: rows (character)
2171  *      @cols: cols (character)
2172  *
2173  *      Update the termios variables and send the necessary signals to
2174  *      peform a terminal resize correctly
2175  */
2176
2177 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2178 {
2179         struct pid *pgrp;
2180         unsigned long flags;
2181
2182         /* Lock the tty */
2183         mutex_lock(&tty->termios_mutex);
2184         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2185                 goto done;
2186         /* Get the PID values and reference them so we can
2187            avoid holding the tty ctrl lock while sending signals */
2188         spin_lock_irqsave(&tty->ctrl_lock, flags);
2189         pgrp = get_pid(tty->pgrp);
2190         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2191
2192         if (pgrp)
2193                 kill_pgrp(pgrp, SIGWINCH, 1);
2194         put_pid(pgrp);
2195
2196         tty->winsize = *ws;
2197 done:
2198         mutex_unlock(&tty->termios_mutex);
2199         return 0;
2200 }
2201
2202 /**
2203  *      tiocswinsz              -       implement window size set ioctl
2204  *      @tty; tty side of tty
2205  *      @arg: user buffer for result
2206  *
2207  *      Copies the user idea of the window size to the kernel. Traditionally
2208  *      this is just advisory information but for the Linux console it
2209  *      actually has driver level meaning and triggers a VC resize.
2210  *
2211  *      Locking:
2212  *              Driver dependent. The default do_resize method takes the
2213  *      tty termios mutex and ctrl_lock. The console takes its own lock
2214  *      then calls into the default method.
2215  */
2216
2217 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2218 {
2219         struct winsize tmp_ws;
2220         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2221                 return -EFAULT;
2222
2223         if (tty->ops->resize)
2224                 return tty->ops->resize(tty, &tmp_ws);
2225         else
2226                 return tty_do_resize(tty, &tmp_ws);
2227 }
2228
2229 /**
2230  *      tioccons        -       allow admin to move logical console
2231  *      @file: the file to become console
2232  *
2233  *      Allow the administrator to move the redirected console device
2234  *
2235  *      Locking: uses redirect_lock to guard the redirect information
2236  */
2237
2238 static int tioccons(struct file *file)
2239 {
2240         if (!capable(CAP_SYS_ADMIN))
2241                 return -EPERM;
2242         if (file->f_op->write == redirected_tty_write) {
2243                 struct file *f;
2244                 spin_lock(&redirect_lock);
2245                 f = redirect;
2246                 redirect = NULL;
2247                 spin_unlock(&redirect_lock);
2248                 if (f)
2249                         fput(f);
2250                 return 0;
2251         }
2252         spin_lock(&redirect_lock);
2253         if (redirect) {
2254                 spin_unlock(&redirect_lock);
2255                 return -EBUSY;
2256         }
2257         get_file(file);
2258         redirect = file;
2259         spin_unlock(&redirect_lock);
2260         return 0;
2261 }
2262
2263 /**
2264  *      fionbio         -       non blocking ioctl
2265  *      @file: file to set blocking value
2266  *      @p: user parameter
2267  *
2268  *      Historical tty interfaces had a blocking control ioctl before
2269  *      the generic functionality existed. This piece of history is preserved
2270  *      in the expected tty API of posix OS's.
2271  *
2272  *      Locking: none, the open file handle ensures it won't go away.
2273  */
2274
2275 static int fionbio(struct file *file, int __user *p)
2276 {
2277         int nonblock;
2278
2279         if (get_user(nonblock, p))
2280                 return -EFAULT;
2281
2282         spin_lock(&file->f_lock);
2283         if (nonblock)
2284                 file->f_flags |= O_NONBLOCK;
2285         else
2286                 file->f_flags &= ~O_NONBLOCK;
2287         spin_unlock(&file->f_lock);
2288         return 0;
2289 }
2290
2291 /**
2292  *      tiocsctty       -       set controlling tty
2293  *      @tty: tty structure
2294  *      @arg: user argument
2295  *
2296  *      This ioctl is used to manage job control. It permits a session
2297  *      leader to set this tty as the controlling tty for the session.
2298  *
2299  *      Locking:
2300  *              Takes tty_mutex() to protect tty instance
2301  *              Takes tasklist_lock internally to walk sessions
2302  *              Takes ->siglock() when updating signal->tty
2303  */
2304
2305 static int tiocsctty(struct tty_struct *tty, int arg)
2306 {
2307         int ret = 0;
2308         if (current->signal->leader && (task_session(current) == tty->session))
2309                 return ret;
2310
2311         mutex_lock(&tty_mutex);
2312         /*
2313          * The process must be a session leader and
2314          * not have a controlling tty already.
2315          */
2316         if (!current->signal->leader || current->signal->tty) {
2317                 ret = -EPERM;
2318                 goto unlock;
2319         }
2320
2321         if (tty->session) {
2322                 /*
2323                  * This tty is already the controlling
2324                  * tty for another session group!
2325                  */
2326                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2327                         /*
2328                          * Steal it away
2329                          */
2330                         read_lock(&tasklist_lock);
2331                         session_clear_tty(tty->session);
2332                         read_unlock(&tasklist_lock);
2333                 } else {
2334                         ret = -EPERM;
2335                         goto unlock;
2336                 }
2337         }
2338         proc_set_tty(current, tty);
2339 unlock:
2340         mutex_unlock(&tty_mutex);
2341         return ret;
2342 }
2343
2344 /**
2345  *      tty_get_pgrp    -       return a ref counted pgrp pid
2346  *      @tty: tty to read
2347  *
2348  *      Returns a refcounted instance of the pid struct for the process
2349  *      group controlling the tty.
2350  */
2351
2352 struct pid *tty_get_pgrp(struct tty_struct *tty)
2353 {
2354         unsigned long flags;
2355         struct pid *pgrp;
2356
2357         spin_lock_irqsave(&tty->ctrl_lock, flags);
2358         pgrp = get_pid(tty->pgrp);
2359         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2360
2361         return pgrp;
2362 }
2363 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2364
2365 /**
2366  *      tiocgpgrp               -       get process group
2367  *      @tty: tty passed by user
2368  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2369  *      @p: returned pid
2370  *
2371  *      Obtain the process group of the tty. If there is no process group
2372  *      return an error.
2373  *
2374  *      Locking: none. Reference to current->signal->tty is safe.
2375  */
2376
2377 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2378 {
2379         struct pid *pid;
2380         int ret;
2381         /*
2382          * (tty == real_tty) is a cheap way of
2383          * testing if the tty is NOT a master pty.
2384          */
2385         if (tty == real_tty && current->signal->tty != real_tty)
2386                 return -ENOTTY;
2387         pid = tty_get_pgrp(real_tty);
2388         ret =  put_user(pid_vnr(pid), p);
2389         put_pid(pid);
2390         return ret;
2391 }
2392
2393 /**
2394  *      tiocspgrp               -       attempt to set process group
2395  *      @tty: tty passed by user
2396  *      @real_tty: tty side device matching tty passed by user
2397  *      @p: pid pointer
2398  *
2399  *      Set the process group of the tty to the session passed. Only
2400  *      permitted where the tty session is our session.
2401  *
2402  *      Locking: RCU, ctrl lock
2403  */
2404
2405 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2406 {
2407         struct pid *pgrp;
2408         pid_t pgrp_nr;
2409         int retval = tty_check_change(real_tty);
2410         unsigned long flags;
2411
2412         if (retval == -EIO)
2413                 return -ENOTTY;
2414         if (retval)
2415                 return retval;
2416         if (!current->signal->tty ||
2417             (current->signal->tty != real_tty) ||
2418             (real_tty->session != task_session(current)))
2419                 return -ENOTTY;
2420         if (get_user(pgrp_nr, p))
2421                 return -EFAULT;
2422         if (pgrp_nr < 0)
2423                 return -EINVAL;
2424         rcu_read_lock();
2425         pgrp = find_vpid(pgrp_nr);
2426         retval = -ESRCH;
2427         if (!pgrp)
2428                 goto out_unlock;
2429         retval = -EPERM;
2430         if (session_of_pgrp(pgrp) != task_session(current))
2431                 goto out_unlock;
2432         retval = 0;
2433         spin_lock_irqsave(&tty->ctrl_lock, flags);
2434         put_pid(real_tty->pgrp);
2435         real_tty->pgrp = get_pid(pgrp);
2436         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2437 out_unlock:
2438         rcu_read_unlock();
2439         return retval;
2440 }
2441
2442 /**
2443  *      tiocgsid                -       get session id
2444  *      @tty: tty passed by user
2445  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2446  *      @p: pointer to returned session id
2447  *
2448  *      Obtain the session id of the tty. If there is no session
2449  *      return an error.
2450  *
2451  *      Locking: none. Reference to current->signal->tty is safe.
2452  */
2453
2454 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2455 {
2456         /*
2457          * (tty == real_tty) is a cheap way of
2458          * testing if the tty is NOT a master pty.
2459         */
2460         if (tty == real_tty && current->signal->tty != real_tty)
2461                 return -ENOTTY;
2462         if (!real_tty->session)
2463                 return -ENOTTY;
2464         return put_user(pid_vnr(real_tty->session), p);
2465 }
2466
2467 /**
2468  *      tiocsetd        -       set line discipline
2469  *      @tty: tty device
2470  *      @p: pointer to user data
2471  *
2472  *      Set the line discipline according to user request.
2473  *
2474  *      Locking: see tty_set_ldisc, this function is just a helper
2475  */
2476
2477 static int tiocsetd(struct tty_struct *tty, int __user *p)
2478 {
2479         int ldisc;
2480         int ret;
2481
2482         if (get_user(ldisc, p))
2483                 return -EFAULT;
2484
2485         ret = tty_set_ldisc(tty, ldisc);
2486
2487         return ret;
2488 }
2489
2490 /**
2491  *      send_break      -       performed time break
2492  *      @tty: device to break on
2493  *      @duration: timeout in mS
2494  *
2495  *      Perform a timed break on hardware that lacks its own driver level
2496  *      timed break functionality.
2497  *
2498  *      Locking:
2499  *              atomic_write_lock serializes
2500  *
2501  */
2502
2503 static int send_break(struct tty_struct *tty, unsigned int duration)
2504 {
2505         int retval;
2506
2507         if (tty->ops->break_ctl == NULL)
2508                 return 0;
2509
2510         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2511                 retval = tty->ops->break_ctl(tty, duration);
2512         else {
2513                 /* Do the work ourselves */
2514                 if (tty_write_lock(tty, 0) < 0)
2515                         return -EINTR;
2516                 retval = tty->ops->break_ctl(tty, -1);
2517                 if (retval)
2518                         goto out;
2519                 if (!signal_pending(current))
2520                         msleep_interruptible(duration);
2521                 retval = tty->ops->break_ctl(tty, 0);
2522 out:
2523                 tty_write_unlock(tty);
2524                 if (signal_pending(current))
2525                         retval = -EINTR;
2526         }
2527         return retval;
2528 }
2529
2530 /**
2531  *      tty_tiocmget            -       get modem status
2532  *      @tty: tty device
2533  *      @file: user file pointer
2534  *      @p: pointer to result
2535  *
2536  *      Obtain the modem status bits from the tty driver if the feature
2537  *      is supported. Return -EINVAL if it is not available.
2538  *
2539  *      Locking: none (up to the driver)
2540  */
2541
2542 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2543 {
2544         int retval = -EINVAL;
2545
2546         if (tty->ops->tiocmget) {
2547                 retval = tty->ops->tiocmget(tty);
2548
2549                 if (retval >= 0)
2550                         retval = put_user(retval, p);
2551         }
2552         return retval;
2553 }
2554
2555 /**
2556  *      tty_tiocmset            -       set modem status
2557  *      @tty: tty device
2558  *      @cmd: command - clear bits, set bits or set all
2559  *      @p: pointer to desired bits
2560  *
2561  *      Set the modem status bits from the tty driver if the feature
2562  *      is supported. Return -EINVAL if it is not available.
2563  *
2564  *      Locking: none (up to the driver)
2565  */
2566
2567 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2568              unsigned __user *p)
2569 {
2570         int retval;
2571         unsigned int set, clear, val;
2572
2573         if (tty->ops->tiocmset == NULL)
2574                 return -EINVAL;
2575
2576         retval = get_user(val, p);
2577         if (retval)
2578                 return retval;
2579         set = clear = 0;
2580         switch (cmd) {
2581         case TIOCMBIS:
2582                 set = val;
2583                 break;
2584         case TIOCMBIC:
2585                 clear = val;
2586                 break;
2587         case TIOCMSET:
2588                 set = val;
2589                 clear = ~val;
2590                 break;
2591         }
2592         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2593         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2594         return tty->ops->tiocmset(tty, set, clear);
2595 }
2596
2597 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2598 {
2599         int retval = -EINVAL;
2600         struct serial_icounter_struct icount;
2601         memset(&icount, 0, sizeof(icount));
2602         if (tty->ops->get_icount)
2603                 retval = tty->ops->get_icount(tty, &icount);
2604         if (retval != 0)
2605                 return retval;
2606         if (copy_to_user(arg, &icount, sizeof(icount)))
2607                 return -EFAULT;
2608         return 0;
2609 }
2610
2611 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2612 {
2613         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2614             tty->driver->subtype == PTY_TYPE_MASTER)
2615                 tty = tty->link;
2616         return tty;
2617 }
2618 EXPORT_SYMBOL(tty_pair_get_tty);
2619
2620 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2621 {
2622         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2623             tty->driver->subtype == PTY_TYPE_MASTER)
2624             return tty;
2625         return tty->link;
2626 }
2627 EXPORT_SYMBOL(tty_pair_get_pty);
2628
2629 /*
2630  * Split this up, as gcc can choke on it otherwise..
2631  */
2632 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2633 {
2634         struct tty_struct *tty = file_tty(file);
2635         struct tty_struct *real_tty;
2636         void __user *p = (void __user *)arg;
2637         int retval;
2638         struct tty_ldisc *ld;
2639         struct inode *inode = file->f_dentry->d_inode;
2640
2641         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2642                 return -EINVAL;
2643
2644         real_tty = tty_pair_get_tty(tty);
2645
2646         /*
2647          * Factor out some common prep work
2648          */
2649         switch (cmd) {
2650         case TIOCSETD:
2651         case TIOCSBRK:
2652         case TIOCCBRK:
2653         case TCSBRK:
2654         case TCSBRKP:
2655                 retval = tty_check_change(tty);
2656                 if (retval)
2657                         return retval;
2658                 if (cmd != TIOCCBRK) {
2659                         tty_wait_until_sent(tty, 0);
2660                         if (signal_pending(current))
2661                                 return -EINTR;
2662                 }
2663                 break;
2664         }
2665
2666         /*
2667          *      Now do the stuff.
2668          */
2669         switch (cmd) {
2670         case TIOCSTI:
2671                 return tiocsti(tty, p);
2672         case TIOCGWINSZ:
2673                 return tiocgwinsz(real_tty, p);
2674         case TIOCSWINSZ:
2675                 return tiocswinsz(real_tty, p);
2676         case TIOCCONS:
2677                 return real_tty != tty ? -EINVAL : tioccons(file);
2678         case FIONBIO:
2679                 return fionbio(file, p);
2680         case TIOCEXCL:
2681                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2682                 return 0;
2683         case TIOCNXCL:
2684                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2685                 return 0;
2686         case TIOCNOTTY:
2687                 if (current->signal->tty != tty)
2688                         return -ENOTTY;
2689                 no_tty();
2690                 return 0;
2691         case TIOCSCTTY:
2692                 return tiocsctty(tty, arg);
2693         case TIOCGPGRP:
2694                 return tiocgpgrp(tty, real_tty, p);
2695         case TIOCSPGRP:
2696                 return tiocspgrp(tty, real_tty, p);
2697         case TIOCGSID:
2698                 return tiocgsid(tty, real_tty, p);
2699         case TIOCGETD:
2700                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2701         case TIOCSETD:
2702                 return tiocsetd(tty, p);
2703         case TIOCVHANGUP:
2704                 if (!capable(CAP_SYS_ADMIN))
2705                         return -EPERM;
2706                 tty_vhangup(tty);
2707                 return 0;
2708         case TIOCGDEV:
2709         {
2710                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2711                 return put_user(ret, (unsigned int __user *)p);
2712         }
2713         /*
2714          * Break handling
2715          */
2716         case TIOCSBRK:  /* Turn break on, unconditionally */
2717                 if (tty->ops->break_ctl)
2718                         return tty->ops->break_ctl(tty, -1);
2719                 return 0;
2720         case TIOCCBRK:  /* Turn break off, unconditionally */
2721                 if (tty->ops->break_ctl)
2722                         return tty->ops->break_ctl(tty, 0);
2723                 return 0;
2724         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2725                 /* non-zero arg means wait for all output data
2726                  * to be sent (performed above) but don't send break.
2727                  * This is used by the tcdrain() termios function.
2728                  */
2729                 if (!arg)
2730                         return send_break(tty, 250);
2731                 return 0;
2732         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2733                 return send_break(tty, arg ? arg*100 : 250);
2734
2735         case TIOCMGET:
2736                 return tty_tiocmget(tty, p);
2737         case TIOCMSET:
2738         case TIOCMBIC:
2739         case TIOCMBIS:
2740                 return tty_tiocmset(tty, cmd, p);
2741         case TIOCGICOUNT:
2742                 retval = tty_tiocgicount(tty, p);
2743                 /* For the moment allow fall through to the old method */
2744                 if (retval != -EINVAL)
2745                         return retval;
2746                 break;
2747         case TCFLSH:
2748                 switch (arg) {
2749                 case TCIFLUSH:
2750                 case TCIOFLUSH:
2751                 /* flush tty buffer and allow ldisc to process ioctl */
2752                         tty_buffer_flush(tty);
2753                         break;
2754                 }
2755                 break;
2756         }
2757         if (tty->ops->ioctl) {
2758                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2759                 if (retval != -ENOIOCTLCMD)
2760                         return retval;
2761         }
2762         ld = tty_ldisc_ref_wait(tty);
2763         retval = -EINVAL;
2764         if (ld->ops->ioctl) {
2765                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2766                 if (retval == -ENOIOCTLCMD)
2767                         retval = -EINVAL;
2768         }
2769         tty_ldisc_deref(ld);
2770         return retval;
2771 }
2772
2773 #ifdef CONFIG_COMPAT
2774 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2775                                 unsigned long arg)
2776 {
2777         struct inode *inode = file->f_dentry->d_inode;
2778         struct tty_struct *tty = file_tty(file);
2779         struct tty_ldisc *ld;
2780         int retval = -ENOIOCTLCMD;
2781
2782         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2783                 return -EINVAL;
2784
2785         if (tty->ops->compat_ioctl) {
2786                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2787                 if (retval != -ENOIOCTLCMD)
2788                         return retval;
2789         }
2790
2791         ld = tty_ldisc_ref_wait(tty);
2792         if (ld->ops->compat_ioctl)
2793                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2794         else
2795                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2796         tty_ldisc_deref(ld);
2797
2798         return retval;
2799 }
2800 #endif
2801
2802 /*
2803  * This implements the "Secure Attention Key" ---  the idea is to
2804  * prevent trojan horses by killing all processes associated with this
2805  * tty when the user hits the "Secure Attention Key".  Required for
2806  * super-paranoid applications --- see the Orange Book for more details.
2807  *
2808  * This code could be nicer; ideally it should send a HUP, wait a few
2809  * seconds, then send a INT, and then a KILL signal.  But you then
2810  * have to coordinate with the init process, since all processes associated
2811  * with the current tty must be dead before the new getty is allowed
2812  * to spawn.
2813  *
2814  * Now, if it would be correct ;-/ The current code has a nasty hole -
2815  * it doesn't catch files in flight. We may send the descriptor to ourselves
2816  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2817  *
2818  * Nasty bug: do_SAK is being called in interrupt context.  This can
2819  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2820  */
2821 void __do_SAK(struct tty_struct *tty)
2822 {
2823 #ifdef TTY_SOFT_SAK
2824         tty_hangup(tty);
2825 #else
2826         struct task_struct *g, *p;
2827         struct pid *session;
2828         int             i;
2829         struct file     *filp;
2830         struct fdtable *fdt;
2831
2832         if (!tty)
2833                 return;
2834         session = tty->session;
2835
2836         tty_ldisc_flush(tty);
2837
2838         tty_driver_flush_buffer(tty);
2839
2840         read_lock(&tasklist_lock);
2841         /* Kill the entire session */
2842         do_each_pid_task(session, PIDTYPE_SID, p) {
2843                 printk(KERN_NOTICE "SAK: killed process %d"
2844                         " (%s): task_session(p)==tty->session\n",
2845                         task_pid_nr(p), p->comm);
2846                 send_sig(SIGKILL, p, 1);
2847         } while_each_pid_task(session, PIDTYPE_SID, p);
2848         /* Now kill any processes that happen to have the
2849          * tty open.
2850          */
2851         do_each_thread(g, p) {
2852                 if (p->signal->tty == tty) {
2853                         printk(KERN_NOTICE "SAK: killed process %d"
2854                             " (%s): task_session(p)==tty->session\n",
2855                             task_pid_nr(p), p->comm);
2856                         send_sig(SIGKILL, p, 1);
2857                         continue;
2858                 }
2859                 task_lock(p);
2860                 if (p->files) {
2861                         /*
2862                          * We don't take a ref to the file, so we must
2863                          * hold ->file_lock instead.
2864                          */
2865                         spin_lock(&p->files->file_lock);
2866                         fdt = files_fdtable(p->files);
2867                         for (i = 0; i < fdt->max_fds; i++) {
2868                                 filp = fcheck_files(p->files, i);
2869                                 if (!filp)
2870                                         continue;
2871                                 if (filp->f_op->read == tty_read &&
2872                                     file_tty(filp) == tty) {
2873                                         printk(KERN_NOTICE "SAK: killed process %d"
2874                                             " (%s): fd#%d opened to the tty\n",
2875                                             task_pid_nr(p), p->comm, i);
2876                                         force_sig(SIGKILL, p);
2877                                         break;
2878                                 }
2879                         }
2880                         spin_unlock(&p->files->file_lock);
2881                 }
2882                 task_unlock(p);
2883         } while_each_thread(g, p);
2884         read_unlock(&tasklist_lock);
2885 #endif
2886 }
2887
2888 static void do_SAK_work(struct work_struct *work)
2889 {
2890         struct tty_struct *tty =
2891                 container_of(work, struct tty_struct, SAK_work);
2892         __do_SAK(tty);
2893 }
2894
2895 /*
2896  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2897  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2898  * the values which we write to it will be identical to the values which it
2899  * already has. --akpm
2900  */
2901 void do_SAK(struct tty_struct *tty)
2902 {
2903         if (!tty)
2904                 return;
2905         schedule_work(&tty->SAK_work);
2906 }
2907
2908 EXPORT_SYMBOL(do_SAK);
2909
2910 static int dev_match_devt(struct device *dev, void *data)
2911 {
2912         dev_t *devt = data;
2913         return dev->devt == *devt;
2914 }
2915
2916 /* Must put_device() after it's unused! */
2917 static struct device *tty_get_device(struct tty_struct *tty)
2918 {
2919         dev_t devt = tty_devnum(tty);
2920         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2921 }
2922
2923
2924 /**
2925  *      initialize_tty_struct
2926  *      @tty: tty to initialize
2927  *
2928  *      This subroutine initializes a tty structure that has been newly
2929  *      allocated.
2930  *
2931  *      Locking: none - tty in question must not be exposed at this point
2932  */
2933
2934 void initialize_tty_struct(struct tty_struct *tty,
2935                 struct tty_driver *driver, int idx)
2936 {
2937         memset(tty, 0, sizeof(struct tty_struct));
2938         kref_init(&tty->kref);
2939         tty->magic = TTY_MAGIC;
2940         tty_ldisc_init(tty);
2941         tty->session = NULL;
2942         tty->pgrp = NULL;
2943         tty->overrun_time = jiffies;
2944         tty->buf.head = tty->buf.tail = NULL;
2945         tty_buffer_init(tty);
2946         mutex_init(&tty->termios_mutex);
2947         mutex_init(&tty->ldisc_mutex);
2948         init_waitqueue_head(&tty->write_wait);
2949         init_waitqueue_head(&tty->read_wait);
2950         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2951         mutex_init(&tty->atomic_read_lock);
2952         mutex_init(&tty->atomic_write_lock);
2953         mutex_init(&tty->output_lock);
2954         mutex_init(&tty->echo_lock);
2955         spin_lock_init(&tty->read_lock);
2956         spin_lock_init(&tty->ctrl_lock);
2957         INIT_LIST_HEAD(&tty->tty_files);
2958         INIT_WORK(&tty->SAK_work, do_SAK_work);
2959
2960         tty->driver = driver;
2961         tty->ops = driver->ops;
2962         tty->index = idx;
2963         tty_line_name(driver, idx, tty->name);
2964         tty->dev = tty_get_device(tty);
2965 }
2966
2967 /**
2968  *      deinitialize_tty_struct
2969  *      @tty: tty to deinitialize
2970  *
2971  *      This subroutine deinitializes a tty structure that has been newly
2972  *      allocated but tty_release cannot be called on that yet.
2973  *
2974  *      Locking: none - tty in question must not be exposed at this point
2975  */
2976 void deinitialize_tty_struct(struct tty_struct *tty)
2977 {
2978         tty_ldisc_deinit(tty);
2979 }
2980
2981 /**
2982  *      tty_put_char    -       write one character to a tty
2983  *      @tty: tty
2984  *      @ch: character
2985  *
2986  *      Write one byte to the tty using the provided put_char method
2987  *      if present. Returns the number of characters successfully output.
2988  *
2989  *      Note: the specific put_char operation in the driver layer may go
2990  *      away soon. Don't call it directly, use this method
2991  */
2992
2993 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2994 {
2995         if (tty->ops->put_char)
2996                 return tty->ops->put_char(tty, ch);
2997         return tty->ops->write(tty, &ch, 1);
2998 }
2999 EXPORT_SYMBOL_GPL(tty_put_char);
3000
3001 struct class *tty_class;
3002
3003 /**
3004  *      tty_register_device - register a tty device
3005  *      @driver: the tty driver that describes the tty device
3006  *      @index: the index in the tty driver for this tty device
3007  *      @device: a struct device that is associated with this tty device.
3008  *              This field is optional, if there is no known struct device
3009  *              for this tty device it can be set to NULL safely.
3010  *
3011  *      Returns a pointer to the struct device for this tty device
3012  *      (or ERR_PTR(-EFOO) on error).
3013  *
3014  *      This call is required to be made to register an individual tty device
3015  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3016  *      that bit is not set, this function should not be called by a tty
3017  *      driver.
3018  *
3019  *      Locking: ??
3020  */
3021
3022 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3023                                    struct device *device)
3024 {
3025         char name[64];
3026         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3027
3028         if (index >= driver->num) {
3029                 printk(KERN_ERR "Attempt to register invalid tty line number "
3030                        " (%d).\n", index);
3031                 return ERR_PTR(-EINVAL);
3032         }
3033
3034         if (driver->type == TTY_DRIVER_TYPE_PTY)
3035                 pty_line_name(driver, index, name);
3036         else
3037                 tty_line_name(driver, index, name);
3038
3039         return device_create(tty_class, device, dev, NULL, name);
3040 }
3041 EXPORT_SYMBOL(tty_register_device);
3042
3043 /**
3044  *      tty_unregister_device - unregister a tty device
3045  *      @driver: the tty driver that describes the tty device
3046  *      @index: the index in the tty driver for this tty device
3047  *
3048  *      If a tty device is registered with a call to tty_register_device() then
3049  *      this function must be called when the tty device is gone.
3050  *
3051  *      Locking: ??
3052  */
3053
3054 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3055 {
3056         device_destroy(tty_class,
3057                 MKDEV(driver->major, driver->minor_start) + index);
3058 }
3059 EXPORT_SYMBOL(tty_unregister_device);
3060
3061 struct tty_driver *alloc_tty_driver(int lines)
3062 {
3063         struct tty_driver *driver;
3064
3065         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3066         if (driver) {
3067                 kref_init(&driver->kref);
3068                 driver->magic = TTY_DRIVER_MAGIC;
3069                 driver->num = lines;
3070                 /* later we'll move allocation of tables here */
3071         }
3072         return driver;
3073 }
3074 EXPORT_SYMBOL(alloc_tty_driver);
3075
3076 static void destruct_tty_driver(struct kref *kref)
3077 {
3078         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3079         int i;
3080         struct ktermios *tp;
3081         void *p;
3082
3083         if (driver->flags & TTY_DRIVER_INSTALLED) {
3084                 /*
3085                  * Free the termios and termios_locked structures because
3086                  * we don't want to get memory leaks when modular tty
3087                  * drivers are removed from the kernel.
3088                  */
3089                 for (i = 0; i < driver->num; i++) {
3090                         tp = driver->termios[i];
3091                         if (tp) {
3092                                 driver->termios[i] = NULL;
3093                                 kfree(tp);
3094                         }
3095                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3096                                 tty_unregister_device(driver, i);
3097                 }
3098                 p = driver->ttys;
3099                 proc_tty_unregister_driver(driver);
3100                 driver->ttys = NULL;
3101                 driver->termios = NULL;
3102                 kfree(p);
3103                 cdev_del(&driver->cdev);
3104         }
3105         kfree(driver);
3106 }
3107
3108 void tty_driver_kref_put(struct tty_driver *driver)
3109 {
3110         kref_put(&driver->kref, destruct_tty_driver);
3111 }
3112 EXPORT_SYMBOL(tty_driver_kref_put);
3113
3114 void tty_set_operations(struct tty_driver *driver,
3115                         const struct tty_operations *op)
3116 {
3117         driver->ops = op;
3118 };
3119 EXPORT_SYMBOL(tty_set_operations);
3120
3121 void put_tty_driver(struct tty_driver *d)
3122 {
3123         tty_driver_kref_put(d);
3124 }
3125 EXPORT_SYMBOL(put_tty_driver);
3126
3127 /*
3128  * Called by a tty driver to register itself.
3129  */
3130 int tty_register_driver(struct tty_driver *driver)
3131 {
3132         int error;
3133         int i;
3134         dev_t dev;
3135         void **p = NULL;
3136         struct device *d;
3137
3138         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3139                 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3140                 if (!p)
3141                         return -ENOMEM;
3142         }
3143
3144         if (!driver->major) {
3145                 error = alloc_chrdev_region(&dev, driver->minor_start,
3146                                                 driver->num, driver->name);
3147                 if (!error) {
3148                         driver->major = MAJOR(dev);
3149                         driver->minor_start = MINOR(dev);
3150                 }
3151         } else {
3152                 dev = MKDEV(driver->major, driver->minor_start);
3153                 error = register_chrdev_region(dev, driver->num, driver->name);
3154         }
3155         if (error < 0) {
3156                 kfree(p);
3157                 return error;
3158         }
3159
3160         if (p) {
3161                 driver->ttys = (struct tty_struct **)p;
3162                 driver->termios = (struct ktermios **)(p + driver->num);
3163         } else {
3164                 driver->ttys = NULL;
3165                 driver->termios = NULL;
3166         }
3167
3168         cdev_init(&driver->cdev, &tty_fops);
3169         driver->cdev.owner = driver->owner;
3170         error = cdev_add(&driver->cdev, dev, driver->num);
3171         if (error) {
3172                 unregister_chrdev_region(dev, driver->num);
3173                 driver->ttys = NULL;
3174                 driver->termios = NULL;
3175                 kfree(p);
3176                 return error;
3177         }
3178
3179         mutex_lock(&tty_mutex);
3180         list_add(&driver->tty_drivers, &tty_drivers);
3181         mutex_unlock(&tty_mutex);
3182
3183         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3184                 for (i = 0; i < driver->num; i++) {
3185                         d = tty_register_device(driver, i, NULL);
3186                         if (IS_ERR(d)) {
3187                                 error = PTR_ERR(d);
3188                                 goto err;
3189                         }
3190                 }
3191         }
3192         proc_tty_register_driver(driver);
3193         driver->flags |= TTY_DRIVER_INSTALLED;
3194         return 0;
3195
3196 err:
3197         for (i--; i >= 0; i--)
3198                 tty_unregister_device(driver, i);
3199
3200         mutex_lock(&tty_mutex);
3201         list_del(&driver->tty_drivers);
3202         mutex_unlock(&tty_mutex);
3203
3204         unregister_chrdev_region(dev, driver->num);
3205         driver->ttys = NULL;
3206         driver->termios = NULL;
3207         kfree(p);
3208         return error;
3209 }
3210
3211 EXPORT_SYMBOL(tty_register_driver);
3212
3213 /*
3214  * Called by a tty driver to unregister itself.
3215  */
3216 int tty_unregister_driver(struct tty_driver *driver)
3217 {
3218 #if 0
3219         /* FIXME */
3220         if (driver->refcount)
3221                 return -EBUSY;
3222 #endif
3223         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3224                                 driver->num);
3225         mutex_lock(&tty_mutex);
3226         list_del(&driver->tty_drivers);
3227         mutex_unlock(&tty_mutex);
3228         return 0;
3229 }
3230
3231 EXPORT_SYMBOL(tty_unregister_driver);
3232
3233 dev_t tty_devnum(struct tty_struct *tty)
3234 {
3235         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3236 }
3237 EXPORT_SYMBOL(tty_devnum);
3238
3239 void proc_clear_tty(struct task_struct *p)
3240 {
3241         unsigned long flags;
3242         struct tty_struct *tty;
3243         spin_lock_irqsave(&p->sighand->siglock, flags);
3244         tty = p->signal->tty;
3245         p->signal->tty = NULL;
3246         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3247         tty_kref_put(tty);
3248 }
3249
3250 /* Called under the sighand lock */
3251
3252 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3253 {
3254         if (tty) {
3255                 unsigned long flags;
3256                 /* We should not have a session or pgrp to put here but.... */
3257                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3258                 put_pid(tty->session);
3259                 put_pid(tty->pgrp);
3260                 tty->pgrp = get_pid(task_pgrp(tsk));
3261                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3262                 tty->session = get_pid(task_session(tsk));
3263                 if (tsk->signal->tty) {
3264                         printk(KERN_DEBUG "tty not NULL!!\n");
3265                         tty_kref_put(tsk->signal->tty);
3266                 }
3267         }
3268         put_pid(tsk->signal->tty_old_pgrp);
3269         tsk->signal->tty = tty_kref_get(tty);
3270         tsk->signal->tty_old_pgrp = NULL;
3271 }
3272
3273 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3274 {
3275         spin_lock_irq(&tsk->sighand->siglock);
3276         __proc_set_tty(tsk, tty);
3277         spin_unlock_irq(&tsk->sighand->siglock);
3278 }
3279
3280 struct tty_struct *get_current_tty(void)
3281 {
3282         struct tty_struct *tty;
3283         unsigned long flags;
3284
3285         spin_lock_irqsave(&current->sighand->siglock, flags);
3286         tty = tty_kref_get(current->signal->tty);
3287         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3288         return tty;
3289 }
3290 EXPORT_SYMBOL_GPL(get_current_tty);
3291
3292 void tty_default_fops(struct file_operations *fops)
3293 {
3294         *fops = tty_fops;
3295 }
3296
3297 /*
3298  * Initialize the console device. This is called *early*, so
3299  * we can't necessarily depend on lots of kernel help here.
3300  * Just do some early initializations, and do the complex setup
3301  * later.
3302  */
3303 void __init console_init(void)
3304 {
3305         initcall_t *call;
3306
3307         /* Setup the default TTY line discipline. */
3308         tty_ldisc_begin();
3309
3310         /*
3311          * set up the console device so that later boot sequences can
3312          * inform about problems etc..
3313          */
3314         call = __con_initcall_start;
3315         while (call < __con_initcall_end) {
3316                 (*call)();
3317                 call++;
3318         }
3319 }
3320
3321 static char *tty_devnode(struct device *dev, umode_t *mode)
3322 {
3323         if (!mode)
3324                 return NULL;
3325         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3326             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3327                 *mode = 0666;
3328         return NULL;
3329 }
3330
3331 static int __init tty_class_init(void)
3332 {
3333         tty_class = class_create(THIS_MODULE, "tty");
3334         if (IS_ERR(tty_class))
3335                 return PTR_ERR(tty_class);
3336         tty_class->devnode = tty_devnode;
3337         return 0;
3338 }
3339
3340 postcore_initcall(tty_class_init);
3341
3342 /* 3/2004 jmc: why do these devices exist? */
3343 static struct cdev tty_cdev, console_cdev;
3344
3345 static ssize_t show_cons_active(struct device *dev,
3346                                 struct device_attribute *attr, char *buf)
3347 {
3348         struct console *cs[16];
3349         int i = 0;
3350         struct console *c;
3351         ssize_t count = 0;
3352
3353         console_lock();
3354         for_each_console(c) {
3355                 if (!c->device)
3356                         continue;
3357                 if (!c->write)
3358                         continue;
3359                 if ((c->flags & CON_ENABLED) == 0)
3360                         continue;
3361                 cs[i++] = c;
3362                 if (i >= ARRAY_SIZE(cs))
3363                         break;
3364         }
3365         while (i--)
3366                 count += sprintf(buf + count, "%s%d%c",
3367                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3368         console_unlock();
3369
3370         return count;
3371 }
3372 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3373
3374 static struct device *consdev;
3375
3376 void console_sysfs_notify(void)
3377 {
3378         if (consdev)
3379                 sysfs_notify(&consdev->kobj, NULL, "active");
3380 }
3381
3382 /*
3383  * Ok, now we can initialize the rest of the tty devices and can count
3384  * on memory allocations, interrupts etc..
3385  */
3386 int __init tty_init(void)
3387 {
3388         cdev_init(&tty_cdev, &tty_fops);
3389         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3390             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3391                 panic("Couldn't register /dev/tty driver\n");
3392         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3393
3394         cdev_init(&console_cdev, &console_fops);
3395         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3396             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3397                 panic("Couldn't register /dev/console driver\n");
3398         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3399                               "console");
3400         if (IS_ERR(consdev))
3401                 consdev = NULL;
3402         else
3403                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3404
3405 #ifdef CONFIG_VT
3406         vty_init(&console_fops);
3407 #endif
3408         return 0;
3409 }
3410